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We consider the Zakai equation for the unnormalized conditional
distribution o when the signal process X takes values in a complete
separable metric space E and when # is a continuous, possibly unbounded
function on E. It is assumed that X is a Markov process which is
characterized via a martingale problem for an operator A,. Uniqueness of
solution for the measure-valued Zakai and Fujisaki-Kallianpur-Kunita
equations is proved when the test functions belong to the domain of A,. It
is also shown that the conditional distributions are robust.

1. Introduction. The nonlinear filtering problem can be described as
follows: X is the system or signal process which is unobservable. We get
information about X by observing the process Y which is a function of X
corrupted by noise. The usual model for Y is

(1.1) Y, = [h(X,)ds + W,
0

where W is assumed to be an RF*-valued Brownian motion and 4 is a
measurable function. The observation o-field ;¥ = o{Y,: 0 < s < ¢} contains
all the available information about X,. The primary aim of filtering theory is
to get an estimate of X, based on the information %. This is given by the
conditional distribution 7, or, equivalently, the conditional expectations
E[AX)F*] for a rich enough class of functions f. This estimate also
minimizes the squared error loss and hence 7 is called the optimal filter.

In this paper the signal process will be assumed to take values in a
complete, separable metric space. We will restrict our attention to the case
when the.signal process X is a Markov process which is characterized via the
martingale problem for a certain operator A,. The operator A, can be
considered as a restriction to a suitable domain of the infinitesimal generator
of X.
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It is desirable to get a formula for 7, which is recursive in ¢. In other
words, it would be nice if m were to satisfy a (stochastic) differential
equation. It does satisfy an infinite-dimensional stochastic differential equa-
tion (SDE) (or when X is a finite-dimensional diffusion, a stochastic partial
differential equation). This is widely known as the Kushner or the
Fuyjisaki-Kallianpur—-Kunita (FKK) equation. See Kushner (1967), Fujisaki,
Kallianpur and Kunita (1972) and Kallianpur (1980). Zakai (1969) obtained
an equivalent stochastic partial differential equation for a measure-valued
process o, which is easier to handle because it is linear in o,; o, has the
property that =, = a,/{0,, 1). The process o, is thus called the unnormalized
conditional distribution of X, given 7.

The filtering problem can be said to be completely solved if it can be shown
that 7, (or o,) is the unique solution of the FKK (respectively, Zakai)
equation. This has been done by various authors using essentially two types
of techniques. Szpirglas (1978), Pardoux (1982), Baras, Blankenship and
Hopkins (1983), Sheu (1983), Chaleyat-Maurel, Michel and Pardoux (1990)
and Rozovskii (1991) considered the problem of uniqueness when the signal
X is finite dimensional and when A, is the full generator of X. This is done
essentially using operator techniques.

The other approach is via martingale problems. Hijab (1989) proved that
the optimal filter 7 is the unique solution of a martingale problem. Kurtz and
Ocone (1988) proved uniqueness of solution for the FKK and Zakai equations
when X is the unique solution corresponding to the martingale problem for
A,. The state space for the signal process is assumed to be a locally compact,
separable metric space. They considered unbounded 4, but they still required
that Af be bounded for every f in the domain of A,.

In many cases, the signal can be modelled as a solution of a stochastic
partial differential equation which in turn can be considered as an infinite-
dimensional stochastic differential equation. In such a case the state space is
a nonlocally compact, complete separable metric space. In this article we will
consider the measure-valued Zakai equation when the state space E is a
complete, separable metric space and when A is a continuous, possibly
unbounded function and prove uniqueness of solution of the Zakai equation.
Equivalent results for the FKK equation will be deduced. We will assume
throughout the article that 4 satisfies

(1.2) E['| (X)) ds <.
0

This guarantees the existence of a solution of the Zakai and FKK equations.
For uniqueness we assume an additional integrability condition (3.6). When
the state space is a locally compact separable metric space, these results are
still an improvement on those of Kurtz and Ocone (1988). For more precise
comparison with existing work, see Remark 3.1 at the end of Section 3.

The paper is organized as follows. In Section 2 we give some preliminary
results which are used in the course of the article. Section 3 is the main
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section of this article. We prove pathwise uniqueness of solution of the Zakai
equation under a set of conditions on the operator A which corresponds to the
process (X,Y) in the sense of martingale problems. We consider the corre-
lated signal and noise case. The important special case of independent signal
and noise is summarized in Section 4. In this case the above-mentioned set of
conditions can be deduced from similar conditions on the operator A,.

Although, with practical applications in mind, the noise can be taken to be
finite dimensional, the analysis of Sections 3 and 4 can be easily extended to
infinite dimensions. This is done in Section 5. One possible application of the
result can be when the signal and observation are both given by a stochastic
partial differential equation.

In Section 6, we apply the results of the previous sections to signals taking
values in a Hilbert space. An example of a pollution process is also consid-
ered. In Section 7 we apply our results to a signal which is modelled by a
semilinear stochastic differential equation on a Hilbert space. This example
was recently considered by Zabczyk (1994). Here we show that our results
directly imply the uniqueness of the density-valued solutions of the Zakai
equation.

In Section 8, we consider the problem of statistical robustness of the filter
in the case of independent signal and noise. We show that if signal processes
X" converge to X in law, then the corresponding unnormalized conditional
distributions ¢ " converge to ¢ in law. Further, we show that ¢” and o can
be expressed as functionals on Wiener space and there the convergence is in
probability. The proofs of these results depend on the essential use of the
Kallianpur-Striebel formula, which enables the required conditional expecta-
tion to be evaluated by an explicit integration. Finally, in Section 9, we state
the uniqueness and robustness results for the normalized conditional distri-
bution .

In the remainder of this section we explain the model and the terminology.
Let (E, d) be a complete, separable metric space and fix T' > 0. Let A, be an
operator with domain 2(A,) c C,(E), the space of bounded continuous
functions on E and such that the range of the operator is a subset of C(E).
We will assume that the E-valued signal process X is a solution of the
martingale problem for A,. That is, the process

M{ = f(X,) = f(Xo) = [[Aof(X,) ds

is a martingale for every f € Z(A,). Also throughout this article 2 will be a
continuous function satisfying (1.2). The filtering model is as in (1.1). We will
assume that the past of X and W is independent of the future increments of

W, that is, for every ¢ > 0,
(1.3) o{X,,W:0<s<tland o{W, - W, t <u<v <T}
' are independent.

We will show later that if (X,Y) is a Markov process arising as a solution to
a martingale problem, then under some conditions on the domain of the
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operator A there exist linear operators D': D(Ay) — Cy(E X R*) such that
the cross quadratic variation process (M, W) is given by

(1.4) (Mf, Wiy, = ['Dif(X,,Y,)ds, 1s<is<k.
0

The conditions we assume also imply that the process (X,,Y,) is a Hunt
process and that M’ and W are martingales of class (D). Hence this result
also follows from a deep result of Motoo and Watanabe (1965). See also
Fujisaki, Kallianpur and Kunita (1972). We will give an independent proof of
this fact.

Let 2(E) and .# (E) denote the spaces of probability measures and
positive finite measures on E, respectively, equipped with the topology of
weak convergence; 2#(E) is a complete separable metric space under the
Prohorov metric. A natural extension of the Prohorov metric to .#,(E) [see,
e.g.,, Problem 6, Chapter IX of Ethier and Kurtz (1986)] also makes it a
complete separable metric space. For u €.#,(E), f € C,(E), we will write

(s £ =jEf(x) du(x).

For a process (Z,), we will denote by %7 the smallest o-field generated by the
null sets in the underlying probability space and the random variables Z,,
O<sc<t

For 0 <t < T, define 7, € #(E) by

(1.5) (m, [y =E[f(X)IF"],  V[ECyE).

If XeD(0,T], E), then there exists a version of 7 which belongs to
D([0,T], #(E)) [see Yor (1977)]. We will use this version without further
comment. The process 7 satisfies the FKK equation

(my, £ = {mos ) +f0t<7rs,Aof)ds

(1.6) t & . . , .
L X (o WF + DY) = (o B, ) d,
i=1
Vfea(A),
where I, defined by

(1.7) i =Y} - (Y, hi) ds
0

is the innovation process. Define o, €.#, (E) by

k
(o, ) = (wt,f>exp{j: Y Am,hYdYi -1 Y f‘|<ws,hi>l2 ds},
i=1

(1.8) i=170
VieC(E).

Applying 1t6’s formula to (1.8) and using (1.6) and the fact that I is a Wiener
martingale with respect to (#;°) [see Fujisaki, Kallianpur and Kunita (1972)],



MEASURE-VALUED EQUATIONS 1899

we get that {o,} satisfies the Zakai equation

(o, £ = (o, ) +fot<a's,A0f>ds
(19) t k . . .
+f0Z<«rs,h‘f(-)+D’f(-,Ys)>dY;, VfED(A).
i=1

2. Preliminaries. Suppose L is the generator of (the semigroup corre-
sponding to) a Markov process (U,). Then the law of U, is the unique solution
to the measure-valued evolution equation

(2.1) Cpe ) = <;L0,f>+f0t<us,Lf> ds, Vfea(L),

where u, is the law of U,. Now an interesting question is, does uniqueness
still hold if the test functions f in (2.1) are taken from a subdomain 2, of
2(L)? In this section we will show that the answer is affirmative if the
martingale problem for B is well posed, where B is the restriction of L to 2,,,
and if B satisfies some additional conditions. This result is deduced from an
analogous result in Bhatt and Karandikar (1993b) and is given here in a form
that is suitable for our purpose, namely, in deducing uniqueness for the Zakai
equation.

We begin with some notation and definitions. Let S be a complete, separa-
ble metric space, and let B be an operator on C(S) with domain 2(B) C
C,(S). Let the bp-closure of a set V be the smallest set containing V' which is
closed under bounded pointwise (bp) convergence of sequences. We will
denote this set by bp-closure(V). Suppose that B satisfies the following
conditions.

C1l. There exists @ € C(S), satisfying
|Bf(x)| < C/®(x), Vfe2(B),x€S.

C2. There exists a countable subset {f,} C2(B) such that
bp-closure({(f,,®7'Bf,): n > 1}) 2 {(f,07'Bf): f €2(B)}.

C3. 2(B) is an algebra that separates points in S and contains the
constant functions.

DEFINITION 2.1. A (S-valued) process (Z,), ., . defined on some probabil-
ity space (Q,.7, P) is said to be a solution to the martingale problem for
(B, p) if:

@) PoZs' = p;
(i) [(EO(Z,)ds < x, for every t < T,
(iii) for all f€2(B), f(Z,) — [{Bf(Z,) ds is a martingale.
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When T = =, in (ii) above, ¢ < T is to be replaced by ¢ < ». We will say
that the martingale problem for (B, ) is well posed if there exists a solution
Z to the martingale problem for (B, w), and if Z, and Z, are any two
solutions, then A(Z,) = #(Z,). Here and in what follows, #(Z) denotes the
law of Z, where Z could be "a process or a random variable.

We will say that the D([0,T], S) martingale problem for (B, u) is well
posed if there exists an r.c.Ll. solution (Z,), ., ., to the martingale problem
and for any two solutions with r.c.Ll. paths, their laws are the same. We also
assume the following conditions.

C4. The D(0,T],S) martingale problem for (B, §,) is well posed for
every z € S.

C5. For all u € 2(8S), any progressively measurable solution to the mar-
tingale problem for (B, w) admits a cadlag modification.

Note that conditions C4 and C5 together imply that the martingale prob-
lem for (B, §,) is well posed in the class of progressively measurable solutions
for every z € S. Also conditions C2 and C4 together imply that the solution Z
is a strong Markov process [see Theorems IV.4.2 and IV.4.6 of Ethier and
Kurtz (1986) and Remark 2.1 in Horowitz and Karandikar (1990)].

Let B satisfy conditions C1-C4 and, for z € S, let P, € 2(D([0,T], S)) be
the law of the solution to the D([0, T'], S) martingale problem for (B, §,). Let
¢, denote the coordinate random variables on D([0,T'], S) and let

(2.2) .#,(B,0) = {M eP(S): fs(quo . S)f(f@( Z,) dthz) dp < oo}.

It can be proved that the D([0,7'], S) martingale problem for (B, w) is well
posed if and only if u €.#,(B,0).

The following version of a result in Bhatt and Karandikar (1993b) on
uniqueness of solution to a measure-valued evolution equation will be re-
quired later on.

THEOREM 2.1. Suppose B satisfies conditions C1-C5. If { ul} cA(S), i =
1,2, satisfy

(2.3) for every Borel set U € S, t — ui(U) is measurable
and
(2.4) [(®, wiyds <

0

and if, for every 0 <t < T, { ¥} is a solution to the evolution equation
(2.5) <u£,f>=<u0,f>+f0t<u§,Bf>ds, Y f€2(B),

then u} = u?, forall 0 <t <T.
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PrOOF. Define the operator B on C(S,), where S, = [0,T] X S, by
2(B) = {feg fe2(B), g C([0,T])},
B(feg) - |1 +B|(fee).
Then
|BF(t,2)| < Cp(1+0(2)), VFez(B),(tz2) €S,

It is well known that Z, = (t,Z,) is a solution to the martingale problem for
(B, 6, ® pny). We make the following (deterministic) time change. Let

I(t) =T(1-exp(-{yt+1-1})), ¢t=0.

Then T'(¢) = T/(2Vt + 1)exp(—{Vt + 1 — 1}). Hence I" is bounded. Note
that T is a strictly increasing function of ¢. 3

Let Y, = (I'(#), Z)) and DF(t, z) = I'(¢)BF(¢, 2), for all F € 2(B). Then
(Y,: 0 <t < ) is a solution to the martingale problem for (D, §, ® u,). It is
also easy to see that D satisfies condition C1 with @'(¢,z) = 1 + 0(z) and
conditions C2, C4 and C5.

Let i} =8, ® p; and let v/ = jif,,. Then v/ satisfies (2.3) and, for 0 <
t < oo,

(F, v}y =(F,v) + [(DF,v}yds, VFe(D).
0

Further, for g > 0,

Te B+ 0, pi)dt = [ e P
foe ( ,v/)d foe W0,

Note that e A/ /(I"(¢)) = 2/TWt + 1 exp(—{Bt +Vt+1 — 1) >0 as ¢t —>
«. Hence e ?!/(I"(t)) is bounded. Therefore,

(1+ 0, fig,I'(¢) dt.

[e P+ @, vy dt < C[ (1+ 0, i, )T'(¢) dt
0 0

—c[1+0,i)d <o
0

by (2.4). Thus D and »' satisfy all the conditions of Theorem 3.1 of Bhatt and
Karandikar (1993b) and as a consequence of that result, v} = v?2. This in turn
implies that u! = u?, forall0 <t < 7. O

We will now prove a result on Markov processes arising as solutions to a
martingale problem. This identifies the cross quadratic variation of some
processes related to the Markov process.
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Now suppose S = S, X R*. For functions f € C(S,) and g € C(R*) we will
denote by f ® g the function on S defined by

(2.6) feg(x,z) =f(x)g(z), =xe€8),zeR.
Let us suppose that

(2.7) 1®g€92(B), VgeCiR"

and that the following condition holds.

C6. If Z, = (&, ) is any r.c.ll. solution to the martingale problem for B,
then 7 has continuous paths.

THEOREM 2.2. Suppose B satisfies C1-C4 and C6. Let 9, C C,(S,) be
such that

(2.8) f®ge2(B), Vfe€9,,gecC;R*).

Then for 1 <i <k, there exist mappings C: @, — C(S) such that if Z, =
(&, m,) is any r.c.l.l. solution to the martingale problem for B, then n, is a
semimartingale and

(2.9) [ﬂ§%¢L=ﬁUﬂémJ®-

Here [ f(£),7!] d{enotes the cross quadratic variation between the semimartin-
gales f(£) and 7.

REMARK 2.1. As we noted earlier, conditions C2 and C4 together imply
that the process (¢, ) is a strong Markov process. Now conditions C1 and C3
imply that (¢, ) is quasi-left-continuous. See Theorem IV.3.12 of Ethier and
Kurtz (1986) for a proof of this fact. Hence we get that under conditions
C1-C4 the process (&,7) is a Hunt process. Further, the semimartingales
f(£.) and 7. are of class (DL). Hence the conclusion of the theorem will follow
from some deep results on additive functionals of Markov processes proved in
Motoo and Watanabe (1965). In Fujisaki, Kallianpur and Kunita (1972) the
FKK equation (1.6) for the case of Markov processes was derived under the
assumption that the signal and observation processes are Hunt processes and
that Meyer’s hypothesis (DL) is satisfied.

We are going to use (2.9) in the next section in the context of filtering
theory where we have the special form of the operator as in (2.8) above and
where we also know that condition C6 is satisfied. In the presence of these
two extra conditions the existence of the operators C! as in (2.9) can be
proved independently as follows. The proof is also much simpler than that of
Motoo and Watanabe (1965).
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PROOF OF THEOREM 2.2. For f€9,, g € CZ(R*), let A(f, g) be defined by

A(f.g) =B(feg) - (Ffe1)(B(1eg)) —(B(fel)(leg).
Let us note that if (¢,,n,) is any r.c.Ll. solution to the martingale problem
for B and if M[ = f(¢) — [(B(f® 1X¢,n)ds and NE = g(n,) —
[¢B(1 ® gX¢&,,m,) ds, then M/, N¢ are martingales and

M/NF - fOtA(f,g)(fs,ns) ds

is a martingale and hence (M/, N&), = [[A(f, g &, n,) ds. Since N¢ is a
continuous martingale, it follows that [ M/, N¢], = (M, N&), and hence that

(210)  [£(£),8(n)], = [M/,N¥], = [ ‘A(f,8)(&,n,) ds.

Fix 1<i<k. For m=>1, let g™ € CZ(R*) be such that g™(u) =u' for
u=hu? ..., u™) eR Uil <(m + 1).

We will prove that
(2.11) A(f,8™)(x,u) =A(f, 8™ ) (x,u), VxeS,, -m<u <m,
and the required functional C could then be defined by
(2.12) Cif(x,u) =A(f,g™)(x,u), VzxeS,,—-m<u <m.

In view of (2.11), it would follow that Cf is well defined and is continuous. Fix
x €8, ucR* and let |u’| <m. Let (£,7,) be a r.cll solution to the
martingale problem for (B, §, ,,)-

Let 7= inf{¢ > 0: |n}| = (m + 1)}. The continuity of n implies that 7 > 0.
Now clearly

[f( g-)’gm('n-)](t/\ﬂ = [f( §~)’gm+1(7")](t/\~r)

and hence

0

Now dividing by ¢ A 7, taking the limit as ¢ - 0 and using the fact that
paths of (£, n) are right continuous with &, = x, n, = u, it follows that

ACT,8™)(x,u) = A(f, 8™ )(x,u)
and thus, as noted above, Cf is well defined. Now g ™(n) is a semimartingale
for all m and hence it follows that 7 is a semimartingale. In addition, if (£, 1)
is a solution to the martingale problem for B and if +™ = inf{¢t > 0: |n,| >
(m + 1)}, then arguing as above it follows that

[f( f), 77~]t/\~r’" = [f( g')’gm('m)]t/\r”
= [ TAF e (gm) ds

[ g (o m) ds = [UAGF, €7 ) (4, m,) ds.

- fo“""C"f( £, m,) ds.

Since this holds for every m > 1, this completes the proof. O
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3. Uniqueness of solution of the Zakai equation. Let (0, %, P) be a
given probability space on which are defined processes X and W satisfying
(1.3) and where W is a k-dimensional standard Brownian motion. The
observation model is given by (1.1); 2 is assumed to be a continuous function
satisfying (1.2), and the signal process X is assumed to be a Markov process
which is characterized as the unique solution to the martingale problem for
A,. Suppose that the operator A, satisfies conditions C1-C5. (See Section 6
for examples of A, satisfying these conditions.) Suppose that the (E X R*)-
valued process (X,Y) is a Markov process arising as the unique solution to
the martingale problem for an operator A with domain 2(A) consisting of
finite linear combinations of functions of the form f® g, where f €2(A,)
and g € C;(R*). Suppose that the martingale problem for A is well posed.
Then it follows that A satisfies the conditions of Theorem 2.2 and as a
consequence there exist mappings D': 2(A,) - C(E X R*) such that the
cross quadratic variation process ( M/, W') is given by

(3.1) (M, Wiy, = fotpif(Xs,Ys)ds, 1<i<k,
where
M/ =f(X,) = f(Xo) = [[Asf(X,) ds.

See also Remark 2.1. It can now be deduced that the operator A is given by
k . . . .
(32) A(f®g)=Af®g+3f®Ag+ Y (Df)(1®g')+hfog,
i=1

where g’ denotes the partial derivative of g w.r.t. the ith component. Let us
assume that

(3.3) ID'f(x,y)<C0(x), YfED(Ay),1<i<k,VxecE,yecR"
Then A satisfies condition C1 with ®' in place of ®, where

(3.4) O(x,y)=1+0(x)+ lrgflsxk|hi(x)|.

Further, if 7 is the law of X,, then assuming
(3.5) my ® 8y €M (A,0O)

is equivalent to assuming that a solution X to the D([0,T], E) martingale
problem for (A,, m,) exists. Hence note that (1.2) and (3.5) imply that a
solution to the Zakai equation exists, namely, o,. The next result is on
uniqueness.
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THEOREM 3.1. Suppose that the operator A defined by (3.2) satisfies condi-
tions C2-C5 and that it satisfies C1 with ®' in place of ©. Suppose
satisfies (1.2) and (3.5). If {p,) is an FY¥-adapted .#,(E)-valued cadlag
process which is a solution to the Zakai equation

(oo ) = (o, £ +]0t< ps> Aof) ds
k
+fot Y po, Rif() + DIF(,Y,)) dYi, ¥ Fed(A,),
i=1
and which satisfies

k
EfT<pt7®/>exp{_ th<ﬂs,hi> dI;
0 i=170
(3.6) k
1

-3 2 ft|<ws,hi>l2 ds} dt < o,
i=1°0

then p, = o, for all t < T a.s., where o, is defined by (1.8).

PrROOF. Let R, = exp{Lf_,[i(m, h')dY} — L¥t_| [{Km, h)|® ds). Define
{n) e, (E) by

<Pt,f>
R, ~’

Cue, ) = Ve C(E).

Note that {o,, f)/R, = {(m,, f) and hence o satisfies (3.6).
Now using (1.7) and It&’s formula we get

<:u't7f> =<770,f> +4[0t</.LS,AOf>dS
k
+ 8 [ WFC) + DIFCLY)) = g B, £3)
i=1

We will prove that u, = 7, for 0 < ¢ < T a.s. This will imply that p, = a,, for
all0 <t < T a.s. Now for f ® g €2(A) an application of Itd’s formula shows
that

Cpgs 8(Y,) = (o, £)8(0) + fot< e, A(f ® 2)(-,Y,)) ds

3.7 koot . : .
(3.7) + 2 [ D& + (oo BFC) + DI,
i=1

—(my, WY oy, )8 (Y,)) .
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Note that
(38) Y= o-{Yt, fotg(Ys,s) ds: g € C4(R* x [0,%)), g = 0} VA,

where ./ is the collection of all P null sets. Since u, and 7, are #,’-measura-
ble, we claim that to prove the theorem it suffices to show

(39) E[Cp, NG, V0,..., VM) = E[¢m, HG(Y,, VY., V™),

for all f e C(E), G € C,(R* X [0,0"*") and all choices of m > 1, g;,...,
gn € C,(R* X [0,)), g; > 0, where the process V' is defined by

(3.10) Vo=t, Vi-[g(Y,s)ds,
0

for 1 <i <m. For, it follows from (3.8)—(3.10) that, for every f e C,(E),
(g, ) = {m,, f) as. Since C,(E) is separable and u, and m, are right
continuous, we conclude that u, = 7,, forall 0 <t < T as.

We prove (3.9) by using Theorem 2.1 for a suitably defined operator B. Let
E,=E X R* X [0,)™"1, Choose and fix g; as above for i = 1,2,..., m. Let
&0 = 1. Let 2(B) be the algebra generated by functions of the form

{g € Cu(Ep): 8(% 3,00, 0) = () T 1100,

Feo(a). £ < cilo.)|
and define
Bg(x,y,04,..-,0,,)

(3.11) = Af(x, y)f%fi(vi) +f(x,y) .iogi(y’ Uo)ﬁ,(vi)}lf}(l’j)'

Here f] denotes the derivative of f;; 2 (B) separates points in E, since Z(A)
separates points in E X R* and C}([0,%)) does so in [0, ). Further, since
C}([0,x)) is separable under the metric given by the norm |g| =gl + llg’ll
and since 2(A) satisfies the separability condition C2, so does B. Note that

|Bg(x’y’vo"”’vm)| = Cg(l +0'(x,5)), YV (x,¥,00,---50y) € Ey.

Arguing as in the proof of Theorem 3.3 of Kurtz and Ocone (1988), we can
show that (X,Y,V° ...,V™) is the unique solution to the D(0,T], E,)
martingale problem for B. Condition C5 can be verified from the fact that it is
satisfied for A and that the [0,©)™*! component has a modification with
right-continuous paths having left limits [see Theorem 4.3.8 of Ethier and
Kurtz (1986)]. Hence (B, 2(B)) satisfy the conditions of Theorem 2.1.
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Now using Itd’s formula, (3.7), (8.10) and recalling (3.11) we get that, for
fe2(Ay), g € CZRY), f, € CL(0,)),

<Mt,f>g(Y})IJJﬁ(Vti)
= (0, P8O TTA(Vi)
+j;) <,U's’ B

k
+ 1[I b+ DG Y)8(Y)

feg® ﬂ)(-,Ys,v;O,...,Vsm)>ds
i=0

=g, )7, B g(Y,) + <Ms,f>gl(Y}))U)ﬁ("si)dIsl~
Since { p,} satisfies (3.6),

Cues D2(Y) TLA(VY) = o, D(O) TTA(Y)

_ft<Ms,B
0

is a martingale. Now define v} € #(E,) by

v}, G =E[( ., G(-,Y,, V2., V")], G e Cy(Ey),

and similarly define v? for (#,,Y,,V,°,...,V,™). Then, taking expectations in
(3.12), we get

(3.12) m
feg ® fi)("Ys’VsO’“"Vsm)>ds
i=0

(318) (WG =(},G) + [(4},BG)ds, VG eD(B).
0
A similar argument shows that »? satisfies (3.13). Also

[Hh e de
0
;fTE<,Lt,®'>dt
0
T -1
= [(ECp,, @R dt
0

k k
—E[p, @ expl = ¥ [, ¥y ali = 3 ¥ [[<m, b)[ ds) at
0 i=170 i=170

<
by (8.6). Similarly [7(v2,® ) dt < ». We now apply Theorem 2.1 to conclude
that v} = »2 for all ¢t < T In particular, (3.9) holds and, as remarked earlier,
the proof is complete. O
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Thus we have proved pathwise uniqueness of the solution to the Zakai
equation. The filter 7, can be represented as a functional of the path Y as

(3.14) m, =H/(Y),
and the functional o, can be represented as
(3.15) o, =F/(Y).

Here, for each ¢, H, and F, are functions from D(0,T], E) into »2(E) and
A, (E), respectively.
Using the well known Yamada-Watanabe argument, we can deduce the

following result on uniqueness in law for the Zakai equation [see, e.g., Ikeda
and Watanabe (1981)].

THEOREM 3.2. Suppose (Y') is an r.c.l.l. process with values in R* defined
on a probability space (0,5, P') such that

Z2(Y') =2(Y),
and let 7w, = H(Y"). If { p}} is an FY -adapted #  (E)-valued cadlag process
satisfying the Zakai equation

k .
Cpin £y =g £+ [Cop Aofdds + [* X (ol Bif + D, YD) dY),
0 0;=1

Yiea(4,),

and the integrability condition

k
T . .
Ep,f (pé,@’)exp{—ft Y (@, ) dI!
0 0;=1
(3.16) )
>
1

ftl<7rs’, h")l2 ds} dt < o,
;=170
then the law of the process (Y!, p') is the same as the law of the process (Y., o.)
and

p.=F(Y') a.s.

Suppose that the measure P, [on (Q,5)] defined by
dPy T & i i1 Eor i 2
(317)  —5 = exp{—fo E,lh (X,) dW,; — gi;fo |hi(X,)| ds

is a probability measure. This is so, for example, if X and W are independent
or if A is a bounded function [see Kallianpur (1980)]. It is well known that Y
is a k-dimensional standard Brownian motion on (Q,%, P,). Thus while
considering the Zakai equation, it is convenient to work on the probability
space (0,7, P,). The probability measure P, is called a reference probability.
Also {a,, ) can now be expressed as

dP
(3.18) (0, 1) = Epo[f(xt)d—PO

%Y], ercb(E)
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[see Theorem 18.21 of Elliott (1982), page 291]. This is an analogue of the
Kallianpur—Striebel Bayes formula.
Condition (8.6) can then be rewritten as

(3.19) EPO[fT< 0,0 dt] < oo,
0

We now give a result on solutions to the Zakai equation which may not be
adapted to the observations process. This result can be proved using argu-
ments similar to the one given in Theorem 3.1 and hence we will only give a
sketch below.

THEOREM 3.3. Suppose that the conditions of Theorem 3.1 are satisfied
and that P, defined by (3.17) satisfies Py(Q) = 1. Suppose (Y*) is an R*-val-
ued (Z,)-Wiener process on a probability space (O*,5*, P*). If {p/} is a
(Z,)-adapted # . (E)-valued cadlag process satisfying the Zakai equation

k
<p;k’f>=<7TO’f>+ft<p;k’A0f>ds+ftZ(<p;k’htf+le("¥9*)>)dYs*l’
0 0i=1

VIie2(A,),

and the integrability condition
(3.20) Epe ["Cpt,0%) dt <=,

0
then one has
(3.21) Ep[pf, PUFY] =(F(Y™), f).
In particular, if (p*) is (%Y ")-adapted, then
(3.22) pi = F,(Y*)
and
(3.23) P*o(Y*, p*) ' =Pyo(Y,0.) .

Proor. Let g4, 89,--.,8,, £y and B be as in the proof of Theorem 3.1.
Define V' as in (3.10) with Y'* in place of Y. Recalling that Y* is a Brownian
motion and using It6’s formula, it follows that

Cpf, Fre(Yr) llfi(vx') — (o, £>£(0) gﬁ(V&)

- fo t< i, B
is a (£,) martingale. Hence defining v} by

(8.25) (¥},G) = Ep:[( p¥,G(-, Y, V0,...,V™")], G eCyEy),
and taking expectation in (3.24) we get

(3.24) m
feg® ﬁ)(-,Ys*,VSO,...,VS”‘)>ds
i=0

(326)  (v},G) = (v}, G) + [(¥},BG)ds, V¥ GeI(B).
0
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Noting that F,(Y*) is a solution to the Zakai equation, it follows that »2
defined by the rhs in (3.25) with p} replaced by F,(Y*) also satisfies (3.26).
As in Theorem 3.1, we get v! = »? for all ¢, that is,

(327) E[Cpf, HG(Y,,V2,...,V/")] = E[F(Y*), HG(Y,, V..., V")),

for all choices of f, G. This yields (3.21). The other part follows easily from
this. O

This result leads us to the following notion of a weak solution to the Zakai
equation.

DEFINITION 3.1. An .#, (E)-valued process p defined on some probability
space (¥, 7*, P*) is a weak solution of the Zakai equation if there exists an
R*-valued (£,) Wiener process Y* (defined possibly on an extended probabil-
ity space) and such that p is (&,)-adapted and (p,Y) satisfies the Zakai
equation

Cpos £ = (g, ) +/Ot<ps,Aof> ds+/0t.z ( py, Wif + DIF(-, Y))) dY Y,

i=1
VFea(A,).

Suppose that the D"’s appearing in (3.1) depend only on the first coordi-
nate and further suppose, for simplicity of writing, that D'f is a bounded
function for every i and every f. That is, the operator A defined by (3.2) has
the form

k
(328) A(f®g)=Af®g+3f®Ag+ ) (Difog +hifeg’),
i=1

where now D': 2(A,) - C,(E) for every i. It can be shown that assuming
that A has this form is equivalent to assuming that if (X’,Y’) is a solution to
the martingale problem for A, then defining W' by W, =Y, — [{h(X]) ds one
has that (X', W’) is a solution to a martingale problem for an operator A*
with domain 2(A).

Further, the operator A* is given as follows. For f ® g € 9(A*),

k
A*(fo®g)=Af®g+3f®Ag+ ) D'fog,
i=1

A*(f®1) =Af, A*(l®g)=1Ag, A*(1®1)=0.

In this case, we can also show that the martingale problem for A is well
posed if and only if the martingale problem for A* is well posed [see Lemma
4.4 of Kurtz and Ocone (1988)], and then that A satisfies C1-C5 if and only if
A* gatisfies C1-C5.
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3.1. Martingale problem for o. We will now consider the martingale
problem corresponding to o. Let

D(5) = {F € Cy(#,(E)): F(p) =8({m, [0, (s fad),

(3.29)
forsome n > 1, f,,..., f, €Z(A,), g € CZ(R")}.

For such an F € 9(¥) define

MF( /‘L) - l—zlgl(</~’~'? f1>”</‘l" fn>)<”” A0fl>

(3.30) L1 u
2
1 -

Y (89w 105 s )

1

TNk

1i
X w, b'f, + D'f) p, bif; + D'f)).

Note that

|F(p)| < CpE(n),

where E(p) = {u, 0) + [, 1)1® + T4 u, |Ri])®. Suppose o satisfies
(3.31) Ep, ['E(a;) ds <.
0

Now (1.9) and an application of It&’s formula to F(o,) for F € 2(«) implies
that {c,} is a solution to the martingale problem for ./ on (Q,.7, P).

THEOREM 3.4. Suppose that the operator A is given by (3.28) and that
the conditions of Theorem 3.1 are satisfied by A. Let m, satisfy (3.5). Fur-
ther suppose that if (X,Y) is the solution to the martingale problem for
(A, 7, ® §,), then P, defined by (3.17) is a probability measure and that
(1.2) and (3.31) hold.

Then any solution {p,} of the D(0,T], # . (E)) martingale problem for
(%, 8,) and satisfying

T!—’
E f E(py)ds <x
0
is a weak solution of the Zakai equation.

ProoF. The existence of a solution follows from the remarks just preced-
ing this theorem. Let {f,} be the countable set appearing in C2. Without loss
of generality, suppose that {f,} is an algebra. Then a process X is a solution
to the martingale problem for A, if and only if it is a solution to the
martingale problem for Al [see Proposition IV.3.1. of Ethier and Kurtz
(1986)]. Let A;= A,l(s,,- Let A be defined correspondingly by (3.2). It follows
from the hypothesis on A and the above-mentioned fact that A satisfies the
conditions of Theorem 3.1.
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Let p be a solution to the D([0,T], .#,(E)) martingale problem for ..
A standard argument shows that

(3.32) M= (o, £ = <pos fi) — [O‘<ps,fofl>ds

is a martingale for every / > 1 and that the cross quadratic variation process
(M', M/} is given by

k

(333) (ML, M) =Y [Ot< py, Bify + Df) g, hif; + D'fy) ds.
i-1

Let a; = 2-(If,ll + IDf,ID~ . Then note that if we write A = L}_,|h’,

E sup (alMl) <4al2Ef | ps, hf; +Df)| ds
0<t<T

(3.34) - o )
< ngfO (I<o. B +[<py, ) s
< o,
The finiteness of the last expression follows since p is a solution to the
martingale problem for /. Let e, = (§;;) be the standard bas1s in /% Let
Z! = a;M!. Then (3.34) 1mphes that Z, = £7_,Z! el is an /%valued martin-
gale In fact, Z € D({0,T], Z%). Let 3, (w) e A(/?) be defined by
ai{ py(w), h'f; + D'f;), 1<l<k,
>k,

for every j > 1. Here (-, ) denotes the inner product in / 2, Note

E[ IS, ands—Ef ¥ (3.e,,¢,)" ds

(3 (w)e,e;) =

’

l,j=1
=FE Z Zaz(ps, lf+le> ds
0 j=11=1
J—4 2
SSEfO (|<ps,h>| +]<py, D) ds

< oo,
Hence arguing as in Yor (1974) we get the existence of a (£,) cylindrical

Brownian motion B, possibly on an enlarged probability space, where p is
(2,)-adapted and such that
t
(3.35) z,= ['3,dB,.
0
Let B! = B,(e;). Then by (3.35) we get

(Z,,e;) = /0‘<2:el,dﬁs>,
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where 2¥ is the adjoint of the operator %, or

b ] .
a[Mf=f0 Y (Ste,,e;)dB!
j=1

k
= [0‘ Y al p,, Bf, + Dif,) dB;.
j=1

Let Y be the k-dimensional Brownian motion defined by Y,! = g/, 1 <l < k.
Then we have

M! = jo‘< p., hf, + Df,) dY,.

Hence p is a solution of the Zakai equation (1.9), where now the test
functions f belong to #(4,). O

REMARK 3.1. In all of the earlier work cited in the Introduction the
authors have considered the case when the signal process X takes values in
RY and when A, is the generator of X. Szpirglas (1978) has shown the
uniqueness of solutions to these equations when X is a general R%valued
Markov process, for a bounded ~ and when the signal and noise are indepen-
dent. Uniqueness is also proved for special cases of the signal process and
special classes of unbounded %4 in Pardoux (1982), Baras, Blankenship and
Hopkins (1983) and Sheu (1983). In a similar setup with A bounded, unique-
ness of solution in the class of finite signed measures for the measure-valued
Zakai and Kushner or FKK equations is proved in a recent paper by
Rozovskii (1991) which also contains references to other work in this area.

When the Markov process X, takes values in R? and admits a density
with respect to the Lebesgue measure, the corresponding Zakai equation for
the unnormalized conditional density can be considered. Uniqueness in this
case. has been studied by Pardoux (1979), Krylov and Rozovskii (1981) and
Chaleyat-Maurel, Michel and Pardoux (1990).

The two papers which can be directly compared with the results in this
section are those of Kurtz and Ocone (1988) and Hijab (1989). As mentioned
earlier in the Introduction, Theorem 3.1 is an improvement of the results of
Kurtz and Ocone (1988) where they have proved uniqueness of solution for
the two equations when the state space is assumed to be a locally compact
separable metric space. They have considered unbounded A, although they
still require that Af be bounded for every f in the domain of A,. They prove
the result under two sets of conditions on the operator A,. When & is
continuous they require that the domain of A be sufficiently rich. When 4 is
discontinuous they assume that the range of (A — A,) is sufficiently dense for
every A > 0. This condition essentially implies that the closure of A, is the
generator of the Markov process X.

Hijab (1989) also considered the case when the state space is a complete
separable metric space. He showed that = is the unique solution of a
martingale problem for a suitably defined operator. He also required that A
be bounded and belong to the domain of A,.
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Earlier, Kallianpur and Karandikar (1984) obtained results for uniqueness
of solution for the analogues of the Zakai and FKK equations for a general
Polish space-valued Markov process and for an unbounded 4 via their finitely
additive approach to filtering theory, when A, is the generator of the Markov
process X. Bhatt and Karandikar (1993b) have extended these results to the
case when A, may not be the generator, but the martingale problem for A,
is well posed. The advantage of this is that the test functions are taken from
the domain of A, as opposed to the full domain of the generator in
Kallianpur and Karandikar (1984), which is usually intractable.

4. Independent signal and noise. An important special case of the
previous results occurs when X and W are independent. This is the case
which usually arises in practical applications. In this case uniqueness of the
Zakai equation can be proved under similar conditions on the operator A,
instead of those on A in the correlated case. Note that in this case Df = 0 for
all fe2(A,). Recall from (3.17) that

Fp——exp{ j Zh(X)dW‘——Zf |ni(x,)|" ds}

defines a probability measure on (Q), %). Further, under P,, Y is a Brownian
motion independent of X and the law of X under P, is the same as the law of
X under P. Thus the conditional expectation appearing in (3.18) can be
evaluated by integrating with respect to the law of X and thus we get an
explicit expression for {o,, f) and hence for {m,, ).

Let Q° = C([0,T],R*), let #° be the Borel o-field on Q° and let @ be the
Wiener measure. Let Y be the coordinate process on 0° Let X be a process
on (), %, P), where the law of X is the same as the law of X. Let 0,%,P) =

(0,4, P)® (0°,5° Q). Define F by

(4.1) (F(0"),f) = [f(X(5))q.(d, «°)dP(&), VfeCyE),

where

k t. . ~ ~
4(, @) = exp{ Y [i(X,(8)) ¥ (w°)

=170

koo .
X W) e,
im
Then o, can be defined by (o (w), f) = (F(Y(w)), f). Now we know that
(my, ) =0y, >/{0,,1). This is the Kallianpur—Striebel Bayes formula. We
will use this later in Section 8 when proving the robustness results.

The following result gives sufficient conditions for the uniqueness of solu-
tion of the Zakai equation when the signal and noise are independent. This
can be deduced from the results in the previous section.

~

(4.2)

ml»—-
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THEOREM 4.1. Suppose that the signal process X and the noise W are
independent. Further suppose that X is the unique solution of the martingale
problem for (A, m,) and that A, satisfies conditions C1-C5. Also let (1.2)
hold.

If { p,} is an F¥-adapted # ,(E)-valued cadlag process satisfying

k
<pt,f>=<7ro,f>+ft<ps,A0f>ds+ Z[‘<ps,hif>dysi
0 i=170
and
(43) Ep,[ < p.©) dt <,

then p, = o,, forall 0 <t < T a.s., where o, is defined by (1.8).

Uniqueness in law holds for the Zakai equation. Further if & is defined by
(3.29) and (3.30) with D =0 and if (3.31) holds, then any solution to the
martingale problem for (<, 8, ) is a weak solution of the Zakai equation.

Proor. We first note that {o,} satisfies (4.3). It follows from (4.3) that

<pt,f>—/0t<ps,Aof>ds

is a martingale under P,. Let v, € #(E) be defined by

<Vt, f> = EP0< Pt > f>
Then {v,} satisfy

<vt,f>=<vo,f>+f0t<vs,f>ds, VfeD(A,).

By Theorem 2.1, v, is the unique such solution. As in Theorem 3.1 we can
deduce that EP0< P, 8) = EP0< a,, 8, for all g € C(E). It is easy to see using
(1.2) and (3.18) that {o,} satisfies (8.19). Hence, so does { p,}.

Now define A by (3.2), with Df = 0. An easy verification shows that
(A, 2(A)) satisfy conditions Cl, C2 and C3. The well posedness of the
D([0,T], E X R) martingale problem for (4, §, ,)) is proved as in Lemma 4.4
of Kurtz and Ocone (1988). To prove condition C5 once again note that if
(X,Y) is a solution to the martingale problem for A, then X is a solution to
the martingale problem for A, and hence admits a cadlag modification.
Existence of a cadlag modification for Y follows as in Theorem IV.3.8 of
Ethier and Kurtz (1986). Hence condition C5 is satisfied by A. Now Theorem
3.1 is applicable and we get the requisite pathwise uniqueness.

The remaining assertions in the theorem follow from Theorems 3.2, 3.3
and 3.4. O

5. Infinite-dimensional model. A close look at the proofs of the results
in Sections 3 and 4 suggest that the analysis will go through even when the
noise is assumed to be infinite dimensional. Suppose H; is a real separable
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Hilbert space. Let W be an H,-valued cylindrical Brownian motion. Suppose
h: E — H, is a continuous function satisfying

(5.1) E["h(X,)| ds <.
0

The observation model is

(5.2) Y, = foth(Xs) ds + W,.

For the sake of simplicity let us assume that X and W are independent.
Define the reference probability measure P, as in (3.17). It is not difficult to
see that Y is a cylindrical Brownian motion on the transformed probability
space (Q, 7, Py).

Define o, e# (E) by

dP
<0-t’f> =EP0[f(Xt)dT
0

‘%ﬂ, Y f e Cy(E).
Then it can be verified that o, satisfies the Zakai equation
t
(00, 1) = o0, ) + [op, Agf)ds + [Cay, b dY,,
0 0
VFieg(A).

Here A, is as in the previous section, namely, X is the unique solution of the
martingale problem for A,. Let {e;: i > 1} be a complete orthonormal system
(CONS) in H, and let A = X;_,|h'le;, where h' = (h, e;). Suppose o satisfies

(5.4) EPO[OT(<US,®> +<o, B [) ds < ==.

A weak solution of the Zakai equation for the infinite-dimensional observa-
tion model can be defined as in Definition 3.1.

(5.3)

THEOREM 5.1. (a) Let h: E - H, be a continuous function satisfying (5.1).
Suppose A, satisfies conditions C1-C5. Further suppose that the D((0,T], E)
martingale problem for (A, §,) is well posed for every x € E. If {p,} is an
F¥-adapted #,(E)-valued cadlag process satisfying

EPO[fOT<ps,®>ds] <

and which is a solution of the equation (5.3), then p, = o,, for every t a.s.
(b) Let () be defined by (3.29) and, for F € 9(«), let

MF( /.L) = Zgl(</-L’f1>,---a</-L’fn>)<l'L7A0fl>
=1

<

+1 (gY(Cas Fidseees Cas Fo))

1i=1

I

LJj
X, hify + DY, hify + DIf)).
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Then any solution of the D((0,T], # (E)) martingale problem for (%, 8, )
satisfying

E["(¢p0) ¢ BI) ds

is a weak solution of the Zakai equation.

PrOOF. (a) Let {e;} be a CONS in H;. Let P, be the orthogonal projection
onto [e,...,e,]. Let 9 be the algebra generated by functions of the form
f® g e Cb(E X H,), where fe2(A) U{l} and g(y) =g(P,(y), g€

Cy(R"), for some n > 1lor g=1For f® g €9, g € C3(R™), define

A (f®8)=A,f®g+ 35f®Ag
and

n
A(f®g)=Afog+3f®Ag+ L hfeg,
i=1
where A is the Laplacian operator and g’ is the ith partial derivative of g.

Then (X, W) is the unique solution of the martingale problem for A* and
(X,Y) is a solution of the martingale problem for A. We want to prove that
the martingale problem for A is well posed. Hence the argument of Lemma
4.4 of Kurtz and Ocone (1988) goes through for every f ® ¢ €. Thus we get
that if (X; ,Y/) is a solution of the martingale problem for A, then [ X;, W, =
Y, - (X! ’) ds] is a solution of the martingale problem for A*. This proves
that the martingale problem for A is well posed. Conditions C1-C5 can be
verified as in the finite-dimensional case. The rest of the argument is exactly
as in the proof of Theorem 3.1.

(b) For (b) we can argue as in the finite-dimensional case that since (5.4) is
satisfied, o is a solution of the martingale problem for &. To prove the final
assertion we proceed as in the proof of Theorem 3.4. Note that now 2 will be
defined by

(3,(w)e;,e;) = a p(w), hif;), i,j=1.
Then

o

E[I5 s ds =E[" T (Se.¢)" ds
e

& S\ 2
<E[" ¥ (p,,Inl)" ds
0 =1
< @,
The rest of the proof follows. O
6. Applications to ®'-valued SDE’s. We will apply the results of Sec-

tion 4 to models of environmental pollution. We begin with some facts about
stochastic differential equations in duals of nuclear spaces.
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Let ® be a countably Hilbertian nuclear space. That is, ® is a real linear
space whose topology is given by an increasing sequence ||-[l,: n € Z* of
Hilbertian seminorms. Let H, denote the completion of ® with respect to the
norm ||-l,, and let ® and H_, denote the duals of ® and H,, respectively.
Let {¢;} c ® be a CONS in H0 and a complete orthogonal system in H,,
p €Z. Let¢P—II¢II,,¢ Then ¢} is a CONS in H,. For v € H_, d)eH
the action of v on qS w111 be denoted by vl ¢] and is given by

v[o] = X (v, ¢7") (¢, &/ )p.
j=1
Consider the following ®'-valued SDE:
(61) X, =X,+ [b(s,X,)ds + [ [ G(s,X,_,u)N(duds)
0 0'u

under Assumption S; N is a compensated Poisson random measure with
intensity u.

AssumpTiON S. For (b,G,n): V T>0, 3 p,=po(T) € N* such that
VY p>py, 3 ¢g=p and a constant k = k(q, p,T) such that the following
conditions hold:

(S1) Continuity. For all ¢t €[0,T], b(¢t,-): H_, > H_, is continuous, V
te[0,Tland ve H_,, G(¢,v,-) € L*(U, u, H_)) and, for t fixed, the map
v = G(¢,v,+) is continuous from H_, to L*(U, u, H_).

(S2) Coercivity. For all t € [0,T'] and ¢ € D,

2b(t, $)[6,(4)] < k(1 +1412,).
(S3) Growth.For all t €[0,T] and v € H_,

||b(t,v)||2_q sk(l +||v||§p) and /UllG(t,v,u)Hz_pu(du) sk(l +||v||%p).
(S4) Monotonicity. For all t €[0,T] and v,,v, € H_,
2
<b(t’vl) - b(t’vz)’vl - Uz)—q + fU”G(t’vl") - G(t’vz")"—q du

2
< kllv; —vyllZ,,

where 6, is the isometric linear map from H_, to H), given by

9p( i ai¢fp) = i a; df.

i=1 i=1

Let
D5(@') = (F: ® > R |3 fe C;(R) and ¢ € ® such that F(v) = f(v[ ¢])}
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and, for F € 25(®'), define A F: &' - R by
A F(v) =b(s,v)[¢]f (v[¢])

+ [ L8] + Gls,0,w)[#]) — F(o[4])
~G(s,v,u)[$1f (v[ #])} u(dw).

Here f' denotes the derivative of f. The following is a summarization of
results proved in Hardy, Kallianpur, Ramsubramanian and Xiong (1994).

THEOREM 6.1. (a) Under Assumption S the SDE (6.1) has a unique ®'-
valued solution if there exists r, s.t. E’IIXOIIE,0 < o, Furthermore, let p(T) =
max(r,, po(T)) and p(T) = p(T) be such that the canonical injection from

H, r, to H,, is Hilbert—Schmidt. Then Xlo,r) € D(0,T], H_, (1)) and

(6.2) E sup X%, ) =K < =,
0<t<T
where K depends only on k and EIIXOIIEPI(T).
(b) The process X is the unique solution of the D([0,»), ®') martingale
problem for (A').

We want to consider the filtering problem when the signal process is a
solution to the martingale problem for (A’;) and the observation model is as
in (1.1), where W is independent of X and % is a continuous function
satisfying (1.2). Since we are concerned with a finite time interval [0, T'], we
fix T > 0 and write p, and p, for po(T) and p,(T'), respectively. Let p, > p,
be such that the canonical injection from H, to H, is Hilbert—-Schmidt.
Recall that H_, < H_, . We will consider the martingale problemon H_, .

To apply Theorem 4.1 we have to get a suitable operator which satisfies the
conditions of that theorem. We assume the following extra condition.

(S1) For all ¢ € @, b(s,v)¢] and [,;G(s,v, ) ¢] u(du) are continuous in
s and v.

Let 2 ={F: H , »R|3 n>1, feCiR") and ¢,,..., ¢, € P such
that F(v) = f(v[¢,],...,v[¢,D}. We extend A, to A, on the algebra I as
follows:

AF@) = T A(L6)b(s,0)[6]
(63) [ {10101+ (0, w1 6]) ~ F0l o))

- ZG(S’v’u)[d’i]fi(v[ﬁb])}ﬂ(du),
i=1
where f, = (3/dx)f, & = (¢1,...,d,) and v[e¢] = (v[$,],...,v[e,D.
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Note that in view of (S1), the operator A® :=d/ds + A, is an operator on
Cil0,T1® C(H_,).

Define P, by (3.17) and let o, be defined as in (3.18).

THEOREM 6.2. If {p,} is an F¥-adapted .#,(H _ p,)-valued cadlag process
satisfying (3.6) and

k
(oo £ = <mo, £ + Ko, Af)ds + L [ oy, hif) dYy,
0 i=170

Vieo,

(6.4)

then p, = o, forall 0 <t < Ta.s.

ProOF. Let p? =8, ® p, and let A° be as defined above. Then (6.4) is
equivalent to

k
<P?,f>=(P3,f>+j:<ps°,A0f> ds+ ¥ fOt<ps°,hif) ayi, Y fea(AY).
i=1

We can apply Theorem 4.1 if we show that (2(A°), A°) satisfy the conditions
of that theorem.

Since CG(R") separates points in R"” and & separates points in H_, , we
get that Q(AO) separates points in [0,T] X H_, . Also, (A°, 2(A?)) satisfy
the separability condition, namely, 3 {F,},.,; C C&([O TD ® 2 such that
bp-closure{(F,, A°F,): n > 1} 2 {(F, A°F): F € C'([0,T) ®2}. This condi-
tion follows since C}’;’(R”) is separable under the metric given by the norm
AN = £l + IVF]l and since ® is separable. Condition C1, with O(v) =1 +
||v||§p2, follows from condition (S3).

Since any solution of the D([0,T], H_, ) martingale problem for (A)),
considered as a ®'-valued process, is a solution to the martingale problem for
(A), Theorem 6.1 tells us that such a solution has to be necessarily unique.
The existence of a solution once again follows from Theorem 6.1 and Itd’s
formula. Further it is well known that X is a solution to the martingale
probl%m for (A,) if and only if (s, X,) is a solution to the martingale problem
for A,

Hence to prove the theorem we only need to prove condition C3. First note
that, for any ¢ € O,

f(X,[]) - fo’f'(xsw])b(s,xs)w]ds

+[ (A(X[9] + G(s, X, w)[4])

—f(X,[¢]) = G(s, X, u)[ 6] F/(X,[ #])}re(du)

is a martingale for every f & Cy(R). It follows that there exists a cadlag
modification, say Y,?, of X,[¢] [see Theorem 4.3.8 of Ethier and Kurtz (1986),
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page 179]. Now as in Hardy, Kallianpur, Ramsubramanian and Xiong (1994)
we can show that

Mp=Y? - Y- [b(s,X,)[ 6] ds
0
is a martingale with the quadratic variation process given by
¢ 2
(M®), = G(s,X,,u du) ds.
= J ) (e )[$1)° u(du)

Let M/ = M?"*. Then we have
2

n n
goup| £ aio| - Bawp T (7
t<T j=m P tSTJ=m
n
<4E ) (M')r
j=m
¥ T pa])2
(6.5) "4j§mEf0 fU(G(s,Xs,u)[¢, ]) w(du) ds
<4T Y, Esup fU||G(s,Xs, u) |2, p211%, u(du)
ji=m s<T

n
< 4kTEsup (1 + 1X,1%,,) ¥ llopIl3,
s<T j=m
-0 asm,n — o,
where % is as in Assumption S. Hence Z;?=1M{¢J~‘p ¢ converges uniformly in
[0, T'] a.s. to, say, M, in H_, . Clearly M has cadlag paths. It can be checked
that, for every ¢ € O,

M[¢] = MP =X[6] - X[ 6] - [(b(s,X)[d]ds as,
for every t. Define

X, =M, +X,+ [b(s,X,) ds.
0

Then X € D(0,T], H —Pz) and is a modification of X. The last assertion
follows from Theorem 4.1. O

We now consider ®'-valued diffusions. Later on in this section we will
consider an example where a sequence of Poisson driven SDE’s converges to a
diffusion process. Let W be a ®'-valued process such that, for every ¢ € @,
W. ] is a real-valued Wiener process with E|W,[¢]11> = tQ(o, $), where Q is
a continuous bilinear form on ® X ®; W is then called a ®'-valued Wiener
process with covariance . Consider

(6.6) X, =X, + ['b(s, X,) ds + [S(s, X,) dW,,
0 0
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where b: R, X ®' - @ and 3: R, X ¥ - A(P',P') are two measurable
mappings.

The coefficients b and 3 are assumed to satisfy the following conditions
(Assumption D), which are taken from Kallianpur, Mitoma and Wolpert
(1990). Let 3¥(v): ® — @ be the adjoint of the operator 2 (v) and

@s,l-p,-» = LRI (v) ¢/, 25 (v) ¢f).
J

AssuMPTION D. For any T > 0, 3 p, = po(T) such that, for all p > p,,
J g > p and a constant K = K(p, q, T') satisfying the following conditions:

(D1) Continuity. For all ¢t €[0,T], v,v,,v, € H_,, b(t,v) €H_, and
3(¢,v,Xvy) € H_,. Furthermore, for ¢ fixed, b(¢,v) and Qs , -3 w,)l-p, -»

are continuous in v, v; and v,.
(D2) Coercivity. For all t € [0,T] and ¢ € O,

2b(t, 0)[6,(¢)] <K(1+1912,).
(D3) Growth. For all t €[0,T] and v € H_,,
lo(t,v) 1% < K(1+1Ivl2,) and 1Qy,)l-p,—» < K(1+II0I%,).
(D4) Monotonicity. For all t € [0,T] and v,,v, € H_,

2<b(tavl) = b(t,vy),v; — ’-’2>—q + |Q2t(ul)—2t(v2)| g,-¢ < Kllvy - vz” q-
(D5) Initial. There exists an index r, such that EIIXOIIE, ) < .

We further assume that b(s, v)[ ¢] and Q(Z*(v) ¢,]1, 3¥(v) ¢, ] are contin-
uous in s and v for every fixed ¢, ¢, ¢, € ®. Recall that

={F:H_, »Rl3n=>=1,fe CiR") and ¢y,...,¢, €D
such that F(v) = f(v[ ¢,],...,v[¢,D}.

For F €2 with F(v) = f(v[,],...,v[$,] define

BF(v) = ¥ fi(ol ], ol 4,])b(s,0)[ ]
(6.7) .
SR AR R LEIOIES RO

Here f; and f;; denote the partial derivatives of f. Then, arguing as for the
martingale problem for (A,) and using Lemma 2.1 of Kallianpur and Xiong
(1995), we get that the D([0,T'], H_, ) martingale problem for (B,) is well
posed. We choose p, such that the canomcal injection of H_, to H_, is
Hilbert—Schmidt. Using the growth conditions (D3) and proceedlng as in (6.5)
we can show that in fact the martingale problem for (B,) is well posed in the
class of progressively measurable solutions; that is, C5 holds [see also Bhatt
and Karandikar (1993a)]. Hence we have the following theorem, which is

similar to Theorem 6.2.
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THEOREM 6.3. Let X defined on (Q,%, P) be the solution of the
D([0,T], H_, ) martingale problem for (B,), and let h and Y be as in (1.1)
and (1.2). If {p,} is an ;¥ -adapted #, (H _ p,)-valued process satisfying (3.6)
and

Cpor ) = mg, ) + fot<ps,Bsf>dS
(6.8) -
+ L [Xp,hif)dY, Vfeo,
i=170

then p, = o, for all 0 <t < T a.s., where o, is defined by (1.5) and (1.8).

We now consider a model for environmental pollution which is studied in
Kallianpur and Xiong (1994). The linear problem for filtering is studied there.
Here we continue to assume the nonlinear model (1.1), where % satisfies (1.2).

6.1. Water pollution problem with a tolerance level. Suppose that unde-
sired chemicals are deposited in a river in terms of Poisson streams. Let
Z=1[0,1] denote the river. The chemicals are deposited at random times
T(w) < 79(w) < -+ with random magnitudes V,(w), V,(w),... . For the sake
of simplicity we will assume that the changes in chemical concentration do
not depend on the locations where the chemicals are deposited. For C c R,,
let

N([0,t]1xC) = L I(Vi(w)).

Jim <t

Under the assumption that V.,,j=12,..., are iid. random variables, N is
a Poisson random measure on R, X R, with intensity measure u on R,. Let
D >0,V and a be constants. The chemical concentration is denoted by X.
We also suppose that there is a mechanism to clean up the river when the
chemical density passes a fixed level &(x).

We regard X(t, x) as an infinite-dimensional process X, determined by its
action on “smooth” functions ¢ in the sense

X[¢] = QX(t,xw(x)p(x)dx,

where p(x) = e 2°%, ¢ = V/2D. Define the operator L on H = L*(Z, p(x) dx)
with Neumann boundary conditions by

9?2 J
L=D—7F —-V—.
ax Jdx

Then L is a positive definite and self-adjoint operator.
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Let A; and ¢, be defined by

[ 2c 2 L (JT
(69) d)o(x) = W , ¢j(x) = \/;e” s1n(7x + aj),

Jjm
aj=tan‘1(—z), j=1,2,....

The A; and ¢; are, respectively, the eigenvalues and eigenfunctions of L with
Neumann boundary conditions on H. For ¢ € H and r € R, let

gl = X<, &% (1 + 1),
J

where (-, ) is the inner product on H. Define ® ={¢p € H: ¢, < »
V r € R} and let H, be the completion of ® w.r.t. the norm |-||,. The
canonical injection from H,,, to H, is Hilbert-Schmidt if r, > d/4. Hence
® is a countably Hilbertian nuclear space. We consider the following stochas-
tic model for X:

X[ 6] = X[ 6] + [(X,[-Lo] - aX,[4])ds
(6.10) . 0
+[ [ a(¢l4] - X, [#])N(ds, da).

We use Theorem 6.1 to get existence and uniqueness of ®’-valued solutions
of (6.10). We assume that u has finite first and second moments. The solution
X belongs to D(0,T], H _p) if {eH_, [see Kallianpur and Xiong (1994)].
Then X is also a solution to the following martingale problem. For F(v) =

fwleql,...,vle,D) €2,
ar(e) = 3 {AGLeD{-olL6] - avlo] + [Ta(el6] - ol 8D uda) |

611)  +[“LF(u16] + a(el 8] - ol 81)) - F(uL 6])
0 |

- L a(el6] - el 61A(oL0]) uda),

where ¢ = (¢y,...,¢,) and v[¢] = (v[¢,],...,v[¢,]). Here b(t,v)¢] =
v[-L¢] — avl$] + [fa(él¢] — vlpDu(da) and G(t,v, a)l¢] = a(£[$] —
v[@]. It can be checked that (b, G, n) satisfy the conditions in Assumption S.

Suppose there are % stations which are monitoring the pollution levels in
the river. Once again the observations are assumed to be noisy functions of
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the signal X. Let
(6.12) Yi = [hi(X,)ds+ Wi, 1<i<k.

0

The linear filtering problem was considered in Kallianpur and Xiong (1994).
Theorem 6.2 is applicable and we get uniqueness of the Zakai equation

k
<a,,F>=<ao,F>+j’<as,AF>ds+ Y <o, iF)adY], VFeg,
0 i=1"0

when the signal process is a solution of the SDE (6.10).

We now consider the following diffusion approximation model studied by
Kallianpur and Xiong (1994) which is appropriate in a situation when pollu-
tion is emitted by factories located along a river, densely in some sense.
Consider a sequence of SDE’s for such pollution processes of the form

XP=Xp - fo‘(LX: + a"X") ds + fotf:a(g—xsn_)Nn(ds,da),

where N" is a sequence of Poisson random measures on R, X R, with
intensity measure u" on R,. We impose the following assumptions:

(E1) o™ +a" > a and b" - B2 as n - », where a" = [jap™(da) and b" =
[ea’u"(da).

(E2) For any ¢ > 0, u™{a: a > &} » 0 as n = o,

(E3) There exists a sequence c¢" such that c"a™ —» y as n — o,

(E4) sup, [;a’u"(da) - 0as M — .

For any ¢,y € ®, let Q(, ) =P, y)o. Let b: & - d" and 3: P’ —
AP, d') be given by
b(v) = —Lv —av + y¢ and 3*(v)¢ = Buv[d]d,.
Let V,* = "X
Suppose that there exists r, such that sup, EIIVO”II%,0 < o and {V§'} con-
verges weakly to a ®’-valued random variable V. Then it was shown in

Kallianpur and Xiong (1994) that V" converges in distribution to the solution
V, of the diffusion equation

Vi=Vo+ [6(V,)ds + [5(V,) W,

where W is a ®’-valued Wiener process with covariance Q. Further, if ¢ € H,
and V, is an H,-valued random variable with E|[V,l§ < «, then V e
C(0,T1, H,) with

(6.13) E sup V[$] <o, Voeo.
0<t<T

It is easy to see that the coefficients & and 3 satisfy the conditions in
Assumption D. We continue to assume the model (6.12). We apply Theorem
6.3 to conclude uniqueness of solution to the Zakai equation (6.8).
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7. Semilinear SDE’s on Hilbert spaces. Recently Ahmed and Zabczyk
(1994) and Zabczyk (1994) considered the nonlinear filtering equation when
the signal process X is driven by a semilinear stochastic differential equation
on a Hilbert space H. They have studied the existence of a solution to the
Zakai equation for the unnormalized conditional distribution of X given the
observation process Y, where, as in (1.1),

(7.1) Y, = [h(X,)ds +W, 0<t<T,
0

and W, is a one-dimensional standard Brownian motion. Let W' be a
cylindrical Brownian motion on H with covariance operator I and which is
independent of W. Let b € H, F: H — H be bounded Lipschitz, and let R
and L be operators on H such that R is a bounded nonnegative operator and
L is the infinitesimal generator of a strongly continuous contraction semi-
group {S,, t > 0} on H. The signal process is given by

(7.2) dX, = (LX, + F(X,))dt + RV?dW,' + bdW,, X, =¢.

Let Q denote the covariance operator of the Wiener process B, = W,! + bW,.
Assume that the following condition is satisfied.

(SL1) The operators

(7.3) Q= ['S,@srdr, t=0,
0

are trace class.

Then the equation (7.2) has a unique mild solution. [For definition of a
mild solution and the proof of the above-stated fact, see DaPrato and Zabczyk
(1992).]

In Ahmed and Zabczyk (1994) the uncorrelated case, namely, b = 0 was
considered. Existence and uniqueness of density-valued solutions of the Zakai
equation was investigated there. Here we state the correlated case from
Zabczyk (1994).

(SL2) Let
(7.4) Q.= [ 5,QS; dr
0
be a trace class operator.

In addition, let u be the Gaussian measure with mean zero and covariance
operator Q... Further let

9 = {fe CZ(H): supllf,.llie), < »,3 f € CZ(H) such that
(75) xeH

supll £, iy < ® and f(x) = f(L"'x), x € H}
x€H
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where CZ(H) denotes the class of functions having bounded and uniformly
continuous first and second Fréchet derivatives, the two being, respectively,
denoted by f, and f,,. Define the operator A, with domain 2 by

(76)  Aof(x) = 3Tr[@f(2)] + (F(x), fu( %)) + (%, L*f (%)),

where (-, ) denotes the inner product in H. Let "= Wy ?(H) be the comple-
tion of the space 9, with respect to the norm

1/2
@D = ([ + (@@, )i

(SL3) Suppose that 7 can be identified with a subset of # = L*(H, w).
The following theorem is from Zabezyk (1994).

THEOREM 7.1. In addition to the above setup, assume that the initial
measure m, is absolutely continuous with respect to u having a density p, €7
and that:

(i) Image @, c2(L) and 3 ¢ > 0 such that
(%, LQ.)| <cl@?1Q?yl, x,y€H;

(i) sup,|@ 1/2F(x)| < o;
(iii) b € (Image @Y%) N (Image R'/?).

Then the density-valued Zakai equation
d{f,p> = (Aof,p;)dt

+(Chf, o) +{(b, ), p)) dY,, VY fED(A),
has a solution q such that ¢ € C(0,T]1,2) N L*(0,T],7) a.s.

(7.8)

Now fix a CONS {¢,} in H. Let P, denote the orthogonal projection onto
the linear span of [¢,..., ¢,]. Let

2,={f€213g e C}R") forsomen > 1
such that f(x) = g((x, ¢1),...,(x, ¢,))}

and consider the martingale problem for the operator A, restricted to 2,.
Using standard arguments as in Yor (1974) and as illustrated in the proof of
Theorem 3.4 above, it can be shown that any solution of the martingale
problem for this restriction of A, is a mild solution of (7.2) and hence that the
martingale problem for A, with domain &, is well posed. Furthermore we
can define the operator A as in Section 3 and show that (X,Y) is the unique
solution of the martingale problem for A and that the conditions of Theorem
3.1 are also satisfied. [For a similar result, see Theorem 2.10 of Bhatt,
Kallianpur, Karandikar and Xiong (1995).] Hence Theorem 3.1 can be applied
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to prove uniqueness of solutions for the equation
t t
09)<m¢»=<WJ»+L<mJ%ﬁds+L<mmﬁdn, Vfe,.
¢

Clearly if g, is a solution of (7.8), then
p(dx) = q,(x)p(dx)

is a solution of (7.9). Hence uniqueness of solution of the density-valued Zakai
equation (7.8) follows. Further any solution (7.8) is automatically identified as
the unnormalized conditional density of X, given .7,".

8. Robustness of o. We will now show the continuous dependence of o
on the operators corresponding to the signal process X in the special case
when signal and noise are independent. We need to restrict to this case
because the Kallianpur—Striebel Bayes formula yields an exact expression of
(o, f) as an expectation (as opposed to conditional expectation). Suppose A7
and A, are operators with common domain 7 and satisfying the conditions
of Theorem 4.1, with

(8.1) [A.f(%)] < C,0(x),
(82) |A3f(x)] < C07(x),  Vn.

We will assume that
T a
(8.3) supE,,,,([ (07(X)) dr) =C, <=,
n 0

for some a > 1. Let X" and X, defined, respectively, on ()", #" P") and
(€2, 7, P), be solutions of the martingale problems for A} and A,. We assume
that the martingale problem for A, is well posed. Further let X" = X. We
take the observation models to be

Yo = ['Rr(X2) ds + W,
0

and

Y, = ['h(X,)ds + W,
0 :

where, for every n, X" and W" are independent processes defined on
(Q", 7", P"). Also X and W defined on ({),., P) are independent; W" and W
are R*-valued Brownian motions and A",  are continuous functions from E
into R*. We will assume also that

(8.4) h"™ — h uniformly on compact subsets of E.

Let P, be defined by (3.17). Define P§ similarly with X" in place of X, Y"
in place of Y and A" in place of A. Suppose that
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T
(8.5) sup Ep» exp{b] |nr(xm) [ ds} =C, <=,
n 0

for some b > 1, and

(8.6) sup sup Ep.|h"(X)|" = Cy < =.

n 0<t<T

Let us note that (8.5) implies that, for some p’ > 1,

dpP"

p
d_ﬁg’-) SCZ<°C.

(8.7) supEP,.(

Let 0" and o be the corresponding unnormalized conditional distributions
[see (1.8)]. Recall that Y and Y" are Brownian motions under P, and Pf,
respectively, and that ¢” and o can be written as

o, =F(Y), ‘Ttn:Ftn(Yn)

[see (3.15)], where F, and F;* are Wiener functionals. Further F, and F;" can
be defined as in (4.1). Using Skorokhod’s representation theorem, get X", X
on ((,, P) such that X" - X a.s. and ,CZ(X") =AX"), AX) ,S/(X)
Recall from Section 4 the definitions of Q°, () and Y. Again let F' be defined
by (4.1) and, similarly, F* by

(F'(0%), f) = [A(XM(@))ar (@, 0°) dP(d), V[ CyE),

where g, is as in (4.2) and
k k
a7(&, 0°) =exp{ L [ (X)) dvio?) =3 T [ 4(Zn(@)) ds

Let us note that if P” is defined by dP" = qr dp, then defining X" on O in
the obvious way, we get that the law of X" under P" is the same as the law
of X" under P". The following is our main result on robustness.

THEOREM 8.1. We have F" — F in Q-probability as D(0,T], # . (E))-
valued variables.

ProoF. The proof is divided into two steps.
Step 1. Fix t > 0. We will show that, for every ¢,

(8.8) F! > F, in Q-probability.

Since X" — X a.s., it follows from (8.4) that A™*(X") — hi(X,) a.s. for every
s > 0. From (8.5) it is now clear that

=0

(8.9) lim E; [‘|hmi(Xr) - ni(X,)[
0

n—%
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and hence that

t .
.10 h™? Y,) h Y‘
(8.10) [ri(Rr)avy — [w(X,)d

in P-probablhty Thus we get g — g, in P-probability. Clearly for f € C,(E),
XM - f(X,) in probability. We will now verify that g is uniformly inte-
grable. A standard computation (using independence of X",Y) shows that,
for p > 1,

Bs(ar)” =[] [(a0)" (6, 0" d@(o”)] aP(4)
(8.11)
_f {(p(p )Z/lh”‘X” w)l ds}dP(w)

Thus choosing p > 1 such that p(p — 1)/2 < b and using (8.5), it follows
that g, is uniformly integrable. Thus

(8.12) lim E|(F?, £) = (F,, f)] = 0

Since (8.12) holds for all f € C,(E), (8.8) follows.

Step 2. Now we will show that F" is a tight sequence of D((0,T], .# ,(E))-
valued random variables on (Q°,7°, Q).

Since’ X" converges weakly to X, X" satisfies the following compact
containment condition [see Ethier and Kurtz (1986)]. For every ¢ > 0, there
exists a compact set K, C E satisfying

(8.13) inf P"(X! €K,:0<t<T)>1- g%
n

where 1/g =1 — 1/p for p as in (8.11). Let
Z={pne#, (E): w(Kiy-n) <e2™™,Vm=1}.

Then %, is compact in .#, (E), and recalling that X" has the same law under
P" and under P} and using (8.13) and Hélder’s inequality for p and q as
above, we get

Q{F &%, for some 0 <t < T}
= Q{F (K y-n) > £2™™ for some m > 1 and for some 0 < ¢ < T'}

o

Y Q{ sup F(Kfy-n) > 82""}
m=1 0<t<T

T L nf e )|

0<t<T

IA
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i 1
= ——-Eg| sup |[Ig. m X” q dP]
Zl £2” Q[O<tsT'[ Koo Ja:
(8.14) i 1 [ Up
< —k sup ( I m X" dP) ( ql dP)
m=1 £2 N 0<t<T [KZ '[( t)
il 1 _ 1/q
< Z o (EP[ sup Ig. m(th)]) EP[1+ sup (q/') ]
m= 0<t<T 0<t<T
d 1
< 2 —= (Epn JSop I, (X7 )]) Es[1+C(p)(ap)"]

<(1+C,C(p)) Z 2™ = (1 + CyC(p))e.

m=1

Here we have also used Doob’s maximal inequality for the submartingale
(g/)? and C(p) above denotes a constant depending on p. Now we will show
that, for every f €2, (F", f) is tight in D([0,T],R). This will imply [see
Jakubowski (1986)] that F is relatively compact. Fix f €2 and let

k
(8.15)  J* =j<Fﬂ Aifyds,  Mp=Y [CEr R AY.
i=1"0
Then
(8.16) (FP,fy =(F}, f>+J+ M}
Let p = (1 + p')/2, where p’ is as in (8.7). Now applying Cauchy—Schwarz

and Hélder inequalities and using (8.6) and (8.7) we get that, for ¢ > 0, 7 > 0,
we can choose 8 > 0 such that

sup@( sup (M) = (M"),| > ¢

0<t—s<$é

€ 0<t-s<87s

s

1
s—supEQ[ sup ft|<F,",h"f>|2dr]

<

supEy| sup f(F" |h"|> dr]

| 0<t—s<$

R X1 (&)

< ”f”z E [ su /t(f
= u
- snp @ p

| 0<t—-s<6"s

] S

L0<t—s<§6
<([(az(a,)" ab(a)far|

ar(@,") dﬁ(a))2 dr]

r(Z2(6)) dﬁ(é)))
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Il 117 T
< §p-1/p E (
IR

x (/(qf(a, ) dﬁm))p} dr]w

(X2 ()| db( a,))

celfI?
LY f 6(,,-1)/1»(1.4- supEpr(qrn)zpdr)
& n 0
CETIfI?
< _La(l"”/p(l-i' supEp(Q?)zp)
& n
CETI fI? dpr )
= §P-V/p|1 + supEps| ——
< — R 7

5 (1 + C,)CET|IfII?

&

§p—b/p
<.

Hence {(M") is C-tight in D([0,T],R) [see Theorem VI.4.13 of Jacod and
Shiryaev (1987)]. Similarly for £ > 0, n > 0, using (8.3) and (8.7),for 1 < p < 2
we can choose & > 0 such that

supQ( sup |J' —JN > s)

n 0<t—-s<é

= supQ( sup ft<F,”,A8f> dri> ¢
n O<t—s<él”s
1 t

< ——supEQ[ sup f(F,”,lAﬁfUd"]
€ n O0<t—s<é8"s
Cs ¢

< —supEy| sup f(F,”,@)”)dr
€ n 0<t-s<6°s
Cf

- sngQ[ sup jtj@)n()f;l(a))q:(a,,-)dﬁ(a,)dr]

€ O<t—s<8’s

(o -
s:fsngQEp[ sup ft®"(X,")q:‘ dr]

O<t—-s<é6"s

IA

c . v
—Lte-v/p supEp[fT(Q”(X,")qf)pdr] ’
0

¢ n

IA

C -
?f(s(p—l)/lﬂ(l + sng,s[foT(Q"( ,")q;’)p dr])

IA

C -
—’”6“"”“'(1 + supE; [ (07(%7))" (a1)” dr)

€ n
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= &5(13—1)/13
€

. , dpn p-1
1+ supEP,.fO (0™(X1)) Ip7 dr
n 0

SE_g(p—l)/p
e

IA

dP"

T 2-p p—1
1+ sup[EPnjO (er(xm)* " dr] [Emm] )
n 0

X

< CsP-Wr < n,

where the constant C above depends on a, C;, C,, f and &. Hence by
Proposition VI.3.26 of Jacod and Shiryaev (1987), J" is C-tight in D([0, T'], R).
Further using Corollary VI.3.33 of the same reference we conclude that
(F™, f)is C-tight in D([0, T], R). Thus as remarked earlier we get that F" is
relatively compact.

Now convergence of F" to F in @-probability follows from Steps 1 and 2
and the following lemma.

LEMMA 8.2. Let ¢", ¢ be D(0,T], E))-valued random variables on
(Q,,, P,), where E, is a complete, separable metric space. Suppose
&' — & in Py-probability for each t
and &" is tight. Then ¢" — ¢ in P,-probability.

Proor. Let d, be a complete metric on D([0,T], E,) for the Skorokhod
topology. For processes m,m, let d(n;,m;) = Ep(do(n;, my) A 1). Then it is
well known that d(£", £€) — 0 if and only if £€” — ¢ in P,-probability.

Consider 7" = (¢, &) as an E; X E;-valued process. Tightness of ¢”
implies that 1" is tight. Clearly for ¢,,...,¢, > 0,(n/,...,n)}) =p (..., ),
where 7, = (&, ¢,). Hence 0" converges in distribution to 7. Clearly for any
g > 0, the set

G, = {(ay,a,) € D([0,T],E,) x D([0,T], E,): do(a;, ay) > e}

! continuity set and, hence,

P,(n" € G,) » Py(n €G,),

isa Pyion~

that is,
Pi(do(£", &) > &) = Py(do(&,¢) > ) =05
hence, £"* — ¢ in P;-probability as n — «. O

9. The normalized conditional distribution. All the results pre-
sented until now have been with regard to the unnormalized conditional
distribution o [cf. (1.8)]. Similar results regarding = [cf. (1.5)] can be proved.
For the sake of completeness, we state the results in this section.

THEOREM 9.1. Suppose (X,Y), defined on (O, %, P) is related by the
model (1.1). Suppose that h is a continuous function satisfying (1.2). Let A,
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and D be as before and suppose that A, defined by (3.2), satisfies the
conditions C1-C5. Further suppose that 2(A) separates points in E X R*.

Let { u,} CP(E) be an F,¥-adapted cadlag process which is a solution of the
FKK equation

Cotr ) = (o +f0t<Ms,Aof> ds

(9.1) koo . . ) ;
' + 2 [ B+ DFCLY) = s RO ) dIE
i=1

Vfea(A,,),
where

Itﬂ‘=lfti—f()‘<us,hi>ds.
Then, if { p,} C#_ (E) defined by
k k
<pt’f> = </‘Lt7f>exp{ Z '/‘t</“bs’hi>dilsi - % Z ft|<Ms’hi>|2 dS},
i=170 i=170

VieC,J(E),

(9.2)

satisfies (3.6), then u, = m, forallt < T a.s.

PROOF. An application of the Itd formula shows that p defined by (9.2)
satisfies the Zakai equation (1.9). Theorem 3.1 is applicable and it implies
that p, = o, for all ¢ < T a.s. Since { u,, f) = {p,, f7/{p;, 1) and {7, [) =
(o,,f»/{0;,1), the result is proved. O

The next result is an analogue of Theorem 3.4 and can be proved similarly.

However, first we need to define a “martingale operator” corresponding to .
Let @ be defined by (3.29). Then for F € define

‘M,F(/‘L) = Zgi(<#‘7f1>7""<“’7fn>)<“”Aofi>

i=1

(9.3) T3

iD=

k
Zgij(</“("f1>$“”<“”fn>)
11=1

t,J
X[, hif; + Dy — Cu, B i, )]
X[, hif; + D) = Cuy B, ),

where D is given by (1.4). We will once again assume that D is an operator
on C,(E). It is easy to see that 7 is a solution to the martingale problem for
&'. We also define a weak solution of the FKK equation analogous to
Definition 3.1.

DEFINITION 9.1. A P(E)-valued process u defined on some probability
space (Q*,7*, P*) is a weak solution of the FKK equation if there exists an
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R*-valued (&,)-Wiener process I* (defined possibly on an extended probabil-
ity space), u is (&,)-adapted and ( u, I*) satisfies (9.1).

THEOREM 9.2. Suppose that the conditions of Theorem 3.1 are satisfied
by A. Let m, satisfy (3.5). Suppose that (3.6) holds.

Then any solution {p,} of the D(0,T], #(E)) martingale problem for
(#, 8, ) and satisfying

T
E f E(ps)ds <
0
is a weak solution of the FKK equation.

We now present a related concept that was introduced in Kurtz and Ocone
(1988).

DEFINITION 9.2. (u,U) € D([0,T], #(E) X R*) is a solution to the filtered
martingale problem for A if:
() u is FU-adapted;
(i) [(E{ pug, O'C,U,))> ds < o for all ¢;
(iii) for all f € 2(A),

oo FCT)) = [ AFCL U ds
is an (#Y) martingale.

Then we have the following theorem, which is an improvement of Theorem
3.3 in Kurtz and Ocone (1988) and can be proved using Theorem 2.1. The
main idea of this proof was also used in the proof of Theorem 3.1.

THEOREM 9.3. Let 2(A) be an algebra that separates points in E X R*
and contains constant functions. Suppose A satisfies conditions C1-C5.
Let { u,} < (8S) satisfy

E[(0,u,) ds <.
0

If (u,, U,) is a solution to the filtered martingale problem for A with u, = m,,
then (w,U) has the same distribution as (7,Y).

Finally we state the result for robustness of the optimal filter. Let Af, A,
A", h and (X", Y"), (X,Y) be as in Section 8 and let (8.1)-(8.5) be satisfied.
We will continue to assume that the martingale problem for (A,) is well
posed and that X" = X. Let #" and 7 be the respective normalized condi-
tional distributions. Recall that these can be expressed as functionals of the
observation processes; that is,

m =HM(Y"), m, = H,(Y).
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Then clearly
94 H! F H F
(©-4) ety BT EL

Note that, in view of (1.8),
inf(F*(Y"),1) >0, inf(F!(Y),1) >0 as.
t t

Let (Q° %°, @) be the canonical Wiener space as in the previous section.

THEOREM 9.4. (a) H" —» H in Q-probability as D(0,T], #Z(E))-valued
random variables.
(®) Pro(m™) ™t = Px(m)~h.

PrOOF. The first part follows immediately from Theorem 8.1 and (9.4).
For (b) note that, for any G € C,(D(0,T], #(E))),

Ep.[G(7")] = Ep:[G(H"(Y™))]
= E[G(H")q1]
- Es[G(H)qr]
= Ep[G(H(Y))]
= Ep[G(m)].
Here g7 and g, are as in the previous section and the convergence above

follows from part (a) and the fact that g} converge to g, in L'(P). This now
completes the proof. O

While this paper was being written, we received a copy of a paper by
Professor E. M. Goggin, which she kindly sent to us. In this paper [Goggin
(1994)] the question that is addressed is the convergence of E[U"|V"] to
E[U|V] when (U",V") -, (U,V). As an application of these results to
filtering, the author considers the setup of Di Masi and Runggaldier (1982),
where the signal process is a one-dimensional diffusion and the function 4 is
bounded (and the noise appearing in the observation is a mixture of Gaussian
and Poisson noise). In this case, the author deduces that 7' converges in law
to m, for each ¢. It is also mentioned that convergence in law of the process
7" to 7 can be deduced, but no indication of proof is given.

It may be noted that here we have proved convergence of H" to H in
probability on Wiener space, and our signal is a general E-valued Markov
process; the functions A" may depend on n and need not be bounded.
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