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SYMMETRIC STABLE PROCESSES STAY IN THICK SETS'

By JANG-ME1I WU
University of Illinois, Urbana—Champaign

Let X (¢) be the symmetric a-stable process in R O<a<2,d=2).
Then let W(f) be the thorn {x € R?:0 < x; < 1, (x3 + -+ x)!/% <
f(x1)} where f:(0,1) — (0, 1) is continuous, increasing with f(07) = 0.
Recently Burdzy and Kulczycki gave an exact integral condition on f for
the existence of a random time s such that X(#) remains in the thorn
X(s)+ W(f) forall t € [s,s + 1). We extend their theorem to general open
sets W with 0 € dW. In general, a-processes may stay in sets which are quite
lacunary and are not locally connected at 0.

1. Introduction. Let X (z) be the symmetric a-stable process in R40 <
a<2,d>2), f:(0,1) — (0,00) be a nondecreasing left-continuous function
satisfying f(07) =0 and W(f) be the thorn {x € RY:0 <x; <1, (x% + .4+
xﬁ)l/ 2 < f(x1)}. In [4], Burdzy and Kulczycki give an exact integral condition
on f for the existence of a random time s such that X (¢#) remains in the thorn
X(s)+ W(f) foralltel[s,s+1).

In this note we extend their theorem on thorns to general open sets having 0
on the boundary. These sets need not be locally connected at O and can be quite
lacunary; this is possible due to the jumping property of the symmetric «-stable
process.

This line of investigation is motivated by the existence of cone points for
Brownian paths. For literature and some unsolved cases, see [3].

Let W be an open set in R? that contains 0 on its boundary, (2, P) be the
probability space on which X (¢) is defined, #p > 0 and

AW) = {a)e Q:3s =s(w) > 0 such that X (¢, w) € X(s,w) + W
forall 7 € [s,s +10)}.

We say w € Q2 has a W-point if w € A(W) for some 7y > O.

Let
1 a+d—1
I(f):/0 Ldr.

rot+d

The theorem of Burdzy and Kulczycki [4] says that if I ( f) = oo, then a symmetric
a-stable process has W ( f)-thorn points a.s., and if I (f) < oo, then an a-process
has no W ( f)-thorn points a.s.
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THEOREM A. Forany ty > 0,

@O PAAW())) =1ifI(f)=o0cand

(i) PCAW(f)) =0ifI(f) <oo.

. . . y—kya+d—1

It is clear that I (f) < oo if and only if ) 72, ];;_k)ﬁ < 00.

For an arbitrary open set W with 0 € 0W, we give in Theorem 1 a thickness
condition on W under which P(A(W)) =1 and in Theorem 2 a thinness condition
on W under which P(A(W)) = 0. These are natural extensions of Theorem A, and
the proofs follow the same structure. The proof in [4] uses very precise harmonic
measure estimates obtained by comparing sections of thorns with cylinders; here
we must rely on very general estimates and make more use of the jumps. Unlike
thorns, general sets do not point in a specific direction, and the uncertainty of the
starting time s(w) gives rise to a problem which cannot be solved by shifting the
set W along an axis; these complications are handled by putting bands around W.

The conditions in Theorems 1 and 2 do not match and are complicated (see
Section 3); however, in the case of thorns and also the examples below, they are
sharp.

EXAMPLE 1 (Lacunary rings). Let W = U?ozl{Z_f <|x| <2771 +48;)} with

0<4; < % satisfying
8j2_j < 827" whenever §;,6; >0 and j>i.

Then:

() PAW))=1if 55" = o0 and

(i) P(A(W))=0if Zaj‘“ < 0.

In this example, we allow §; to be 0 infinitely often.

EXAMPLE 2 (Blocks of varying shape). Let m(j) be integers in [1, d] and §;
be numbers in [0, %) satisfying
(1.1) 8,27/ <827"  whenever$;,8; >0 and j>i.

Let Q; be a rectangular cube contained in {%Z_j < x| < %2_1 } obtained by
translation and rotation of (0,8,;27/73//d )"V . (0,277 =5 //d)4=m)(Q; = ¢
when §; =0); and let W = J7° Q;. Then:

@) PAW)) =1if ¥857" = 00 and
(i) P(AW)) =0if ¥857"Y < oo,

In this example, we allow §; to be 0 infinitely often.
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EXAMPLE 3 (Scattered cubes). Let {r}g° and {e}7° be decreasing sequences
of positive numbers so that ro = g9 =1, & < 1L0’ (exri)~ ! is a power of 2,
Ni = ex—1rk—1/ 7k is an odd integer and SZ_HX <N %, forany k > 1.

All cubes here have edges parallel to the coordinate axes. Let Qg = (—%, %)d,
Co={Q0p} and G(’) = ¢. After Q;, C; and Cj have been defined for 0 < j <k — 1
with £(Q ) = ¢;r;, we subdivide Qi into a collection & of N,f subcubes of side
length ry each. G, consists of those cubes having side length e;r and concentric to
those in 4; let Qy be the cube in Ci that contains the origin 0 and @,’( = Cr \ { Ok}
For future discussion, we also choose and fix one cube from C; that is closest
to Qk; callit Q;. Let

oo
w-U U e
k=1 gee;

Then

(i) P(AW))=1if Y ¥ =00 and
(ii) P(AW))=0if Y ef ™ < cc.

Section 2 contains properties of symmetric a-stable processes needed later,
Section 3 contains the main theorems; proofs of Theorems 1, 2 and examples are
given in Sections 4, 5 and 6, respectively.

2. Preliminaries. A symmetric a-stable process X on R? is a Lévy process
(homogeneous independent increments) whose transition density p(z, x) is unique-
ly determined by its Fourier transform, [pa e Ep(t,x)dx = e "EI" . Here o must
be in (0, 2]. When « = 2, it is the Brownian motion except for a linear time change.
From now on, symmetric «-stable processes are restricted to the case 0 < o < 2.
Denote by (€2, P) the probability space on which X (¢) is defined. Sample paths
are discontinuous, and are right continuous with left limits a.s. [1, 2].

In the following, B(x, r) is the ball centered at x of radius r, and |S| is the
Lebesgue measure (volume) of the set S. We use ¢ (or ¢’) to denote positive
constants depending at most on d and «, c(-) to denote positive constants
depending on d, o and the variables in the parentheses and C;, j =1,2,..., to
denote specific constants depending on d and « only. We write a < b whena/b <c
for some constant ¢, and a = b whena < b and b < a.

As usual E¥ is the expectation with respect to the process starting from x € R?.
For any open set D in R?, XP is the symmetric a-stable process killed upon
leaving D and tp = inf{t > 0: X (¢) ¢ D} is the first exit time.

For any x € D, the o-harmonic measure w” (-, D) is a measure on D¢ defined
by

w (A, D) = P*(X(tp) € A), A C DS
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it is monotone in D; that is,
W*(A, D) <pu*(A,D)  ifDCD.
In the case of a ball B = B(0, r), it was shown by M. Riesz that

2.1 du*(y, B) =kp(x,y)dy,
where
c (ﬂ)a/zw N
kp(x,y) = ly|? —r2
0, ly| <r.

Note, from (2.1) and the monotonicity that
w*(S,D)=0 if S is a sphere in D°.
Denote by G the Green function of X; that is,

o0
G(x,y) =/ pt,x — y)dt = Colx — y| 4+
0
and denote by G p(x, y) the Green function of X D that is,

Gotxn) =Col eyl [y aw@.p)]  YryeDxy.

Gpx,x)=occif x € D and Gp(x,y) =01in (D x D)¢ and the Green function
has the scaling property

—Ol+dG

Gp(x,y)=a ap(ax,ay), a > 0;

and for any measurable f > 0 on D,

E"[/Df@(s))ds}:/ GoG.y)f()dy  VxeD.
0 D

In particular,

EX(ID)=/D Gp(x,y)dy VxeD.

It is well known that

(2.2) EX(TB(x’r)) = Cszr®
and
(2.3) E*(tp) S 1D/,

For any bounded measurable ¢ > 0 on D¢,

Gol,
Q4 EI$(X () X(wp) # X(ep )| =Cs [ [ lyﬁ(fxldﬂdw(z)dz,
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where X (tp-) = lim;y¢, X (¢) exists a.s. [5]. Note from (2.4) and X (tp-) € D
that for x € D and A C D°,

Gpl(x, )’)
(2.5) W (A, D) = 04/ fD 2t dydz
and
(2.6) w*(A, D) < E¥(tp)dist(A, D)% 9| A].

When max{diam D, diam A} < adist(A, D), we obtain from (2.5) the following
estimate:

2.7) (A, D) = c(a) E* (tp) dist(A, D)%) A|.
We shall use (2.7) repeatedly for X having certain prescribed jumps.

3. Theorems. Let W be an open set with 0 € 9W.
THEOREM 1. Suppose that
(3.1) /W E*(tw)|x| 7“4 dx = 00
then P(A(W)) =1.

In the case of a thorn W(f), E*(tw(r)) = f(x1)® for any x satisfying (x% +
x5+ +x2)% < £(x1)/2; hence

1 f(r)oH-d—l
EX —o—d ;/ A
/W(f) (Tw(p)lxl ,  gard 4T

Therefore for thorns, Theorem 1 is equivalent to Theorem A(i).
For general open sets W, it is unclear whether

(3.2) /W E*(tw)|x| ™% dx < o0

implies P(A(W)) =0.
Before stating the thinness conditions under which P(A(W)) = 0, we need
a few definitions. For any positive integers j and n, let

W()=Wn{x| <27/},
W =wn{27/ " < x| <277},
p(j) =max{i <j—2:W*(i) # ¢},
W, = {x:dist(x, W) <27"} =W + B(0,27"),
Wa(j) = W, N{lx] <277},
Wi(j)=W,N{277 72 < |x| <27}
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and
pa(j) =max{i < j —2: W, (i) # o).
For x € W (), define
(33) AW, )= (WH(p(j)), W(j — D)2 PDEF = (p(j))|~!
and
(3.4) A(W, j) =sup{A* (W, j):x € W*(j)}

for x € W, (j); the expressions A* (W,,, j) and A(W,, j) are defined analogously.

REMARK 1. The quantity A*(W, j) is a substitute for E*(ty) and is
comparable to E*(ty) when W(j — 1) and W*(p(j)) are separated by a large
ring. In fact,

(3.5) MW, DEE (tw—n)  ifp()<j—2
and
MW, ) Z E (twii—-1) ifp(j)=j—-2

the equivalence relation in the case p(j) < j — 2 follows from (2.7) and the fact
that |y —z| =277 fory e W(j — 1) and z € W*(p(j)). When p(j) = j —2 and
W(j — 1) and W*(j — 2) are separated by a ring {a < |x| < b} of width b — a at
least 827/, we have

(3.6) MW, j) = c(B)E  (tw(j-1))-

THEOREM 2. Let W be an open set with 0 € 0W. Suppose that there is an
infinite collection A of (n, i) with integers n > i > 0, satisfying W*(i) # ¢
3.7) WO(WEG), Wai + 1) = 1O(WEG). BO,27))

and for each ¢ > 0, there exists K so that

(3.8) S AW R WEDI<e Y (n.i) € A,
=K

Then P(A(W)) =0.

Condition (3.8) measures the thinness of W in the manner of (3.2). Condition
(3.7) is introduced for technical reasons; it says that the probability of the process
landing in W(i) upon leaving W, (i + 1) is equivalent to that of the process
jumping directly from the ball B(0,27") to W," (7). It would be desirable to remove
(3.7) or to replace it by a geometric condition.
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The reason for expanding W to W, is to surround the path X (¢), t > s(w), when
the initial position X (s(w)) can only be located to within a ball of radius 27".
For sets with certain geometric characteristics, for example, thorns or those in
Examples 1-3, the enlargement plays a minor role. However, when the set is
scattered, W, can be substantially larger that W. An assumption such as (3.2)
does not guarantee the boundedness of Z;?:i AW, j Y2~/ )_"_d [W>(j)|; and the
series Z?":nﬂ AW, j)(2_j)_"_d|W,;" (7)| is always infinite. For this reason, the
portion of W in {27 < |x| <27/} needs to be considered separately, using (3.7).

Conditions (3.7) and (3.8) are used for all open sets; therefore they are
complicated and the geometrical implications are less apparent. We now examine
these conditions on sets having special characteristics.

(A) When volumes |W;(j)| change very regularly,
< IWEDI/IWEG+Dl<e  ¥n,j=1.
Note from (3.3) and (3.4) that (3.8) is equivalent to

1

sup (W, (j—2), WG —1) <e  Vni).
j:KXEW,T(])

(B) For open sets W whose complement R?\ W contains a sequence of uniformly
fat rings going to 0, for example,

o
ROAWD {327/ <Ix| <277},
j=1
it follows from (3.5) and (3.6) that (3.8) is equivalent to

1
> (s Ef(wgn) )@ WG <e Vo)
j=K “\XEW()

(C) For thorns W(f), I(f) < oo implies (3.7) and (3.8). Consider only pairs
(n, i) satisfying
(3.9) f@H2<2 < f27.

Lemma 4.5 in [4] yields (3.7). Kulczycki has shown that for all thorns, with no
assumption on 7 (f),

(WG =2, W@ — 1) S E*(tw(—1) @D W*(j — 2)]|
Vx e W(j).

Since E* (tw(j—1)) S fQR7/TH% and [W*(j —2)| < £ 27147127/, we obtain,
from I(f) < oo,

Y AW, HRTH W) < oo.
j=1
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Since (3.9) implies W, N {|x| > 271} C {x:(x3 + -+~ + xHY2 < 3f(x1)},
condition (3.8) holds for all such pairs (n, i).

4. Proof of Theorem 1. We follow the proof of Theorem A(i) in [4] and
give details at two crucial points for general open sets. The key to the proof
is (4.1); roughly it says that when W is thick at 0, in order to travel from
W N {|x] <e}(e >0 small) to W N {|x| > %} without leaving W, at least half
of the paths must pass W “section by section” without making extremely long
jumps. The reasoning which leads to (4.1) for general sets uses harmonic measure
estimates for paths with prescribed jumps (2.7). For @ € , the starting time s(w)
for the path X (¢, w) to stay in X (s(w)) + W fora given period of time is chosen as
a limit of a sequence; and the continuity (4.6) of X at s(w) is essential. Details on
the continuity are given for the sake of completeness, since W need not be locally
connected at 0.

We assume as we may that W C {|x| < }‘}, and let {a, } be a sequence of integers
with a; =2 and a, 1 > 5+ a,. Let

Win]l=W N {|x| <27}
and
W¥nl=WN{27%+ < |x| <27 %},

Note that W = W[1], W[n] = W(a,) and W*[n] # W*(a,). Let also ag = 0,
W*[0] = {3 < Ix| <1}.

Define
Fy = {X1y,,, € W01}
and
Fop1 = {Xoyp oy € WRI N6, Foy  n>1,

where 6 is the shift operator. Note on the set {er[n 4 € W*[n]}, we have

00 (X € WHn — 11}) = {X ey, € W¥[n — 11}. So

TWin+1]

n+1
Fori = [ {Xeypm € W¥lm —11}.
m=1
LEMMA 1. Under assumption (3.1), the sequence {a,} can be chosen so that
(4.1) P*(Fy) > sP*(F)) VneN; and xeWnl.
PROOF. Let H, = F1 \ F}. Inequality (4.1) follows from the following:

4.2) P*(H,) < %P"(Fn) VieN, and xeWnl.
n
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Recall that ap = 0 and a; = 2, and that (4.2) holds trivially for n = 1. Suppose
that a,,’s have been selected and (4.2) has been verified for n = 1,2, ...,m; we
shall choose ay,+1 and verify (4.2) for m + 1. Consider any a,,+1 > 5 + a,, and
x € W[m + 1]. Then

—1+am 41
X,
P (FusD)= > E*(Xeypey € WHk); PTWInt11(Fy))
k=ap
_2+am+1
> Y E (Xeypen € WHR 5P ().
k=34an
Note from (2.4) that
—2+am+1
GW 1, y)
Pz Y [ Wt 02 Y pz () dz dy.
k—3ra, ¥ Wimt11JW*k) z|

Since dist(z, W*[0]) = 1 and |y — z| = |z| for z € W*(k) and y € W[m + 1], and
P*(Fy) = n*(W*[0], W) = E*(tw) by (2.7), we have

—2+am+1

E*(tw)
4.3) P*(Fpt1) 2 E* (twim+1)) Z / et
k=3+an W= (k) |Z|

On the other hand, it follows from (2.6) and the induction hypothesis that for
any x € Wim + 1],

P*(Hpyy1) = P*(F1, X e W¥ml, (6,1 F,))

TWim+1] TWim+1]" ™
4.4) + Px(Fl, X twimin & W*lm])
< P*(Fps1) + Q) ™% E¥ (Tyy 1)

m+1
The argument is adopted from (3.4) and (3.5) in [4], where only the boundedness

of the thorn is used in the proof. From (4.3), (4.4) and the assumption (3.1), it
follows that if a,, 4 is large enough then

m+1
P*(H, <
( m+1)_m+2

This completes the proof of Lemma 1. [J

P*(Fpy1)  VxeWm+1].

Fix {a,,}go as in Lemma 1, and choose a point y, in each W*[n]. As in [4],
define for 1 <k <n,

S=inf{t > 0: X (1) ¢ X(0) — y, + Wln —k + 1]}

Then S7 < 85 <--- < §,. Let R, be the first S} such that X(S}}) ¢ X(0) — y, +
W*[n — k] if it exists; otherwise let R, =inf{r > 0: X (¢) ¢ X(0) — y,, + W}.
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Following the argument of Lemma 3.3 in [4] and using the Markov prop-
erty, (2.6) and Lemma 1 above (in place of Lemma 3.2 in [4]), we obtain
(4.5) E(Ry) = E™ (tw) S (W, t0) P(Rn = 19).
Define for n > 1, a sequence of stopping times as follows: 7(0,n) =0,

T(j,n)+ (R, Atg) oO7r¢in, if T(j,n) <1,
T(j—}—l,n):{ (J_ ) + (Ry Ato) 0 Or(j.n) ' (J_ ) <t
T(j,n), it T(j,n) = to;
define also
F(j,n)={weQ:T(j+1,n) —T(j,n)=to}
and
o0
H,=|]J F(j.n).
j=0
LEMMA 2. There exists a positive constant c(W, ty) so that
P(H,) > c(W, 1) Vn>1.
PROOF. Unlike the situation in [4], condition (3.1) does not imply E(R,) — 0
as n— oo. For each n > 1, we consider two possibilities: E(R,) < f9/10
or E(R;) > 19/10. In the first case, choose an integer m, such that 7p/4 <

mpE(R,) < ty/2, and then proceed as in [4]. When E(R,) > t9/10, we note
from (4.5) that

P(Hy) > P(F(0,n)) = P(T(1,n) =t9) = P(Ry > to)
>c(d,a, W,10)E(Ry) > c'(d,a, W, 1p).
Let
H =limsup H,

n—oo

and
A% = [weQ:3s5 =5(w) €0, 1)
such that X (r, w) € X (s, w) + W forall r € [s, s + to)}.

In view of Lemma 2 and the fact that H,’s are independent, to prove the theorem,
it is sufficient to check H C AV,

Assume that w € H. Then there exist sequences {ji} and {n;} (depending on w)
so that n; 1 oo, w € F(ji,ni), and s = T (ji, nx) converges to some s € [0, f].
The crucial step in proving w € A is to verify the continuity of X at s

(4.6) th_r)rz X () =X(s).
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After that, w € A? follows easily.

To this end, we may assume that {sx} is monotone and consider only the case
when {s;} is strictly increasing; the decreasing case is analogous and simpler.
Since X is right continuous and has left limits, both X (s) = lim; ; X(¢) and
X (s—) =lim;45 X (¢) exist.

Assume that X (s) # X (s—), and choose m so that

27 < |X(s) — X(s—)|/8.
Choose § € (0, f9/2) so that
IX(1) — X(s—)| <279 +173  Vie(s—86,s)
and choose kg so that if kK > kg then s, € (s — 8, 5); thus
1X (s) — X (s—)| <27 %m+173,

Fix an integer k > kg, with ny > m + 2. Since w € F (jk, ng), it follows that for
1 € [sk, sk +10),

X)) e X(k)—yn +W

and that if X () leaves X(sx) — yo, + Wlpl (1 < p < ny), then it goes to
X (sx) — Yy + W*[p —11.
Consider t € [sg, s); then t isin (s — J, 5) N [sk, Sk + fo); therefore

X (1) = X(sp)] <2712
and

X(t) € X(sk) — yn, + W.
Hence

X(1) € X(sk) =y + Wim +11 Vi € [sg, ),
which implies that
X(s) € X(sk) — yn, + Wlml.
Consequently,
1X(s) = X(s=) = X (s) = X ()] + [ X (s50) — X (s—)]
<27 * <X (s) = X (s0)1/2,

which is impossible. Therefore X (s) = X (s—) and the continuity (4.6) follows.
This completes the proof of Theorem 1. [
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5. Proof of Theorem 2. Again we follow the structure of the proof of
Theorem A(ii) in [4]. The key is Lemma 3; very roughly, it says that when W is
thin at 0, the probability of the process starting in W N {|x| < ¢} (¢ > 0 small),
making at least m “forward landings”in W N{e < |x| < %} before leaving W, goes
down geometrically with respect to m. Methods of estimating harmonic measures
for thorns do not apply; we use (2.7) repeatedly. Because W does not point in any
specific direction, we need to put a band around W to contain paths with small
shifts.

Given ip > 1 and X (0) = x € W(ip), define a sequence of stopping times S(m)
as follows. Let S(0) =0 and

S(m + 1) TW (i —1)» if i, > 1,
m =
S(m), ifi,, =0,

where i,,,m > 1, is the integer > 1 such that X (S(m)) € W*(i,,) if it exists,
and i, = 0 otherwise. While i,,, m > 1, is uniquely determined by induction, the
choice of iy is not; the specific value of iy is important in defining {S(m)}. Note
that iy, 11 <in—1,0<S(1) < S(2) <--- < S(m), and that {i1, iy, ..., i;,} records
the forward landings according to the rules given.

Fori <k,m > 1 and x € W(i), define

Hk,i,m,x,W)
={weQ:ip=1i,X0)=x,S(m —1) < S(m), X(S(m)) € W*(k)}
to be the collection of paths that start at x, with ig = i, and end in W*(k) at

time S(m).

LEMMA 3. There exists Co > 0 so that form > 1,i >k > K and x € W(i), if

i—2
(5.1) Y AW, HRTHWEG| < ¢!
=K

then

(5.2) P¥(H (k,i,m,x, W)) < Co2 A" (W, ))27F) == |1W* (k)|

PROOF. We write
P"(H(k, i,m,x,W))=P*(S(m — 1) < S(m), X(S(m)) € W*(k)).

Inthe casei =k + 1, X(S(1)) € W(k)¢; and (5.2) holds trivially.
Assume from now on i > k + 2 and |W*(k)| > 0. We shall prove (5.2) by
induction on m.
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When m =1 and i = k + 2, note from (3.3) that
P*(S(0) < S(1), X(S(1)) e W*(k)) =" (W*(i —2),W(@i — 1))
— Q12 T (WG —2), Wi — 1)
w i+ )| 1ok [y g
12y =15x )2k | o).
Whenm =1andi > k + 2, in view of (2.7),
P*(S(0) < S(1), X(S(1)) € W*(k))
= (W*(k), W(i — 1) Z E* (tw—n) 7)™ W* (k).
Since E* (twi—1)) SAY(W, 1),
P*(S(0) < S(1), X(S(1)) € W*(k))
< Cs27 (WL DO W)
for some C5 > 0. Let
Co= max{21+2(d+°‘), Cs}

then (5.2) holds form = 1.
Assume that (5.2) has been proved for some m > 1 and all i > k > K and

x € W(i).Giveni > k+2 and x € W (i), we have
PY(S(m) < S(m+1), X(S(m + 1)) € W*(k))

i—2
= > E*(Sm—1) < S(m), X(S(m)) € W*(j)),
j=k+2
PX(S(m))(XrW(j,I) € W*(k))
i—2
< D PH(Sm—1) <S(m). X(S(m)) € W ()
j=k+2
X sup Py(XrW(jfl) € W*(k))
yew=(j)
i—2
= Z PX(H(j’i’m’_x’W)) sup Py(H(k’-]’l’y’W))
j=k+2 YEW*())

(Note that when j = k + 1 or i — 1, the events are void.)
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The induction hypothesis yields that

PX(S(m) < S(m + 1), X(S(m + 1)) € W*(k))
i—2
< Y Co2 AW, D)2/ O IWH ()| Co2 T AW, 2K W (k)|
j=k+2
i—2 '
< CR27m X (WL 2K W () Y AW, j)27 @O W)
=K

= Co2 "X (W, )25+ W (k).

Now (5.2) has been proved for all m > 1.
For each n > 0, we define a sequence of stopping times {7 (j, n)} modeled on
those in [4] by letting 7'(0, n) = 0 and

T(j+1,n)=inf{s >T(j,n):X(s) ¢ B(X(T(j,n)),27")} for j > 0.
Since {tp(g,2-n) © Or(j.n)} are independent and identically distributed, the proof of
Lemma 4.7 in [4] yields

o0
(5.3) > P(T(j,n) <N)<c(d,a)N/E(tgrn) = N2",
j=0

which in turn implies that P ({lim; , T'(j,n) < oo}) =0.
We assume as we may that all sample paths ¢t — X (¢, w), are right continuous
with left limits that for all n > 0,

lim T(j,n)=o00
j—o0
and that @ does not belong to the following set:
QI ={weQ:Is=s5(w) >0,
Ja=a(@)>03X(t,w)=X(s,0)Vte[s,s+a)}.

Let Q(s,n) =inf{t > s, X (t) ¢ B(X(s),27™")}. Then for all s, Q(s,n,w) > s,
lim,,— 5 Q(s,n, ) =s and lim,_, - X(Q (s, n, w)) = X(s, w) by the right conti-
nuity of the process. For a > 0, let

Z(s,a,w)={¢>1:3q > 1 such that Q(s,q, ®) € (s, s +a)
and X(0(s,q,0)) € B(X(5,0),27) \ B(X(s,0),27 ")},

which represents another way to record forward landings. Since w ¢ 1, Z(s, a, w)
is an infinite set. For integers i > k, let

Z(s,a,k,i,w)=2(s,a,w)N[k,i].
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ForI'C[0,00)and k > 0,let A(T', k) = {w e Q:3s =s(w) e "'anda =a(w) >0
such that X (¢t,0) € X(s,w) + W V¢t € [s,s + a) and SUP;e(s.s+a) | X (1, @) —
X (s, w)| € [27F1, 27Ky},

To show P(A(W)) =0, it suffices to prove

5.4 P(A([0,N],k)) =0 VN,k>0.
Fix N and k from now on. Form > 1 and i > k, let
AT, k,i,m)={w € AT, k) :#Z(s(w), a(w), k, i) > m}.
Because #Z (s, a, w) = 00,
o0
A0, N1.ky= |J A0, N1k, i,m)
i=k+1

for all m > 1. Since A([0, N],k,i,m) increases as i increases, in order to
prove (5.4) it suffices to show that

(5.5) P(A([0, N1,k,i,6m)) <c(k)N2™"™

for all m > 1 and all pairs (n, i) € A with i > k > K for some K > 0.
Fix (n,i) € A with i > k, then

P(A([0, N1, k,i,6m))

(5.6)
=J P(A(I0, NIN[T (j,n), T(j + 1,n)], k,i,6m)).
j=0
Suppose
(5.7) we A([0, NIN[T (j,n), T(j + 1,n)], k,i,6m),
then:

(@ T(j,n) =<N;

(b) there exist s = s(w) € [T (j,n), T(j + 1,n)), and a = a(w) > 0 such that
X, w)e X(s)+ W(k) forallt e[s,s +a);

() sup{|X(t) — X(s)|:s <t <s+a}e 271 27%); and

d) #Z(s(w),a(w), k,i) > 6m.

Since |X(s) — X(T'(j,n))| < 27", inequalities 27771 < |x — X(s)| < 27/,
j<n—2,imply 27772 < |x — T(j,n)| < 27/*!. We shift the reference point
from X (s) to X(T(j,n)), then the path of e is contained in the enlarged set W,
with respect to X (T (j, n)). Consequently:

(b") X(t) € B(X(T(j,n)),27") + W(k) € X(T(j,n)) + W,(k) for all t €

[T(j,n),s+a);
(") sup{|X(t) — X(T(j,n)|:T(j,n) <t <s+a}e[27%2, 271 and
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d) #Z(T(j,n), s(w) +a(w)—T(j,n),k,i)>2m.

The decrease from 6m in (d) to 2m in (d’) is due to the shift from X(s) to
X (T (j, n)). Therefore it follows from (a) and (b’)—(d") that

00 k+1
(5.8) we{T(j,n)fN}ﬁGT_(ljvn)< U U H(k/,i+2,m’,0,w,,)).

m'=mk'=k—1

The reason for the decrease from 2m in (d) to m in (5.8) is the following. In
defining S(m), the set {ig, i1, ..., iy} that records the forward landings does not
contain consecutive integers; on the other hand, Z(7T'(j, n, w), s(w) + a(w) —
T(j,n,w),k,i) may contain blocks of consecutive integers. The change from i
in (d") to i + 2 in (5.8) is for convenience when quoting Lemma 2; the change is
insignificant because m is large. From (5.6)—(5.8) and the strong Markov property,
it follows that

P(A([0, N1, k, i, 6m))
o0 o0 k+1
<> P(T(j.n) §N)( > > PUHKE,i+2,m,0, Wn))).
j=0 m'=mk'=k—1

Applying Lemma 3 to W,, and using (3.8) in place of (5.1), we obtain for k > K
(some K > 0),

PH®E ,i+2,m'0,Wy)) < Co2™ 3O0W,.i +2)(27F) " \w*&)|.

It has been stated in (5.3) that Z?O:o P(T(j,n) < N) < N2". Therefore for
k>K,

P(A([0, N1, k,i,6m)) < c(k)N2"*27™) O (W, i 4 2).

Recall from (3.3) that

AW, i +2) = pO (W), Wi 4 1))27 @0 w71,
Finally, condition (3.7) and harmonic measure estimate (2.7) yield

AW, i +2) 2= 1O (W (i), B0, 27")27 40 | ()|

= E%(tp0om) =27

Finally P(A([0, N1, k,i,6m)) < c(k)N27" for k > K, which is (5.5). This proves
P(A(W)=0. O

6. On examples. First we verify Example 2. The following lemma on
expected life time should be known.

LEMMA 4. Let S =(0,1) x (—00, 00)?~!. Then sup, s E*(t5) < 0.
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PROOE. LetT = (—1,1) x (—00, 00)?~!. Then

a=sup P (X(t) e SVO<r<1)<P'X(1)eTV0<r<l1)<l

xeS

and P*(X(t) e SVO<t <N)<aV(N positive integer) for all x € S. From this,
it follows that E*(tg) < (1 —a) 2 forallx € S. O

LEMMA 5. Let0 <8 < 1, manintegerin[1,d]and Q = (0, 8)™ x (0, 1)4—"™.
Then for any x € (%, %)m X (}‘, %)d_m,

E*(tg) = sup E*(tg) = 87.
xeQ

PROOE. Let T), = (—1, )™ x (—00, 00)?~™; note from Lemma 4 and the
monotonicity that C¢ = max|<u<d SUpycr, E *(t7,,) is finite. Again by monotonic-
ity and scaling note that sup, .y E*(tg) S C68”. The fact that E*(zg) 2 6 for
all x € (%, %)m X (%, %)d_m follows from (2.3). This completes the proof. [

To check Example 2, we note from Lemma 5 and scaling that

sup E*(twa)) 2 8?2_i°‘.
xeW (i)

Therefore [, EX (tw) x|~ %dx > 8?+m(i); assertion (i) in Example 2 follows
from Theorem 1.
Assume that §; 7% 0 for infinitely many i’s; otherwise (ij) is trivial. Consider
only pairs (n, i) satisfying §; > 0 and 8;27/~! <27" < §;27. We claim that
Ex(‘L'Wn(i)) <27 VxeW,(@i).
Since E*(tw,(;)) is continuous in W, (i) and goes to 0 as x approaches oW, (i),

Sup{E* (tw,i)) : x € W, (i)} is attained at some point z € W, (i). Assume that
z € Wy(j) for some j € [i, n]. Then

E(tw,) = EX(twpi)) + | ) EY (tw,iy) di (v, Wy ()
< E*(tw () + E*(tw, ) (W D\W, (1), Wy (1))

Not.e from the definition of W that W, ()¢ contains some ball of diameter
2-/=! within a distance 2~/*! from W¥(j). Calculations using (2.7) and the
monotonicity yield

W (W, ()E, Wy(j)) > C7 >0,
and by Lemma 5,
E*(tw,m) < C7 E¥(twz(j) S 6,27)* S27.
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This proves the claim.
From the harmonic measure estimate (2.7) and the claim, it follows that

oW (@0). W+ 1) = E(ow, 4) @)™ Wr ()]
ST WO = LW @), BO.27).

This proves (3.7) in Theorem 2.
Note from (1.1), (3.6) and Lemma 5 that for x € W,,(j) and j > i,

W (W, ) Z EX (tw,(j-1)) S (8% +85_)277*

(the sum 8;’.‘ + 8‘;‘_1 is needed since §;_; may be zero), and that

i i
> AW N@H WIS D 85,
J=1 i

This proves (3.8) in Theorem 2 and thus assertion (ii) in Example 2.

REMARK 2. In Example 2, the requirement in keeping Q ;’s uniformly apart
is for the convenience of the proof. The conclusions remain if Q ;’s are allowed to
stay in {27771 < |x| < 27/}, or are replaced by bilipschitz images of Q j’s with
uniformly bounded bilipschitz constants.

Example 1 is a variation of Example 2 in the case m(j) =1 for all j. It is
especially interesting to note that P(A(W)) = 1 as long as limsupé; > 0; in
particular, W can be very lacunary.

In Example 3, the set is scattered, and we need some harmonic measure
estimates. For x € R, let

lx]| = max{|x;|:1<j <d}.

LEMMA 6. LetO<e¢ < %, r >0, L be the set of lattice points in RY, W=

User B(x, &) and W™ =W N {||x|| <r + 1}. Then

6.1) WO (W\ B(xo, ), B(xg, 8)) =&t Vxpe L.
Suppose €214 < N~ and N > 10, then

(6.2) WrWAWN why <getdy— vy ewN?

MX()(W \ WN, WN) o~ Mx()(WZN \ WN, B(X(), 8)) ~ 8(X+dN—Ol
(6.3)

) N
Vxoe L withl|x]| < >

and there exists Cg > 0 so that if 0 < ¢ < Cg then
(6.4) E*(ty) <& VxeW.
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PROOF. It follows from (2.1) that
nl(W\ B0, ¢), B(0,¢)) = E°(tp(0.¢)) /Ioo mdmagdd=l gy = gotd
and (6.1) follows by translation.

Monotonicity and calculation as above yield that if x € B(xg, &) C WV then

63 w (WA WN Wy < W (W\ B(xo, &), B(xo, €))
' < (W \ B(xo, &), B(x,2e)) = T4

If x € B(xg, &) € WN/2 then (2.1), (2.2), (2.5) and monotonicity yield
W (WA WY, B(xg, e)) < " (W\ WY, B(x, 2¢))

00
= E* (TB(X’ZS))/ l‘_d_wc‘i‘dl‘d_1 dt
N/2
(6.6)
~ 8a+dN—a

= o (W2N\ WV, B(xo, €)).

Now let x € B(xg, €) € WN/2. Then from the Markov property, (6.5), (6.6) and
the assumption e*T¢ < N~¢ it follows that

W WAWN, WYy = (W\ WY, B(xo, )
+ f WWAWN, WY du (v, B(xo, £))
WN\B(xg,¢)
S 8a+dN—a + 82(a+d) 5 8a+dN—oz'

This gives (6.2).

The estimate in (6.3) follows from (6.2), (6.6) and the fact that pw* (W \
WN W) = p¥o(W \ WY, B(xo, ¢)).

It is easy to see from the geometry of the set W that infycw P*(X (1) €
W€ > 0. Arguing as in Lemma 4 we obtain sup,.y E*(tw) < 0o. Since
E*(tw) is continuous in W and approaches 0 uniformly on dW, sup, .y E* (tw) is
attained in W. Since W is translation invariant we may choose z € B(0, ¢) so that
E*(tw) = sup,cw E* (tw). By Markov property, monotonicity and (6.5),

E*(tw) = E*(tB(0,e)) + E*(tw)dp(x, B(O, ¢))
W\ B(0,¢)

< E*(tB0,¢)) + E*(zw)u* (W \ B(0, ¢), B(0, ¢))
= EZ(TB(O,s)) + C9EZ(Tw)8a+d.
Now if e214 < (2C9)~!, then

E*(tw) <2E*(t0.e)) S €%,
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which gives (6.4). U

To verify Example 3, we apply Theorems 1 and 2 in the rectangular settings, that
is, in the definitions of W (j), W*(j) and W, (j) and W;*(j), we use || - || instead
of | - |, for example, W(j) = W N {||x|| <27/}.

Assume Zsz‘” = o0. Using (2.1) and (2.2), we obtain for x € %Q € G,
E*(tw) 2 eprg and

—d— ~ [V e dd—1 .~ d—a
/ |x] "dx:/ T et dt = e “
U@I/(Q Tk

Therefore [y, E*(tw)|x|79"%dx > Za,‘f“‘ = 00; the conclusion P(A(W)) =1
follows from Theorem 1.

Next we verify part (ii), and let n(k) be the integer satisfying 277K = gy,
i(k) =n(k — 1), and m(k) be the smallest integer such that 27 mO=l < e
in other words, {||x|| <27"® =1} is the largest cube of the form {||x|| <27/} that
does not meet (J{x + Qk : x € Q € C;}. Note that 27" ®) = | n(k) > m(k) > i (k)
and that

U{X +Qr:x€eQeC)C {z—m(k)—l <|lx|l < 2—i(k)}

and

k
Waa S {lIxl <270} u [ {2707 < x| <2770}
=1
foreach k > 1.

We shall check (3.7) and (3.8) for pairs (n(k), i(k)), k> 1.

Note from monotonicity, assumption ¢ < N_* and a scaled version of (6.3)
that

1O (W G G0)), Wagro (i (R) + 1)) = O (Wi (i (), Qi) = e TN
This gives (3.7).

To check (3.8), we fix £ > 1 and for simplicity, we use (n, i), W, for (n(k), i (k))
and W, ) and use p(j) for max{i:i < j —2: W, (i) # ¢}. We then proceed to
estimate u* (W, (p(j)), W,(j — 1)) and A(W,, j) for j € U’gzl[i(ﬂ),m(f)] and
x e Wr(j).

Let ¢ € [1,k] and consider first j € [i(£) + 2, m(£)]; in this case p(j) =
J =2, IWX(p(j)| = |W¥(j)| and there are N (k, ¢, j) = 2_jdr£_d cubes in G
that meet W, (j — 2). Therefore monotonicity and a scaled version of (6.3) imply
that for x € W5 (),

wr (W (p(G)), Wa(j — D) = (W (j —2), Wa(j — 1)
= TN (k, £, V)T

~ d+a_onja
_86 rez .
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Consequently, it follows from (3.3) and (3.4) that

m(L) )
Yo AW, HRTHTN W)
j=i(©)+2

m(£)

~ Z EH'“ re 2/«
j=i0)+2

(67) 8(x+d azm(ﬂ)(x

a+d
_86 .

For ¢ € [1,k] and j = i(¢) or i(£) + 1, we have p(j) = m(f — 1) and
27PU) = ry_y, and have W(j — 1) = W(i(®)) € Ue, O, 27/ = &r_1r¢—1 and
IWEGE@))| = [WEGEL) + 1] = (s0—17¢—1)%. Because there is a thick ring
separating W, (j — 1) from W, (p(})), it follows from (3.6) that

W (Wa, ) = EX(tw,j-n) = E* (tw,i) VX € Wr()).
A scaled version of (6.4) shows that
E*(tw,in) Seire Vx e Wi().
Therefore when j =i(£) ori(¢) + 1,
(6.8) AWy, NRNTAWr (DI S efrf e 7 ry (eeire—)ef Sef .
With k£ > 1 still fixed, we obtain from (6.7) and (6.8)

i (k)
Y AWy (D) W ()27 €4
j=1

I/\

(Woaoy (D)W () (27 Fe)

|| M§

+d

AN

&

o

SR

=

—_

Since Y72 lsd+°‘ < 00, it is clear that there exists K so that condition (3.8)
is satisfied for all pairs (n(k),i(k)); assertion (ii) in Example 3 follows from
Theorem 2.

REMARK 3. In part (ii) of Example 3, 8"+k < N, “ is used to obtain (3.7) and
> 8d+°‘ < 00 is used to obtain (3.8).
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