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SPATIO-TEMPORAL LARGE DEVIATIONS PRINCIPLE
FOR COUPLED CIRCLE MAPS

BY JEAN-BAPTISTE BARDET AND GÉRARD BEN AROUS

Université Paris X—Nanterre, Courant Institute and EPF—Lausanne

We consider the (d + 1)-dimensional an dynamical system constituted
by weakly coupled expanding circle maps on Z

d together with the spatial
shifts. This viewpoint allows us to use thermodynamic formalism, and to
describe the asymptotic behavior of the system in this setup. We obtain a
volume lemma, which describes the exponential behavior of the size under
Lebesgue measure of dynamical balls around any orbit, and then a large
deviations principle for the empirical measure associated to this dynamical
system. The proofs are direct: we do not use the coding constructed by Jiang
[Preprint (2002)] for such systems.

1. Introduction. Coupled map lattices were introduced in 1983 by Kuhiniko
Kaneko. They are models of discrete time dynamical systems on lattice spaces.
They act on a product space formed by an interval or a manifold on each site of
the lattice Z

d . The evolution at each step of time is the composition of a chaotic
dynamics applied independently on each site and of a coupling between sites.

Such systems present a competition between the chaos of the local map
and the coupling which tends to organize the system spatially. They present
many interesting features such as spatio-temporal chaos, intermittency or phase
transitions (see [14, 15] for an overview of physical studies and numerical
simulations).

We consider in this article the case of a weak coupling between expanding maps
of the circle. We work on the state space X = (S1)Z

d
and take as local dynamics

an expanding map of the circle, that is, f :S1 → S1, which is C1+α and such that

|f ′(x)| ≥ λ > 1 ∀x ∈ S1.

The coupling can be chosen from a wide class (see Section 2.2 for the needed
assumptions), but the simplest example to be considered is a diffusive coupling
between nearest neighbors

(Gε(x))i = (1 − ε)xi + ε

2d

∑
j∼i

xj

(or, more precisely, a smooth modification of this example on the circle).
The coupled map lattice is then the map F = Fε = Gε ◦ F0, where F0 is the

uncoupled map defined by F0(x)i = f (xi).
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We study the limit behavior of the spatio-temporal empirical measures associ-
ated to the coupled map F ,

RT (x) = 1

T |�T |
∑

0≤t<T,i∈�T

δSi◦F t (x) ∈ M1(X),

where S denotes the spatial shifts [defined by (Six)k = xk+i], �T = [−T,T ]d and
M1(X) is the space of probability measures on X.

We prove in Theorem 2.2 that if the coupling is small enough (for small ε in the
explicit example Gε considered here), RT satisfies under initial measure m, the
product of Lebesgue measures on the circles, a large deviations principle with rate
function

I (µ) =
{

−h(F,S)(µ) −
∫
X

ϕ dµ, if µ is invariant by F and S,

+∞, otherwise,

with h(F,S) the metric entropy associated to the (d + 1)-dimensional dynamical
system (F,S) and ϕ a potential associated to the dynamics (see Section 3 for its
exact definition). This result means, roughly, that

m{x :RT (x) ∼ µ} ∼ exp
(
T |�T |

(
h(F,S)(µ) +

∫
X

ϕ dµ

))
.

This implies in particular that RT converges exponentially fast to the set of
equilibrium measures associated to ϕ,

EQ(ϕ) =
{
ν ∈ M1(X) :h(F,S)(ν) +

∫
X

ϕ dν = 0
}
.

This result is linked to previous articles by Jiang [12] and Jiang and Pesin [13].
Generalizing previous results of Bunimovich–Sinai [4] and Pesin–Sinai [28], they
characterized the spatio-temporal chaos for a weak coupling between expanding
or Anosov maps by the uniqueness of the equilibrium measure associated to ϕ.

Our result puts the emphasis on the variational principle associated to this
potential and shows by a new way that, in this context, −ϕ really plays the role of
the logarithm of the Jacobian. Our result is indeed a generalization to the case of
coupled map lattices of well-known results for single site hyperbolic dynamical
systems [7, 20, 24, 25, 33] or Gibbs measures on shift spaces [5, 8, 9, 23].
This offers the perspective of generalizing other linked properties such as the
Gibbs characterization (as defined by Haydn and Ruelle [10] and Ruelle [30]) of
equilibrium measures or multifractal analysis (see [27]).

Note that (except for the construction of the potential ϕ) our large deviations
principle is independent of previous results of Jiang and Pesin. We use neither
the coding by a shift space nor the uniqueness of the equilibrium measure. This
allows us to work under less restrictive assumptions, although we still need a weak
coupling assumption for many steps of the proof.
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The most important and demanding part of the proof is a volume lemma result
(Theorem 2.1): We show that the partial sum of the potential ϕ governs the size
under m of the set of points whose orbit stays near a given one under fixed time
and space translations. The proof of this result relies on a property of expansivity
for the coupled map and a sharp analysis of inverse branches. Using this to prove
large deviations is then a natural generalization of the methods of Young [33] and
Kifer [20] for single site maps.

Another approach has been developed to characterize spatio-temporal chaos
under stronger regularity assumptions, via spectral properties of an adapted
transfer operator. We refer the reader to [1, 31] for the most recent results and
detailed bibliographies. Stronger regularity assumptions make it possible to study
the asymptotic behavior of the temporal empirical measure, but in this case
thermodynamic formalism cannot be used and results are less complete (see [3]
for such results).

This article is organized as follows: We give our precise assumptions and results
in Section 2. In Section 3 we recall the derivation of the potential in which we are
interested, done in [12, 13]. In Section 4, we precisely analyze the inverse branches
of the coupled map and deduce a preserved expanding property. Section 5 is then
devoted to the proof of the volume lemma and Sections 6 and 7 to the proof of the
large deviations principle.

For the sake of comprehension, some facts on convergence of subsets of Z
d and

a review on thermodynamic formalism are given in the Appendixes.

2. Settings and results.

2.1. The state space. We work on the state space X = (S1)Z
d

(with d ≥ 1),
equipped with the reference measure m = m⊗Z

d
, where m is the Lebesgue measure

on the circle.
On the circle S1 = R/Z, the distance is d(x, y) = mink∈Z |x +k −y| ≤ 1/2. We

put two distances constructed from this on X:

1. d(x, y) = supi∈Zd d(xi, yi), which is compatible with the differentiable struc-
ture of X defined by partial derivatives;

2. dρ(x, y) = supi∈Zd ρ|i|d(xi, yi), where we take for i ∈ Z
d the norm |i| =

max1≤k≤d |ik| and ρ < 1 is a fixed parameter. The main interest of dρ is that
(X, dρ) is a compact space; hence we can use the thermodynamic formalism to
describe the system.

We denote by Sk the spatial shift of vector k ∈ Z
d on X: If x = (xi)i∈Zd , then

(Skx)i = xi+k . For N ∈ N, we write �N = [−N,N ]d ⊂ Z
d .

2.2. The coupled map. Let the uncoupled expanding map be F0 = ⊗
i∈Zd fi ,

where fi = f :S1 → S1 is C1+α and expanding, that is, satisfies

1 < γ ≤ |f ′(x)| ≤ M ∀x ∈ S1,(1)
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and f ′ hence log |f ′| is α-Hölder continuous,∣∣log |f ′(x)| − log |f ′(y)|∣∣ ≤ C1d
α(x, y) ∀x, y ∈ S1.(2)

We also define the coupling map G :X → X as a C2 map (for the distance d) that
commutes with all the spatial translations (Sk)k∈Zd and satisfies the estimates∣∣∣∣∂Gi

∂xj

− δi,j

∣∣∣∣ ≤ Eθ2|i−j | ∀ i, j ∈ Z
d,(3)

∣∣∣∣ ∂2Gi

∂xj ∂xk

∣∣∣∣ ≤ Eθ2 max(|i−j |,|i−k|) ∀ i, j, k ∈ Z
d,(4)

with E > 0 and 0 < θ < 1.
We denote K = E

∑
i∈Zd θ |i| and K2 = E

∑
i∈Zd θ2|i|. The first derived

estimates are

di

(
G(x) − x,G(y) − y

) ≤ E
∑
k∈Zd

θ2|i−k|dk(x, y) ∀ i ∈ Z
d, x, y ∈ X,(5)

∣∣∣∣∂Gi

∂xj

(x) − ∂Gi

∂xj

(y)

∣∣∣∣ ≤ E
∑
k∈Zd

θ2|i−k|dk(x, y) ∀ i, j ∈ Z
d, x, y ∈ X.(6)

The associated coupled map is then

F = G ◦ F0.

We say that F satisfies assumption (H) if it is the composition of two such maps
whose parameters satisfy the two conditions:

θ < ρ,(H1)

γ − MK > 1.(H2)

The first assumption is essentially technical and enables us to get functions regular
enough for the distance dρ . Equation (H2) expresses the preservation of the
expanding property for the coupled map and implies two essential estimates:

γ̃ = γ − MK2 > 1,(7)

K < 1.(8)

REMARK. These coupling maps are similar to those given in previous papers
on this type of system (they are called short range maps in [12, 13]).

2.3. Volume lemma. We define for T ∈ N and E a finite subset of Z
d ,

Bx(T ,E; δ) = {
y :dρ

(
Si ◦ F t(x), Si ◦ F t(y)

)
< δ ∀0 ≤ t ≤ T, i ∈ E

}
,(9)

the ball associated to a distance which describes the dynamics of F and the spatial
shifts S. It contains points whose orbit stays near a given orbit under fixed space
and time translations. The volume lemma describes the measure of this ball in
terms of local derivatives along the orbit of x:
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THEOREM 2.1. If F satisfies assumption (H), then there exists a potential
function ϕ :X �→ R that is Hölder continuous for the distance dρ , such that for
any x ∈ X, 0 < δ < 1

2M
, E a finite subset of Z

d and T ≥ 1, we have

C2(T ,E, δ, ρ) exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x)

)

≤ m
(
Bx(T ,E; δ)

)
(10)

≤ C3(T ,E, δ) exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x)

)

with

lim
T →∞
n→∞

1

T |En| logC2(T ,En, δ, ρ) = lim
T →∞
n→∞

1

T |En| logC3(T ,En, δ) = 0

(11)
∀ δ <

1

2M
,θ < ρ < 1,

and for any sequence En converging to Z
d in the sense of Van Hove (see

Definition A.1).

REMARKS. 1. The potential function ϕ is defined in Section 3.2, readily
following the construction given in [12] and [13]. From this definition and the role
it plays in the volume lemma (see, e.g., [19] for an equivalent result in the case of a
single map), −ϕ can be called the “logarithm of Jacobian per site” of the map F .

2. The speeds of convergence in time and space are completely independent.
3. This result is, in fact, true not only under Lebesgue measure, but also for any

probability measure µ which is locally absolutely continuous with respect to it,
with a Radon–Nikodym derivative satisfying, with 0 < A < B ,

A|E| ≤ dµ

dm

∣∣∣∣
E

≤ B|E| ∀E ⊂ Z
d .

A direct consequence of this result, or of Proposition 6.1, concerns the
topological pressure (see Section B.2 for the definition) of the potential ϕ:

COROLLARY 2.1. If F satisfies assumption (H), the topological pressure of
the potential ϕ under the dynamical system (F,S) is null,

P(F,S)(ϕ) = 0.

This was already stated in [11, 12] in various contexts. Here it takes on a
particular importance since it ensures with the Gibbs variational principle B.3 that
the rate function I [defined in (13)] is nonnegative.
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2.4. Large deviations principle. We can use the previous volume lemma to
prove a spatio-temporal large deviations principle for the empirical process

RT,E(x) = 1

T |E|
∑

0≤t<T,i∈E

δSi◦F t (x) ∈ M1(X)(12)

under the initial measure m (and, more generally, under the same probability
measures as for volume lemma; see Remark 3 after Theorem 2.1).

We introduce the function I defined on M1(X) by

I (ν) =
{

−h(F,S)(ν) −
∫
X

ϕ dν, if ν ∈ M1
inv(X),

+∞, otherwise,
(13)

where M1
inv(X) is the set of probability measures which are invariant under F and

spatial shifts with the weak-star topology [µk → µ iff
∫

g dµk → ∫
g dµ for any

g ∈ C(X)] and h(F,S) is the metric entropy (see Appendix B). We have then the
following theorem:

THEOREM 2.2. Assume F satisfies assumption (H). Then I is a nonnegative,
convex and lower semicontinuous function. For any map s : N → N nondecreasing
and such that s(T ) tends to infinity as T tends to infinity, the sequence
(RT,�s(T )

)∗(m) of measures on M1(X) satisfies a large deviations principle with
rate function I , that is:

1. For any K closed subset of M1(X), we have

lim sup
T →∞

1

T |�s(T )| logm
{
x :RT,�s(T )

(x) ∈ K
} ≤ − inf

ν∈K
I (ν) (upper bound ).

2. For any O open subset of M1(X), we have

lim inf
T →∞

1

T |�s(T )| logm
{
x :RT,�s(T )

(x) ∈ O
} ≥ − inf

ν∈O
I (ν) (lower bound ).

REMARKS. This result remains, in fact, true for more general sequences of
sets: The upper bound is valid for any spatial sequence ET converging to Z

d in the
sense of Van Hove; the lower bound is valid for any special averaging sequence
(see Definition A.2). Proofs are given in Sections 6 and 7 in this general setup.

Notice that the relative speeds of averaging in time and space can be completely
arbitrary (we make no assumption on the function s). This independence of speeds
of convergence in time and space is important, but not surprising since we know
that for weak coupling there is a semiconjugacy between (F,S) and shifts of a
(d + 1)-dimensional Gibbs system (see Theorem 2 in [12]). The time direction
then becomes a spatial shift like other directions on the coding space. This
semiconjugacy, in fact, allows us to deduce a large deviations principle for RT,ET
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from the same result for Gibbs systems (see [5, 8, 9, 23]) by a contraction principle
(Theorem 4.2.1 of [6]). We could not identify the rate function obtained in this
way; hence we preferred to develop a direct proof, without using the coding.
However, note that our analysis of inverse branches in Section 4.2 is not far from
the construction of a Markov partition for the system.

3. Expansion of the derivative. In this section, we follow [13] to derive the
potential ϕ by a sharp analysis of the derivative of the map F restricted to finite
boxes. We give all the steps, referring the reader to Section 5 of [13] or to [2] for
the detailed computations.

3.1. Finite box maps. For � a finite subset of Z
d and η ∈ X a fixed boundary

condition, we define

F�,η :X� = (S1)� −→ X�, x� �−→ F(x� ∨ η�C )|�
with w = x� ∨η�C defined by wi = xi when i ∈ � and wi = ηi otherwise. In fact,
F�,η = G�,F0(η) ◦F0 with G�,η = G(x� ∨η�C ). The term G�,η is a C2 map, and
if we write DG�,η = Id� + A�,η with A�,η = (ai,j )i,j∈�

, we get from estimates
(3) and (6) the following estimates for any i, j ∈ �, x�,y� ∈ X�,

|ai,j (x�)| ≤ Eθ2|i−j |,(14)

|ai,j (x�) − ai,j (y�)| ≤ E
∑
k∈�

θ2|i−k|dk(x�, y�),(15)

∣∣a(η)
i,j (x�) − a

(η′)
i,j (x�)

∣∣ ≤ K

2
θd(i,�C),(16)

∣∣a(�)
i,j (x�) − a

(�′)
i,j (y�′)

∣∣ ≤ K

2
θd(i,�′\�),(17)

if � ⊂ �′ and y�′ |� = x�.

3.2. Expansion. We get, using (8),

‖A‖∞ ≤ max
i∈�

(
E
∑
j∈�

θ2|i−j |
)

≤ K2 ≤ K < 1,

hence, log(Id + A) exists and we can write

log |detDF�,η(x�)| = log
∣∣detDF0(x�)detDG�,F0(η)(F0(x�))

∣∣
= ∑

i∈�

log |f ′(xi)| + log
∣∣det

(
exp log(Id + A)(F0(x�))

)∣∣
= ∑

i∈�

log |f ′(xi)| + log exp
(
tr log(Id + A)(F0(x�))

)
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= ∑
i∈�

log |f ′(xi)| + tr

(
−∑

t≥1

(−1)t

t
At(F0(x�))

)

= ∑
i∈�

(
log |f ′(xi)| − w�,η,i(x�)

)
,

where w�,η,i(x�) = ∑
t≥1((−1)t /t)a

(t)
i,i (F0(x�)), denoting At = (a

(t)
i,j ).

Estimates (14)–(17) give analogous results for w under the same condition (8),

|w�,η,i(x�)| ≤ E

1 − K
,(18)

|w�,η,i (x�) − w�,η,i(y�)| ≤ ME

1 − K

∑
k∈�

θ |i−k|dk(x�, y�),(19)

|w�,η,i (x�) − w�,η′,i(x�)| ≤ 1

2(1 − K)
θd(i,�C),(20)

|w�,η,i(x�) − w�′,η,i (y�′)| ≤ 1

2(1 − K)
θd(i,�′\�),(21)

if � ⊂ �′ and y�′ |� = x�.
All these estimates imply that ψi(x) = limN→∞ w�N ,η,i(x|�N

) exists, is
independent of the boundary conditions, shift invariant (i.e., ψi = ψ0 ◦ Si for
all i ∈ Z

d ) and satisfies

|ψ0(x)| ≤ E

1 − K
,(22)

|ψ0(x) − ψ0(y)| ≤ ME

1 − K

∑
k∈Zd

θ |i−k|dk(x, y),(23)

∣∣ψ0(x) − w�,η,0(x|�)
∣∣ ≤ 1

2(1 − K)
θd(i,�C).(24)

Assumption (H1) implies moreover with (23) that ψ0 is Lipschitz continuous for
the distance dρ .

We define hence

ϕ(x) = − log |f ′(x0)| + ψ0(25)

as the potential of interest to describe the dynamic of the system (F,S). The term
ϕ is α-Hölder continuous for the distance dρ .

4. Conservation of the expanding property. We introduce ∅ �= E ⊂ � two
finite subsets of Z

d , a time T ∈ N and x ∈ X a reference point. We choose a finite
box restriction of FT to �, FT

� with boundary conditions changing with time:
F t

� = F�,F t−1(x) ◦ · · · ◦ F�,F(x) ◦ F�,x . This implies, in particular, that

F t
�(x|�) = F t(x)|� ∀0 ≤ t ≤ T .(26)
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This will essentially simplify the approximation of F by F� in the proof of the
volume lemma. We do not explicitly mention the dependence on the boundary
conditions following the orbit of x: we have already seen in the previous section
that the limit potential does not depend on it.

4.1. Bijectivity of the coupling map. First of all, our assumptions on the
coupling map G are sufficient to get:

PROPOSITION 4.1. Under assumption (H2), G� is a C1 diffeomorphism.

PROOF. We get from estimate (5) and the triangle inequality that

di

(
G�(x),G�(y)

) ≥ di(x, y) − E
∑
k∈�

θ2|i−k|dk(x, y) ∀ i ∈ �.

Hence if x �= y, let i0 be such that di0(x, y) = maxi∈� di(x, y) > 0. Then

di0

(
G�(x),G�(y)

) ≥ di0(x, y)

(
1 − E

∑
k∈�

θ2|i−k|
)

≥ (1 − K2)di0(x, y) > 0

because K2 ≤ K < 1 by (8). This proves that G� is one-to-one.
We have already noticed that ‖A‖∞ < 1, which gives that DG� is invertible,

hence that G� is everywhere a local diffeomorphism. The range of G� is then
open and is closed by compactness of X�; hence its range is the whole space X�

because it is connected. Then G� is a bijection and a local diffeomorphism, then
a diffeomorphism. �

REMARK. Map G is also a bijection (one-to-one in the same way, surjective
taking the limit of preimages on finite boxes).

4.2. Inverse branches of FT
� . The single site map f :S1 → S1 is of degree

p = ∫
S1 |f ′(x)|dx, an integer between γ and M , and then has locally p inverse

branches around each point. We can, in fact, construct the branches globally except
in one point (see Section 2.4 of [17]).

We will use this construction to define inverse branches for F0 around the orbit
of x. Associated to the fact that G is a diffeomorphism, this method will give us
inverse branches for FT

� .
We denote C[�] = {0, . . . , p − 1}� to enumerate the inverse branches of F0. At

each time 0 ≤ t < T , we construct the branches around F t(x). We take

At = {
y ∈ X� :di

(
y,F0 ◦ F t(x)

)
< 1/2 ∀ i ∈ �

}
[then m�(At) = 1] and for any site i ∈ �, we denote x

(t,i)
0 , x

(t,i)
1 , . . . , x

(t,i)
p−1 (resp.

a
(t,i)
0 , a

(t,i)
1 , . . . , a

(t,i)
p−1) the preimages by f of (F0 ◦ F t(x))i [resp. (F0 ◦ F t(x))i −

1/2], indexed such that:
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• x
(t,i)
0 = F t

i (x);

• x
(t,i)
0 , a

(t,i)
1 , x

(t,i)
1 , . . . , a

(t,i)
0 are in this order on the circle.

Then, for all β ∈ C[�], we define

x
(t)
β = (

x
(t,i)
β(i)

)
i∈� the preimages by F0 of F0 ◦ F t(x),

Aβ,t = ∏
i∈�

(
a

(t,i)
β(i) , a

(t,i)
β(i)+1

)
,

satisfying the following straightforward properties:

• x
(t)
0 = F t(x).

• x
(t)
β ∈ Aβ,t ∀β ∈ C[�].

• m�(
⋃

β∈C[�] Aβ,t ) = 1.
• F0 is a bijection from Aβ,t onto At .

We denote by F−1
0,t,β the inverse bijection characterized by F−1

0,t,β(y) = Aβ,t ∩
F−1

0 (y) for any y ∈ At . These inverse branches satisfy a contraction property,
which has to be precisely described:

LEMMA 4.1. For all y, z ∈ At , there exists a φy,z permutation of C[�], with
y, z �→ φy,z measurable, such that ∀β, β̃ ∈ C[�], ∀ i ∈ �, if β(i) = β̃(i), then

1

M
di(y, z) ≤ di

(
F−1

0,t,β̃
(y),F−1

0,t,φy,z(β)(z)
) ≤ 1

γ
di(y, z).(27)

If y or z equals F0 ◦ F t(x), then φy,z = Id.

PROOF. The left inequality is obvious, because di(F0(ỹ),F0(z̃)) ≤ Mdi(ỹ, z̃)

is always true. For the contraction rate, we have to be careful because the partition
is adapted to F t(x), but not to all other points. What has to be understood is how
di(y, z) is realized at each site i ∈ �:

• If the shortest arc from yi to zi (defining the distance) does not contain
(F0 ◦ F t(x))i − 1/2 [case (i) of Figure 1], then φy,z(β)(i) = β(i).

• Otherwise, φy,z(β)(i) = β(i) ± 1, depending on the order of the three points y,
z and (F0 ◦ F t(x))i − 1/2 [cases (ii) and (iii) of Figure 1], but not on β .

This construction defines φy,z as a one-to-one map, and if we are interested in
site i, the inverse maps β and β̃ are indistinguishable; hence,

di

(
F−1

0,t,β̃
(y),F−1

0,t,φy,z(β)(z)
) = di

(
F−1

0,t,β(y),F−1
0,t,φy,z(β)(z)

) ≤ 1

γ
di(y, z).

If y or z is equal to F0 ◦ F t(x), we always have the first case.
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FIG. 1. The three cases, where c = F0 ◦ F t (x) − 1
2 . If f preserves the direction on the circle (i.e.,

f ′ > 0), (ii) corresponds to φy,z(β)(i) = β(i)+1, (iii) to φy,z(β)(i) = β(i)−1, and this is reversed
otherwise.

It is not hard to check that φy,z depends on y and z only through the distance
and the order of their coordinates in the open sets S1 \{(F0 ◦F t(x))i −1/2}, which
are measurable maps of y and z. �

We have also, from the left inequality of (27), applied with y = (F0 ◦ F t(x))i
and z tending to (F0 ◦ F t(x))i − 1/2, that{

y :di

(
F t(x), y

)
<

1

2M

}
⊂ ⋃

β∈C[�],β(i)=0

Aβ,t .(28)

We can then describe the inverse branches of FT
� with

C[T,�] = {0, . . . , p − 1}[1,...,T ]×�,

C[T,�,E] = {
α ∈ C[T,�] :αt,i = 0 ∀1 ≤ t ≤ T, i ∈ E

}
.

Then:

PROPOSITION 4.2. We associate in a unique way to each α ∈ C[T,�] an
open subset Aα(x) of X� such that:

• Aα(x) ∩ Aα′(x) = ∅ if α �= α′.
• m�(

⋃
Aα(x)) = 1.

• There exists A ⊂ X� with m�(A) = 1 such that for all α ∈ C[T,�], FT
� is

one-to-one from Aα(x) onto A. We denote by F−T
�,α its inverse.

Moreover, {
y ∈ X� :di

(
F t(x),F t

�(y)
)
<

1

2M
∀0 ≤ t < T, i ∈ E

}

⊂ ⋃
α∈C[T,�,E]

Aα(x).
(29)
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PROOF. We define

A =
T −1⋂
t=0

FT −1−t ◦ G(At)

to avoid any problem of definition [m�(A) = 1 by preservation of total measure
by F0 and G, and by finite intersection] and

F−T
�,α = F−1

0,0,α(0,·) ◦ G−1 ◦ F−1
0,1,α(1,·) ◦ G−1 ◦ · · · ◦ F−1

0,T −1,α(T −1,·) ◦ G−1,

which is well defined on A. All properties are then easily deduced from those
of F−1

0,i,β with

Aα(x) = F−T
�,α(A) =

T −1⋂
t=0

F−t
(
At,α(t,·)

)⋂
F−T (A).

�

REMARK. 1. Subsets Aα(x) can be really complicated sets, due to the
perturbation term G and the noncompatibility of inverse branches, but we avoid
problems using the contraction property as described in Lemma 4.1.

2. In fact, this construction [except the inclusion (29)] requires only the local
Markov structure of expanding maps and the bijectivity of the coupling.

NOTATION. In the following text, when α ∈ C[T,�] and 0 < t < T , the
notation F−t

�,α denotes, in fact, FT −t
� ◦ F−T

�,α , so that

F−t
�,α = F−1

0,T −t,α(T −t,·) ◦ G−1 ◦ F−t+1
�,α .(30)

4.3. Expanding property. We can use the weak coupling assumptions and
the inverse branch analysis of F� to get a sharp form of the preservation of the
expanding property when we replace F0 by F�:

PROPOSITION 4.3. Suppose F satisfies assumption (H2), y ∈ A satisfies
di(F

T (x), y) ≤ δ < 1/2 for any i ∈ E ⊂ � and that α ∈ C[T,�,E]. Then

di

(
FT −t (x),F−t

�,α(y)
) ≤ δ

γ̃ t
+ λ · θd(i,EC) ∀0 ≤ t ≤ T, i ∈ E,(31)

where λ = MK
2(γ−MK−1)

and θ,M,K and γ̃ = γ −MK2 are defined in Section 2.2.

REMARK. This proposition gives a complete decoupling of the temporal
expanding property and spatial weak coupling, uniformly in time and space.

PROOF OF PROPOSITION 4.3. We know that G� is invertible, and by the
estimate (5) on the coupling and the triangle inequality, we have, for y, z ∈ X�

and i ∈ �,

di(y, z) ≤ di

(
G�(y),G�(z)

)+ E
∑
k∈�

θ2|i−k|dk(x, y).
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Then for each 1 ≤ t ≤ T and i ∈ �,

di

(
G−1

� ◦ FT −t+1(x),G−1
� ◦ F−t+1

�,α (y)
)

≤ di

(
FT −t+1(x),F−t+1

�,α (y)
)

+ E
∑
k∈�

θ2|i−k|dk

(
G−1

� ◦ FT −t+1(x),G−1
� ◦ F−t+1

�,α (y)
)
.

For the inverse of F0, we can use Lemma 4.1, with the permutation φ = Id because
one of the points is on the orbit of x, and identity (30) to get, for all i ∈ E (because
α ∈ C[T,�,E]),

1

M
di

(
G−1

� ◦ FT −t+1(x),G−1
� ◦ F−t+1

�,α (y)
)

≤ di

(
FT −t (x),F−t

�,α(y)
)

≤ 1

γ
di

(
G−1

� ◦ FT −t+1(x),G−1
� ◦ F−t+1

�,α (y)
)
.

Combining these two estimates gives, for any i ∈ E and 1 ≤ t ≤ T ,

di

(
FT −t (x),F−t

�,α(y)
)

≤ 1

γ
di

(
FT −t+1(x),F−t+1

�,α (y)
)

+ ME

γ

∑
k∈E

θ2|i−k|dk

(
FT −t (x),F−t

�,α(y)
)+ ME

2γ

∑
k∈�\E

θ2|i−k|.

(32)

We now want to go from this local estimate to a global estimate (in time and space).
We will estimate this term from above by a double sequence which can be entirely
solved by a generating function method. For this we analyze the behavior of all
points at a given distance of EC . With E(l) as defined in Appendix A, we denote
for 0 ≤ t ≤ T and l ≥ 0,

v(l, t) = sup
i∈E(−l)

di

(
FT −t (x),F−t

�,α(y)
)

[and v(l, t) = 0 if E(−l) = ∅].
If i ∈ E(−l), for any 0 ≤ k ≤ l, we have the inclusion i + �k ⊂ E(k−l) ⊂ E.

Then (32) becomes, for t ≥ 1,

di

(
FT −t (x),F−t

�,α(y)
)

≤ 1

γ
di

(
FT −t+1(x),F−t+1

�,α (y)
)

+ ME

γ

l∑
k=0

∑
|h|=k

θ2|h|di+h

(
FT −t (x),F−t

�,α(y)
)+ ME

2γ

∑
k>l

∑
|h|=k

θ2|h|
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≤ 1

γ
v(l, t − 1) + ME

γ

l∑
k=0

∑
|h|=k

θ2|h|v(l − k, t) + ME

2γ

∑
k>l

∑
|h|=k

θ2|h|.

Hence for l ≥ 0 and 1 ≤ t ≤ T ,

v(l, t) ≤ 1

γ
v(l, t − 1) + 1

γ

l∑
k=0

αkv(l − k, t) + 1

γ

∑
k>l

αk

2
,(33)

with αk = MEckθ
2k and ck = Card(h ∈ Z

d : |h| = k). We define then, for δ ≥ 0,
the double sequence

u(l, t) =




1

2
, if l < 0,

δ, if l ≥ 0, t = 0,
1

γ
u(l, t − 1) + 1

γ

∑
k≥0

αku(l − k, t), if l ≥ 0, t > 0.

We have the following upper bound for v:

LEMMA 4.2. If v(l, t) satisfies recursive relation (33), supl≥0 v(l,0) =
v(0,0) ≤ δ, and if α0/γ < 1, then

v(l, t) ≤ u(l, t) ∀ l ≥ 0, t ≥ 0.(34)

PROOF. The proof is by induction on t and then on l, because 1 − α0/γ > 0
and (

1 − α0

γ

)
v(l, t)

≤ 1

γ
v(l, t − 1) + 1

γ

l∑
k=1

αkv(l − k, t) + 1

γ

∑
k>l

αku(l − k, t).
�

The fact that α0/γ < 1 is a direct consequence of the assumption (H2)
because α0 ≤ ∑

αk = MK2 ≤ MK < γ . Assumption (H2) implies also that
the assumptions of Proposition C.1 are satisfied with αk and α̃k = MEckθ

k .
Proposition C.1 and Lemma 4.2 imply

v(l, t) ≤ δ

(γ − MK2)
t
+ λ · θl+1.

Optimizing for any i ∈ E, since i ∈ E(−d(i,EC)+1), we get the desired estimate (31).
�

We can evaluate in the same way the effect of a change of finite box restriction
on the inverse iterates of the map:
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PROPOSITION 4.4. If F satisfies assumption (H2), then for any y ∈ A, there
is a bijection φy :C[T,�,E] → C[T,� \E] such that y �→ φy is measurable and
for all α ∈ C[T,�,E],

di

(
F−t

�,α(y),F−t
�\E,φy(α)(y)

) ≤ λ · θd(i,E) ∀0 ≤ t ≤ T, i ∈ � \ E.(35)

PROOF. For the coupling, we have exactly the same type of estimate as in the
context of Proposition 4.3 for any i ∈ � \ E,

di

(
G−1

� (y),G−1
�\E(z)

)
≤ di(y, z) + E

∑
k∈�\E

θ2|i−k|dk(y, z) + E

2

∑
k∈E

θ2|i−k|.
(36)

The inverse branches of F0 are constructed in Section 4.2 independently on each
site and around the orbit of x. Since F t

�(x) = F t
�\E(x) = F t(x), these inverse

branches are in fact locally independent of the finite box. We can then use the
same method as in the proof of Lemma 4.1 to choose inverse branches such that
the contraction property applies well to preimages of y.

In the first step, we compare for i ∈ � \ E the relative positions of the points
(G−1

� (y))i , (G−1
�\E(y))i and (F0 ◦ FT −1(x))i − 1/2 to define the action of φy at

time T − 1 (see Figure 1 in the proof of Lemma 4.1) such that

1

M
di

(
G−1

� (y),G−1
�\E(y)

)
≤ di

(
F−1

0,T −1,α(T −1,·) ◦ G−1
� (y),F−1

0,T −1,φy(α)(T−1,·) ◦ G−1
�\E(y)

)
≤ 1

γ
di

(
G−1

� (y),G−1
�\E(y)

)
.

Then, if φy is well defined for times greater than or equal to T − t +1, we compare
at each i ∈ �\E the relative positions of (G−1

� ◦F−t+1
�,α (y))i , (G

−1
�\E ◦F−t+1

�\E,α(y))i

and (F0 ◦ FT −t (x))i − 1/2 to define the action of φy at time T − t such that for
all α ∈ C[T,�,E],

1

M
di

(
G−1

� ◦ F−t+1
�,α (y),G−1

�\E ◦ F−t+1
�\E,φy(α)(y)

)
≤ di

(
F−1

0,T −t,α(T −t,·) ◦ G−1
� ◦ F−t+1

�,α (y),

F−1
0,T −t,φy(α)(T−t,·) ◦ G−1

�\E ◦ F−t+1
�\E,α(y)

)
≤ 1

γ
di

(
G−1

� ◦ F−t+1
�,α (y),G−1

�\E ◦ F−t+1
�\E,φy(α)(y)

)
.

In the same way as for Lemma 4.1, we get that φy is a measurable function of y.
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Combined with (36), this then gives for any i ∈ � \ E,

di

(
F−t

�,α(y),F−t
�\E,φy(α)(y)

)
≤ 1

γ
di

(
F−t+1

�,α (y),F−t+1
�\E,φy(α)(y)

)

+ ME

γ

∑
k∈�\E

θ2|i−k|dk

(
F−t

�,α(x),F−t
�\E,φy(α)(y)

)+ ME

2γ

∑
k∈E

θ2|i−k|.

(37)

We can hence proceed as in the proof of Proposition 4.3, with

v(l, t) = sup
i∈�\(E(l))

di

(
F−t

�,α(y),F−t
�\E,φy(α)(y)

)
and δ = 0. �

4.4. Expansiveness. A first straightforward consequence of the expanding
property stated as Proposition 4.3 is the expansiveness of the dynamical system
(F,S):

PROPOSITION 4.5. If

dρ

(
Si ◦ F t(x), Si ◦ F t(y)

)
< δ0 = 1

2M

for all i ∈ Z
d and t ∈ N, then

x = y.

PROOF. The inclusion (29) and the Proposition 4.3 can be combined to get
that under assumption (H2), if di(F

t
�(x),F t

�(y)) < δ0 for all 0 ≤ t ≤ T and i ∈ E,
then we have, in fact, the better estimate

di

(
F t

�(x),F t
�(y)

) ≤ δ0

γ̃ T −t
+ λ · θd(i,EC).

We can then take � = �N and N tends to infinity, which gives the same property
for the global map F . The assumption made for this proposition clearly implies
that di(F

t(x),F t (y)) < δ0 for all i ∈ Z
d and t ∈ N. Hence,

di(x, y) ≤ δ0

γ̃ T
+ λ · θd(i,EC)

for all E ⊂ Z
d and T ∈ N. Taking E = �n, then T and n go to infinity and we can

conclude that x = y. �

A classical and essential consequence of this property is that the metric
entropy h(F,S) associated to the system is an upper semicontinuous function of
the probability measures (see Proposition B.1). This (and the continuity of the
potential function ϕ) proves that the rate function I of the large deviations principle
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defined in (13) is lower semicontinuous and allows us to use the Gibbs variational
principle for the proof of the upper bound.

5. Proof of the volume lemma. We begin by proving an intermediate volume
lemma for the finite box map F� with constraints on the orbit on the smaller box E

and then use this proof to prove Theorem 2.1 for the global system (F,S).

PROPOSITION 5.1. Under assumption (H), for x, E ⊂ �, T and 0 < δ < 1
2M

as in Section 4 with � large enough, we have

exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) − T |E|C̃2(T ,E, δ) − C4(�,T ,E)

)

≤ m�
{
y :di

(
F t(x),F t

�(y)
)
< δ ∀0 ≤ t ≤ T, i ∈ E

}
≤ exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) + T |E|C̃3(T ,E, δ) + C5(�,T ,E)

)(38)

with

lim
N→∞C4(�N,T ,E) = lim

N→∞C5(�N,T ,E) = 0 ∀T ≥ 1,E ⊂ Z
d,(39)

lim
T →∞
n→∞

C̃2(T ,En, δ) = lim
T →∞
n→∞

C̃3(T ,En, δ) = 0 ∀ δ <
1

2M
(40)

for any sequence En tending to Z
d in the sense of Van Hove. Moreover, C̃2 and C̃3

are continuous in δ.

The essential idea to prove this result is to do a change of variable by FT
� . This

must be done with some caution to ensure we are on domains where this map is
injective and to analyze all the terms.

5.1. Proof of the upper bound of Proposition 5.1. We decompose X� in the
subsets (Aα(x))α∈C[T,�], on each of which FT

� is one-to-one. Notice that we do
not lose anything because m�(

⋃
Aα(x)) = 1 and since δ < 1

2M
, the intervals

which appear are those that correspond to C[T,�,E] (see Proposition 4.2 for
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these properties),

m�
{
y ∈ X� :di

(
F t(x),F t

�(y)
)
< δ ∀0 ≤ t ≤ T, i ∈ E

}
= ∑

α∈C[T,�,E]
m�

{
y ∈ Aα(x) :di

(
F t(x),F t

�(y)
)
< δ ∀0 ≤ t ≤ T, i ∈ E

}

= ∑
α∈C[T,�,E]

∫
X�

∏
0≤t≤T,i∈E

1{di(F
T −t (x),F−t

�,α(y))<δ}

× 1

|DFT
�(F−T

�,α(y))|m
�(dy),

(41)

by a change of variables with FT
� which is a bijection from Aα(x) onto A.

We apply then the results of Section 3.2 to get

1

|DFT
�(F−T

�,α(y))| = exp

(
− ∑

0≤t<T

log
∣∣DF�,F t(x) ◦ F t−T

�,α (y)
∣∣)

= exp

( ∑
0≤t<T,i∈�

(− log |f ′
i | + w�,i) ◦ F t−T

�,α (y)

)
,

where we denote w�,i = w�,F t (x),i for any t . We do not mention the boundary
conditions, since all our estimates are uniform on them.

We treat the terms corresponding to i ∈ E and to i ∈ � \ E differently. In the
first case, we want to replace them by ϕ◦Si ◦F t(x), while in the second we want to
reconstitute D(F−T

�\E,φy(α)(y)) and integrate it to 1 by another change of variables
on X�\E .

Hence, if i ∈ E,

∣∣(− log |f ′
i | + w�,i) ◦ F t−T

�,α (y) − ϕ ◦ Si ◦ F t(x)
∣∣

≤ ∣∣log |f ′
i | ◦ F t−T

�,α (y) − log |f ′
i | ◦ F t(x)

∣∣
+ ∣∣w�,i ◦ F t−T

�,α (y) − w�,i ◦ F t(x)
∣∣+ |w�,i ◦ F t(x) − ψi ◦ F t(x)|.

The third term is easily estimated by the speed of convergence of w�,i to ψi given
in (24). Summing over all times and sites gives

∑
0≤t<T,i∈E

|w�,i ◦ F t(x) − ψi ◦ F t(x)| ≤ T

2(1 − K)

∑
i∈E

θd(i,�C)

= C5(�,T ,E).

(42)

Then we get C5(�N,T ,E) → 0 when N goes to infinity.
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For the two other terms, we use the fact that di(F
T −t (x),F−t

�,α(y)) < δ for all
0 ≤ t ≤ T and i ∈ E which implies with Proposition 4.3 that

di

(
FT −t (x),F−t

�,α(y)
) ≤ δ

γ̃ t
+ λ · θd(i,EC) ∀0 ≤ t ≤ T, i ∈ E.

This combined with the α-Hölder property of log |f ′| [see (2)] and the concavity
of x → xα gives

1

T |E|
∑

0≤t<T,i∈E

∣∣log |f ′
i | ◦ F t−T

�,α (y) − log |f ′
i | ◦ F t(x)

∣∣

≤ C1

(
δ

T

∑
0≤t<T

1

γ̃ t−T
+ λ

|E|
∑
i∈E

θd(i,EC)

)α

,

(43)

which goes to 0 as T tends to infinity and E tends to Z
d in the sense of Van Hove,

because γ̃ > 1 and 1/|E|∑i∈E θd(i,EC) goes to 0 by Proposition A.1.
For w�,i , we use estimate (19) and get, with K1/2 =∑

i∈Zd θ |k|/2,∣∣w�,i ◦ F t−T
�,α (y) − w�,i ◦ F t(x)

∣∣
≤ ME

1 − K

∑
k∈�

θ |i−k|dk

(
F t−T

�,α (y),F t (x)
)

≤ MK

1 − K

δ

γ̃ t−T
+ λMK1/2

1 − K
θd(i,EC)/2 + ME

2(1 − K)

∑
k∈EC

θ |i−k|.

Then

1

T |E|
∑

0≤t<T,i∈E

∣∣w�,i ◦ F t−T
�,α (y) − w�,i ◦ F t(x)

∣∣

≤ MK

1 − K

δ

T

∑
0≤t<T

1

γ̃ t−T
+ MK1/2

1 − K

(
1

2
+ λ

)
1

|E|
∑
i∈E

θd(i,EC)/2,

(44)

which goes also to 0 as T → ∞ and E → Z
d .

In the same way, for i ∈ � \ E, we use the link between behaviors of F t−T
�,α (y)

and F t−T
�\E,φy(α)(y) given in Proposition 4.4, writing

∣∣(− log |f ′
i | + w�,i) ◦ F t−T

�,α (y) − (− log |f ′
i | + w�\E,i

) ◦ F t−T
�\E,φy(α)(y)

∣∣
≤ ∣∣log |f ′

i | ◦ F t−T
�,α (y) − log |f ′

i | ◦ F t−T
�\E,φy(α)(y)

∣∣
+ ∣∣w�,i ◦ F t−T

�,α (y) − w�\E,i ◦ F t−T
�,α (y)

∣∣
+ ∣∣w�\E,i ◦ F t−T

�,α (y) − w�\E,i ◦ F t−T
�\E,φy(α)(y)

∣∣,
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and, using Proposition 4.4 instead of Proposition 4.3 and estimate (21) instead
of (24),

1

T |E|
∑

0≤t<T,i∈�\E

∣∣log |f ′
i | ◦ F t−T

�,α (y) − log |f ′
i | ◦ F t−T

�\E,φy(α)(y)
∣∣

(45)

≤ C1
λα

|E|
∑

i∈EC

θαd(i,E),

1

T |E|
∑

0≤t<T,i∈�\E

∣∣w�,i ◦ F t−T
�,α (y) − w�\E,i ◦ F t−T

�,α (y)
∣∣

(46)

≤ 1

2(1 + K)

1

|E|
∑

i∈EC

θd(i,E),

1

T |E|
∑

0≤t<T,i∈�\E

∣∣w�\E,i ◦ F t−T
�,α (y) − w�\E,i ◦ F t−T

�\E,φy(α)(y)
∣∣

(47)

≤ λMK1/2

1 − K

1

|E|
∑

i∈EC

θd(i,E)/2,

all these terms tending to 0 when E tends to Z
d in the sense of Van Hove by

estimate (57).
We take finally for C̄3 the sum of the right-hand side in formulas (43)–(47) and

get the global estimate

1

|DFT
�(F−T

�,α(y))|

≤ 1

|DFT
�\E(F−T

�\E,φy(α)(y))|

× exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) + T |E|C̄3(T ,E, δ) + C5(�,T ,E)

)
.

On the other hand, we get an upper bound for the product of indicator functions
in (41) by the terms corresponding to t = 0, and use the identity

∑
α∈C[T,�,E]

1

DFT ◦ F−T
�,φy(α)

= ∑
α∈C[T,�\E]

1

DFT ◦ F−T
�,α

due to the bijectivity of φy from C[T,�,E] onto C[T,� \ E]. We can then
separate the terms in E and those in � \ E, and integrate the last ones by a change
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of variable,

m�
{
y ∈ X� :di

(
F t

�(x),F t
�(y)

)
< δ ∀0 ≤ t ≤ T, i ∈ E

}
≤
∫
X�\E

∑
α∈C[T,�\E]

1

|DFT
�\E(F−T

�\E,α(y))|m
�\E(dy)

× mE
{
y :di

(
FT (x), y

)
< δ ∀ i ∈ E

}
× exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) + T |E|C̄3(T ,E, δ) + C5(�,T ,E)

)

= m�\E
( ⋃

α∈C[T,�\E]
Aα(x)

)
(2δ)|E|

× exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) + T |E|C̄3(T ,E, δ) + C5(�,T ,E)

)

= exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) + T |E|C̃3(T ,E, δ) + C5(�,T ,E)

)
,

where C̃3 = C̄3 + 1
T

log(2δ) satisfies the announced limit.

5.2. Proof of the lower bound of Proposition 5.1. For the lower bound, we use
the same kind of estimates as for the upper bound, except for the term∏

0≤t≤T,i∈E

1{di(F
−t
�,0(F

T (x)),F−t
�,α(y))<δ}.

Indeed, to insure this, we have to assume that di(F
T (x), y) < δ for i in a set larger

than E: We choose L such that

δ

γ̃
+ λ · θL ≤ δ

and assume that E(L) ⊂ � (this is the sense of � large enough in Proposition 5.1).
Then, if di(F

T (x), y) < δ for all i ∈ E(L), Proposition 4.3 implies that when
α ∈ C[T,�,E(L)],

di

(
FT −t (x),F−t

�,α(y)
) ≤ δ

γ̃ t
+ λ · θd(i,(E(L))C) ∀0 ≤ t ≤ T, i ∈ E(L),

and in particular,

di

(
FT −t (x),F−t

�,α(y)
) ≤ δ ∀0 ≤ t ≤ T, i ∈ E.
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The assumption α ∈ C[T,�,E(L)] imposes then a restriction on the sum in
the decomposition of X�. This does not perturb the asymptotic estimates since
|E(L) \ E|/|E| → 0 when E tends to Z

d in the sense of Van Hove. Then

m�
{
y ∈ X� :di

(
F t

�(x),F t
�(y)

)
< δ ∀0 ≤ t ≤ T, i ∈ E

}
≥ ∑

α∈C[T,�,E(L)]

∫
X�

∏
i∈E(L)

1{di(F
T (x),y)<δ}

× exp

( ∑
0≤t<T,i∈E

(− logf ′
i + w�,i) ◦ f t−T

�,α (y)

)
m�(dy)

≥ m�\E(L)

( ⋃
α∈C[T,�\E(L)]

Aα(x)

)
mE(L){

y :di

(
FT (x), y

)
< δ ∀ i ∈ E(L)

}

× exp

( ∑
0≤t<T,i∈E(L)

ϕ ◦ Si ◦ F t(x)

− T
∣∣E(L)

∣∣C̄3
(
T,E(L), δ

)− C5
(
�,T,E(L)

))

≥ exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) − T |E|C̃2(T ,E, δ) − C4(�,T ,E)

)
,

where

C̃2(T ,E, δ) = |E(L)|
|E| C̃3

(
T,E(L), δ

)+ |E(L) \ E|
|E| |ϕ|∞

tends to 0 as T goes to infinity and E tends to Z
d in the sense of Van Hove, and

C4(�,T ,E) = C5(�,T ,E(L)).

5.3. Proof of Theorem 2.1. We approximate F by F�N
using convergence on

a finite box for finite time: For any 0 < ε < 1
2M

− δ, there exists N0 such that for
all N ≥ N0,

di

(
F t

�N
(y),F t(y)

) ≤ ε ∀0 ≤ t ≤ T, i ∈ E and y ∈ X,

C5(�N,T ,E) ≤ ε.

We deduce then from the upper bound of Proposition 5.1 applied to F�N
,

m
(
Bx(T ,E; δ)

)
≤ m

{
y ∈ X :di

(
F t(x),F t(y)

)
< δ ∀0 ≤ t ≤ T, i ∈ E

}
≤ m�N

{
y ∈ X�N

:di

(
F t

�N
(x),F t

�N
(y)

)
< δ + ε ∀0 ≤ t ≤ T, i ∈ E

}



714 J.-B. BARDET AND G. BEN AROUS

≤ exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) + T |E|C̃3(T ,E, δ + ε) + C5(�N,T ,E)

)
.

We take then N → ∞, ε → 0 and use continuity of C̃3 in δ to get the desired upper
bound with C3 = exp(T |E|C̃3).

In the same way, for the lower bound, let L̃ be such that 1
2ρL̃+1 < δ ≤ 1

2ρL̃, and
for any 0 < ε < δ, let N1 such that for all N ≥ N1,

di

(
F t

�N
(y),F t(y)

) ≤ ε ∀ 0 ≤ t ≤ T, i ∈ E(L̃) and y ∈ X,

C4
(
�N,T,E(L̃)

) ≤ ε.

Then

m
(
Bx(T ,E; δ)

)

= m




y :

di

(
F t(x),F t(y)

)
< δ ∀ i ∈ E,

di

(
F t(x),F t(y)

)
< δρ−1 ∀ i ∈ E(1) \ E,
...

...

di

(
F t(x),F t(y)

)
< δρ−L̃ ∀ i ∈ E(L̃) \ E(L̃−1),

∀0 ≤ t ≤ T




≥ m
{
y ∈ X :di

(
F t(x),F t(y)

)
< δ ∀0 ≤ t ≤ T, i ∈ E(L̃)

}
≥ m�N

{
y ∈ X�N

:di

(
F t

�N
(x),F t

�N
(y)

)
< δ − ε ∀0 ≤ t ≤ T, i ∈ E(L̃)

}

≥ exp

( ∑
0≤t<T,i∈E

ϕ ◦ Si ◦ F t(x) − T
∣∣E(L̃)

∣∣C̃2
(
T,E(L̃), δ − ε

)

− C4
(
�N,T,E(L̃)

))
.

Taking ε → 0, we get the desired lower bound with C2 = exp(−T |E(L̃)|C̃2(T ,

E(L̃), δ)). The only dependence of C2 on the constant ρ defining the distance
comes from the choice of L̃.

6. Large deviations upper bound. In these two last sections, we will use
many results from thermodynamic formalism. We refer the reader to Appendix B
for all standard definitions and results.

Our proof of the upper bound of the large deviations principle follows, at least
for the main steps, the method of Kifer [20]. It presents no particular difficulty
since the space M1(X) is compact for the weak-star topology and the volume
lemma gives the identification of the log Laplace transforms.

For ET a given sequence of subsets of Z
d , we denote

RT (x) = RT,ET
(x) = 1

T |ET |
∑

0≤t<T,i∈ET

δSi◦F(x) ∈ M1(X)
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the associated empirical process.

6.1. Identification of the pressure. The first step in this proof is the identifica-
tion of the limit of the log-Laplace transforms of the empirical process RT inte-
grated against any continuous potential V with the topological pressure of V + ϕ:

PROPOSITION 6.1. Under assumption (H), for any sequence (ET )T ≥0
tending to Z

d in the sense of Van Hove and V ∈ C(X), we have

lim sup
T →∞

1

T |ET | log
∫
X

exp
(
T |ET |

∫
X

V dRT (x)

)
m(dx) = P(F,S)(V +ϕ).(48)

Corollary 2.1 is immediately deduced from this proposition, taking V = 0.

PROOF OF PROPOSITION 6.1. For δ > 0 and T ≥ 0, we take Y a maximal
(T , δ)-separated set in X, which means that

x, x′ ∈ Y and x �= x′ �⇒ x′ /∈ Bx(T ,ET ; δ)

and Y is maximal for this property. Then
⋃

x∈Y Bx(T ,ET ; δ) = X by maximality
and, if x, x′ ∈ Y are distinct, then

Bx(T ,ET ; δ/2) ∩ Bx′(T ,ET ; δ/2) = ∅.

Hence, denoting γV (δ) = sup{|V (x)−V (y)| :dρ(x, y) < δ}, a quantity which goes
to 0 with δ by continuity, we decompose the integral in small balls and get

∑
x∈Y

exp

( ∑
0≤t<T,i∈ET

(
V ◦ Si ◦ F t(x) − γV (δ/2)

))
m
(
Bx(T ,ET ; δ/2)

)

≤
∫
X

exp

( ∑
0≤t<T,i∈ET

V ◦ Si ◦ F t(x)

)
m(dx)

≤ ∑
x∈Y

exp

( ∑
0≤t<T,i∈ET

(
V ◦ Si ◦ F t(x) + γV (δ)

))
m
(
Bx(T ,ET ; δ)

)
.

We use then the volume lemma, take the logarithm and divide by T |ET | to get

1

T |ET | log

[∑
x∈Y

exp

( ∑
0≤t<T,i∈ET

(V + ϕ) ◦ Si ◦ F t(x)

)]

− γV

(
δ

2

)
− 1

T |ET | logC2

(
T,ET ,

δ

2
, ρ

)

≤ 1

T |ET | log
∫
X

exp
(
T |ET |

∫
X

V dRT (x)

)
m(dx)
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≤ 1

T |ET | log

[∑
x∈Y

exp

( ∑
0≤t<T,i∈ET

(V + ϕ) ◦ Si ◦ F t(x)

)]

+ γV (δ) + 1

T |ET | log C3(T ,ET , δ).

We take now successively the supremum on maximal (T , δ)-separated sets, the
lim sup when T goes to infinity (makes the terms C2 and C3 disappear) and
the limit δ → 0. We get hence the desired result directly from the definition of
topological pressure. �

6.2. Proof of the upper bound. For δ > 0 and V ∈ C(X) fixed, M1(X) is
compact and any closed subset F can be included in a finite union of balls of the
type βν(V ; δ) = {µ : | ∫ V dµ − ∫

V dν| < δ},

F ⊂
d⋃

l=1

βνl
(V ; δ) with νl ∈ F.(49)

By the Chebychev inequality,

m{x :RT (x) ∈ βν(V ; δ)} ≤ eT |ET |(δ−∫
X V dν)

∫
X

eT |ET |RT (x) m(dx).

Then using Proposition 6.1 we have, for such an open ball,

lim sup
T →∞

1

T |ET | log m
(
RT ∈ βν(V ; δ)

)≤ δ −
∫
X

V dν + P(F,S)(V + ϕ).

The inclusion (49) implies now, for F closed,

lim sup
T →∞

1

T |ET | logm(RT ∈ F) ≤ max
1≤l≤d

(
lim sup
T →∞

1

T |ET | logm
(
RT ∈ βνl

(V ; δ)
))

≤ max
ν∈F

(
δ −

∫
X

V dν + P(F,S)(V + ϕ)

)
.

We can then make δ tend to 0, optimize on V continuous and use a minimax type
result (available because F is compact) to get

lim sup
T →∞

1

T |ET | logm(RT ∈ F) ≤ max
ν∈F

(
inf

V ∈C(X)

(
P(F,S)(V + ϕ) −

∫
X

V dν

))

= sup
ν∈F

(
h(F,S) −

∫
X

ϕ dν

)

= − inf
ν∈F

I (ν),

where we used the dual Gibbs variational principle (because h is upper semicon-
tinuous).
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7. Large deviations lower bound. The large deviations lower bound is a
local property in the sense that it is equivalent to prove

lim inf
T →∞

1

T |ET | log m
{
x :RT (x) ∈ βν(V1, . . . , VK; δ)

} ≥ −I (ν)

= h(F,S)(ν) +
∫
X

ϕ dν

for all ν ∈ M1(X), V1, . . . , VK ∈ C(X) and δ > 0, denoting βν(V1, . . . , VK; δ) =
{µ : | ∫X Vk dµ − ∫

X Vk dν| < δ ∀1 ≤ k ≤ K}, because this gives the basis of the
weak-star topology on M1(X).

The idea for the lower bound is a geometric estimate, which comes from [33]
and is better expressed for an ergodic probability ν: We decompose the set
{x :RT (x) ∈ βν(V1, . . . , VK; δ)} in small balls Bx(T ,ET ; δ). We need approxi-
mately e(T |ET |h(F,S)(ν)) of them (by a metric version of the Shannon–McMillan–
Breiman theorem, stated as Theorem B.2) and each is approximately of size
e(T |ET | ∫X ϕ dν) under m (by the volume lemma and the ergodic theorem).

We will write it directly for convex combinations of ergodic measures. We need
for this a strong mixing result, the specification property. We obtain the general
case by an approximation argument.

7.1. Specification property. This strong quantitative mixing property is again
a consequence of the preservation of the expanding property.

PROPOSITION 7.1. If F satisfies (H2), then for all δ > 0, there exists p(δ) ∈ N

such that for any T1, . . . , TL ∈ N, x1, . . . , xL ∈ X and p1, . . . , pL−1 ≥ p(δ), there
exists x ∈ X such that

d
(
F t(x),F t(x1)

)
< δ ∀0 ≤ t ≤ T1,

d
(
F t+T1+p1(x),F t(x2)

)
< δ ∀0 ≤ t ≤ T2,

...
...

d
(
F t+∑L−1

l=1 (Tl+pl)(x),F t(xL)
)
< δ ∀0 ≤ t ≤ TL.

PROOF. We work in this proof with the global map F and the topology
associated to the distance d(x, y) = supi∈Zd di(x, y). Let

Vx(T ; δ) = {
y :d

(
F t(x),F t(y)

)
< δ ∀0 ≤ t ≤ T

}
be the dynamic neighborhood around the orbit of x. We want to show that

Vx1(T1; δ) ∩ F−T1−p1
(
Vx2(T2; δ)

)∩ · · · ∩ F−∑L−1
l=1 (Tl+pl)

(
VxL(TL; δ)

) �= ∅.
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By a simple induction argument, it is sufficient to show that for all x ∈ X, T ≥ 0,
0 < δ < 1

2M
, p ≥ p(δ) and A such that Int(A) �= ∅, we have

Vx(T ; δ) ∩ F−T −p(Int(A)) �= ∅ ⇐⇒ Int
(
FT (Vx(T ; δ)) ∩ F−p(A)

) �= ∅.

We can proceed as in the proof of Proposition 4.2 in the infinite-dimensional
case to get that for any α ∈ C[T,Z

d ] = {0, . . . , p − 1}[1,...,T ]×Z
d
, there exists

Aα(x) defining an infinite open partition of X [
⋃

Aα(x) = X] such that FT is
injective on Aα(x) with inverse branch F−T

α .
As in Section 4.2, if δ < 1

2M
, then Vx(T ; δ) ⊂ A0(x) and FT (Vx(T ; δ)) =

{y :d(F T (x), y) < δ} is a product of intervals of size 2δ around FT (x). In the
same way, F−T

0 is a contraction around the orbit of x,

d
(
FT −t (x),F−t

0 (y)
) ≤ 1

γ̃ t
d
(
FT (x), y

)
.

Then, if we construct the inverse branches of Fp around the orbit of FT (x), we
know that almost all points of X have a preimage by Fp at distance less than
1/(2γ̃ p) of FT (x) (because F

−p
0 is 1/γ̃ p contracting for the metric d). We choose

then p(δ) such that 1/γ̃ p(δ) < 2δ and get the specification property. �

7.2. Proof of the lower bound.

7.2.1. If ν /∈ M1
inv(X). In this case I (ν) = +∞; hence there is nothing to do.

7.2.2. If ν = ∑L
l=1 alνl with νl ∈ M1

ergX and
∑L

l=1 al = 1. For η > 0, T ≥ 1
and any 1 ≤ l ≤ L, we define

R̂l
T (x) = 1

�alT �|ET |
∑

0≤t<�alT �,i∈ET

δSi◦F t(x),

�l
T =

{
x : R̂l

T (x) ∈ βνl
(V1, . . . , VK; δ/4) and

∫
X

ϕ dR̂l
T (x) ≥

∫
X

ϕ dνl − η

}
.

Then by application of the ergodic theorem, we know that νl(�
l
T ) goes to 1 as

T tends to infinity. Hence, for a fixed 0 < b < 1, we choose T0 such that for any
T ≥ T0 and any 1 ≤ l ≤ L,

νl(�
l
T ) ≥ b.(50)

Using Theorem B.2, we take ε0 and T1 such that for all ε < ε0 and T ≥ T1, then
for 1 ≤ l ≤ L

1

�alT �|ET | logNl(�alT �,ET , ε, b) ≥ h(F,S)(νl) − η,(51)
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where Nl denotes the number of balls necessary to cover a set of νl measure b

[see (59) for the precise definition].
Let now ε < ε0/4 and T ≥ max(T0, T1). We can then choose for 1 ≤ l ≤ L

a set Sl
T ⊂ �l

T which is maximal (�alT �,ET ,4ε)-separated in �l
T . Hence, by

maximality, we have

�l
T ⊂ ⋃

x∈Sl
T

Bx(�alT �,ET ; 4ε),

and this gives, combined with estimates (50) and (51),

Card(Sl
T ) ≥ exp

(�alT �|ET |(h(F,S)(νl) − η
))

.

We use now the specification property (Proposition 7.1) to construct from these
sets Sl

T a set ST of points which are typical for ν. Indeed, for any choice
of x1 ∈ S1

T , x2 ∈ S2
T , . . . , xL ∈ EL

T , there exists a point which ε-follows the orbits

of each xl during time �alT �, precisely

dρ

(
Si ◦F

∑l−1
m=0�amT �+(l−1)p(ε)+t (x), Si ◦F t(xl)

)
< ε ∀0 ≤ t ≤ �alT �, i ∈ Z

d .

Let ST be the set of all such constructed points: as Sl
T are (�alT �,ET ,4ε)-sepa-

rated, then all constructed points are distinct; hence

Card(ST ) =
L∏

l=1

Card(Sl
T ) ≥ exp

(
|ET |

L∑
l=1

�alT �(h(F,S)(νl) − η
))

and ST is (T̂ ,ET ,2ε)-separated, with T̂ = ∑L
l=1�alT � + (L − 1)p(ε), which

implies

Bx(T̂ ,ET ; ε) ∩ By(T̂ ,ET ; ε) = ∅ ∀x �= y in ST .(52)

We choose then ε1 such that dρ(x, y) < ε1 implies that |ϕ(x) − ϕ(y)| < η and
|Vl(x)−Vl(y)| < δ

4 for all 1 ≤ l ≤ L. A direct computation ensures now that there
exists T2 such that for T ≥ T2, ε < ε1, 1 ≤ k ≤ K and x ∈ ST , then∫

X
ϕ dR̂T (x) ≥

∫
X

ϕ dν − 3η and
∣∣∣∣
∫
X

Vk dRT (x) −
∫
X

Vk dν

∣∣∣∣ ≤ 3δ

4
.

The last estimate implies that if x ∈ ST , then RT (x) ∈ βν(V1, . . . , VK; 3δ
4 ) and,

also, with previous estimate on Vk ,

Bx(T̂ ,ET ; ε) ⊂ Bx(T ,ET ; ε) ⊂ {
y :RT (y) ∈ βν(V1, . . . , VK; δ)

}
.

We associate this with disjunction of such balls stated in (52), the lower bound of
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the volume lemma and estimates for the cardinal of ST to get

m
{
y :RT (y) ∈ βν(V1, . . . , VK; δ)

}
≥ ∑

x∈ST

m
(
Bx(T̂ ,ET ; ε)

)

≥ ∑
x∈ST

C2(T̂ ,ET , ε, ρ) exp
(
T̂ |ET |

∫
X

ϕ dR̂T (x)

)

≥ C2(T̂ ,ET , ε, ρ) exp

(
|ET |

L∑
l=1

�alT �(h(F,S)(νl) − η
))

× exp
(
T̂ |ET |

∫
X

ϕ dν − 3η

)
.

Then

lim inf
T →∞

1

T |ET | logm
{
y :RT (y) ∈ βν(V1, . . . , VK; δ)

} ≥ h(F,S)(ν) +
∫
X

ϕ dν − 4η,

because 1
T

∑L
l=1�alT �h(F,S)(νl) tends to h(F,S)(ν) and T̂

T
to 1 as T goes to infinity.

It suffices then to let η tend to zero.

7.2.3. If ν ∈ M1
inv(X). We want to approximate such a probability measure

by ν̄ = ∑
alνl from the previous case with a good control on the entropy. For this

we take η > 0 and fix ε such that

distM1(X)(τ1, τ2) < ε ⇒




∣∣∣∣
∫
X

Vk dτ1 −
∫
X

Vk dτ2

∣∣∣∣ < δ

2
, ∀1 ≤ k ≤ K ,∣∣∣∣

∫
X

ϕ dτ1 −
∫
X

ϕ dτ2

∣∣∣∣ < η.

We choose then P = {P1, . . . ,PL} a partition of M1(X) with diameter less than ε.
We know by the ergodic decomposition theorem (Theorem 2.3.3 in [18]) that there
exists a probability π on M1(X) concentrated on M1

erg(X) and such that ν =∫
M1(X) τ π(dτ ). We take, for 1 ≤ l ≤ L, al = π(Pl) and νl ∈ Pl ∈ M1

erg(X) such

that h(F,S)(νj ) ≥ h(F,S)(τ ) − η for π -almost all τ ∈ Pl . Then, with ν̄ =∑L
l=1 alνl ,

we have

h(F,S)(ν̄) ≥ h(F,S)(ν) − η,∫
X

ϕ dν̄ ≥
∫
X

ϕ dν − η,

βν̄(V1, . . . , VK; δ/2) ⊂ βν(V1, . . . , VK; δ).
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This implies

lim inf
T →∞

1

T |ET | logm
(
y :RT (y) ∈ βν(V1, . . . , VK; δ)

)

≥ lim inf
T →∞

1

T |ET | log m

(
y :RT (y) ∈ βν̄

(
V1, . . . , VK; δ

2

))

≥ h(F,S)(ν̄) +
∫
X

ϕ dν̄ ≥ h(F,S)(ν) +
∫
X

ϕ dν − 2η

and we conclude letting ε then η tend to 0.

APPENDIX A

Convergence of subsequences of Z
d . We introduce in this appendix two

different notions of convergence for subsets of Z
d and their main properties.

DEFINITION A.1. A sequence (En)n≥0 of finite subsets of Z
d tends to Z

d in
the sense of Van Hove if limn→∞ |En| = ∞ and

lim
n→∞

|(En + i)�En|
|En| = 0 ∀ i ∈ Z

d(53)

[where � denotes the symmetric difference of sets, A�B = (A \ B) ∪ (B \ A)].

If E is a finite subset of Z
d , we define enlarged and restricted sets in Z

d by

E(l) =
{ {j :d(j,E) ≤ l}, for l ≥ 0,

{j :d(j,EC) > −l}, for l < 0.
(54)

We have then three properties of sequences tending to Z
d in the sense of Van Hove:

PROPOSITION A.1. If (En)n≥0 tends to Z
d in the sense of Van Hove, then:

1. For all l ∈ Z, (E
(l)
n )n≥0 tends to Z

d in the sense of Van Hove and

lim
n→∞

|E(l)
n |

|En| = 1.(55)

2. For all τ < 1,

lim
n→∞

1

|En|
∑

j∈En

τ d(j,EC
n ) = 0.(56)

3. For all τ < 1,

lim
n→∞

1

|En|
∑

j∈EC
n

τ d(j,En) = 0.(57)
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PROOF. 1. For l ≥ 1, we have

En ⊂ E(l)
n = ⋃

j∈�l

(En + j),

such that E
(l)
n \ En =⋃

j∈�l
(En + j) \ En; hence

1 ≤ |E(l)
n |

|En| = 1 + |E(l)
n \ En|
|En| ≤ 1 + ∑

j∈�l

|(En + j) \ En|
|En| −→

n→∞ 1

by definition of the convergence in the sense of Van Hove (see Definition A.1).
In the same way, (E

(l)
n + k) \ E

(l)
n ⊂⋃

j∈�l
(En + j + k) \ En, then

|(E(l)
n + k) \ E

(l)
n |

|E(l)
n | ≤ |En|

|E(l)
n |

∑
j∈�l

|(En + j + k) \ En|
|En| −→

n→∞ 0.

We proceed similarly for E
(l)
n \ (E

(l)
n + k) = k + (E

(l)
n − k) \ E

(l)
n and get that E

(l)
n

tends to Z
d in the sense of Van Hove.

For l ≤ −1, we have the description

E(l)
n = ⋂

j∈�−l

(En + j) ⊂ En

and computations are similar to those for l ≥ 1.
2. For any ε > 0, we choose k ≥ 0 such that

∑
l≥k τ l ≤ ε/2 and write the sum

in terms of the subsets (E
(l)
n )l≤−1,

1

|En|
∑

j∈En

τ d(j,EC
n ) = ∑

l≥1

|E(1−l)
n \ E

(−l)
n |

|En| τ l

=
k−1∑
l=1

|E(1−l)
n \ E

(−l)
n |

|En| τ l +∑
l≥k

|E(1−l)
n \ E

(−l)
n |

|En| τ l

≤ |En \ E
(1−k)
n |

|En| + ε

2
,

where we used τ < 1 in the first term and |E(1−l)
n \ E

(−l)
n | ≤ |E(1−l)

n | ≤ |En| in the
second. By (55), the first term goes to 0, hence for n great enough,

1

|En|
∑

j∈En

τ d(j,EC
n ) ≤ ε.

3. We use in this case the fact that
∑

l≥0 |�l|τ l = ∑
l≥0(2l + 1)dτ l converges.

Hence, for ε > 0, we choose k ≥ 0 such that
∑

l≥k |�l|τ l ≤ ε/2 and decompose
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EC in the subsets (E(l) \ E(l−1))l≥1. Then

1

|En|
∑

j∈EC
n

τ d(j,En) = ∑
l≥1

|E(l)
n \ E

(l−1)
n |

|En| τ l

≤ |E(k−1)
n \ En|

|En| + ε

2
,

since |E(l)
n \ E

(l−1)
n | ≤ |E(l)

n | ≤ |�l||En|. We conclude then as in 2. �

Convergence in the sense of Van Hove is too wide to use some existing results
of ergodic theory, in particular, the ergodic theorem and the theorem of Shannon–
McMillan–Breiman. We need to restrict the class of subsets to get the whole large
deviations results:

DEFINITION A.2. The term (En)n≥0 is a special averaging sequence if it is
increasing, it tends to Z

d in the sense of Van Hove and there exists R > 0 such that

|En − En| ≤ R|En| ∀n ≥ 0.(58)

We will use the following straightforward result to apply results from ergodic
theory.

PROPOSITION A.2. If (ET )T ≥1 is a special averaging sequence in Z
d , then

([0, T − 1] × ET )T ≥1 is a special averaging sequence in N × Z
d .

REMARK. We could use some recent results of Lindenstrauss to work with
tempered sequences, a notion more general than special averaging sequences. He
proved indeed [21, 22] that the ergodic results we use remain valid in this context.

APPENDIX B

Thermodynamic formalism. We present in our setup the main definitions
and the results we need from thermodynamic formalism. For a more general
approach and all the proofs, we refer to the well-written expository book by
Keller [18] (and to [26] for proofs of the ergodic theorem and of the Shannon–
McMillan–Breiman theorem).

B.1. Entropy. For A = {A1, . . . ,AK} and B = {B1, . . . ,BL} finite partitions
of X, let

A ∨ B = {Ak ∩ Bl : 1 ≤ k ≤ K,1 ≤ l ≤ L}.
Then, for ν ∈ M1

inv(X), ET a sequence tending to Z
d in the sense of Van Hove

and A a partition, we define:
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• h(ν|A) = −∑
A∈A ν(A) log(ν(A)) and AT =∨

0≤t<T,i∈ET
F−t ◦ S−i (A),

• h(F,S)(ν|A) = limT →∞(1/T |ET |)h(ν|AT ),
• h(F,S)(ν) = sup{h(F,S)(ν|A) :A finite partition of X}.
This last quantity is the metric entropy of ν under (F,S), which does not depend
on the choice of the sequence (ET )T ≥0.

PROPOSITION B.1.

1. The function h(F,S) is convex affine, h(F,S)(
∑L

l=1 alνl) = ∑L
l=1 alh(F,S)(νl)

when
∑L

l=1 al = 1.

2. For ν ∈ M1
inv(X) and for any partition A such that ν(∂A) = 0 and diam(A) <

δ0 = 1
2M

, we have

h(F,S)(ν) = h(F,S)(ν|A).

3. The function h(F,S) is upper semicontinuous.

The last two properties are consequences of the expansiveness of the system
stated in Proposition 4.5 (see Theorem 4.5.6 in [18] and its proof).

A well-known result about entropy is the Shannon–McMillan–Breiman theo-
rem, which expresses the fact that for an ergodic measure, entropy precisely de-
scribes the asymptotic size of elements of the partition:

THEOREM B.1 (Shannon–McMillan–Breiman). If ν ∈ M1
erg(X), A is a finite

partition and (ET )T ≥0 is a special averaging sequence, then for ν-almost all x,

− log ν(AT (x))

T |ET | −→
T →∞h(F,S)(ν|A),

where AT (x) denotes the element of the partition AT which contains x.

We use in our proof of the lower bound of large deviations a metric equivalent of
this theorem, which states that for an ergodic measure, the metric entropy describes
the number of balls necessary to cover a significant set. For T ≥ 0, δ > 0, 0 < b < 1
and (ET )T ≥0 a special averaging sequence, we denote

N(T,ET ; δ, b) = min

{
Card(Y ) :ν

( ⋃
x∈Y

Bx(T ,ET ; δ)

)
> b

}
(59)

[see the definition of Bx(T ,ET ; δ) in formula (9)]. We call a set Y as in the
definition a (T ,ET ; δ, b)-covering set for ν.
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THEOREM B.2. If ν ∈ M1
erg(X) and (ET )T ≥0 is a special averaging

sequence, then for all 0 < b < 1,

lim
δ→0

lim inf
T →∞

1

T |ET | log N(T,ET ; δ, b)

= lim
δ→0

lim sup
T →∞

1

T |ET | log N(T,ET ; δ, b) = h(F,S)(ν).

This result for the single map case is from [16]. A proof of our generalization
to the lattice setup can be found in [2], where it was adapted from [29].

B.2. Topological pressure. A set Y ⊂ X is (T ,E; δ)-separated if

x, x′ ∈ Y,x �= x′ �⇒ x′ /∈ Bx(T ,E; δ).

It is separated maximal if it is maximal for this separation property.
We define then for V ∈ C(X), (ET )T ≥0 a sequence tending to Z

d in the sense
of Van Hove and Y ⊂ X finite,

P(F,S)(V ;T,Y ) = log
∑
x∈Y

exp

( ∑
0≤t<T,i∈ET

V ◦ Si ◦ F t(x)

)
.

Then

P(F,S)(V ) = lim
δ→0

lim sup
T →∞

1

T |ET | sup
{
P(F,S)(V ;T,Y ) :Y is (T ,ET ; δ)-separated

}

= lim
δ→0

lim sup
T →∞

1

T |ET | sup
{
P(F,S)(V ;T,Y ) :

Y is (T ,ET ; δ)-separated maximal
}

is the topological pressure of V for the dynamic of (F,S). This definition is
independent of the choice of the sequence (ET ). The main result for this quantity
is the Gibbs variational principle, which expresses it as a variational expression of
the entropy:

THEOREM B.3 (Gibbs variational principle). For any V ∈ C(X),

P(F,S)(V ) = sup
ν∈M1

inv(X)

(
h(F,S)(ν) +

∫
X

V dν

)
,(60)

and, since h(F,S) is convex affine and upper semicontinuous in our case, for any
ν ∈ M1

inv(X),

h(F,S)(ν) = inf
V ∈C(X)

(
P(F,S)(V ) −

∫
X

V dν

)
.(61)
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DEFINITION B.1. The equilibrium measures associated to the dynamical
system (F,S) and to a potential V ∈ C(X) are the invariant measures which
realize the supremum in the variational principle (60).

APPENDIX C

Generating function method for the iteration sequence. For δ > 0, γ > 1
and (αk) a sequence of nonnegative reals, let u(l, t) be defined for l ∈ Z and t ∈ N

by

u(l, t) =




1

2
, if l < 0,

δ, if l ≥ 0, t = 0,
1

γ
u(l, t − 1) + 1

γ

∑
k≥0

αku(l − k, t), if l ≥ 0, t > 0.

(62)

We have then for such a sequence:

PROPOSITION C.1. Suppose there exists θ < 1 such that for any k ≥ 0,
αk = θkα̃k and denote S =∑

k≥0 αk and S̃ = ∑
k≥0 α̃k . Then, under the assumption

γ − S̃ > 1,

we have for all l ≥ 0 and t ≥ 0,

u(l, t) ≤ δ

(γ − S)t
+ θl+1 S̃

2(γ − S̃ − 1)
.(63)

PROOF. We solve this equation by a generating function method (see [32] for
a general introduction and many useful tools). Let f (x, y) be the formal series
defined by

f (x, y) = ∑
l≥0,t≥1

u(l, t)xlyt .

Then the inductive definition of u(l, t) implies for f ,

f (x, y) = ∑
l≥0,t≥1

(
1

γ
u(l, t − 1) + 1

γ

∑
k≥0

αku(l − k, t)

)
xlyt

= δy

γ

∑
l≥0

xl + y

γ

∑
l≥0,t≥1

u(l, t)xlyt + 1

γ

∑
l≥0,t≥1

(
l∑

k=0

αku(l − k, t)xl

)
yt

+ 1

2γ

∑
l≥0,t≥1

(∑
k>l

αk

)
xlyt
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= δy

γ

∑
l≥0

xl + 1

2γ

∑
l≥0,t≥1

Rlx
lyt + 1

γ

(
y + ∑

k≥0

αkx
k

)
f (x, y)

=
(

δy

γ

∑
l≥0

xl + 1

2γ

∑
l≥0,t≥1

Rlx
lyt

)(
1 − 1

γ

(
y + ∑

k≥0

αkx
k

))−1

,

where Rl =∑
k>l αk . We formally invert this expression, using that

(
1 − 1

γ

(
y + ∑

k≥0

αkx
k

))−1

= ∑
n≥0

n∑
u=0

(
n

u

)
1

γ n
yu

(∑
k≥0

αkx
k

)n−u

= ∑
u≥0,h≥0

(
u + h

u

)
1

γ u+h
yu

∑
k1,...,kh≥0

αk1 · · ·αkh
xk1+···+kh

= ∑
n≥0,u≥0

(∑
h≥0

(
u + h

u

)
1

γ u+h

∑
k1,...,kh≥0,k1+···+kh=n

αk1 · · ·αkh

)
xnyu.

Hence, using in the upper bound that Rl−n ≤ θl−n+1S̃ , we get

u(l, t) = δ

γ

l∑
n=0

(∑
h≥0

(
t − 1 + h

t − 1

)
1

γ t−1+h

∑
k1,...,kh≥0,k1+···+kh=n

αk1 · · ·αkh

)

+ 1

2γ

∑
0≤n≤l,0≤u<t

Rl−n

(∑
h≥0

(
u + h

u

)
1

γ u+h

× ∑
k1,...,kh≥0,k1+···+kh=n

αk1 · · ·αkh

)

≤ δ

γ t

∑
h≥0

(
t − 1 + h

t − 1

)(
S

γ

)h

+ θl+1

2γ

∑
u≥0

S̃

γ u

∑
h≥0

(
u + h

u

)(
S̃

γ

)h

= δ

(γ − S)t
+ θl+1 S̃

2(γ − S̃ − 1)
. �

REMARK. We obtained in fact in the course of the proof an exact (but
complicated) expression for the sequence u(i,t).
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