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SYMMETRIC STABLE PROCESSES STAY IN THICK SETS1

BY JANG-MEI WU

University of Illinois, Urbana–Champaign

Let X(t) be the symmetric α-stable process in R
d(0 < α < 2, d ≥ 2).

Then let W(f ) be the thorn {x ∈ R
d : 0 < x1 < 1, (x2

2 + · · · + x2
d )1/2 <

f (x1)} where f : (0,1) → (0,1) is continuous, increasing with f (0+) = 0.
Recently Burdzy and Kulczycki gave an exact integral condition on f for
the existence of a random time s such that X(t) remains in the thorn
X(s) + W(f ) for all t ∈ [s, s + 1). We extend their theorem to general open
sets W with 0 ∈ ∂W . In general, α-processes may stay in sets which are quite
lacunary and are not locally connected at 0.

1. Introduction. Let X(t) be the symmetric α-stable process in R
d(0 <

α < 2, d ≥ 2), f : (0,1) → (0,∞) be a nondecreasing left-continuous function
satisfying f (0+) = 0 and W(f ) be the thorn {x ∈ R

d : 0 < x1 < 1, (x2
2 + · · · +

x2
d)1/2 < f (x1)}. In [4], Burdzy and Kulczycki give an exact integral condition

on f for the existence of a random time s such that X(t) remains in the thorn
X(s) + W(f ) for all t ∈ [s, s + 1).

In this note we extend their theorem on thorns to general open sets having 0
on the boundary. These sets need not be locally connected at 0 and can be quite
lacunary; this is possible due to the jumping property of the symmetric α-stable
process.

This line of investigation is motivated by the existence of cone points for
Brownian paths. For literature and some unsolved cases, see [3].

Let W be an open set in R
d that contains 0 on its boundary, (�,P ) be the

probability space on which X(t) is defined, t0 > 0 and

A(W) = {
ω ∈ � :∃ s = s(ω) ≥ 0 such that X(t,ω) ∈ X(s,ω) + W

for all t ∈ [s, s + t0)
}
.

We say ω ∈ � has a W -point if ω ∈ A(W) for some t0 > 0.
Let

I (f ) =
∫ 1

0

f (r)α+d−1

rα+d
dr.

The theorem of Burdzy and Kulczycki [4] says that if I (f ) = ∞, then a symmetric
α-stable process has W(f )-thorn points a.s., and if I (f ) < ∞, then an α-process
has no W(f )-thorn points a.s.
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THEOREM A. For any t0 > 0,

(i) P (A(W(f ))) = 1 if I (f ) = ∞ and
(ii) P (A(W(f ))) = 0 if I (f ) < ∞.

It is clear that I (f ) < ∞ if and only if
∑∞

k=1
f (2−k)α+d−1

(2−k)α+d−1 < ∞.
For an arbitrary open set W with 0 ∈ ∂W , we give in Theorem 1 a thickness

condition on W under which P (A(W)) = 1 and in Theorem 2 a thinness condition
on W under which P (A(W)) = 0. These are natural extensions of Theorem A, and
the proofs follow the same structure. The proof in [4] uses very precise harmonic
measure estimates obtained by comparing sections of thorns with cylinders; here
we must rely on very general estimates and make more use of the jumps. Unlike
thorns, general sets do not point in a specific direction, and the uncertainty of the
starting time s(ω) gives rise to a problem which cannot be solved by shifting the
set W along an axis; these complications are handled by putting bands around W .

The conditions in Theorems 1 and 2 do not match and are complicated (see
Section 3); however, in the case of thorns and also the examples below, they are
sharp.

EXAMPLE 1 (Lacunary rings). Let W = ⋃∞
j=1{2−j < |x| < 2−j (1+δj )} with

0 ≤ δj < 1
2 satisfying

δj 2−j < δi2
−i whenever δi, δj > 0 and j > i.

Then:

(i) P (A(W)) = 1 if
∑

δα+1
j = ∞ and

(ii) P (A(W)) = 0 if
∑

δα+1
j < ∞.

In this example, we allow δj to be 0 infinitely often.

EXAMPLE 2 (Blocks of varying shape). Let m(j) be integers in [1, d] and δj

be numbers in [0, 1
2 ) satisfying

δj 2−j < δi2
−i whenever δi, δj > 0 and j > i.(1.1)

Let Qj be a rectangular cube contained in {5
8 2−j < |x| < 7

8 2−j } obtained by
translation and rotation of (0, δj2−j−5/

√
d )m(j) · (0,2−j−5/

√
d )d−m(j)(Qj = φ

when δj = 0); and let W = ⋃∞
1 Qj . Then:

(i) P (A(W)) = 1 if
∑

δ
α+m(j)
j = ∞ and

(ii) P (A(W)) = 0 if
∑

δ
α+m(j)
j < ∞.

In this example, we allow δj to be 0 infinitely often.
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EXAMPLE 3 (Scattered cubes). Let {rk}∞0 and {εk}∞0 be decreasing sequences
of positive numbers so that r0 = ε0 = 1, εk < 1

10 , (εkrk)
−1 is a power of 2,

Nk ≡ εk−1rk−1/rk is an odd integer and εd+α
k < N−α

k , for any k ≥ 1.
All cubes here have edges parallel to the coordinate axes. Let Q0 = (−1

2 , 1
2 )d ,

C0 = {Q0} and C ′
0 = φ. After Qj,Cj and C ′

j have been defined for 0 ≤ j ≤ k − 1
with �(Qj) = εj rj , we subdivide Qk into a collection Sk of Nd

k subcubes of side
length rk each. Ck consists of those cubes having side length εkrk and concentric to
those in Sk ; let Qk be the cube in Ck that contains the origin 0 and C ′

k = Ck \{Qk}.
For future discussion, we also choose and fix one cube from C ′

k that is closest
to Qk ; call it Q′

k . Let

W =
∞⋃

k=1

⋃
Q∈C′

k

Q.

Then

(i) P (A(W)) = 1 if
∑

εα+d
k = ∞ and

(ii) P (A(W)) = 0 if
∑

εα+d
k < ∞.

Section 2 contains properties of symmetric α-stable processes needed later,
Section 3 contains the main theorems; proofs of Theorems 1, 2 and examples are
given in Sections 4, 5 and 6, respectively.

2. Preliminaries. A symmetric α-stable process X on R
d is a Lévy process

(homogeneous independent increments) whose transition density p(t, x) is unique-
ly determined by its Fourier transform,

∫
Rd eix·ξp(t, x) dx = e−t|ξ |α . Here α must

be in (0,2]. When α = 2, it is the Brownian motion except for a linear time change.
From now on, symmetric α-stable processes are restricted to the case 0 < α < 2.
Denote by (�,P ) the probability space on which X(t) is defined. Sample paths
are discontinuous, and are right continuous with left limits a.s. [1, 2].

In the following, B(x, r) is the ball centered at x of radius r , and |S| is the
Lebesgue measure (volume) of the set S. We use c (or c′) to denote positive
constants depending at most on d and α, c(·) to denote positive constants
depending on d , α and the variables in the parentheses and Cj , j = 1,2, . . . , to
denote specific constants depending on d and α only. We write a � b when a/b ≤ c

for some constant c, and a ∼= b when a � b and b � a.
As usual Ex is the expectation with respect to the process starting from x ∈ R

d .
For any open set D in R

d , XD is the symmetric α-stable process killed upon
leaving D and τD = inf{t > 0 :X(t) /∈ D} is the first exit time.

For any x ∈ D, the α-harmonic measure µx(·,D) is a measure on Dc defined
by

µx(A,D) = P x
(
X(τD) ∈ A

)
, A ⊆ Dc;
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it is monotone in D; that is,

µx(A,D) ≤ µx(A, D̃) if D ⊆ D̃.

In the case of a ball B = B(0, r), it was shown by M. Riesz that

dµx(y,B) = kB(x, y) dy,(2.1)

where

kB(x, y) =



C1

(
r2 − |x|2
|y|2 − r2

)α/2

|x − y|−d , |y| > r ,

0, |y| ≤ r .

Note, from (2.1) and the monotonicity that

µx(S,D) = 0 if S is a sphere in Dc.

Denote by G the Green function of X; that is,

G(x,y) =
∫ ∞

0
p(t, x − y) dt = C2|x − y|−d+α

and denote by GD(x, y) the Green function of XD , that is,

GD(x, y) = C2

[
|x−y|−d+α −

∫
Dc

|y−z|−d+α dµx(z,D)

]
∀x, y ∈ D,x 
= y.

GD(x, x) = ∞ if x ∈ D and GD(x, y) = 0 in (D × D)c and the Green function
has the scaling property

GD(x, y) = a−α+dGaD(ax, ay), a > 0;
and for any measurable f ≥ 0 on D,

Ex

[∫ τD

0
f (X(s)) ds

]
=

∫
D

GD(x, y)f (y) dy ∀x ∈ D.

In particular,

Ex(τD) =
∫
D

GD(x, y) dy ∀x ∈ D.

It is well known that

Ex(
τB(x,r)

) = C3r
α(2.2)

and

Ex(τD) � |D|α/d .(2.3)

For any bounded measurable φ ≥ 0 on Dc,

Ex[φ(X(τD)) :X(τD) 
= X(τD−)] = C4

∫
Dc

∫
D

GD(x, y)

|y − z|d+α
dyφ(z) dz,(2.4)
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where X(τD−) = limt↑τD
X(t) exists a.s. [5]. Note from (2.4) and X(τD−) ∈ D

that for x ∈ D and A ⊆ D
c
,

µx(A,D) = C4

∫
A

∫
D

GD(x, y)

|y − z|d+α
dy dz(2.5)

and

µx(A,D) � Ex(τD)dist(A,D)−α−d |A|.(2.6)

When max{diamD,diamA} ≤ a dist(A,D), we obtain from (2.5) the following
estimate:

µx(A,D) ∼= c(a)Ex(τD)dist(A,D)−α−d |A|.(2.7)

We shall use (2.7) repeatedly for XD having certain prescribed jumps.

3. Theorems. Let W be an open set with 0 ∈ ∂W .

THEOREM 1. Suppose that∫
W

Ex(τW)|x|−α−d dx = ∞,(3.1)

then P (A(W)) = 1.

In the case of a thorn W(f ),Ex(τW(f )) ∼= f (x1)
α for any x satisfying (x2

2 +
x2

3 + · · · + x2
n)1/2 < f (x1)/2; hence∫

W(f )
Ex(

τW(f )

)|x|−α−d ∼=
∫ 1

0

f (r)α+d−1

rα+d
dr.

Therefore for thorns, Theorem 1 is equivalent to Theorem A(i).
For general open sets W , it is unclear whether∫

W
Ex(τW)|x|−α−d dx < ∞(3.2)

implies P (A(W)) = 0.
Before stating the thinness conditions under which P (A(W)) = 0, we need

a few definitions. For any positive integers j and n, let

W(j) = W ∩ {|x| < 2−j },
W ∗(j) = W ∩ {2−j−1 ≤ |x| < 2−j },

p(j) = max{i ≤ j − 2 :W ∗(i) 
= φ},
Wn = {x : dist(x,W) < 2−n} = W + B(0,2−n),

Wn(j) = Wn ∩ {|x| < 2−j },
W ∗

n (j) = Wn ∩ {2−j−2 ≤ |x| < 2−j }



320 J.-M. WU

and

pn(j) = max{i ≤ j − 2 :W ∗
n (i) 
= φ}.

For x ∈ W(j), define

λx(W, j) = µx
(
W ∗(p(j)),W(j − 1)

)
2−p(j)(d+α)|W ∗(p(j))|−1(3.3)

and

�(W,j) = sup{λx(W, j) :x ∈ W ∗(j)}(3.4)

for x ∈ Wn(j); the expressions λx(Wn, j) and �(Wn, j) are defined analogously.

REMARK 1. The quantity λx(W, j) is a substitute for Ex(τW) and is
comparable to Ex(τW) when W(j − 1) and W ∗(p(j)) are separated by a large
ring. In fact,

λx(W, j) ∼= Ex
(
τW(j−1)

)
if p(j) < j − 2(3.5)

and

λx(W, j) � Ex
(
τW(j−1)

)
if p(j) = j − 2;

the equivalence relation in the case p(j) < j − 2 follows from (2.7) and the fact
that |y − z| ∼= 2−p(j) for y ∈ W(j −1) and z ∈ W ∗(p(j)). When p(j) = j −2 and
W(j − 1) and W ∗(j − 2) are separated by a ring {a < |x| < b} of width b − a at
least β2−j , we have

λx(W, j) ∼= c(β)Ex
(
τW(j−1)

)
.(3.6)

THEOREM 2. Let W be an open set with 0 ∈ ∂W . Suppose that there is an
infinite collection A of (n, i) with integers n > i > 0, satisfying W ∗(i) 
= φ

µ0(W ∗
n (i),Wn(i + 1)

) ∼= µ0(
W ∗

n (i),B(0,2−n)
)

(3.7)

and for each ε > 0, there exists K so that

i∑
j=K

�(Wn, j)(2−j )−d−α|W ∗
n (j)| < ε ∀ (n, i) ∈ A.(3.8)

Then P (A(W)) = 0.

Condition (3.8) measures the thinness of W in the manner of (3.2). Condition
(3.7) is introduced for technical reasons; it says that the probability of the process
landing in W ∗

n (i) upon leaving Wn(i + 1) is equivalent to that of the process
jumping directly from the ball B(0,2−n) to W ∗

n (i). It would be desirable to remove
(3.7) or to replace it by a geometric condition.
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The reason for expanding W to Wn is to surround the path X(t), t > s(ω), when
the initial position X(s(ω)) can only be located to within a ball of radius 2−n.
For sets with certain geometric characteristics, for example, thorns or those in
Examples 1–3, the enlargement plays a minor role. However, when the set is
scattered, Wn can be substantially larger that W . An assumption such as (3.2)
does not guarantee the boundedness of

∑n
j=i �(Wn, j)(2−j )−α−d |W ∗

n (j)|; and the
series

∑∞
j=n+1 �(Wn, j)(2−j )−α−d |W ∗

n (j)| is always infinite. For this reason, the
portion of W in {2−n ≤ |x| ≤ 2−j } needs to be considered separately, using (3.7).

Conditions (3.7) and (3.8) are used for all open sets; therefore they are
complicated and the geometrical implications are less apparent. We now examine
these conditions on sets having special characteristics.

(A) When volumes |W ∗
n (j)| change very regularly,

c−1 < |W ∗
n (j)|/|W ∗

n (j + 1)| < c ∀n, j ≥ 1.

Note from (3.3) and (3.4) that (3.8) is equivalent to

i∑
j=K

sup
x∈W ∗

n (j)

µx(
W ∗

n (j − 2),Wn(j − 1)
)
< ε ∀ (n, i).

(B) For open sets W whose complement R
d\W contains a sequence of uniformly

fat rings going to 0, for example,

R
d \ W ⊇

∞⋃
j=1

{3
4 2−j < |x| < 2−j

}
,

it follows from (3.5) and (3.6) that (3.8) is equivalent to

i∑
j=K

(
sup

x∈W ∗
n (j)

Ex
(
τWn(j−1)

))
(2−j )−α−d |W ∗

n (j)| < ε ∀ (n, i).

(C) For thorns W(f ), I (f ) < ∞ implies (3.7) and (3.8). Consider only pairs
(n, i) satisfying

f (2−i )/2 ≤ 2−n < f (2−i).(3.9)

Lemma 4.5 in [4] yields (3.7). Kulczycki has shown that for all thorns, with no
assumption on I (f ),

µx
(
W ∗(j − 2),W(j − 1)

)
� Ex

(
τW(j−1)

)
(2−j )−α−d |W ∗(j − 2)|

∀x ∈ W ∗(j).

Since Ex(τW(j−1)) � f (2−j+1)α and |W ∗(j −2)| � f (2−j+2)d−12−j , we obtain,
from I (f ) < ∞,

∞∑
j=1

�(W,j)(2−j )−α−d |W ∗(j)| < ∞.
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Since (3.9) implies Wn ∩ {|x| ≥ 2−i} ⊆ {x : (x2
2 + · · · + x2

n)1/2 < 3f (x1)},
condition (3.8) holds for all such pairs (n, i).

4. Proof of Theorem 1. We follow the proof of Theorem A(i) in [4] and
give details at two crucial points for general open sets. The key to the proof
is (4.1); roughly it says that when W is thick at 0, in order to travel from
W ∩ {|x| < ε}(ε > 0 small) to W ∩ {|x| > 1

8 } without leaving W , at least half
of the paths must pass W “section by section” without making extremely long
jumps. The reasoning which leads to (4.1) for general sets uses harmonic measure
estimates for paths with prescribed jumps (2.7). For ω ∈ �, the starting time s(ω)

for the path X(t,ω) to stay in X(s(ω))+W for a given period of time is chosen as
a limit of a sequence; and the continuity (4.6) of X at s(ω) is essential. Details on
the continuity are given for the sake of completeness, since W need not be locally
connected at 0.

We assume as we may that W ⊆ {|x| < 1
4 }, and let {an} be a sequence of integers

with a1 = 2 and an+1 > 5 + an. Let

W [n] = W ∩ {|x| < 2−an}
and

W ∗[n] = W ∩ {2−an+1 ≤ |x| < 2−an}.
Note that W = W [1], W [n] = W(an) and W ∗[n] 
= W ∗(an). Let also a0 = 0,
W ∗[0] = {1

2 < |x| < 1}.
Define

F1 = {
XτW [1] ∈ W ∗[0]}

and

Fn+1 = {
XτW [n+1] ∈ W ∗[n]} ∩ θ−1

τW [n+1]Fn, n ≥ 1,

where θ is the shift operator. Note on the set {XτW [n+1] ∈ W ∗[n]}, we have
θ−1
τW [n+1]({XτW [n] ∈ W ∗[n − 1]}) = {XτW [n] ∈ W ∗[n − 1]}. So

Fn+1 =
n+1⋂
m=1

{
XτW [m] ∈ W ∗[m − 1]}.

LEMMA 1. Under assumption (3.1), the sequence {an} can be chosen so that

P x(Fn) ≥ 1
2P x(F1) ∀n ∈ N+ and x ∈ W [n].(4.1)

PROOF. Let Hn = F1 \ Fn. Inequality (4.1) follows from the following:

P x(Hn) ≤ n

n + 1
P x(Fn) ∀n ∈ N+ and x ∈ W [n].(4.2)
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Recall that a0 = 0 and a1 = 2, and that (4.2) holds trivially for n = 1. Suppose
that an’s have been selected and (4.2) has been verified for n = 1,2, . . . ,m; we
shall choose am+1 and verify (4.2) for m + 1. Consider any am+1 > 5 + am and
x ∈ W [m + 1]. Then

P x(Fm+1) =
−1+am+1∑

k=am

Ex
(
XτW [m+1] ∈ W ∗(k);P

XτW [m+1] (Fm)
)

≥
−2+am+1∑
k=3+am

Ex
(
XτW [m+1] ∈ W ∗(k); 1

2P
XτW [m+1] (F1)

)
.

Note from (2.4) that

P x(Fm+1) �
−2+am+1∑
k=3+am

∫
W [m+1]

∫
W ∗(k)

GW [m+1](x, y)

|y − z|d+α
P z(F1) dz dy.

Since dist(z,W ∗[0]) ∼= 1 and |y − z| ∼= |z| for z ∈ W ∗(k) and y ∈ W [m + 1], and
P z(F1) = µz(W ∗[0],W) ∼= Ez(τW) by (2.7), we have

P x(Fm+1) � Ex
(
τW [m+1]

) −2+am+1∑
k=3+am

∫
W ∗(k)

Ez(τW)

|z|d+α
dz.(4.3)

On the other hand, it follows from (2.6) and the induction hypothesis that for
any x ∈ W [m + 1],

P x(Hm+1) = P x
(
F1,XτW [m+1] ∈ W ∗[m], (

θ−1
τW [m+1]Fm

)c)
+ P x

(
F1,XτW [m+1] /∈ W ∗[m])(4.4)

≤ m

m + 1
P x(Fm+1) + c(2−am)−d−αEx(

τW [m+1]
)
.

The argument is adopted from (3.4) and (3.5) in [4], where only the boundedness
of the thorn is used in the proof. From (4.3), (4.4) and the assumption (3.1), it
follows that if am+1 is large enough then

P x(Hm+1) ≤ m + 1

m + 2
P x(Fm+1) ∀x ∈ W [m + 1].

This completes the proof of Lemma 1. �

Fix {an}∞0 as in Lemma 1, and choose a point yn in each W ∗[n]. As in [4],
define for 1 ≤ k ≤ n,

Sn
k = inf{t ≥ 0 :X(t) /∈ X(0) − yn + W [n − k + 1]}.

Then Sn
1 ≤ Sn

2 ≤ · · · ≤ Sn
n . Let Rn be the first Sn

k such that X(Sn
k ) /∈ X(0) − yn +

W ∗[n − k] if it exists; otherwise let Rn = inf{t ≥ 0 :X(t) /∈ X(0) − yn + W }.



324 J.-M. WU

Following the argument of Lemma 3.3 in [4] and using the Markov prop-
erty, (2.6) and Lemma 1 above (in place of Lemma 3.2 in [4]), we obtain

E(Rn) ∼= Eyn(τW) � c(W, t0) P (Rn ≥ t0).(4.5)

Define for n ≥ 1, a sequence of stopping times as follows: T (0, n) = 0,

T (j + 1, n) =
{

T (j,n) + (Rn ∧ t0) ◦ θT (j,n), if T (j,n) < t0,

T (j,n), if T (j, n) ≥ t0;

define also

F(j,n) = {ω ∈ � :T (j + 1, n) − T (j, n) = t0}
and

Hn =
∞⋃

j=0

F(j,n).

LEMMA 2. There exists a positive constant c(W, t0) so that

P (Hn) ≥ c(W, t0) ∀n ≥ 1.

PROOF. Unlike the situation in [4], condition (3.1) does not imply E(Rn) → 0
as n → ∞. For each n ≥ 1, we consider two possibilities: E(Rn) < t0/10
or E(Rn) ≥ t0/10. In the first case, choose an integer mn such that t0/4 ≤
mnE(Rn) ≤ t0/2, and then proceed as in [4]. When E(Rn) ≥ t0/10, we note
from (4.5) that

P (Hn) ≥ P (F (0, n)) = P
(
T (1, n) = t0

) = P (Rn ≥ t0)

≥ c(d,α,W, t0)E(Rn) ≥ c′(d,α,W, t0).

Let

H = lim sup
n→∞

Hn

and

A0 = {
ω ∈ � :∃ s = s(ω) ∈ [0, t0)

such that X(t,ω) ∈ X(s,ω) + W for all t ∈ [s, s + t0)
}
.

In view of Lemma 2 and the fact that Hn’s are independent, to prove the theorem,
it is sufficient to check H ⊆ A0.

Assume that ω ∈ H . Then there exist sequences {jk} and {nk} (depending on ω)
so that nk ↑ ∞, ω ∈ F(jk, nk), and sk ≡ T (jk, nk) converges to some s ∈ [0, t0].
The crucial step in proving ω ∈ A0 is to verify the continuity of X at s

lim
t→s

X(t) = X(s).(4.6)
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After that, ω ∈ A0 follows easily.
To this end, we may assume that {sk} is monotone and consider only the case

when {sk} is strictly increasing; the decreasing case is analogous and simpler.
Since X is right continuous and has left limits, both X(s) = limt↓s X(t) and
X(s−) = limt↑s X(t) exist.

Assume that X(s) 
= X(s−), and choose m so that

2−am < |X(s) − X(s−)|/8.

Choose δ ∈ (0, t0/2) so that

|X(t) − X(s−)| < 2−am+1−3 ∀ t ∈ (s − δ, s)

and choose k0 so that if k > k0 then sk ∈ (s − δ, s); thus

|X(sk) − X(s−)| < 2−am+1−3.

Fix an integer k > k0, with nk > m + 2. Since ω ∈ F(jk, nk), it follows that for
t ∈ [sk, sk + t0),

X(t) ∈ X(sk) − ynk
+ W

and that if X(t) leaves X(sk) − ynk
+ W [p] (1 ≤ p ≤ nk), then it goes to

X(sk) − ynk
+ W ∗[p − 1].

Consider t ∈ [sk, s); then t is in (s − δ, s) ∩ [sk, sk + t0); therefore

|X(t) − X(sk)| ≤ 2−am+1−2

and

X(t) ∈ X(sk) − ynk
+ W.

Hence

X(t) ∈ X(sk) − ynk
+ W [m + 1] ∀ t ∈ [sk, s),

which implies that

X(s) ∈ X(sk) − ynk
+ W [m].

Consequently,

|X(s) − X(s−)| ≤ |X(s) − X(sk)| + |X(sk) − X(s−)|
≤ 2−am+1 < |X(s) − X(s−)|/2,

which is impossible. Therefore X(s) = X(s−) and the continuity (4.6) follows.
This completes the proof of Theorem 1. �
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5. Proof of Theorem 2. Again we follow the structure of the proof of
Theorem A(ii) in [4]. The key is Lemma 3; very roughly, it says that when W is
thin at 0, the probability of the process starting in W ∩ {|x| < ε} (ε > 0 small),
making at least m “forward landings” in W ∩{ε ≤ |x| ≤ 1

8} before leaving W , goes
down geometrically with respect to m. Methods of estimating harmonic measures
for thorns do not apply; we use (2.7) repeatedly. Because W does not point in any
specific direction, we need to put a band around W to contain paths with small
shifts.

Given i0 > 1 and X(0) = x ∈ W(i0), define a sequence of stopping times S(m)

as follows. Let S(0) = 0 and

S(m + 1) =
{

τW(im−1), if im > 1,

S(m), if im = 0,

where im,m ≥ 1, is the integer > 1 such that X(S(m)) ∈ W ∗(im) if it exists,
and im = 0 otherwise. While im,m ≥ 1, is uniquely determined by induction, the
choice of i0 is not; the specific value of i0 is important in defining {S(m)}. Note
that im+1 < im −1, 0 < S(1) < S(2) < · · · < S(m), and that {i1, i2, . . . , im} records
the forward landings according to the rules given.

For i < k, m ≥ 1 and x ∈ W(i), define

H(k, i,m,x,W)

= {
ω ∈ � : i0 = i,X(0) = x,S(m − 1) < S(m),X(S(m)) ∈ W ∗(k)

}
to be the collection of paths that start at x, with i0 = i, and end in W ∗(k) at
time S(m).

LEMMA 3. There exists C0 > 0 so that for m ≥ 1, i > k > K and x ∈ W(i), if

i−2∑
j=K

�(W,j)(2−j )−d−α|W ∗(j)| < C−1
0(5.1)

then

P x
(
H(k, i,m,x,W)

) ≤ C02−mλx(W, i)(2−k)−d−α|W ∗(k)|.(5.2)

PROOF. We write

P x(
H(k, i,m,x,W)

) = P x(
S(m − 1) < S(m),X(S(m)) ∈ W ∗(k)

)
.

In the case i = k + 1, X(S(1)) ∈ W(k)c; and (5.2) holds trivially.
Assume from now on i ≥ k + 2 and |W ∗(k)| > 0. We shall prove (5.2) by

induction on m.
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When m = 1 and i = k + 2, note from (3.3) that

P x
(
S(0) < S(1),X(S(1)) ∈ W ∗(k)

) = µx
(
W ∗(i − 2),W(i − 1)

)
= 21+2(d+α)2−1µx

(
W ∗(i − 2),W(i − 1)

)
× 2−i(d+α)|W ∗(i − 2)|−12k(d+α)|W ∗(k)|

= 21+2(d+α)2−1λx(W, i)2k(d+α)|W ∗(k)|.
When m = 1 and i > k + 2, in view of (2.7),

P x(
S(0) < S(1),X(S(1)) ∈ W ∗(k)

)
= µx(

W ∗(k),W(i − 1)
) ∼= Ex(

τW(i−1)

)
(2−k)−d−α|W ∗(k)|.

Since Ex(τW(i−1)) � λx(W, i),

P x
(
S(0) < S(1),X(S(1)) ∈ W ∗(k)

)
≤ C52−1λx(W, i)(2−k)−d−α|W ∗(k)|

for some C5 > 0. Let

C0 = max
{
21+2(d+α),C5

}
then (5.2) holds for m = 1.

Assume that (5.2) has been proved for some m ≥ 1 and all i > k > K and
x ∈ W(i). Given i ≥ k + 2 and x ∈ W(i), we have

P x
(
S(m) < S(m + 1),X

(
S(m + 1)

) ∈ W ∗(k)
)

=
i−2∑

j=k+2

Ex(
S(m − 1) < S(m),X(S(m)) ∈ W ∗(j)

)
,

P X(S(m))(XτW(j−1)
∈ W ∗(k)

)

≤
i−2∑

j=k+2

P x(
S(m − 1) < S(m),X(S(m)) ∈ W ∗(j)

)

× sup
y∈W ∗(j )

P y(
XτW(j−1)

∈ W ∗(k)
)

=
i−2∑

j=k+2

P x(
H(j, i,m,x,W)

)
sup

y∈W ∗(j )

P y(
H(k, j,1, y,W)

)
.

(Note that when j = k + 1 or i − 1, the events are void.)
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The induction hypothesis yields that

P x(
S(m) < S(m + 1),X

(
S(m + 1)

) ∈ W ∗(k)
)

≤
i−2∑

j=k+2

C02−mλx(W, i)2j (d+α)|W ∗(j)|C02−1�(W,j)2k(d+α)|W ∗(k)|

≤ C2
0 2−m−1λx(W, i)2k(d+α)|W ∗(k)|

i−2∑
j=K

�(W,j)2j (d+α)|W ∗(j)|

= C02−m−1λx(W, i)2k(d+α)|W ∗(k)|.
Now (5.2) has been proved for all m ≥ 1.

For each n > 0, we define a sequence of stopping times {T (j,n)} modeled on
those in [4] by letting T (0, n) = 0 and

T (j + 1, n) = inf
{
s > T (j,n) :X(s) /∈ B

(
X(T (j,n)),2−n

)}
for j ≥ 0.

Since {τB(0,2−n) ◦ θT (j,n)} are independent and identically distributed, the proof of
Lemma 4.7 in [4] yields

∞∑
j=0

P
(
T (j,n) ≤ N

) ≤ c(d,α)N/E
(
τB(0,2−n)

) ∼= N2nα,(5.3)

which in turn implies that P ({limj→∞ T (j,n) < ∞}) = 0.
We assume as we may that all sample paths t → X(t,ω), are right continuous

with left limits that for all n > 0,

lim
j→∞T (j, n) = ∞

and that ω does not belong to the following set:

�1 = {
ω ∈ � :∃ s = s(ω) ≥ 0,

∃a = a(ω) > 0 � X(t,ω) = X(s,ω) ∀ t ∈ [s, s + a)
}
.

Let Q(s,n) = inf{t > s,X(t) /∈ B(X(s),2−n)}. Then for all s, Q(s, n,ω) > s,
limn→∞ Q(s,n,ω) = s and limn→∞ X(Q(s,n,ω)) = X(s,ω) by the right conti-
nuity of the process. For a > 0, let

Z(s, a,ω) = {
� ≥ 1 :∃q ≥ 1 such that Q(s, q,ω) ∈ (s, s + a)

and X(Q(s, q,ω)) ∈ B
(
X(s,ω),2−�

) \ B
(
X(s,ω),2−�−1)}

,

which represents another way to record forward landings. Since ω /∈ �1,Z(s, a,ω)

is an infinite set. For integers i > k, let

Z(s, a, k, i,ω) = Z(s, a,ω) ∩ [k, i].
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For �⊆ [0,∞) and k > 0, let A(�, k) = {ω ∈ � :∃ s = s(ω) ∈ � and a = a(ω) > 0
such that X(t,ω) ∈ X(s,ω) + W ∀ t ∈ [s, s + a) and supt∈[s,s+a) |X(t,ω) −
X(s,ω)| ∈ [2−k−1,2−k)}.

To show P (A(W)) = 0, it suffices to prove

P
(
A([0,N ], k)

) = 0 ∀N,k > 0.(5.4)

Fix N and k from now on. For m ≥ 1 and i > k, let

A(�, k, i,m) = {
ω ∈ A(�, k) : #Z

(
s(ω), a(ω), k, i

) ≥ m
}
.

Because #Z(s, a,ω) = ∞,

A([0,N ], k) =
∞⋃

i=k+1

A([0,N ], k, i,m)

for all m ≥ 1. Since A([0,N ], k, i,m) increases as i increases, in order to
prove (5.4) it suffices to show that

P
(
A([0,N ], k, i,6m)

) ≤ c(k)N2−m(5.5)

for all m ≥ 1 and all pairs (n, i) ∈ A with i > k > K for some K > 0.
Fix (n, i) ∈ A with i > k, then

P
(
A([0,N ], k, i,6m)

)
(5.6)

=
∞⋃

j=0

P
(
A

([0,N ] ∩ [T (j,n), T (j + 1, n)], k, i,6m
))

.

Suppose

ω ∈ A
([0,N ] ∩ [T (j, n), T (j + 1, n)], k, i,6m

)
,(5.7)

then:

(a) T (j,n) ≤ N ;
(b) there exist s = s(ω) ∈ [T (j, n), T (j + 1, n)), and a = a(ω) > 0 such that

X(t,ω) ∈ X(s) + W(k) for all t ∈ [s, s + a);
(c) sup{|X(t) − X(s)| : s ≤ t < s + a} ∈ [2−k−1,2−k); and
(d) #Z(s(ω), a(ω), k, i) ≥ 6m.

Since |X(s) − X(T (j,n))| < 2−n, inequalities 2−j−1 < |x − X(s)| < 2−j ,
j ≤ n − 2, imply 2−j−2 < |x − T (j, n)| < 2−j+1. We shift the reference point
from X(s) to X(T (j,n)), then the path of ω is contained in the enlarged set Wn

with respect to X(T (j,n)). Consequently:

(b′) X(t) ∈ B(X(T (j, n)),2−n) + W(k) ⊆ X(T (j,n)) + Wn(k) for all t ∈
[T (j,n), s + a);

(c′) sup{|X(t) − X(T (j,n))| :T (j,n) ≤ t < s + a} ∈ [2−k−2,2−k+1); and
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(d′) #Z(T (j, n), s(ω) + a(ω) − T (j,n), k, i) ≥ 2m.

The decrease from 6m in (d) to 2m in (d′) is due to the shift from X(s) to
X(T (j,n)). Therefore it follows from (a) and (b′)–(d′) that

ω ∈ {T (j,n) ≤ N} ∩ θ−1
T (j,n)

( ∞⋃
m′=m

k+1⋃
k′=k−1

H(k′, i + 2,m′,0,Wn)

)
.(5.8)

The reason for the decrease from 2m in (d) to m in (5.8) is the following. In
defining S(m), the set {i0, i1, . . . , im} that records the forward landings does not
contain consecutive integers; on the other hand, Z(T (j, n,ω), s(ω) + a(ω) −
T (j,n,ω), k, i) may contain blocks of consecutive integers. The change from i

in (d′) to i + 2 in (5.8) is for convenience when quoting Lemma 2; the change is
insignificant because m is large. From (5.6)–(5.8) and the strong Markov property,
it follows that

P
(
A([0,N ], k, i,6m)

)

≤
∞∑

j=0

P
(
T (j, n) ≤ N

)( ∞∑
m′=m

k+1∑
k′=k−1

P 0(H(k′, i + 2,m′,0,Wn)
))

.

Applying Lemma 3 to Wn and using (3.8) in place of (5.1), we obtain for k > K

(some K > 0),

P
(
H(k′, i + 2,m′,0,Wn)

) ≤ C02−m′
λ0(Wn, i + 2)

(
2−k′)−d−α|W ∗

n (k′)|.
It has been stated in (5.3) that

∑∞
j=0 P (T (j, n) ≤ N) � N2nα . Therefore for

k > K ,

P
(
A([0,N ], k, i,6m)

) ≤ c(k)N2nα2−mλ0(Wn, i + 2).

Recall from (3.3) that

λ0(Wn, i + 2) = µ0(W ∗
n (i),W(i + 1)

)
2−i(d+α)|W ∗

n (i)|−1.

Finally, condition (3.7) and harmonic measure estimate (2.7) yield

λ0(Wn, i + 2) ∼= µ0(
W ∗

n (i),B(0,2−n)2−i(d+α)|W ∗(i)|−1)
∼= E0(τB(0,2−n)

) ∼= 2−nα.

Finally P (A([0,N ], k, i,6m)) ≤ c(k)N2−m for k > K , which is (5.5). This proves
P (A(W)) = 0. �

6. On examples. First we verify Example 2. The following lemma on
expected life time should be known.

LEMMA 4. Let S = (0,1) × (−∞,∞)d−1. Then supx∈S Ex(τS) < ∞.
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PROOF. Let T = (−1,1) × (−∞,∞)d−1. Then

a ≡ sup
x∈S

P x
(
X(t) ∈ S ∀0 ≤ t ≤ 1

) ≤ P 0(X(t) ∈ T ∀0 ≤ t ≤ 1
)
< 1

and P x(X(t) ∈ S ∀0 ≤ t ≤ N) ≤ aN(N positive integer) for all x ∈ S. From this,
it follows that Ex(τS) ≤ (1 − a)−2 for all x ∈ S. �

LEMMA 5. Let 0 < δ < 1, m an integer in [1, d] and Q = (0, δ)m×(0,1)d−m.
Then for any x ∈ ( δ

4 , 3δ
4 )m × (1

4 , 3
4)d−m,

Ex(τQ) ∼= sup
x∈Q

Ex(τQ) ∼= δα.

PROOF. Let Tm = (−1,1)m × (−∞,∞)d−m; note from Lemma 4 and the
monotonicity that C6 ≡ max1≤m≤d supx∈Tm

Ex(τTm) is finite. Again by monotonic-
ity and scaling note that supx∈Q Ex(τQ) � C6δ

α . The fact that Ex(τQ) � δα for

all x ∈ ( δ
4 , 3δ

4 )m × (1
4 , 3

4)d−m follows from (2.3). This completes the proof. �

To check Example 2, we note from Lemma 5 and scaling that

sup
x∈W(i)

Ex(
τW(i)

)
� δα

i 2−iα.

Therefore
∫
W Ex(τW )|x|−d−α dx � ∑

δ
α+m(i)
i ; assertion (i) in Example 2 follows

from Theorem 1.
Assume that δi 
= 0 for infinitely many i’s; otherwise (ii) is trivial. Consider

only pairs (n, i) satisfying δi > 0 and δi2−i−1 ≤ 2−n < δi2−i . We claim that

Ex
(
τWn(i)

)
� 2−nα ∀x ∈ Wn(i).

Since Ex(τWn(i)) is continuous in Wn(i) and goes to 0 as x approaches ∂Wn(i),
sup{Ex(τWn(i)) :x ∈ Wn(i)} is attained at some point z ∈ Wn(i). Assume that
z ∈ W ∗

n (j) for some j ∈ [i, n]. Then

Ez
(
τWn(i)

) = Ez
(
τW ∗

n (j)

) +
∫
Wn(i)\W ∗

n (j)
Ey

(
τWn(i)

)
dµz

(
y,W ∗

n (j)
)

≤ Ez(τW ∗
n (j)

) + Ez(τWn(i)

)
µz(Wn(i)\W ∗

n (j),W ∗
n (j)

)
.

Note from the definition of W that Wn(i)
c contains some ball of diameter

2−j−1 within a distance 2−j+1 from W ∗
n (j). Calculations using (2.7) and the

monotonicity yield

µz
(
Wn(i)

c,W ∗
n (j)

)
> C7 > 0,

and by Lemma 5,

Ez
(
τWn(i)

) ≤ C−1
7 Ez

(
τW ∗

n (j)

)
� (δj 2−j )α � 2−nα.
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This proves the claim.
From the harmonic measure estimate (2.7) and the claim, it follows that

µ0(
W ∗

n (i),Wn(i + 1)
) ∼= E0(τWn(i+1)

)
(2−i)−α−d |W ∗

n (i)|
� 2−nα(2−i)−α−d |W ∗

n (i)| ∼= µ0(W ∗
n (i),B(0,2−n)

)
.

This proves (3.7) in Theorem 2.
Note from (1.1), (3.6) and Lemma 5 that for x ∈ Wn(j) and j ≥ i,

λx(Wn, j) ∼= Ex(τWn(j−1)) � (δα
j + δα

j−1)2
−jα

(the sum δα
j + δα

j−1 is needed since δj−1 may be zero), and that

i∑
j=1

�(Wn, j)(2−j )−α−d |W ∗
n (j)| �

i∑
j=1

δ
α+m(j)
j .

This proves (3.8) in Theorem 2 and thus assertion (ii) in Example 2.

REMARK 2. In Example 2, the requirement in keeping Qj ’s uniformly apart
is for the convenience of the proof. The conclusions remain if Qj ’s are allowed to
stay in {2−j−1 < |x| < 2−j }, or are replaced by bilipschitz images of Qj ’s with
uniformly bounded bilipschitz constants.

Example 1 is a variation of Example 2 in the case m(j) = 1 for all j . It is
especially interesting to note that P (A(W)) = 1 as long as lim sup δj > 0; in
particular, W can be very lacunary.

In Example 3, the set is scattered, and we need some harmonic measure
estimates. For x ∈ R

d , let

‖x‖ = max{|xj | : 1 ≤ j ≤ d}.

LEMMA 6. Let 0 < ε < 1
10 , r > 0, L be the set of lattice points in R

d, W =⋃
x∈L B(x, ε) and Wr = W ∩ {‖x‖ < r + 1

4}. Then

µx0
(
W \ B(x0, ε),B(x0, ε)

) ∼= εα+d ∀x0 ∈ L.(6.1)

Suppose εα+d < N−α and N > 10, then

µx(W \ WN,WN) � εα+dN−α ∀x ∈ WN/2,(6.2)

µx0(W \ WN,WN) ∼= µx0
(
W 2N \ WN,B(x0, ε)

) ∼= εα+dN−α

(6.3)

∀x0 ∈ L with ‖x‖ ≤ N

2
and there exists C8 > 0 so that if 0 < ε < C8 then

Ex(τW) � εα ∀x ∈ W.(6.4)
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PROOF. It follows from (2.1) that

µ0(
W \ B(0, ε),B(0, ε)

) ∼= E0(
τB(0,ε)

) ∫ ∞
1

t−d−αεdtd−1 dt ∼= εα+d

and (6.1) follows by translation.
Monotonicity and calculation as above yield that if x ∈ B(x0, ε) ⊆ WN then

µx(W \ WN,WN) ≤ µx(
W \ B(x0, ε),B(x0, ε)

)
(6.5)

≤ µx
(
W \ B(x0, ε),B(x,2ε)

) ∼= εα+d .

If x ∈ B(x0, ε) ⊆ WN/2, then (2.1), (2.2), (2.5) and monotonicity yield

µx(
W \ WN,B(x0, ε)

) ≤ µx(
W \ WN,B(x,2ε)

)
∼= Ex

(
τB(x,2ε)

) ∫ ∞
N/2

t−d−αεdtd−1 dt

(6.6) ∼= εα+dN−α

∼= µx0
(
W 2N \ WN,B(x0, ε)

)
.

Now let x ∈ B(x0, ε) ⊆ WN/2. Then from the Markov property, (6.5), (6.6) and
the assumption εα+d < N−α , it follows that

µx(W \ WN,WN) = µx(
W \ WN,B(x0, ε)

)
+

∫
WN\B(x0,ε)

µy(W \ WN,WN)dµx
(
y,B(x0, ε)

)
� εα+dN−α + ε2(α+d) � εα+dN−α.

This gives (6.2).
The estimate in (6.3) follows from (6.2), (6.6) and the fact that µx0(W \

WN,WN) ≥ µx0(W \ WN,B(x0, ε)).
It is easy to see from the geometry of the set W that infx∈W P x(X(1) ∈

Wc) > 0. Arguing as in Lemma 4 we obtain supx∈W Ex(τW) < ∞. Since
Ex(τW ) is continuous in W and approaches 0 uniformly on ∂W , supx∈W Ex(τW ) is
attained in W . Since W is translation invariant we may choose z ∈ B(0, ε) so that
Ez(τW) = supx∈W Ex(τW). By Markov property, monotonicity and (6.5),

Ez(τW) = Ez(τB(0,ε)

) +
∫
W\B(0,ε)

Ex(τW)dµz(x,B(0, ε)
)

≤ Ez(τB(0,ε)

) + Ez(τW)µz(W \ B(0, ε),B(0, ε)
)

≤ Ez(τB(0,ε)

) + C9E
z(τW)εα+d .

Now if εα+d < (2C9)
−1, then

Ez(τW) ≤ 2Ez
(
τB(0,ε)

)
� εα,
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which gives (6.4). �

To verify Example 3, we apply Theorems 1 and 2 in the rectangular settings, that
is, in the definitions of W(j), W ∗(j) and Wn(j) and W ∗

n (j), we use ‖ · ‖ instead
of | · |, for example, W(j) = W ∩ {‖x‖ < 2−j }.

Assume
∑

εα+d
k = ∞. Using (2.1) and (2.2), we obtain for x ∈ 1

2Q ∈ C ′
k ,

Ex(τW) � εα
k rα

k and∫
⋃

C′
k
Q

|x|−d−α dx ∼=
∫ εk−1rk−1

rk

t−d−αεd
k td−1 dt ∼= εd

k r−α
k .

Therefore
∫
W Ex(τW)|x|−d−α dx � ∑

εd+α
k = ∞; the conclusion P (A(W)) = 1

follows from Theorem 1.
Next we verify part (ii), and let n(k) be the integer satisfying 2−n(k) = εkrk,

i(k) = n(k − 1), and m(k) be the smallest integer such that 2−m(k)−1 ≤ rk − εkrk ;
in other words, {‖x‖ < 2−m(k)−1} is the largest cube of the form {‖x‖ < 2−j } that
does not meet

⋃{x +Qk :x ∈ Q ∈ C ′
k}. Note that 2−m(k) ∼= rk, n(k) > m(k) > i(k)

and that ⋃{x + Qk :x ∈ Q ∈ C ′
k} ⊆ {

2−m(k)−1 < ‖x‖ < 2−i(k)
}

and

Wn(k) ⊆ {‖x‖ < 2−n(k)
} ∪

k⋃
�=1

{
2−m(�)−1 < |x| < 2−i(�)

}
for each k ≥ 1.

We shall check (3.7) and (3.8) for pairs (n(k), i(k)), k ≥ 1.
Note from monotonicity, assumption εα+d

k < N−α
k and a scaled version of (6.3)

that

µ0(
W ∗

n(k)(i(k)),Wn(k)

(
i(k) + 1

)) ∼= µ0(
W ∗

n(k)(i(k)),Qk

) ∼= εα+d
k N−α

k .

This gives (3.7).
To check (3.8), we fix k ≥ 1 and for simplicity, we use (n, i),Wn for (n(k), i(k))

and Wn(k) and use p(j) for max{i : i ≤ j − 2 :W ∗
n (i) 
= φ}. We then proceed to

estimate µx(W ∗
n (p(j)), Wn(j − 1)) and �(Wn, j) for j ∈ ⋃k

�=1[i(�),m(�)] and
x ∈ W ∗

n (j).
Let � ∈ [1, k] and consider first j ∈ [i(�) + 2,m(�)]; in this case p(j) =

j − 2, |W ∗
n (p(j))| ∼= |W ∗

n (j)| and there are N (k, �, j) ∼= 2−jdr−d
� cubes in C ′

k

that meet Wn(j − 2). Therefore monotonicity and a scaled version of (6.3) imply
that for x ∈ W ∗

n (j),

µx
(
W ∗

n (p(j)),Wn(j − 1)
) = µx

(
W ∗

n (j − 2),Wn(j − 1)
)

∼= εd+α
�

(
N (k, �, j)1/d

)−α

∼= εd+α
� rα

� 2jα.
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Consequently, it follows from (3.3) and (3.4) that

m(�)∑
j=i(�)+2

�(W,j)(2−j )−d−α|W ∗
n (j)|

∼=
m(�)∑

j=i(�)+2

εd+α
� rα

� 2jα

(6.7) ∼= εα+d
� rα

� 2m(�)α

∼= εα+d
� .

For � ∈ [1, k] and j = i(�) or i(�) + 1, we have p(j) = m(� − 1) and
2−p(j) ∼= r�−1, and have W(j − 1) = W(i(�)) ⊆ ⋃

C�
Q, 2−j = ε�−1r�−1 and

|W ∗
n (i(�))| ∼= |W ∗

n (i(�) + 1)| ∼= (ε�−1r�−1)
dεd

� . Because there is a thick ring
separating Wn(j − 1) from Wn(p(j)), it follows from (3.6) that

λx(Wn, j) ∼= Ex
(
τWn(j−1)

) = Ex
(
τWn(i(�))

) ∀x ∈ W ∗
n (j).

A scaled version of (6.4) shows that

Ex(
τWn(i(�))

)
� εα

� rα
� ∀x ∈ W ∗

n (j).

Therefore when j = i(�) or i(�) + 1,

�(Wn, j)(2−j )−d−α|W ∗
n (j)| � εα

� rα
� ε−d−α

�−1 r−d−α
�−1 (ε�−1r�−1)

dεd
� � εα+d

� .(6.8)

With k ≥ 1 still fixed, we obtain from (6.7) and (6.8)

i(k)∑
j=1

�
(
Wn(k)(j)

)|W ∗
n (j)|2j (d+α)

≤
k∑

�=1

m(�)∑
j=i(�)

�
(
Wn(k)(j)

)|W ∗
n (j)|2j (d+α)

�
k∑

�=1

εα+d
� .

Since
∑∞

�=1 εd+α
� < ∞, it is clear that there exists K so that condition (3.8)

is satisfied for all pairs (n(k), i(k)); assertion (ii) in Example 3 follows from
Theorem 2.

REMARK 3. In part (ii) of Example 3, εα+k
k < N−α

k is used to obtain (3.7) and∑
εd+α
� < ∞ is used to obtain (3.8).
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