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EXPLICIT STOCHASTIC INTEGRAL REPRESENTATIONS
FOR HISTORICAL FUNCTIONALS

By STEVEN N. Evans! AND EDWIN A. PERKINS

University of California at Berkeley and University of
British Columbia

It is known from previous work of the authors that any square-inte-
grable functional of a superprocess may be represented as a constant plus
a stochastic integral against the associated orthogonal martingale mea-
sure. Here we give, for a large class of such functionals, an explicit
description of the integrand that is analogous to Clark’s formula for the
representation of certain Brownian functionals. As a consequence, we
develop a partial analogue of the Wiener chaos expansion in the superpro-
cess setting. Rather than work with superprocesses per se, our results are
stated and proved in the richer and more natural context of the associated
historical process.

1. Introduction. A fundamental result of It (1951) states that every
square-integrable functional of a d-dimensional Brownian motion B =
(BY,...,B%) may be represented as a constant plus a sum of stochastic
integrals against B',..., B¢. Dellacherie proved this fact as a direct conse-
quence of Lévy’s characterization of Brownian motion as the unique continu-
ous martingale such that By, = 0 and (B, B/), = §; ;t [see Dellacherie and
Meyer (1982), VIII1.62, for an account of this proof].

Subsequent work of Jacod and Yor, culminating in Jacod (1979), greatly
generalized Dellacherie’s idea by showing that, roughly speaking, the exis-
tence of stochastic integral representations for functionals of a certain pro-
cess and the well-posedness of a martingale problem for that process are
equivalent phenomena.

In the case of Brownian motion, an even stronger result is true. Namely,
any square-integrable functional has an orthogonal expansion, the Wiener
chaos expansion, in terms of multiple stochastic integrals with deterministic
integrands. Generalizing this result to other processes is a more delicate
matter. For example, even the definition of multiple stochastic integrals can
be difficult when the quadratic variation processes of the integrator martin-
gale is not deterministic, and two multiple stochastic integrals of different
orders will, in general, no longer be orthogonal.
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As Dellacherie’s proof proceeds by showing that the nonexistence of a
representation would contradict Lévy’s result, it does not give “formulae” for
the integrands appearing in the representation. A similar comment applies to
It6’s approach. Such explicit representations of suitable functionals were first
given by Clark (1971).

Haussmann (1978, 1979) significantly extended Clark’s work by obtaining
explicit representations for suitable functionals of finite-dimensional diffu-
sions in terms of stochastic integrals against the driving Brownian motions.
Davis (1980) indicated how the Clark-Hausmann formulae followed from
potential theory considerations. Bismut (1981) provided another approach
based on Girsanov’s formula as part of his variational treatment of the
Malliavin calculus. Ocone (1984) showed, conversely, that the Clark—Hauss-
mann formulae may be derived fairly directly from Stroock’s Wiener chaos
approach to the Malliavin calculus.

As well as being intimately connected with Malliavin calculus, explicit
stochastic integral representations and chaos expansions have become of
central importance in fields such as control theory, filtering and mathemati-
cal finance. .

In this paper we obtain explicit stochastic integral representations for
suitable functionals of certain infinite-dimensional diffusions, the
Dawson—-Watanabe superprocess. We also obtain a partial analogue of the
Wiener chaos expansion. (In fact, rather than consider superprocesses them-
selves, we work with the richer associated historical processes, for which the
statements and proofs of our results are more natural. Although we do not do
so because it would involve a significant amount of new notation, it is trivial
to read off results for superprocesses as “projections” of our results.)

We will give a full account of historical processes in Section 2. To keep
things simple for the sake of describing the intuitive content of our results
and their proofs in this introduction, we will consider the more familiar
superprocesses instead and skip over a number of details (e.g., the class of
Markov processes on which we are performing the superprocess construction
and what, exactly, we mean by the generator of such a process). A very useful
reference for superprocesses (and much else) is Dawson (1993). One of the
prime motivations for the current interest in superprocesses is their connec-
tion to certain nonlinear partial differential equations. Dynkin (1993) pro-
vides a thorough guide to the work in this area.

Suppose that Y is a Markov process with topological state space E. The
superprocess over the process Y [more correctly, the (Y, —A2/2) superpro-
cess] is a continuous, Markov process S taking values in the space M (E) of
finite Borel measures on E equipped with the weak topology. There are two
rather different (but equivalent) ways of defining this process. We will outline
both approaches, because elements of both appear as ingredients in our
explicit representation.

On the one hand, we can think of the superprocess as the solution to a
certain martingale problem. Write u(f) for [f du when u € M (E) and f isa
Borel function. Denote the generator of ¥ by A. The law of S is uniquely
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specified by requiring that, for each f in the domain of the generator, we
have

S/(f) =m(f) + [ 'S,(Af) ds + Zf,

where m € Mp(E) and Z is a continuous martingale such that Z} = 0 and
<Zf>t = O‘Ss(f2)ds

On the other hand, we can give a description of the law of S, within the
framework of the theory of I1t6 decompositions of infinitely divisible random
measures. Here, when S, = m € M;(E), the law of S, is that of the finite
random sum [y, 5, pIl(dp), where II is a Poisson random measure on My(E)
with intensity [z R,(x, du)m(dx). The finite measure R,(x, ) is concentrated
on Mz(E) \ {0} and is characterized by

[ 1= exp(—n(F))]R(x,dp) = v,(x)
Mp(E)

for nonnegative, bounded, Borel f, where v solves the integral equation

1
v,(x) =P,f(x) — —z-/;Ps(vf_s)(x) ds,

with (P,), . , being the semigroup of A. We note that R,(x, ) has total mass
2/t = r,, say, that is independent of «x.

The intuitive content of the latter description is most clearly brought out
by considering the construction of S as a limit of particle systems. Suppose
that we lay down a number of particles in E according to a Poisson process
with intensity Nm for some integer N. Each particle is equipped with a clock
that rings after a period of time that is exponentially distributed with mean
1/N. The clocks are independent. Each particle executes an independent copy
of Y starting from its initial position until its clock rings. At that time the
particle dies and gives birth to either zero or two particles, each possibility
occurring with probability 3 independently of the remainder of the popula-
tion. The offspring then proceed to evolve as independent copies of their
parent. That is, they too will eventually die and possibly reproduce. The total
number of particles is thus a critical Galton—Watson branching process. If we
construct a random measure SY by associating mass 1/N with each particle
alive at time ¢, then the process SV is an M (E)-valued Markov process. If
we let N — o, then SV converges in law to S.

The above It6 decomposition of S can then be interpreted as a decomposi-
tion of S into “clusters” descended from distinct “progenitors” present in the
population at time 0. The configuration of progenitors is a Poisson process on
E with intensity r,m, the clusters descended from each progenitor are
independent and the law of a cluster descended from a progenitor at location
x € E is R,(x,-)/r,. This heuristic picture may be made precise by using
nonstandard analysis [cf. Dawson, Iscoe and Perkins (1989)] or by an associ-
ated enriched model that keeps track of genealogies such as the historical
process of Dawson and Perkins (1991). In this introduction we will use,



STOCHASTIC INTEGRAL REPRESENTATIONS 1775

without comment (or inverted commas), particle process terminology, such as
cluster, progenitor, descendant, subtree and so on, to give an indication of the
heuristics behind our results, even though such terminology is not strictly
applicable to S, but only to an enriched or approximating model.

Given that S is the solution of a well-posed martingale problem, it is
natural to expect from the general results of Jacod and Yor mentioned above
that there should be some kind of representation of functionals of S in terms
of stochastic integrals involving the martingales Z/. Such a result was
obtained in Evans and Perkins (1994). We will recall this result in Theorem
4.7, but for the sake of the information we will give a brief outline.

There is an orthogonal martingale measure, Z, in the sense of Walsh
(1986) such that

z[=f]0 t]fEf(x)dZ(s,x).

It is possible to define space—time stochastic integrals against Z for suitable
random integrands, and for such integrands we have

<flo L Jp#ler®) d2(s, x>>t = [ J o5 2)"8,(dx) ds.

The representation result of Evans and Perkins (1994) states that if F(S) is a
square-integrable functional of S, then we have

F(S) = P[F(S)] +j]0w[ qubF(s,x)dZ(s,x)

for a suitable integrand ¢*.

The aim of this paper is thus to find the explicit form of the integrand for a
fairly general class of functionals.

Specific examples of such explicit representations already exist in the
literature. For example, it is fairly easy to show directly from the martingale
problem that

(L) SN =m(Bf) + [ [ Pelf(x)1s <1) dZ(s, %),

We note that if this observation is coupled with the above remark about the
quadratic variation of stochastic integrals against Z, then it is straightfor-
ward to apply It6’s lemma and inductively obtain formulae for the moments
of the form P[S,(f,) -+~ S, (f,)]. Such moment formulae were obtained analyt-
ically in Dynkin (1988). They have found a host of applications [see, e.g.,
Adler and Lewin (1991), Evans (1990), Evans and Perkins (1991), Krone
(1993), Rosen (1992) and Sugitani (1989)].
It is not hard to check that

Poof(x) = [ w(N)Beo(x,dp), s <t,

F
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and so the integrand appearing in the representation (1.1) can be written as

P[[ (S, + w(F) = SR, (x,dw)|S,,0 <u < s]us <1).
Mg(E)

A special case of the representation we will establish is that for any suitable
functional of the form F(S) = G(S,) the integrand in the representation is,
roughly speaking, given by

o7 (s,%) = P[IM @S+ ) —a(S))
(1.2) ’
X Rtfs(x’ d/“")]

S,,0<u 33]1(3 <t).

(We are ignoring, for the moment, some details such as how to define the
conditional expectation for all s so that we get a legitimate stochastic
integrand.)

In order to understand why (1.2) should be the correct formula, it is
instructive to give a caricature of the proof in which we gloss over a host of
details. The basic idea is the same as that employed by Bismut (1981) for
Brownian motion. An elementary exposition of this technique is given in
Rogers and Williams [(1987), Chapter IV, Section 41].

Given that we know ¢ exists from the general representation result of
Evans and Perkins (1994), our problem is to identify it. We observe that for a
suitable integrand B we have

[P’[G(St)floy t]fE,B(s,x) dZ(s,x)]
=p[(p[a(s,)] +]]O ; fE¢F(s,x)dZ(s,x))]]0 ”fEB(s,x)dZ(s,x)

- p[[}o,t ] fE ¥ (s, x) B(s, x)S,(dx) ds].

We thus want to find a way of computing the leftmost expectation that gives
an informative expression in the form of the rightmost expectation.
The next step is to note that

P[G(S,)fm t]/Ems,x)dZ(s,x)]
(1.3) ]
= ~lim — {P[a(s)&] - Pla(S)]},

where

s 1 2
&P = exp(—/lo,t]fEaB(s,x) dZ(s, x) — ;f}o,t]fEazﬁ(s,x) S,(dx) ds].
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We have P[&,F] = 1, and so P[G(S,)&,#] is the expectation of G(S,) under a
new probability measure that we will call P®A. In order to find a useful
expression for the limit in (1.3), we want to construct a process S’ on our
original probability space such that S’ has the same law as S does under P ¢,
That is, we want to couple S and S’. We can then write P[G(S,)& "] —
PLG(S)] = P[G(S;) — G(S,)] and investigate the limit in (1.3) using argu-
ments that compare the sample paths of S’ and S.

The analogous problem for Brownian motion is relatively simple. If we
perturb the law of Brownian motion by introducing a stochastic exponential
as a Radon—Nikodym factor, then Girsanov’s theorem says that a process
with the resulting law can be realized on the same probability space as a
Brownian motion with a random drift.

In order to see what is involved in our case, first consider the case when
B(s, x) = b(x), where b is a nonnegative, deterministic function. Some
straightforward stochastic calculus shows that the law of {S;: 0 <s < ¢}
under P?? satisfies a martingale problem similar to that satisfied by the law
of {S,: 0 < s < ¢} under P with the difference that the operator A is replaced
by the operator A — &b. Thus the law of {S,: 0 < s < ¢} under P*# is that of a
process constructed in the same manner as S, with the difference that Y is
replaced by Y killed according to the continuous additive functional
&fy,.16(Y,) ds.

The intuitive interpretation when B is allowed to be random and time
varying, but still nonnegative, is obvious. We can still think that we are
looking at what is essentially a cloud of branching particles moving according
to the dynamics of Y, except that now individual particles are killed at a rate
that may depend on the position of the particle and the whole history of the
population up to the present.

In general, coupling a Markov process and a killed version of the process
involves enlarging the probability space to include some extra randomness.
For example, suppose that we wish to kill Y according to the continuous
additive functional &f}, .,6(Y,)ds, where 0 < ¢b(x) < 1. By enlarging the
probability space if necessary, we can construct a Poisson point process N on
[0, o[ X[0, 1] with intensity dt ® dx. If we kill Y at the first time point, s, that
N has a mark in [0, £b(Y,)], then the resulting process is the killed process
we want.

A natural approach to constructing S and S’ is then as follows. First build
the superprocess over the Markov process (Y, N). The process S will simply
be the “E marginal” of this superprocess. To obtain S’, first erase particles in
a manner suggested by the above, and then proceed to take the “E marginal.”
We show in Section 5 that, in essence, this approach works to construct the
desired coupling. There are some technical difficulties engendered by the fact
that in order to implement this idea as it stands we would need to be able to
track back through time the trajectory of an individual particle and its
ancestors. Such trajectories are, in general, not well defined [see, however,
Barlow and Perkins (1994)], so we need to introduce the extra machinery of
the associated historical process to make sense of this intuition.
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We know that particles alive at time s < ¢ that are progenitors of clusters
present in S, appear as a Poisson process with rate r,__S, conditional on S..
Moreover, such a particle in position x at time s is being killed off at rate
£B(s, x). When a particle is killed off, its entire cluster of descendants at time
¢t is removed from S, in order to produce S;. Conditional on the killing taking
place at time and place (s, x), the cluster that is removed will have law
R, (x,-)/r,_, [recall that r,__ is the total mass of R,_,(x, - )]. Last, we have
the fundamental Palm measure fact about Poisson random measures: if we
condition any Poisson random measure II, say, with diffuse intensity mea-
sure to have an atom at some point z, then the resulting conditional law of II
is the same as the unconditional law of II + §,, where §, is the unit point
mass at z. In particular, the conditional law of H(II) — H(II — §,) is the
same as the unconditional law of H(II + §,) — H(II) for any Borel function H
defined on the space of measures in which II takes its values.

We hope it is now reasonable at a heuristic level that the limit as £ | 0 of
the right-hand side of (1.3) should be

P['IIO, £ '[E fMp(E)P[(G(St + ) = G(S,))|8,,0 <u <]

xR, ,(x,du)B(s, x) S,(dx) ds |,

and leads directly to the identification of ¢ given in (1.2).

The foregoing caricature also indicates what the form of ¢ should be
when the functional F(S) is allowed to depend on the whole path and not just
on S,. It seems reasonable from the particle picture that the whole path of S
can be thought of as a superposition of a Poisson process of clusters in path
space. There will be infinitely many clusters, but for each ¢ > 0 only finitely
many clusters will live longer than ¢. This cluster decomposition does indeed
hold, and, as we would expect, the intensity of the Poisson process of these
“path” clusters plays a role in the representation of functionals of the whole
path similar to that played by the intensity of the Poisson process of “one-
dimensional marginal” clusters in the representation of functionals of S,.

The plan of the remainder of the paper is as follows.

In Section 2 we recall the definition of a historical process, collect some
facts from the literature and state our main results. In Section 3 we detail the
construction of a “marked” process that we sketched above.

In our heuristics, the key idea was that if we kill particles using the
marks, then we arrive at a process that has the same law as the law of the
original process perturbed by a Girsanov-type Radon—-Nikodym factor. Our
actual argument will, in fact, depend on a slight variant of this idea; namely,
that if we kill particles using the marks and perturb the law of the killed
process by a different Girsanov-type factor, then we return to the law of our
original process. This fact is proved in Section 5. In order to accomplish the
proof, we develop in Section 4 a “stochastic calculus along branches” that is
similar to that described in Perkins (1992, 1995), but handles certain martin-
gales with jumps.
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The proof of our explicit stochastic integral representation result (Theorem
2.5) is given in Section 7. It is an immediate consequence of a somewhat more
fundamental “stochastic integration-by-parts” formula (Theorem 2.4) that we
establish in Section 6. In Section 8 we prove a partial analogue of the Wiener
chaos expansion (Theorem 2.7).

2. Notation and statement of results. It will be convenient to recycle
some of the notation used in the Introduction. As certain symbols are reused
to denote slightly different objects in the rest of the paper, the reader should
forget about the usage in the Introduction.

We begin by recalling the definition of the historical process associated
with a Hunt process as it is presented in Mueller and Perkins (1992).

Let E be a Polish space with Borel o-field &.

Let D denote D(R,, E), the space of cadlag functions from R, to E
equipped with the Skorokhod topology induced by the metric on E. Write &
for the Borel o-field of D and (2,) for the canonical filtration. Given y, y' € D
and ¢t > 0, define y* € D by y’(s) = y(s A t), define y’~ € D by

yt_(s)={y(s)’ if s <t,

y(t =), ifs=>t,
and define (y/t/y') € D by

y(s), if s <t,

(y/t/y")(s) = {y’(s —t), ifs=>t.

Write D' (resp., D'”) for the image of D under the map y — y' (resp.,
y—y'").For t > 0define Y,;: D - E by Y,(y) = y(¢).

Fix a conservative Hunt process on E, and let P” be the probability
measure on (D, &) that is the law of this process when the process is in state
y € E at time 0. (For convenience, we will, in different contexts, use the
dummy variable y to denote both points in D and E.) In other words,
Y = (Y,, P?) is the canonical realization of the Hunt process.

Let My(D) denote the space of finite measures on (D, 2) equipped with
the topology of weak convergence. Given ¢ > 0, put Mz(D)* = {m € My(D):
y = y* for m-a.e. y}.

Fix 7> 0 and v € Mz(D)". Define a finite measure P™”on (D, 2) by

Prr(A) = [ P*(y/7/Y) € A}v(dy).

Let 9 denote the o-field generated by &,, and the P *-null subsets in D.

Define F™" to be the set of functions ¢ € b(H( 7, x[) X 2) that satisfy the
condition ¢(t, y) = ¢(¢, y*), for all ¢t > 7, and are such that ¢t —» ¢(¢,Y) is
P7"-a.s. right continuous for ¢ > 7. If ¢ € F™” we will sometimes write ¢, for
the function ¢(¢,-), ¢ > 7. Write A™" for the subset of F™” X F™" consisting
of pairs (¢, ¢) such that

$(Y) = e(Y) = [ (¥)ds, t=1,

T’
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is a (2/),., martingale under P™". Note that if (¢, /) € A™”, then ¢,(Y) is
cadlag P™"-a.s.

Suppose that (Q,.7, (%), ,,P) is a filtered probability space satisfying the
usual conditions. A (Y, —A%?/2) historical process starting at (r,v) is a
continuous, My(D)-valued, (%), . ,-adapted process (H,),., such that P-a.s.
H, € M (D)' for all ¢ > 7, and for all (¢, y) € A",

Mt¢ =H/(¢,) —v(o,) — f]T t]Hs(‘/’s) ds, tzm,

is a continuous (%), , , martingale for which M? = 0 and
(M%), = s, )’ H,(dy) ds.
=), ) ets ) H(dy)

The law of H is unique. The existence and uniqueness proof in Mueller and
Perkins (1992) relies on a general result from Fitzsimmons (1988). Examin-
ing this line of reasoning, it is clear that in order to check that H is a
historical process, it is possible to weaken the requirement that the processes
M? are martingales to a requirement that these processes are just local
martingales.

We will now record some miscellaneous facts about the process H chosen
as above. Unless otherwise noted, these facts may found in either Dawson
and Perkins (1991) or Mueller and Perkins (1992).

The process H is an inhomogeneous Hunt process. If f,,..., f, € b2, then
the moment P[H,(f)): H,(f,)] exists and is unlformly bounded as
(¢4,...,%,) ranges over a compact subset of [7, [ *. Explicit formulae for these
moments are given in Dynkin (1988). (As mentioned in the Introduction, such
formulae may be derived inductively from the martingale problem using
stochastic calculus.) In particular,

(2.1) P{H,(f)] =P*[f(Y")].

Let L?(H,P) denote the class of functions g: ]r,%[ XD X Q — R that are
predictable with respect to the filtration (2 X.%), . . and satisfy

PIJ ) (o) E ) ds

t>7

b

< o t>rT.

There is an orthogonal martingale measure M in the sense of Walsh (1986)
such that

[, Lgtsy)am(s,y)

is defined and is a square-integrable, continuous (%))
for each g € L*(H,P) with

martingale under P

t>71

<f]T .]ng(S’y) dM(S,y)>t = f]T’t]ng(S,y)sz(y) ds.



STOCHASTIC INTEGRAL REPRESENTATIONS 1781

If (M?),., is one of the martingales appearing in the martingale problem
that defines H, then

M= [ [ #(s)dM(s, ).

For ¢ > 7, the law of H, under P is that of the finite random sum
JuppyPI1(dp), where II is a Poisson random measure on My(D) with finite
intensity of the form [,-R, ,.,v(dy). The canonical measure R, ,., is concen-
trated on M (D) \ {0} and has total mass r, , = 2/(¢ — 7), for all y € D".

For r >0 and ¢ € My(D)" let P"¢ denote the law of the (Y, —A?/2)
historical process started at (r, ). Thus P"¢ is a probability measure on
C(r,=[, Mz(D)), and, in particular, P™"” is just the law of H under P. We
can think of C([s,*[, Mz(D)) as a semigroup equipped with the obvious
pointwise addition operation inherited from M;(D). The probability measure
Pi¢ is infinitely divisible, and we in fact have that if { = ¢’ + ¢”, then P"¢
is the convolution of P™¢" and P"¢".

We now need to develop some observations that are not in our two general
historical process references, but which follow fairly simply from ideas that
are in Dawson and Perkins (1991).

Forr<s<tand y € D° put

@57 = [PHR, . (dE).

From Proposition 3.3 and Theorem 2.2.3 of Dawson and Perkins (1991),
it is not difficult to check that if 7 <s <t <u and P, , is the transition ker-
nel for H from time ¢ to time u, then the two measures R, () and
/P, (&,)R, . (d&) agree on Mp(D)* \ {0}. Thus, if we let 7, , be the
mapping from C([¢, %[, Mz(D)) to C([u, [, Mz(D)) that maps the function A:

[¢,[ = Mz(D) to its restriction to [u, [, then we have that

S, Uy — s, t; -1
Q V= (@ Y °Wt,u)l(hec([u,w[,Mp(D)):hu—-»eor

Equivalently,

S, U3y — Syt -1
Q —( I(hEC([t,oc[,MF(D)):h,,#O,tsvsu)owt,u)'

Now write 7, ;, for the mapping from C(]s, [, M(D)) to C((t, [, Mp(D))
that maps the function A: ]s,o - Mz(D) to its restriction to [¢,[. We
conclude from the above that we may define a unique o-finite measure Q**:?
on C(]s,[, Mp(D)) that puts no mass on the zero path, is Markovian with
semigroup {P, ,} and satisfies

St+5y ol = Q5hY
[{h € C(s,*[, Mp(D): h,+ 0, s <v < u} s+,t {heC(t,,Mp(D): h,+#0,t<v<u}
for s <t < u.
It follows from Le Gall (1993) that under @Q°*? the “law” of the total mass
process is just the “law” of the local time process of an excursion from 0 of a
rescaled reflecting Brownian motion under the It6 excursion law. Because the
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local time at level w converges to 0 (= the local time at level 0) as w |0 a.s.
under the It0 excursion law, we have

@“;y{h € C(1s, [, Mp(D)): limh,(D) + o} - o.

We may therefore define a o-finite measure Q% on C([1, [, Mz(D)) such
that

Q¥ h:3r<v<s,h,#0} =0
and
@s;yows—+1 = Qs*Y,

where 7, is the mapping from C([r,%[, Mz(D)) to C(s,*[, Mz(D)) that
maps the function A: [7, [ - Mz(D) onto its restriction to s, o[.

We note that the measures Q*%? play a role in a Poisson cluster represen-
tation of the whole path {H,},., under P*¢ similar to that played by the
measures R, in the Poisson cluster representation of a single random
measure H,. To be more precise, we can think of C([s,®[, Mz(D)) as a
semigroup equipped with the obvious pointwise addition operation inherited
from Mp(D). Then P%¢ is the law of the superposition of clusters thrown
down on C([ s, [, Mz(D)) according to the restriction to C([s, [, Mz(D)) of a
Poisson process on C([7,%[, Mz(D)) with intensity [Q%?¢{(dy). [Remember
that we “padded out” Q%Y so that we could think of it as a measure on
C([r,>[, Mz(D)).] This path space type of Lévy—Khintchine representation
for P*¢ is discussed at length in El-Karoui and Roelly (1991).

If T > 7 is a bounded (%), . , stopping time, we define P, the normalized
Campbell measure associated with Hj, to be the probability measure on
(D X Q, 9 xX#) given by

Pr(A X B) = P[Hy(A)15]/v(D).

In Lemmas 2.2 and 2.3, we define and study a type of predictable projec-
tion under normalized Campbell measure that is necessary for defining the
integrands that will appear in our representation result. First, however, we
record the following observation about predictable o-fields for product filtra-
tions that has no doubt appeared in the literature, but we have been unable
to find a reference.

LEMMA 2.1. The (2, X %)), ~predictable o-field on ]r,®[ XD X Q is gen-
erated by functions of the form (¢, y, o) = B(t, y)8(¢, ), where B is (2,),. -
predictable and & is (%), . ,-predictable.

Proor. It is clear that if B is (2,), , ,-predictable and § is (%), , ,-predict-
able, then (¢, y, w) = B(¢, ¥)8(¢, ») is (2, X 7)), , ,-predictable.

Conversely, it follows from Theorem IV.67(c) of Dellacherie and Meyer
(1978) (modified slightly to take into account that we are working with the
open index set ]r,[) that the (2, X %), , ,-predictable o-field is generated by
sets of the form Js,t] X A, where 71 <s <t <~ and A €9, X.Z, for some
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7 < r < s. Hence, the (2, X %), , -predictable o-field is also generated by sets
of the form ]s,¢] X B X C, where 1 < s <t <o, B €2, and C €%, for some
7 <r <s. The indicator function of such a set may be written as
(1), ;1)1 ;1c). Whereas 1y, 15 is (2,),, -predictable and 1), ;1. is
(%), . ~predictable, the result follows. O

LemMMa 2.2. Suppose that a: lt,0[ XD X Q — R is bounded below and
measurable with respect to the product of the (2,), . -predictable o-field and
the o-field #. Then there exists @: 11, XD X Q - R that is (2, X 7)),
predictable and satisfies

Prla(T)(2 xZ)r] = a(T),

Pr-a.s., for all bounded (%), -predictable stopping times T > 7. In particu-
lar,

ol @t Hr(a)| - B[ [ (2.3 Hr(a) |

Moreover, if & is any other function with the same properties as a, then
P-a.s., forallt > 7, &(t,y) = a(t,y) for H-a.e. y € D.

Proor. In order to establish the existence of @, it suffices by a monotone
class argument (just as in the construction of the ordinary predictable
projection) to consider the case a(¢, y, w) = B(¢, y)y(w), where B is bounded
and (2,),, -predictable and y € b%. We claim that in this case we can take
a(t, y, o) = B(t, y)y(t, w), where ¥ is the (%), , -predictable projection of the
process that takes the value vy at all times.

It follows from Lemma 2.1 that (¢, y, w) = B(, y)y(¢, 0) is (2, X 7)), , -
predictable. It therefore remains to check that if T > 7 is a bounded (%), ., -
predictable stopping time, then

o[ B2, v Hrian)| = B[ [ BT UDI8() B ()

whenever (y, w) — 8(y, w) belongs to b(Z X.#);. Lemma 3.4 of Perkins
(1992) shows that (2 X.#), is generated by functions of the form (y, w) —
H(yT) X (), where ¢ € bD and § € b#; [the result in Perkins (1992) is
for the special case in which D is replaced by a space of continuous paths, but
the facts from Dellacherie and Meyer (1978) used in the proof hold in the
greater generality we require]. It thus suffices by a monotone class argument
to show that

[ BT 3) 67 Hr(dy) v | = B| [ (T, 3) 65" ()7 (T |

This follows from the properties of the predictable projection since, by Propo-
sition 2.2.b of Mueller and Perkins (1992), (¢, o) — (B(¢, y)¢(y ) H(dyX w) is
(%), , ,-predictable.
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Turning to the uniqueness claim, let us first remark that if p: ]7, o[ XD X
Q- R is (9, X#),, -predictable, then (¢, w) = [p(¢, y, w)H(dyXw) is
(%), , ~predictable. This follows from Lemma 2.1, Proposition 2.2.b of Mueller
and Perkins (1992) and a monotone class argument. Thus the set {(s, »):
s> 71, H({y: a(s,y) > a(s, y)}) > 0} is (%), ~predictable. If this set is not
evanescent, then it follows from the predictable section theorem that there
exists a bounded (%), -predictable stopping time T such that P[Hp({y:
a(T,y) > a(T, y)}) > 0] > 0, that is, Pp{&(T,-) > a(T, )} > 0. However, this
is impossible, since 1(&(T, ) > a(T,-)) € b(Z X #); and so by assumption
we have

Pr[1(&(T,") > @&(T,"))&(T, )] = Pr[1(&(T,") > &(T, ")) a(T, )]
= Pr[1(&(T,") > &(T,))a(T,")].

Similarly, the set {(s, w): s > 7, H({y: &(s, y) < a(s, y)}) > 0} is evanescent
and the claimed uniqueness holds. O

REMARKS. (i) An argument similar to Lemma 2.1 shows that the product
of the (2,),, -predictable o-field and the o-field /# coincides with the (2, X
#),  ~predictable o-field.

(i) When dealing with the projection operation of Lemma 2.2, we will
interpret @ = B (resp., @> B and @, > @) to mean that a(T(w),y) =
B(T(w), y) [resp., a(T(w), y) = B(T(w), y) and @,(T(w), y) = a(T(w), y)] for
Pra.e. (y, w) € D X Q for all bounded, (%), ., predictable _stopping times 7.
As the proof of Lemma 2.2 shows, this definition of @ = B is equivalent to
requiring that P-a.s., for all ¢ > 7 we have a(¢, y) = B(¢, y) for H,-a.e. y € D.
Similar comments hold for @ > B and @, — a. The following properties of the
projection are immediate from the definition and the properties of conditional
expectation.

LEMMA 2.3. (a) If B is (2, X %), -predictable, then af= ap.

(b) If alt, y, w) = B(t,y, ®) [resp., a(t,y, ) < B(t, y, w)] forall (¢,y, w),
then @ > B (resp., @ < B).

© If a,T a, then a, 1 a.

(@ If @, » a and lal| < c for some constant c, then @, — a.

DEFINITION. Suppose that F: C([7,o[, Mz(D)) —» R is a Borel function
such that

J,. F(h) = [(F(h+h*) - F(h))@*" (dh?)

is defined and bounded below for all s > 7, y € D and h € C([7, [, Mp(D)).
Then (s, y, w) = J,. , F(H(w)) is bounded below and measurable with respect
to the product of the predictable o-field associated with the filtration (2,), . ,
and the o-fleld # Let %, , F denote the corresponding (2, X %), , -predictable
process described in Lemma 2.2.
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With these ideas in hand we can now state what might be loosely called a
“stochastic integration-by-parts” formula and the explicit stochastic integral
representation result that follows almost immediately from it.

THEOREM 2.4. Suppose that F: C({7,>[, Mp(D)) - R is continuous and
such that for some compactly supported, finite measure m on [1,%[ we have
|[F(h + h*) — F(h)| < [R¥(D)m(dt) for all h, h* € C([7,[, Mz(D)). If B is a
bounded (2, X %)), , ,predictable function, then, for all 6 > 7,

plrc) [ [ B,y am(s, )]
= P['/]T’ e]fD (A4, F)B(s,y)H(dy) ds].

THEOREM 2.5. Suppose that F: C((1,>[, Mp(D)) — R is continuous and

such that for some compactly supported, finite measure m on [1,°[ we have
|IF(h + h*) — F(h)| < [R¥(D)m(dt) for all h, h* € C((r,[, Mz(D)). Then

F(H) = P[F(H)] + []T ; fos;deM(s,y).

REMARKS. One class of examples of functions, F, satisfying the conditions
of Theorems 2.4 and 2.5 consists of functions of the form F(h) =
f(h,(g),..., h,(8}), where t, €[7,%[, g;: Mp(D) > R is bounded and
continuous and f: R* - R satisfies [f(x) — f(y)| <clx —y|, for some
constant c¢. Another class is functions of the form F(h) =
i, gh (8D ds, ..., 11,7 (8,) ds), where t;, g; and f are as before.

We will now describe our partial counterpart of the Wiener chaos expan-
sion. First we need to define and establish the existence of the relevant
multiple stochastic integrals. This needs some care. It is apparent from
Perkins (1985) and Ruiz de Chavez (1985) that even defining general multiple
stochastic integrals for continuous martingales with nondeterministic
quadratic variation is a somewhat delicate matter. We begin with a lemma on
parameterized stochastic integrals.

NoTATION. Write % for the (%),. ,-predictable o-field of functions on
J7, 0o X Q.

LEMMA 2.6. Let (U,%) be a measurable space. Suppose that ¢: U X
]r,0o[ XD - R is bounded and % X B(r,»]) X D-measurable. Suppose that
P: U X [7,0[XQ > R is % X P-measurable and satisfies

sup sup P[ly(u,t)P] <,

uelU r<t<0
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for all > 7 and p > 1. Then [, ,[pd(u, s, y)¥(u, s) dM(s, y) is defined for
all u € U and t > 1 and satisfies

4
sup sup P

uelU 7<t<0

[ $(u, 5, 3)(u,5) dM(s, y)

Ir, ¢]

for all 0> 1 and p > 1. Moreover, there exists a % X P-measurable
mapping o« such that oa(u,-,-) is indistinguishable from
Jie, /o (w5, YI(u, s) dM(s, y), for all u € U.

Proor. We have

/], /(¢(u,3,y)ll'(u,8))2Hs(dy)ds

< ( sup lp(u, s y)I) f tll(u,s)sz(D) ds.
u,s,y Ir, t]

As P[ H,(D)?] is uniformly bounded on compact intervals for each g > 1, it is
clear that [, , [p®(u, s, y)¢(u, s) dM(s, y) is defined for all u € U and ¢ > 7
and (by the Burkholder-Davis—Gundy inequality) has moments with the
stated properties. The existence of a can be proved in a manner similar to
the proof of Proposition 5 in Stricker and Yor (1978). O

Suppose now that for some m > 1 we have functions ¢; € b(F(Ir,0)™ i1 x
D),i=1,..,m.

Applying Lemma 2.6, we see that we can construct a Z(]r,o[)” ! X %-
measurable function a;: Jr,[™ ! X Jr,[ X such that a(s,,...,s,; ) is
indistinguishable from [}, ,/p$i(sy,...,8,;y1) dM(s;, y,), for all sy,...,s,.
Moreover,

sup sup P[Ial(sz,..., S’ t)Ip] < oo,
Sgy.ues Sy T<E<O
forall 6> 7 and p > 1.

It is easy to see that (ss,...,s,,;Se; @) = a(sg,Ss,...,8,;Sy; @) is
B(r,[)"" 2 X P-measurable. We can therefore apply Lemma 2.6 again to
construct a Z(Ir,©[)™ % X P-measurable function a,: ]7,%[™ % X ]Ir,0o[ X Q
such that ay(sg,..., s,,; ;") is indistinguishable from

»9m>

[] '][D¢2(32,---’3m§y2)a1(32,33,---,sm;82) dM(sy,¥5),

for all s,,...,s,,, and

m»

sup sup P[lay(ss,...,s,;¢)P] <o,
83500 Sy T<t<0
for all 6 > r and p > 1. Further, if &, is another function with the same
properties as «; and we construct @, from &; in the same manner that a,

was constructed from «,, then ay(ss,...,s,,; ) is indistinguishable from
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ay(sg,..., 8, ), for all sg,...,s,, as

f] t]];)¢2(82>~..>Sm;yz)z(al(SZ,...,sm;Sz)
T,

—&y(8g,-ee, 83 83)) Hy(dyy) dsy = 0,

by Fubini.

Continuing in this way, we can construct successively as, ..., «a,,. We will
write I,(4,..., ¢,,;¢) for a,(t). For m > 1 we will denote by .7, the set of
all random variables of the form I, (¢,,..., ¢,;t), for ¢,,..., ¢, as above
and ¢t > r,and put F=RU U _,.7,.

We can think of I,,(¢4,..., ¢,;t) as an attempt at giving meaning to the
notation

m
f f H¢i(si"">sm;yi) dM(sy,y1) - AM (S, Y)-
7<8;< <8, <t (D))" i=1

Thus the linear span of .7, is analogous to the mth Wiener chaos (or perhaps
more accurately, an L?-dense linear subspace thereof). This analogy is not
complete, because the two sets %, and .%, & # [, are not orthogonal in L?(P).
For example, if ¢; and ¢, are both constant functions taking the value 1,
then

PLL(0 (b, 6i0)] = P| [ H(D)(H,(D) - H,(D))ds

and the moment formulae in Dynkin (1988) show that the right-hand side is
not 0. We thus cannot hope for a full analogue of the Wiener chaos expansion
that involves the linear spans of the successive .%, in place of the mth
Wiener chaos. We do, however, have the following partial analogue.

THEOREM 2.7. The linear span of .# is dense in L°(Q, o{H,: t > 7},P).

REMARK. We should point out that our “multiple stochastic integrals” are
rather different objects to the “multiple stochastic integrals” in Dynkin
(1988). In particular, t — I, (¢,,..., ¢,,;t) is a martingale, a property not
shared by the integrals in Dynkin (1988).

3. The marked historical process. Set I = [0, 1] and F: D x I Let
D denote the space of cadlag functions from R, to E. Write & for the Borel
o-field of D and (9 ) for the canonical ﬁltratlon We will usually use the
dummy variable x to denote a generic element of D (or sometimes to denote
a generic element of E). When we do so, we will follow the convention of
denoting the E- and I-valued components of x as y and n, respectively. For
t > 0, define X,: D> E by X,(x) = x(¢). With a slight abuse of notation,
define Y,: D — E and N,: D - I by Y(x) y(¢) and N,(x) = n(?).

leen x €D and t > 0, define x’ € D (as one would expect) by x‘(s) =
x(t A ).
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Let M F(ﬁ) denote the space of finite measures on D equipped with the
topology of weak convergence and define M F(D)t by analogy with M (D).

Given x = (y,n) € E, let P%'™ be the probability measure on (D, &) that
is the Cartesian product of P? and the law of the Feller process on I that
starts at n and has bounded generator given by

fro [ ) dx—f

That is, under P>™ the processes Y and N are independent, with Y having
the law P” and N having the law of a pure jump Markov process on the I
that starts at n, has i.i.d. mean 1 exponential interjump times and has jump
sizes that are distributed according to Lebesgue measure, no matter where
the jump begins.

Recall 7> 0 and v € Mp(D)" that appeared in the definition of the
(Y, —A?/2) historical process H. Let u € M(D)" be such that

/.L({x e€D:y EA}) =v(A),
for all A €2, and
/.L({x €D:{3¢t>0:n(¢t) # O}}) =0.

Let G denote the (X, — A2 /2) historical process starting at (7, u) defined on
some filtered probability space satisfying the usual conditions. That is, G is
defined in a similar manner to H, except we are replacmg D by D, (Y,, P?)
by (X, PO™), v by u and so forth. Write P™#, ¥, F"* and A™* for the

analogues of P™", 9, F"” and A™".
Define an M F(D) valued process (H )is s

H|(A) = t({xeD:yeA}), Aeg.

Let .#" denote the o-field generated by the null subsets of the probability
space on which G is defined. Put
2= o{H:r<r<s} Vv, txr,
s>t
and

- V.
t>71
It is straightforward to check that (H/), . , is a (Y, —A?/2) historical process
starting at (7, v) on either the filtered probability space on which G is defined
or the filtered probability space with the same sample space and the “same”
probability measure, but equipped with the smaller o-fields #’ and (%), . ..
We may therefore assume from now on that our (X, —A?/2) historical

process G and our (Y, —A%/2) historical process H are defined on filtered
probability spaces (Q, £,(%)),. ,,P) and (Q,%, (%), . ,, P), respectively, that

Z=(o{H:7<r<s}V o{Pnullsets}, ¢>r,

s>t
7=V

t>T1
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and
H,(A) = Gt({x eD:y EA}), A €.

We may further assume that H is also a (Y, — A%/2) historical process on the
filtered probability space (Q, £,(Z,), . ,, P).

It will be clear, however, that our main results, Theorems 2.4 and 2.5, will
hold whether or not H and (Q,.%, (%), . ,,P) is of this special form.

By replacing & by V,., g, if necessary, we may also suppose that & =
VtZTga'

Let K denote the orthogonal martingale measure that may be constructed
from G in a manner analogous to that by which M is constructed from H. If
T is a bounded (%)), -stopping time, then we will let ’; denote the
normalized Campbell measure associated with G, defined by the counter-
part of the construction in Section 2.

4. Preliminary results. The following simple lemma does not seem to
appear explicitly in the literature.

LEMMA 4.1. Suppose that {(W}),..N;_, is a sequence of continuous
(%), > ~martingales under P such that

AR j]m] fﬁ ¢* (s, x) dK(s, x),

for some integrand ¢* that is predictable with respect to the filtration
(2 X Z),,,. If Wk converges in L\(P) for each t > 7, then the limit process
has a continuous version (W,), . ,, which is a continuous (Z,),., martingale.
Moreover, there exists a (' X &,), , ,-predictable integrand ¢ such that

lim l¢* (s, x) — ¢(s, x)I*G,(dx) ds = 0
— © ].‘.’ t]

in P-probability, for all t > 7, and
W, = f}f’ t]fﬁ 6 (s, x) dK(s, x),

for all t > 7, P-a.s. In particular, if ¢ is such that ¢*(s, x) — (s, x) for
G,-a.e. x, Lebesgue-a.e. s, P-a.s., then

W,=f}1 t]fﬁz//(s,x)dK(s,x).

Proor. Fix a subsequence {j,};_; of positive integers. By Doob’s L!
maximal inequality,

P{ sup [Wi — Wir| > c} < P[[W — W] Je,

T<S<t

for every ¢ > 7 and ¢ > 0. Thus {j,};_; contains a further subsequence {l,}; _;
such that, almost surely, W converges uniformly on [, t], for each ¢t > 7, to
a continuous process W that is clearly a martingale.
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For each positive integer p define a (Z,), ., ,-stopping time T'(p) by
T(p) = inf{t > T suplW,”'I Zp}.
k

Then T(1) < T(2) < -+ and T(p) - » P-a.s. as p — ». Moreover, for each p,
(W2 1 »)is - 18 @ bounded martingale such that

Wiap= [ [ 9" 0)1(s < T(p)) dK(s,)
and

. 2
lim P (Wt/\T(p) - Vthf’\T(p)) ] =0,

k— o

for each ¢ > r. Therefore, for each p there exists a (9 X £,),. ,-predictable
integrand ¢’ such that

Lim P[[: fﬁ lpk(s, x)1(s < T(p)) — ¢P(s, x)I*Gy(dx) ds] _o
and
Winrpm = f]T’ t]fﬁ(l)(‘”(s, x) dK (s, x).

It is clear that we in fact have P (s, x) = ¢(s, x)1(s < T(p)) for some
(9 X &,),, -predictable integrand ¢ and

W, = f],, ; fﬁ ¢(s, x)dK(s, x),

for all ¢ > 7.

Given that such a ¢ exists, it is clear that it is essentially unique and, in
particular, does not depend on the subsequences used in the construction.
Moreover, we have that

lim lp*(s, x) — ¢(s, x)*Gy(dx) ds =0
koo ]T, t]

in P-probability for all ¢ > 7, and since the sequence {j,);_, was arbitrary,

we must in fact have

lim lp*(s, x) — (s, x)°G,(dx)ds =0
— ].‘.’ t]
in P-probability for all ¢ > 7.
The proof of the remainder of the lemma is straightforward and is omitted.
O

Given any cadlag function, n, from R, to I, we may construct a o-finite
counting measure on R, X I by assigning an atom of mass 1 to each point
(s, z) such that n(s) — n(s —) = z # 0. With a slight abuse of notation we
will denote this measure by the same letter as the function from which
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it was constructed (in this case n). The main purpose of this section is
to obtain semimartingale decompositions for processes such as
[y, 0 f(s, 2, 2)n(ds, dz))G,(dx), t > 7, where f belongs to a suitable class of
(possibly random) integrands. Our line of development will be similar to that
followed in Perkins (1992, 1995) to produce a “stochastic calculus along
branches” for historical Brownian motion, but our task is somewhat easier
due to the fact that the integrals we are dealing with are essentially sums
rather than It6 integrals.

LEMMA 4.2. Suppose that - ]r, o[ XI X D - R is bounded and predictable
with respect to the filtration (B(I) X2,),. ,. Then

[ f(s.z,(¥*,N*))N'(ds, dx)
1r, t1x1I

—f ff(s,z,(Ys,Ns)) dzds, tx>r,
1r, t171
is a cadlag (TP, . ~martingale under P™*.
For the proof, see Section I1.3 of Ikeda and Watanabe (1981).

NoTATION. Given a locally finite measure p on R, X I, define a locally
finite signed measure p on R, X I by

[&(s,2)p(ds,dz) = [&(s,2)p(ds, dz) - [&(s,2)ds ® de.

LEMMA 4.3. Suppose that f: ]r,%[ XI X D X Q - R is bounded and pre-
dictable with respect to the filtration (#(I) X2, X &), ,.

(a) We have, P-a.s.,
jﬁ (f] t]XIf(s,z,x)n(ds,dz))Gt(dx) - j]ﬂ , ff) flf(s,z,x) dz G,(dx) ds
=f f(f f(u,z,x)n(du,dz)) dK(s, x),
17, t1°D 17, sIxI

for all t > 7, and both sides are continuous martingales.
(b) We have, P-a.s.,

fﬁ (f] CHERLCE dz))Gt(dx)

-/, t]fﬁ(f], smf(u,z,x)ﬁ(du,dz))dK(s,x),

for all t > 7, and both sides are continuous martingales.
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(©) If T = 7 is a bounded (&,), . ,-stopping time, then

(t,x,0) = [ f(s,2z,x, w)ii(ds,dz), t=>r,
17, t AT (w)] XI
is a (9, X &,), , -martingale under P.
(d) The martingale in part (b) has values in L*(P).

PrOOF. (a) Consider first the special case in which f is replaced by g:
I7,[XI X D > R, where g is bounded and predictable with respect to the
filtration (#(I) X 2,), . ,.

Observe that

"”[fﬁn(]f,t] xI)GAdx)] = Pre[NY(ImtD] = w(D)(t - )
by the form of the first moment measure of G [cf. (2.1)]. Similarly,

[, 6By ds| = (D)t~ 7).

In particular, n(l7, t] X I) < » for G,-a.e. x, P-a.s. The lemma in this special
case will therefore follow from Lemma 4.1 and dominated convergence if
we can show that it holds when g 1is replaced by (s, z, x) —
g(s, z, x)1(n(t, s[ XI) < k) for arbitrary & > 0. This, however, is clear from
the definition of G and Lemma 4.2.

Now consider the special case in which f is of the form g1,, ,,v, where g
is as above, T <v <w < » and y € b¥Z, for some r < v. Then, by the above,

fﬁ (f]T t]XIf(s, z,x)n(ds, dz))Gt(dx)

P

= (/ g(s,z,x)1]v,w](s)n(ds,dz))at(dx)y
D Ir, t1xI

=f f- fg(s’z,x)llv,w](s) des(dx) dsvy

Ir,¢t1°D”I

+f]‘r, t] ff) (f]T, s]XIg(u,z,x)llv’w](u)n(du’dz)) dK(s,x)y
= [ [ [f(s.2,%) dzGy(dx) ds

Ir,¢1°D "I

+f]‘n t]'/;j (flr, s]xlf(u, Z,x)n(du,dz)) dK(s,x),

where the last equation holds because the stochastic integrand is 0 for values
of s < r. The lemma therefore also holds in this special case.

As in the proof of Lemma 2.1, functions f of this form generate the
predictable o-field for the filtration (#(I) X2, X G,),.,, and the general
result follows from a monotone class argument and Lemma 4.1.

(b) This follows from Lemma 4.2 in essentially the same manner as
part (a).
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(c) Suppose that t >u > 7, y€ b, and ¢ € bZ,. Then
ﬁiT[[ f(s, 2, x)ii(ds, dz)yé | (D)
JunT,tAn TIXI
=P/ [ f(s,z,x)y(x)ﬁ(ds,dz)GT(dx)g]
| "D 7 JunT,tA TIXI

B P_fﬁ f]r, T]xzf(s’ 2, 2) V(%) Ly a1, ary(8)7A(ds, dZ)GT(dx)g]

ok /9 RE(CE2 x)Y(x)I]uAT,mT](S)ﬁ(dS,dz)Gu(dx)g]

by part (b). A monotone class argument completes the proof.
(d) First note for ¢ > 7 that

2
P, (f f(s,z,x)ﬁ(ds,dz)) =ﬁ,[[ f(s,z,x) ds ®dz]
Ir, ¢IXI Ir, tIXI

by part (¢) and formula I1.3.9 of Ikeda and Watanabe (1981). Thus,

P

{/17, f fﬁ (f]t S]XIf(u, z,x)n(du, dz)) dK(s, x)}

=p

f]T,t]fﬁ(f], s]X,f(u,z,x)fz(du,dz)) Gs(dx)ds]

- flf, t]ﬁs

=f Fs[f f(u,z,x)2 du®dz] ds u(D) < . O
1Ir, t] Ir, sIxI

ds w(D)

2
(j f(u,z,x)r‘z(du,dz))
Ir, sIxI

LEMMA 4.4. Suppose that ¢ € F©" is such that t —» ¢(Y) is cadlag
P"7q.s. Then

f~ (f]r t]><11(¢(8’y) * d)(s - ,y))n(ds,dz))Gt(dx) =0,

D

forallt > 7, P-a.s.

PrROOF. Whereas the set of times ¢ > 7 such that ¢(¢,Y) # ¢(t —,Y) is
P7#-a.s. countable, it follows from Fubini’s theorem that P™*-a.s. there
exists no time ¢ > 7 such that ¢(¢,Y) = ¢(¢ —,Y) and N, # N,_. The pair
(t, x) = 1([ 7, <1 1(P(s, ¥) # $(s — , y))n(ds,dz) + 0),0) thus belongs to
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A" *, From the definition of G we have that

TR T ——

is a continuous nonnegative martingale that is null at 7, and hence this
process is identically zero. O

LEMMA 4.5. Suppose that (¢, ) € A"* and that T > 7 is a (D, X &,), 5 -
stopping time such that the graph of T satisfies [T] c U,,[U,] X Q, where
{U,.}, —1 is a countable collection of (2,,), . ,-stopping times. Set

O(t,x) = ¢(t,x) —d(r,%) = [ P(s,x)ds, t=r.
Ir, t]
Then, P-a.s.,
[ @t AT(x),%)G,(dx) = | j_cp(s A T(x),x) dK(s, x),
D 1r, 17D
for all t > 7, and both sides are continuous martingales with values in L*(P).

ProOF. Suppose that v>u>71, y€ ngu and ¢ € b%,. It is immediate
from the definition of G that

fﬁ(cb(t Av,x) —P(t Au, x))y(x)EG,(dx)

= [ [ (@ Av )~ @(s A ) v(x)£dK (s, %),

for all ¢ > 7, and both sides are continuous martingales with values in LZ(P).
A monotone class argument shows that this conclusion still holds if we
replace (x, w) = y(x)¢é(w) by (x, w) = n(x, ) with n € b(2, X &,).

Now consider a bounded (2, X &,), . ,-stopping time V that can only take
on finitely many values, say, 7= u, < u; < -+ <u, < ». Observe that

k-1
P(tAV(x),x) = l;) (P(t Aupq,x) — P(t A uy, x))n(x),

where n,(x, 0) = I(V(x, w) > u,) € b(QZuI X £,,), and so the conclusion of the
theorem holds with T replaced by V by the above.

In order to prove the theorem, it suffices to consider the case of a bounded
T. Write T as the limit of a decreasing sequence {V,} of bounded (Z, X ,)-
stopping times that each can only take on finitely many values.

We will establish below that for each m we have

(4.1) lim ¢(s At,x°) = ¢(s AU, (x°), x°)
t LU, (x%)

for G,-a.e. x, for all s > 7, P-a.s.
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Assuming (4.1), we have
IP[E] s>, /ﬁd)(s A T(x), x)G,(dx) # li;nfﬁQD(s AV, (%), x)GS(dx)]
<Y P[H s>, fDd)(s AU, (%), x)l(li;n V.(x) = Um(x))Gs(dx)
* 11;11[15@(3 AV, (%), x)l(liznd(x) - Um(x))Gs(dx)]
< zp[a s>, fﬁq)(s A U,(%), x)G,(dx)

#* étllélﬁx)Q(s At, x)Gs(dx)]

= 0.

Similarly, we have
liznf]'f’ . fﬁ(d)(u A Vi(2), ) — ®(u A T(x), x))°G,(dx) du = 0,

for all s > 7, P-a.s. Thus, for all s > 7,

sup f
TSt<s

. t}fﬁ@(u AVy(x),x)dK(u, x)

_flf t]fﬁ(b(u A T(x), x) dK(u, x)

converges to 0 in P-probability as £ — . From the above we have for each k&
that, P-a.s. for all s > 7,

/ﬁq)(s A V,y(x), 2)G,(dx) = j]T B} fﬁcb(u A Vy(x),x)dK(u,x),

and this establishes the desired contradiction.
It thus remains to establish (4.1). Fix m and write U for U,,. Set

¢, (s,x) = limsupP(s A ¢, x°)
t L U(x*)

and
¢_(s,x) = liminfp(s A t, x°).
t | U(x®)

Both ¢, and ¢_ are universally measurable [cf. Theorem 33 in Section IV
of Dellacherie and Meyer (1978)] and satisfy ¢,(s,x) = ¢, (s, x°) and
¢d_(s,x) = ¢_(s, x°). Also, ¢,(s, X) = ¢_(5,X) = $(s A U(X?), X*), for all
s > 7, P"*-as., by definition of F™*. The assumption of Borel measurability
in Theorem 2.3.a of Mueller and Perkins (1992) can be weakened to universal
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measurability, and applying this improved result we get ¢, (s, x) = ¢_(s, x)
= ¢(s A U(x®), x°), for G,-a.e. x, for all s > 7, P-a.s. O

An analogue of the following result appears as Theorem 3.8 of Perkins
(1992) for the case of historical Brownian motion. The proof in our setting is

identical and the statement is included here for ease of reference.

THEOREM 4.6. Suppose that b: ]’T,SO[Xﬁ X Q - R is bounded and pre-
dictable with respect to the filtration (2, X &,), . ,. Then

./;j.[]f t]b(s,x) ds G,(dx) =f]T t]'[f) (f]T s]b(u,x) du) dK(s, x)

+f f_b(s,x)Gs(dx) ds,
17, t1'D
forall t > 7, P-a.s., and each term is almost surely continuous in t > 7.

The following general stochastic integral representation is a variant of
Theorem 1.1 in Evans and Perkins (1994).

THEOREM 4.7. Let W be a o{H,: t > 7}-measurable random variable that
belongs to L*(P). Then there exists a (9, X %)), . ~predictable function p such
that

PIf [ o) ECdy) ds| <

and

W=PW]l+ [ [ p(s,9) dM(s,5).

Proor. The processes H,(¢,), where (¢, ) € A™”, for some i, solve a
well-posed martingale problem of the type studied in Jacod (1977). From
Theorem 2 and Proposition 2 of Jacod (1977), it follows that for each n € N
there exists (oL, ¥1),...,(¢N™, yN™) € A™*, bounded (%), . -predictable

L., &N™ and ¢, €]r,o[ such that ¢, 1% as n - » and

noe

W=PW]+ lim [ [ Y £(s)di(s,5) dM(s,9),

n—x

where the convergence is in L2(P).
We claim that for each (¢, ) € A™" and each bounded (%), . ,-predictable
£ there exists a bounded, (2,), . ,-predictable function y such that, P-a.s.,

[ oy ams, ) = [ [ e(s)(s,5) dM(s,9),
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for all ¢ > 7. From Theorem IV.97 of Dellacherie and Meyer (1978) it follows
that any such ¢ is (2,), . ,-optional. Thus, by Theorem IV.66 of Dellacherie
and Meyer (1978), there is a bounded, (2,), . ,-predictable function y such
that for all y € D the set {s > 7: ¢(s, y) # y(s, y)} is countable. In particu-
lar, [, (6(s,Y) — y(s,Y)?ds = 0, for all t > 7, P™"-a.s. Hence, by (2.1), for
some constant ¢, we have

P

{f]t t]fo(S)d)(S,y) dM(s,y) — []T’t]fl)f(s)y(s,y) dM(s,y)} l
- P['[]‘r, t] ];75(8)2( d)(S, y) o y(s’ y))sz(dy) ds]

< cP[[}T’ ; /;) (¢(s,y) — v(s, y))ZHs(dy) ds]
=0,

for all ¢t > 7, and so y has the properties we seek.
Thus there exists for each n € N a bounded (2, X.%), . -predictable func-
tion p, such that

W=P[W]+lim [ [ p(s,y)dM(s, ),
n—wx ]T,OC[ D

where the convergence is in L2(P). This implies that

n,n’ —ow

lim P[f] : fD(pn(s,y) ~ po((5, )" H,(dy) dS] =0,
for all ¢ > 7. Hence there exists a (2, X %), . ,-predictable p such that

o|[ ot Ha as] <o

and

n— o

lim P[ o fD(pn(S,y) — p(s, 7)) Hy(dy) dS] = 0.
This implies that
PIWY + [ [ p(s,9) dM(s,9)
=P|W] + lim s,y)dM(s, =W,
(W] + Lim [ [ pu(s,9) dM(s, )

as required. O
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5. Killing and resurrection.

NOTATION. Suppose that B: 17, XD X Q — [ is predictable with respect
to the filtration (2, X &,),. ,. Put

A(t,x, w) =n({(s,z) €]r,t[ XI: B(s,y,0) > z}),
B(t,x,w) = 1(A(t, x, ®) = 0),

C(t,z,y,0) =1(B(t,y,®) >z).
Define a new M (D)-valued process (Hf), . , by

HF(E) = [ 1:(y)B(t,%)G(dx), t=7,E€T.
D
Put

ap =[] B a5 [ [ Bls)EL(a) ]

= exP(f]T, ; fﬁB(s,y) dK(s,x) — -;—f]t ] fﬁ B(s,y)ZGs(dx) ds),

t>r.

It can be shown that (%#f),., is a (&,),, ~martingale, and so we may
define a new probability measure P# on (Q, £) by setting PP[A] = PIAZF],
for A € b2, (recall our standing assumption that & = V, . &,). The proof is
essentially the same as that of Theorem 2.3.b in Evans and Perkins (1994)
once one has a domination result analogous to Theorem 2.1 in Evans and
Perkins (1994) or Theorem 5.1 in Barlow, Evans and Perkins (1991). Such a
result will, in turn, be a consequence of an existence and uniqueness result
for a “historical process with immigration” martingale problem that is analo-
gous to Theorem 1.1 in Barlow, Evans and Perkins (1991).

We do not present the proof here because it is rather lengthy, and for the
proof of our main results (Theorems 2.4, 2.5 and 2.7), we only need the trivial
special case in which both

[ JpGyyaM(s,y) and [ [ B(s, ) H.(dy)ds

are uniformly bounded (see the proof of Lemma 6.1). A full proof will appear
in a more general situation in Barlow, Evans and Perkins (1995). We remark
that the usual exponential moment criteria for establishing that stochastic
exponentials are martingales [cf. Section VIL.1 of Revuz and Yor (1991)] do
not apply here.

THEOREM 5.1. The law of HP under P? is the same as the law of H
under P.

ProOF. Suppose that (¢, ) € A™". Set
T(x, w) = inf{t > 7: A(¢, x, ) > 0}.
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From Lemma 4.3(a) we know that [sn(lr,t] X I)G,(dx) — [],,”Gs(l-)) ds is a
continuous martingale. In particular, n(]7, ¢] X I) is finite for G,-a.e. x € D
for all ¢ > 7, P-a.s. Thus,

[ ot ) HE(dy)
(5.1) = [ #(t AT(x),y)G(dx)
D

_ff) f], t]XIC(s,z,y)B(s,x)qb(s,y)n(ds,dz)Gt(dx).

First consider the first term on the right-hand side of (5.1). Put

B(6,y) = $(6,3) =~ $(7.9) = [ (s.9) ds.

For ¢ > 0 put
Té(x,w) =inf{¢t = 7: A(t + ,x, @) >0, n(t) —n(t—) > &}
and
Be(t,x,0) =1(t €]r,T*(x, »)]).
Observe that T is a (9, X £,), -stopping time. We have

[ (¢ AT (%), 9)Gu(dx)
= [0t A T*(2), 5)C(dx)
+fﬁ &(7,y)G,(dx) + fﬁ fh,ms(x)]"’(s’y) ds G,(dx)
=[G AT, 5) dK (s, )
+f13 é(7,y)G,(dx) + f],, t]fﬁd’("’y) dK (s, x)
o) (f] W 9) B () du) dK (s, x)
+f1,, ., [, w(s,9)B*(s, )G (dx) ds

= [[6(rG(Dx) + [ [ é(s AT(x),9) dK(s, )

+f]r, t] ff) (s, y)B*(s, x)G,(dx) ds,
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where the second equality follows from Lemma 4.5, Theorem 4.6 and the fact
(which is immediate from the definition of G) that [;¢(7, y)G,(dx) =

[5¢(r, Y)G.(dx) + [, ,[5(7, y) AK(s, x).
As we recalled above, P-a.s. for all ¢ > 7, we have, for G,a.e. x € D that

the set {s: n(s) # n(s — )} is finite, and so Te(x 2)=T(x,: ) and B%(t, x) =
B(t, x) when ¢ is sufficiently small. Thus

[, (¢ A T(x),5)Gi(dx)
= [, ¢ NG (dx) + [ [ (s AT(x),7) dK(s, )
(5.2) +f]T’ t]];j([/(s,y)B(s,x)Gs(dx)ds
= [ ¢ w(d) + [ [ ¢(s AT(x),) dK(s, )

+ s,y)HPF(dy) ds.
f}f’ t]fDl!f( y)HE(dy)
Now consider the second term on the right-hand side of (5.1). We have

/. jh 1§52 ) B(s, %) 9(s, y)n(ds, d2)G,(dx)

=/ f]T’t]XIC(s,z,y)B(s,x)¢(s —, y)n(ds, dz)G,(dx)

=[] . Cls23)B(s,2)b(s = ,¥)ii(ds, d2)Gy(dx)
+/ []T, 1 G529 B(5, 2)9(s =, y) ds © dzGy(dx)

- fh ] [, f]T 1 O 2. 9) B(u, 2)b(u =, y)ii(du, dz) dK(s, x)
+/ []T’ 1, €52 9)B(s, 2)9(s =, y) ds © dzGy(dx)

- f]T . [, f]T i S 2 9)B(u, x)$(u =, y)n(du, dz) dK(s, x)
‘f]T’ ] fo S]B(u,y)B(u,xM(u —,y) dudK(s, x)

+f1§ f}f t]B(s,y)B(s, x)p(s — ,x)dsG,(dx)
(5.3)
=f]T t]f_ f]T s]XIC(u,z,y)B(u,ac)d)(u —,y)n(du,dz) dK(s, x)
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~[ [ [ B(x,y)B(u,x)é(u—,y)dudK(s,x)
Ir, t1'D Y 11, sl
+ u,y)B(u, x u—,y)dudK(s,x
[ o Js ], P B ) é(u = y) dudK(s, x)
+[ [ B(s,%)B(s,%)$(s - ,¥)G,(dx) ds
Ir, t17'D

- ]T,t]'l;jf

+[ [ B(s,5)B(s,%)$(s — , y)G,(dx) ds
Ir, t17D

- IC(u,z,y)B(u,x)¢(u - ,y)n(du,dz) dK(s, x)

=[]1 t][D'.[T S]XIC(u,z,y)B(u,x)¢(u,y)n(du,dz) dK(s, x)
o] f B ) B(s, )05, 3)G,(d) ds

=f]f, t][ﬁ[]f,s]xzc(u’z’y)B(u’x)d’(“’y)n(du’dz)dK(S’x)
+f [ B(s.y)b(s, y) HE(dy) ds,

where the first, third, fifth and seventh equalities follow from Lemma 4.4,
Lemma 4.3(b), Theorem 4.6 and Lemma 4.4, respectively.
Substituting (5.2) and (5.3) into (5.1), we see that

fD¢(t,y)Hf‘(dy)
_ fD é(7,y)v(dy) + f],, , [f)d)(s A T(x),y) dK(s, x)
+f L s ) ds
_f],’ t]fﬁff’ g C@ 2 7) B(u, ) b(u, y)n(du, dz) dK (s, z)
=[] By #s, ) HE(dy) ds
=fD¢>(T,y)v(dy) +/1,,t]f15¢(3’y)3(3’x) dK (s, x)
oy HE ) ds = [ [ B(s,5)@(s,y)H(dy) ds.

By Girsanov’s theorem, under P# there is a continuous local martingale
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(J?),, , such that J? = 0 and
[ [ #(s,5)B(s,x) dK(s, x)
I, t1°D
=J¢ ’ B ) dK ) ) ) dK ’
P+ <f17,.]fﬁ"’(s )B(s, x) dK(s, x) f]T’.]fDB(s y) dK(s x)>t
=J?+ [ [ &(s,y)B(s,x)B(s,y)G,(dx) ds
Iz, t1°D

=J¢+ [ [ é(s,y)B(s,y)HE(dy) ds,
Ir, t1“D

for all ¢ > 7. Moreover, J¢ and [, .,/5¢(s, y)B(s, x) dK(s, x) have the same
quadratic variation, namely,

<J¢>t = f]T, t]fﬁ ¢(s7 y)2B(s, x)Gs(dx) ds = f]'T, l]flj ¢(S, y)2HsB(dy) ds’

for all ¢ > 7.
Thus, under P#,

[D o(t, y)HE(dy) = fD¢(7,y)v(dy) + f}f’ ”fD (s, y)HP(dy) ds + J2,

for all ¢ > 7, where (J?),., is a continuous local martingale such that
J? =0 and

= [ [ ¢(s,9)° B (dy) ds,

for all ¢ > 7. The theorem now follows from the remark we made after
defining the historical process in Section 2 that it suffices to check that the
appropriate processes are local martingales (rather than it being necessary to
check that they are martingales). O

6. Proof of Theorem 2.4. We begin with a “finite-dimensional” special
case of the result.

DEFINITION. A cylinder function is a function F mapping C ([7, [, Mz(D))
into R such that F(h)=f(h,,...,h,) for some continuous function f:
(Mz(D))* - R, called the representing function, and some finite set of times
T<t; < -+ <t, called the base.

LEMMA 6.1. Suppose that F is a cylinder function with representing
function f and base T < t; < -+ < t,. Suppose further that for some constant c

we have |f(& + &y, & + &) — (&, ..., &)l < CZJ[J-(D), for all
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€ by liso o, &, € Mp(D). If B is a bounded (% X 2,), , -predictable func-
tion, then, for all 60 > T,

olrcnf | | pls s, )
(6.1) ’
- P[f],, O]fD(fs;yF)B(s,y)Hs(dy)ds}.

ProoF. Let us check that J, F(h) is defined for all s, y and kA and
bounded, so that %, , F is defined and, by Lemma 2.3, bounded. If s € [#;,¢,,,]
for 0 <! < (k — 1) (where we adopt the convention that ¢, = 7), then we
have

s, F(R)| < [IF(h + h*) = F(R)IQ*”" (dh*)

k
<c ¥ [Ri(D)Q"”" (dh*)

j=l+1

' k
=c ¥ [&D)R, ;- (dé)

j=l+1

=c(k - 1),

where the least equality follows from Lemma 3.4 of Dawson and Perkins
(1991). If s > ¢, then J_ , F(h) = 0.

We may suppose without loss of generality that 6 > ¢,, because the case of
0 < t, can be deduced from this by considering B with B(s, y) = 0, for s > 6.
In that case, we may replace 6 by ¢, on the left-hand side of (6.1), because
F(H) is % -measurable and the stochastic integral is a martingale. More-
over, because J.,F(h) =J_ F(h)1} ,,(s), we have by Lemma 2.3(a) that
S yF =72, ,F1y 1 (s), and so we may also replace 6 by ¢, on the right-hand
side of (6.1;. Thus, we may suppose without loss of generality that 6 = ¢,.

Suppose to begin with that f and B have the following extra properties:

(i) f is bounded.
(i) 0 < B(s,y, w) < 1.
(iii) For some 0 </ <k — 1 and some 0<&6<¢,,; —¢t;, B(s,y,w) =0
unless s €]¢,, ¢, + 8] (recall that ¢, = 7).
(iv) For some constant c¢'," |f}, ,/pB(s, y) dM(s, y)| < ¢’ and
Jir.1/p B(s, y)?H(dy) ds < c', for all ¢ > 7.

For £ €]0, 1] we have from Theorem 5.1 that

P[F(H)] = P[F(H**)%;"]
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and so
0=P[F(H)e (R - 1)]
(6.2) + P[(F(H®) - F(H))e }(#* - 1)]
+ P[e Y (F(H®®) - F(H))]|.

By assumption, e '(#* — 1) is bounded in & €]0, 1] and converges almost
surely to [, 4,/pB(s, y) dM(s y) as ¢ 0. Therefore, as ¢ |0, the first term
on the right-hand side of (6.2) converges to PLF(H)[, 4,/p B(s, h) dM(s, y)]
[recall that F(H) is bounded by assumption (i)].

Observe that H, = Hf? + H/?, where, in the notation of Section 5,

H(E) = [ 12(9)1(A(t, x) > 0)Gy(dx).

We remarked at the beginning of the proof of Theorem 5.1 that n(]7, t] X I) is
finite for G,-a.e. x € D for all t > 7, P-a.s. An argument similar to the proof
of Lemma 44 shows that n(lr,t] X {0}) = 0 for G,-a.e. x € D for all ¢t > 7,
P-a.s. Thus H(D)}O0 for all ¢t > 7, P-a.s. Our assumption that F(h) is a
continuous function of (&, ,..., h, ) implies that lim, F(H**) - F(H) =
almost surely. Whereas F%H 3’3) ~ F(H) is bounded in & €10,1] by assump-
tion (i), the second term on the right-hand side of (6.2) converges to 0 as & | 0.

Consider the third term on the right-hand side of (6.2).

Suppose for the moment that Y satisfies the nondegeneracy condition
(8.18) of Dawson and Perkins (1991). That is, we assume that the paths of
two independent copies of Y have zero probability of coinciding over any open
time interval.

For 7 < s <t define a measure H}, on D* by H}/(E) = H({y: y* € E}.
Let us recall some facts that are set out in Proposition 3.5 of Dawson and
Perkins (1991). The measure H/*, is atomic with a finite set of atoms. Denote
the locations of these atoms by %, ;<D For every y € D° we have

R, ,(Mp(D)) =r,,. Conditional on %, ,, H, is the sum of independent
nonzero clusters Wlth laws r; iR, ,.,, one for each atom location y € %, ,.
Conditional on %, %, , is a P01sson point process with intensity r, ,H,. For
T<r<s wehave%’t=(Z/s,t)". 5

Similar comments apply to the measure G, on D°® given by G () =
G({x: x° € _,})

Let2; , € D* denote the set of atom locations of Gy ;. From Proposmon 3.7
of Dawson and Perkins (1991) it follows that each atom location in %, , is the
E-valued path component of one and only one atom location in Z; , . Moreover,
conditional on #Z, the joint law of the corresponding I-valued path compo-
nents of the atom locations 2, is that obtained by running a branching
particle system with branching structure dictated by that of the E-valued
path components of 2, and spatial motion that of the “path process”
constructed from the Markov jump process on I introduced in Section 3, with
all of the particles being the constant zero path at time 7 (recall our
convention on w).
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Given these observations, we can describe the conditional law of
(Hf ,.., HEP) given # as follows. For each notation we will put u = ¢,
v =t + 8 and w =t;, ;. For s €lu,v] let n* be the (random) finite measure
on D that places mass B(s, y) at each point y in (%, ,)* = %,,,, and let A”
be the (random) measure on ], %[ XD given by

/ $(s,¥)AP(ds,dy) = [ (s, y)nf(dy) ds.
Ir,o[ XD lu, vIxD
Thus, A? is concentrated on Ju,v] X D. Put

7 ={(s,y°): x €2, ,,n(s) #n(s =), n(s) < &B(s,y)}.
Conditional on .#, the random set .#°® is a Poisson point process with
intensity eA”. We have

H,(E), if j <1,
HP(E)={
5 (5) Ht( y€B:(s,y°) ex*f Vs elu,v]}), ifj>L

For s €]u,v] and y € D*, let k., be the mapping of the set of functions
{h:[7,0[ » Mp(D)} into itself that is defined by

, if¢<s,
(ke yh),(B) = { (=), ’

({y eg:(y)° #y}), ift >s.
We have from the above that
Ple ' (F(H*) - F(H)).7]
= exp(—&erf(]r,o[ X D))

X[]T’w[ <D (F(KS;yH) - F(H))/\B(ds,dy) +p(F,e,B),

where the remainder satisfies [p(F, ¢, 8)| < C||Fll.eA?(]7,[ X D) 2 for some
constant C. From the above description of the conditional law of %, , given
#, it is clear that the cardinality of £, ,, (= the cardinality of %, ,) has finite
moments of all orders and so the same is true of the total mass of A”. Thus
the limit as & | 0 of the third term on the right-hand side of (6.2) is

P[f], (P H) = FOD) ()]
[/ (F(xs, H) = F(H))m (dy)]ds

- f]u v]P[Z{(F(KS;yH) —F(H))B(s;y): y e%,u,}] ds.

_ Before moving on, let us introduce some notation. For s €]u, v], let
Z =%V 0(%,,) Put

kE—1
QS;y(d§l+1"~’d§k) =Rs,tz+1§y(d§l+1) ll_[ Pt t (fj’dgjﬁ»l)'
j=

VIRTE
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Note that
[8(&1re s d8) Ry (b, ., dE,)

= [&(hy, - B )L( Ay, # 0)@%(dR),

for any bounded measurable function g: (Mp(D))*~! - R. Write Q
r;l Q,,, for the normalization of @,.,. Given a set Z C D® put

St
m . m . " A . .
=[f(Ht1,...,Htl, Yoty L& QQs;yl(dgltﬂ,...,d&j),
i=1 i=1 i=

when 2 ={y,,..., y,,} is nonempty, and put
., =f(H,,...,H,,0,...,0).
By the description of H,  in terms of clusters growing from the points of
% +,, » the Markov property ‘of H, the infinite divisibility of the probability

measure P*¢, s > 7, { € Mp(D)* and the Poisson nature of %, ,  given 7,
we have

P[ L {(F(x,,yH) = F(H))B(s,5): ¥ €% u)}]

= P[P[Z{P[(F(x, H) — F(H))B(s, )IZ]: v € %4, )|%]|
= P[P[Z{(‘Ds;(%,w\(y» ~ Dy VB(8,9): Y €L )
= P_exp(_rs»tlnHS(D))mZ:l ;,L—y_m (D)m(q)s;(yl ,,,, Ym-1} (I)s;(yl ,,,,, ym))

X B(s, ym)rs’t‘ths@'"(dyl,...,dym)]

- [P’[[D(exp( ~ry 1, Hy(D))

* 1

x ZO P (D)m((bs;(yl ,,,,, v~ P, ym,y))
on !

er'tttMHs@m(dyl, . dym))B(s, y)rsthHs(dy)]

- p[[D fMF(D)k_IIP[(f(HtI,...,Htk)

~f(Hiyseoos Hy Hy 4 £ By + 6))] 7]

x rs,tmés;y(da“,...,dgkm(s,y)Hs(dy)].
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Note that the last equality still holds if we replace Qs;y by Q\s;ysA, since
y =y°" for H-ae. y, P-as., by (2.1) and the fact that Y has no fixed
discontinuities under P™”. It is straightforward to check that, for s €lu, v],

P[(F(Hy,.. Hy) = f(Hyy, o Hy By + £y, By o+ 6))]

fMF(D)"’”

X rs,t:HQS;ys’(dngwu ’ dfk)
= iy F,

P.-a.e. and so

- _p[[h ., j;),ﬁ;yFB(s,y)Hs(dy)ds].

Thus, if we let ¢ | 0 in (6.2) we see that (6.1) holds for the special F and 3
we have been considering.

Suppose now that we remove condition (iv) and replace condition (iii) by
the following condition:

(iii") B(s, y, w) = O unless s €l¢;,¢,,4].

In addition, leave conditions (i) and (ii) in place.
Given any B satisfying (ii) and (iii’), we can find an increasing sequence of
functions {pB,),_,, such that p, satisfies conditions (ii)-(iv) and

Bn(s,y, W) B(s, y, w), forall(s, y, w) & {¢,,;} X D X Q. Recalling that iy F
is bounded, it follows from bounded convergence that

IP[[]T, 01 /;3 (/ﬁ;yF)B(s, y)H,(dy) ds]

= lim [Fb[f]T O]ID(fs;yF)Bm(s,Y)Hs(dy)ds].

m-—o

Also, since F is bounded by assumption (i), we have

lim P

m— ©

(P [ | Bu(s13) dM(5,9)

~F([ | ] 8o, ) d(s.)]

m— ©

< lim ||F||3,nﬂ>[f]7 0]/;){Bm(s,y) — B(s, y)) H(dy) ds] =0.

Thus (6.1) holds under (i), (ii) and (ii’).
Suppose now that we remove condition (i). We have that (F A a) V (—a)
satisfies the hypotheses of the lemma as well as assumptions (i), (ii) and (ii’).
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An iaspection of the way we bounded |/, ,F | at the beginning of the proof
shows that |J,, ,(F A @) V (—a)XH)| is uniformly bounded in a. By Lemma
23,17, (F A a) V (—a))| is uniformly bounded in a and P-a.s., for all s > 7,
we have lim, Ji (FANa)V(—a) =4 F for H-ae y € D By bounded
convergence,

PIf , J (s FIBG) H(dy) ds

= lim [FD[ ]T’O][D (%, (F Aa) VvV (—a))Bu(s,Y)H,(dy) ds|.

Also, by assumption,
[((FAa)V(—a))(H) <IF(H)l <|F(0)l +|F(H) — F(0)|
<IF(0)| + c L H (D),
J

where by 0 we mean the element of C([r, [, M(D)) that is constant at the
zero measure. Note that the rightmost random variable has finite moments of
all orders. Therefore, by Cauchy-Schwarz and dominated convergence,

|

lim P

(Fra)v(=an(H)[ [ B(sy)dM(s,y)

- R [ [ B(s.y) dM(s,)

< 1m P[{((F A @) v (~a))(H) - P(E))"]

1/2
X ”)[fh, o ) B 3) Hy(dy) ds]

=0.
Thus (6.1) holds under (ii) and (iii’).

Linearity allows us to remove conditions (ii) and (iii’) (recall that we are
assuming, as we may, that 6 = ¢,).

Finally, we need to remove our nondegeneracy assumption that the paths
of two independent copies of Y have zero probability of coinciding over any
open time interval. If we form the Cartesian product of an arbitrary Y with a
process that does satisfy the assumption (such as a Brownian motion), then
the resulting process also satisfies the assumption. Thus the conclusion of the
theorem holds for the historical process constructed over the Cartesian
product. The historical process over Y and its related orthogonal martingale
measure are obtained from the corresponding objects for the Cartesian
product by projection, and it is straightforward to conclude that the theorem
must also hold for the historical process over Y. We leave the details to the
reader. O
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We are now ready to proceed with the proof of Theorem 2.4.

For each [ e N choose a partition 7=t} <t} < -+ <t} < » such that
lim, ., sup, ¢t/,, — ¢t/ =0 and lim,_ ., thqy = ©. Define a map oy
C(r,>[, Mp(D)) — C([T o[, Mp(D)) by

bl —t t—t!
F——hy + ———hy , ifte [t
o(h),={tisi—t "ttt

: !
tlle(l)’ lft > tk(l)'

Define a function L: C([7, [, M(D)) - R by L(h) = Jir h,(D)m(dt). By
assumption, |(Fo o)k + h*) — (F o g, Xh)| < (Lo o,Xk*) and |[F(h + h*) —
F(h)| < L(h*) for all h, h*. Observe that Lo o,(h) = [h,(D)m,(dt), where the
finite measure m, concentrates its mass on ¢}, ¢!,..., t,ﬁ( 1, and is given by

1

mz({t(l)}) _f tl_ ttl m(dt),

[ed, df ¢

tl
ml( ) '/[‘tl ¢l tl _ tl lm(dt)

til+1_t .
+ —m(de), 1< <k(D),

A
[lfv tf+1[ ti+1 i

ml({tk(l)}) = f[t,i(“,l,t,i”)[ i — t/é(z)qm(dt) + m([tk(l),oo[).

For s < t, we have from Lemma 3.4 of Dawson and Perkins (1991) that
[ ki (D)@® 2 (dh*) = [ £(D)R, ,,,(d¢) = 1.
So, by Fubini,
JIUF o) (h+h%) = (Fea)(R)@(dh*) < [ (Lo a)(h*)Q% (dh)
=m(]s,[)
and
[IF(h + h*) = F(R)@%(dh*) < [ L(h*)@%(dh*) = m(]s, ),
for all s,y. In particular, J. (Fo o)) and J. F(h) are defined for all

s,y,h and bounded, so that % (F-o)) and 4.  F are also defined and
bounded.
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Now lim, ., m;(Is,%)) = m(]s,») for all but countably many s, and so
lim; , (Le o;)(h) = L(h) (recall that m has compact support). Thus,

P[flf, OlfD/ lim (L= oy)(R*)@"*" (dh*) H,(dy) ds]
- 'P_f]ﬂ . fD fL(h*)@s;y“(dh*)Hs(dy) ds]

= IP’-f]T f m(]s,[)H,(dy) ds]

=p []T e]fD lim my(]s, w[)H(dy)ds]

lim [P’[f]ﬂ ) fD m,(]s,[) H,(dy) ds]

[—>

lim P[[}T’ o fD f (Lo a))(h*)Q%Y" (dh*) H,(dy) ds],

o™

where the fourth equality follows from the bounded convergence theorem.

By the continuity of F, lim, , (F o, Xh) = F(h), for all h. Thus, by a
variant of the dominated convergence theorem [cf. Proposition 11.18 of Roy-
den (1968)], we have

P[ [, o J, FessF)B(s, 9) Hi(dy) ds]

=B [ [ (o F )R, 5) Hu(a) ds|

P[fk, ol fD JF(H + h*) = F(H)Q%>" (dh*) B(s, ) H,(dy) ds]

lim P[/}T’O]fpf(Foal)(H+ h*)

>

—(Fea)(H)Q""" (dh*) (s, y) H,(dy) ds]

limIP’[f]T ) L(Js;y(Foa-l)(H))B(s,y)Hs(dy) ds]

>

lim IP[[]T’ e]fD (A, (Foay))B(s, y)H,(dy) ds].

>

Recall that, for each p > 1, P[ H,(D)?] is uniformly bounded on compact
intervals. One consequence of this observation is that, for each p > 1,
PI(L > 0))(H)*] is bounded in [ (again recall that m had compact support).
Another consequence is that [}, 4, /pB(s, y)dM(s, y) has moments of all
orders. Therefore, P[((L - a'l)(H)f]T o]fD B(s, y) dM(s, y))*] is bounded in [. As
|(Foa)H)| < |F)| + (Lo o-l)(H) and lim; , (F o o))(H) = F(H), a uniform
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integrability argument shows that

lim P[(Fo o) (H) [ [ Bls.y)dM(s, y)]

—p|F() [ [ B(s.y) aM(s,)|

The proof of the theorem is completed once we observe that F o o; satisfies
the conditions of Lemma 6.1, and so

P(Fea)(i] | [ B(sy)aM(s,y)]

—P|[ [P ) B ) () s o

7. Proof of Theorem 2.5. Recall that P[ H,(D)?] is uniformly bounded
on compact intervals and so, by assumption, P[ F(H)?] is finite. Therefore, by
Theorem 4.7, there certainly exists a (2, X %), . ,-predictable process p such
that

plf e ) ) ds| <o

and
F(H) =PIF(D] + [ [ p(s,9) dM(s,9).

From Theorem 2.4 we have for any bounded (2, X %), . ,-predictable func-
tion B and for all § > 7 that

IP[[]T’ elpo(s,y)B(s,y)Hs(dy) dS]
“e[Funf, e o)

= P[[h, B]L)/G’s;yFB(s,y)Hs(dy) ds].

A standard Hilbert space argument now shows that

IP’[[}T’ O]ID(p(s,y) ~%. ,F) H(dy) ds] = 0.

Thus, if we choose 6 sufficiently large that the support of m is contained in
[7, 6], then we have

[, Jptsy)aM(s,y) = [

/s;deM(s,y)
Ir, 61’D

- f]m] fnj’s;deM(s,y),

because 7. , F = 0, for H-a.e. y, when s > 6. The result now follows. O
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8. Proof of Theorem 2 7. Note that o{H,: ¢ > 7} is generated by the
random variables exp(—X}_,H,(g;), where n €N, u; €[r,%[ and g; is
nonnegative, bounded and continuous. A monotone class argument shows
that linear combinations of such random variables are dense inL(Q), o{H,:
t > 7}, P). If we expand out the exponential as a Taylor series in n variables,
then we see that the theorem will be a consequence of Lemma 8.1 below.

NoratioN. For £ € N and t > 7, we will denote by .7,(¢) the set of all
random variables of the form I,(¢1,..., ¢,;t), where ¢; € b(B(r,o* i1 x
).

LEMMA 8.1. Given any ty,...,t, €[7,01, 6> 7 and fy,..., f, € C(D,R)
nonnegative and bounded, there is a sequence of random variables in the
linear span of R U UT.,.7(0) that converges to I1" | H,(f,) in L"(P), for all
1<p <o

Proor. We will proceed by induction on m. When m = 1 we have

H(f) = v(Pof) + [ [ Puof(9) dM(s,3).

(As we mentioned in Section 1, this result is not that difficult to establish
directly from the martingale problem. It follows immediately from Theorem
2.5)

Suppose now that the inductive hypothesis holds for 1,. — 1, where
m > 2. Put F(h) = 1k, (f;). Observe that [(F(h + h*) — F(h))@s 39" (dh*)
is a finite sum of the terms ¢p(s; y)l_[JéCh (f;), where ¢>C(s y) =
JT1; c chE(F)Q% i9°"(dh*) and C ranges over the nonempty subets of {1, ..., m}.

Consider one such term. For any p > 1 and s <t we have

[RE (D)@ (dh*) = [ E(D)’R, - (dE).

If we recall the description of the law of H, under P*°°  as a Poisson
superposition of clusters thrown down with intensity R .- and apply the
inequality X,af < (X,a,)?, for a; > 0, then we find that

[ (D)’ R, ., (d£) < P [ H(D)"].

For each p, the right-hand side is uniformly bounded in s, ¢, y satisfying
7 < s <t < 0 and so, by Holder’s inequality, ¢-(s; y) is uniformly bounded in
s, y satisfying 7 < s < 0. Note also that lP’[l_[ﬁCH (f)"] < oo, forall p > 1.

For any a > 0, the function F(® given by F@O(R) = (h (f) A a) satis-
fies the conditions of Theorem 2.5. Let (L(¢)),. , be the (}7 )t> -predictable
projection of the process that at any time takes the value IT;. cH,(f)). It
follows from Lemma 2.3 that 0 <7, (F“)1 7 F = L.¢c(s; y)L(s) for
H ae. y, P-as., for each s > 7. Thus

F(H) =PIFE] + [ [ % do(s:9)Le(s) dM(s, ).

S, 5y
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For ke Nand [ =0,1,...,2% put s* = 7+ (8 — 7)/2*. Set
Li(s) = P ICATEES

=P[Lo(s)l%] (st <s <sli1)-
By Jensen’s inequality and Hoélder’s inequality we see that, for each p > 1,
H/(DXL(s) — Lk(s))? is bounded in LP(P) as s ranges over |7, 0] and &
ranges over 1,2,.... Moreover, by the martingale convergence theorem,
lim, ,, H(DXLq(s) — L.(s)? =0 in LP(P) for each s. Thus, by the
Burkholder-Davis—Gundy inequality,
lim [ j de(s;y) Li(s) dM(s, y) —/ f ¢c((s;¥)Le(s) dM(s, y)

k—x

in LP([F"), for all p >
Now

[, o], et Le(s) dM (s, )

2k -1

=zf

f ¢c(s3y) dM(s,y) X Li(st)

=0 Isf, sfiil
and so, in order to establish the inductive step, it will suffice to show that
each random variable L%(s}) is the limit in L?(P) for all p > 1 of a sequence
drawn from the linear span of R U U;.’L‘lljj(sf ).

However, from the moment formulae in Dynkin (1988) and the Markov
property, we see that L%(s}) is a finite sum of terms of the form IT;cgH, (e ),
where card B < card({1,...,m} \ C), each r; is of the ¢; A sy for some’ i e
{1,...,m}\C and ¢; € bp-.,@ For each j we can find a unlformly bounded
sequence {e}"} of nonnegative continuous functions such that

PT’”[Ief"(X’J) - e'(X’f)I] -0 asm — o«

Then H, (e'") converges to H, (e )as m - o in LP(P), for all p > 1, and so
I;cpH, (e'") converges to l_[JeBH (e;) in LP(P), for all p > 1. We can thus
apply the 1nduct1ve hypothesis to complete the proof. O
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