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SYMMETRIZATION APPROACH TO CONCENTRATION
INEQUALITIES FOR EMPIRICAL PROCESSES

BY DMITRY PANCHENKO

Massachusetts Institute of Technology

We introduce a symmetrization technique that allows us to translate a
problem of controlling the deviation of some functionals on a product space
from their mean into a problem of controlling the deviation between two
independent copies of the functional. As an application we give a new easy
proof of Talagrand’s concentration inequality for empirical processes, where
besides symmetrization we use only Talagrand’s concentration inequality on
the discrete cube {0,1}n. As another application of this technique we prove
new Vapnik–Chervonenkis type inequalities. For example, for VC-classes of
functions we prove a classical inequality of Vapnik and Chervonenkis only
with normalization by the sum of variance and sample variance.

1. Introduction and main results. Let us consider a measurable space �

with probability measure µ, and the corresponding product space (�n,µn). Given
a class of measurable functions F = {f :� → R}, we consider a functional

Z(x) = sup
F

n∑
i=1

f (xi),

where x = (x1, . . . , xn) ∈ �n, which is usually called an empirical process.
To avoid measurability problems we will assume that F is countable, or even
finite. Our main interest is to study the deviation inequalities for this (or similar)
functional from its mean. The main observation of this paper is that this problem
can be translated into a problem of studying Z(x) − Z(y), where y lives on a
separate copy of �n. This new problem turns out to be easier, at least in the
examples we have in mind here, as it can be handled with Talagrand’s convex
distance inequality on {−1,+1}n which is the simplest case of convex distance
inequality (see [17]).

As a first example of application of this technique we will give an easy proof
of Talagrand’s concentration inequality for Z(x). As a second example, we will
prove new Vapnik–Chervonenkis type inequalities.

Let us start by proving the main result that will allow us to implement the
mentioned symmetrization. For x ∈ R we will denote (x)+ = max(x,0).

LEMMA 1. If ξ and ν are r.v.’s such that for any number a ∈ R and a function
φ(x) = (x − a)+,

Eφ(ξ) ≤ Eφ(ν),
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and for some � ≥ 1, γ > 0 and for all t ≥ 0,

P(ν ≥ t) ≤ �e−γ t ,

then for all t ≥ 0,

P(ξ ≥ t) ≤ �e1−γ t .

PROOF. Let φ(x) = (x − a)+ for some a ∈ R that will be chosen later. Note
that φ is nondecreasing. For t > 0 we can write [below a will be chosen in such a
way that φ(t) > 0]

P(ξ ≥ t) ≤ Eφ(ξ)

φ(t)
≤ Eφ(ν)

φ(t)
= 1

φ(t)

(
φ(0) +

∫ ∞
0

φ′(x)P(ν ≥ x) dx

)

≤ 1

φ(t)

(
φ(0) + �

∫ ∞
0

φ′(x)e−γ x dx

)
,

where we used integration by parts. Since � ≥ 1, we can assume that t ≥ γ −1.
Take

a = t − 1

γ
, φ(x) =

(
x − t + 1

γ

)
+
.

Then φ(t) = γ −1, φ(0) = 0 and∫ ∞
0

φ′(x)e−γ x dx =
∫ ∞
t−γ −1

e−γ x dx = γ −1e1−γ t ,

which gives P(ξ ≥ t) ≤ �e1−γ t . �

It is clear that the lemma can be stated in more generality, for instance, we could
consider the case of tails �e−γ tα for α > 0, but it is irrelevant for the applications
of this paper. The main consequence is given by the following corollary.

COROLLARY 1. Let ξi(x, y) :�n × �n → R, 1 ≤ i ≤ 3, be measurable
functions defined on two copies of �n and let

ξ ′
i (x) =

∫
�n

ξi(x, y) dµn(y).

If ξ3 ≥ 0 and for all t ≥ 0,

µ2n
(
ξ1 ≥ ξ2 + (ξ3t)

1/2) ≤ �e−γ t ,

then for all t ≥ 0,

µn(
ξ ′

1 ≥ ξ ′
2 + (ξ ′

3t)
1/2) ≤ �e1−γ t .
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PROOF. Since
√

ab = infδ>0(δa + b/(4δ)), we can rewrite the events

{
ξ1 ≥ ξ2 + (ξ3t)

1/2} =
{

sup
δ>0

4δ(ξ1 − ξ2 − δξ3) ≥ t

}

and, similarly,

{
ξ ′

1 ≥ ξ ′
2 + (ξ ′

3t)
1/2} =

{
sup
δ>0

4δ(ξ ′
1 − ξ ′

2 − δξ ′
3) ≥ t

}
.

Let us denote

ξ = sup
δ>0

4δ(ξ1 − ξ2 − δξ3), ν = sup
δ>0

4δ(ξ ′
1 − ξ ′

2 − δξ ′
3).

Clearly,

ν = sup
δ>0

∫
4δ(ξ1 − ξ2 − δξ3) dµn(y) ≤

∫
ξ dµn(y)

and, thus, by Jensen’s inequality, for any nondecreasing convex funcion φ,∫
φ(ν) dµn(x) ≤

∫
φ

(∫
ξ dµn(y)

)
dµn(x) ≤

∫
φ(ξ) dµn(x) dµn(y).

Lemma 1 implies the result. �

As we mentioned above, besides the symmetrization of Corollary 1 we will need
Talagrand’s convex distance inequality, which we will formulate now.

Consider the space {0,1}n with uniform measure Pε. If ε ∈ {0,1}n and A ⊆
{0,1}n, denote

UA(ε) = {
(si)i≤n ∈ {0,1}n,∃ ε′ ∈ A, si = 0 ⇒ ε′

i = εi

}
.

Denote the “convex hull” distance between the point ε and a set A as

fc(A, ε) = inf
{|s| : s ∈ convUA(ε)

}
,

where |s| denotes the Euclidean norm of s. The concentration inequality of
Talagrand (Theorem 4.3.1 in [17]) states the following.

PROPOSITION 1. For any α ≥ 0,

Pε

(
f 2

c (A, ε) ≥ t
) ≤ 1

Pε(A)α
exp

{
− α

α + 1
t

}
.(1.1)

REMARK. In [17] this result was formulated for α ≥ 1, but it was proven (and
used) for α ≥ 0.
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The main feature of this distance is that if f 2
c (A, ε) ≤ t, then (Theorem 4.1.2

in [17])

∀ (λi)i≤n, ∃ ε′ ∈ A,

n∑
i=1

λiI (ε′
i �= εi) ≤

(
t

n∑
i=1

λ2
i

)1/2

.(1.2)

We will start by giving a new proof of Talagrand’s concentration inequality for
empirical processes.

2. Talagrand’s concentration inequality for empirical processes. For sim-
plicity of notations from now on we will write P to denote any probability measure,
and Pξ to specify the distribution on the space of random variable ξ, with all other
variables fixed. Similarly, to denote the expectation we will write E and Eξ .

Let us define a mixed uniform variance as

V = Ey sup
f ∈F

n∑
i=1

(
f (xi) − f (yi)

)2
.(2.1)

In a sense, V is a uniform version of the sum of variance and sample variance, since
in the case when F consists of one function, this is exactly what it is. Clearly, V is
a function of x. The following theorem holds.

THEOREM 1. Let V be defined by (2.1). Then for any α > 0,

P

(
sup
f ∈F

n∑
i=1

f (xi) ≥ E sup
f∈F

n∑
i=1

f (xi) + 2
√

V t

)
≤ 2α+1 exp

{
1 − α

α + 1
t

}

and

P

(
sup
f ∈F

n∑
i=1

f (xi) ≤ E sup
f ∈F

n∑
i=1

f (xi) − 2
√

V t

)
≤ 2α+1 exp

{
1 − α

α + 1
t

}
.

REMARK. One can optimize the bound over α, which would give that for
t ≥ log 2, the bound can be written as 2 exp{1 − (

√
t − √

log 2 )2}.

PROOF OF THEOREM 1. We will only prove the upper tail, since the proof of
the lower tail is exactly the same, once one switches Z and EZ. Since

E sup
f ∈F

n∑
i=1

f (xi) = Ey sup
f ∈F

n∑
i=1

f (yi),

Corollary 1 implies that it is enough to prove that

P

(
sup
f ∈F

n∑
i=1

f (xi) ≥ sup
f ∈F

n∑
i=1

f (yi) + 2
√

Wt

)
≤ 2α+1 exp

{
− α

α + 1
t

}
,
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where W = supf ∈F
∑n

i=1(f (xi) − f (yi))
2. For any (x1, . . . , xn, y1, . . . , yn), let

� be the set of permutations of these coordinates such that, for each 1 ≤ i ≤ n,
π(xi),π(yi) ∈ {xi, yi}, and let Pπ denote the uniform probability measure on �.
Since the above probability is invariant with respect to any π ∈ �, it is enough to
show that for any fixed x = (x1, . . . , xn) and y = (y1, . . . , yn) the probability over
permutations

Pπ

(
sup
f ∈F

n∑
i=1

f (z1
i ) ≥ sup

f ∈F

n∑
i=1

f (z2
i ) + 2

√
Wt

)
≤ 2α+1 exp

{
− α

α + 1
t

}
,

where z1
i = π(xi) and z2

i = π(yi). Note that W is invariant under permutations. We
can rewrite it differently in terms of an i.i.d. Bernoulli sequence ε = (ε1, . . . , εn),
that is, P(εi = 0) = P(εi = 1) = 1/2. Namely, we can write

f (z1
i ) = f (yi) + εi

(
f (xi) − f (yi)

)
, f (z2

i ) = f (xi) − εi

(
f (xi) − f (yi)

)
,

and instead of permutations look at the distribution Pε of ε. For any f ∈ F let us
denote cf = ∑

f (yi), c′
f = ∑

f (xi), and fi = (f (xi) − f (yi)). Then, we need to
prove that

Pε

(
sup
f ∈F

(
cf +

n∑
i=1

εifi

)
≥ sup

f ∈F

(
c′
f −

n∑
i=1

εifi

)
+ 2

(
t sup

f ∈F

n∑
i=1

f 2
i

)1/2)

≤ 2α+1 exp
{
− α

α + 1
t

}
.

But this is an easy consequence of Proposition 1. Let us consider the functionals

(ε) = sup
f ∈F

(
cf +

n∑
i=1

εifi

)
, ′(ε) = sup

f ∈F

(
c′
f −

n∑
i=1

εifi

)
.

They are both convex, with the Lipschitz norm bounded by

‖‖L,‖′‖L ≤
(

sup
f ∈F

∑
f 2

i

)1/2

.

Also, by symmetry, they have the same median, M = M() = M(′) with respect
to Pε. We will now show that from the convexity of  and ′ and Proposition 1 it
follows

Pε

(
(ε) ≥ M + ‖‖L

√
t
) ≤ 2α exp

{
− α

α + 1
t

}
(2.2)

and

Pε

(
′(ε) ≤ M − ‖′‖L

√
t
) ≤ 2α exp

{
− α

α + 1
t

}
.(2.3)
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Let us recall how this is usually done (see [10]). If we consider the set A =
{ε :(ε) ≤ M}, then P(A) ≥ 1/2 and by convexity of , convA = A. This,
together with the Lipschitz condition, implies that{

f 2
c (A, ε) ≤ t

} ⊆ {
(ε) ≤ M + ‖‖L

√
t
}
.

Thus, the right tail (2.2) follows from Proposition 1. Similarly, if we consider the
set

B = {
ε :′(ε) ≤ M − ‖′‖L

√
t
}
,

then {
f 2

c (B, ε) ≤ t
} ⊆ {′(ε) ≤ M}.

By Proposition 1,

1

2
≤ P

(
f 2

c (B, ε) ≥ t
) ≤ 1

P(B)α
exp

{
− α

α + 1
t

}
.

We can rewrite this as

P(B) ≤ 2β exp
{
− β

β + 1
t

}
,

where β = 1/α. But since α is arbitrary, this proves the lower tail (2.3), which
completes the proof of the theorem. �

This result is an intermediate step in obtaining the concentration inequality
for Z(x) in its final form, since V still depends on x. Notice that here we did not
assume any boundedness of f ∈ F , and the result is of somewhat similar nature as
the self-normalization phenomenon in the one-dimensional case (see [6] or [16]).
Under the additional assumption that f ∈ F are uniformly bounded one can
proceed by controlling the deviation of V (or W ) from its expectation, which
is done in a usual way, either via control by two points as in [18] plus some
truncation argument, or via a sharp concentration inequality of Boucheron, Lugosi
and Massart [1].

Let us assume now that

∀f ∈ F , ∀x ∈ �, −1
2 ≤ f (x) ≤ 1

2 .

If we introduce Vi = Ey supf ∈F
∑

j �=i(f (xj ) − f (yj ))
2 then, it is easy to see that

0 ≤ V − Vi ≤ 1 and
n∑

i=1

(V − Vi) ≤ V.

Under these conditions, Theorem 6 in [1] states that for all t ≥ 0,

P(V ≥ EV + t) ≤ exp
{
−EV h

(
t

EV

)}
,(2.4)
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where h(x) = (1 + x) log(1 + x) − x. Since h(x) ≥ x2/(2 + 2x/3), (2.4) implies
Bernstein’s inequality

P(V ≥ EV + t) ≤ exp
{
− t2

2EV + 2t/3

}
,

which can be equivalently written as

P

(
V ≥ EV + 1

3
(18EV t + t2)1/2 + t

3

)
≤ e−t .

More generally, if −b ≤ f (x) ≤ b, then

P

(
V ≥ EV + 2b

3
(18EV t + 4b2t2)1/2 + 4b2t

3

)
≤ e−t .

Combining this with Theorem 1 we get the following corollary.

COROLLARY 2. If −b ≤ f (x) ≤ b then for all t ≥ log 2,

P

(
|Z − EZ| ≥ 2

(
t

(
EV + 2b

3
(18EV t + 4b2t2)1/2 + 4b2t

3

))1/2
)

(2.5)
≤ 4e1−(

√
t−√

log 2 )2 + e−t .

It is clear that in the range of parameters 1 � t � EV/b2, the bound of the
corollary will be dominated by the term ∼ 2

√
EV t. For this range, it improves

upon the control of the lower tail given by Theorem 12 in [11], which states

P
(
Z ≤ EZ − 2

√
1.35EV t − 3.5bt

) ≤ e−t .(2.6)

Actually, one can check that

2
(
t

(
EV + 2b

3
(18EV t + 4b2t2)1/2 + 4b2t

3

))1/2

≤ 2
√

1.35EV t + 3.5bt

for all parameters b,EV, t . Unfortunately, (2.5) and (2.6) are not comparable in all
range of parameters, mainly, because of the term exp{−(

√
t − √

log 2 )2}.
Finally, we refer the reader to [2, 3, 15, 14] for many other results about

concentration inequalities for functions in product spaces.

3. Vapnik–Chervonenkis type inequalities. In this section we are trying to
control the functional Qnf uniformly over the class F , where

Qnf = Pf − Pnf or Qnf = Pnf − Pf

and

Pf =
∫

f (x) dP (x), Pnf = 1

n

n∑
i=1

f (xi).
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The difference from the previous section is that now the bounds on Qnf will
depend on f and will reflect the fact that a function f with a smaller variance
should have a tighter bound. The results of this section are in a spirit of Vapnik
and Chervonenkis [21] and Panchenko [13].

Corresponding to Qnf , let us introduce

Snf = 1

n

n∑
i=1

(
f (yi) − f (xi)

)
or Snf = 1

n

n∑
i=1

(
f (xi) − f (yi)

)
.

Finally, we define

Rnf = 1

n

n∑
i=1

εi

(
f (yi) − f (xi)

)
,

where ε1, . . . , εn are i.i.d. Rademacher random variables, that is, P(εi = 1) =
P(εi = −1) = 1/2, and define

Wf = W(f,x, y) = 4

n

n∑
i=1

(
f (yi) − f (xi)

)2
, Vf = V (f, x) = EyW(f, x, y).

As one of the consequences of our approach we will give a uniform control
of Qnf/(Vf )1/2 for VC-subgraph classes of functions. The original result of
Vapnik and Chervonenkis [21] provided a uniform control for Qnf/(Pf )1/2 for
VC-classes of functions taking values f ∈ {0,1} (and a simple generalization
for VC-major classes taking values in [0,1]). The fact that we can substitute Pf

by Vf gives a new way to control Qnf.

Let us introduce a function (f,x, y) which is invariant with respect to the
permutations π ∈ � of (x, y) that were defined in the proof of Theorem 1. Assume
that for some fixed β ∈ (0,1) and for any fixed (x, y), we have

Pε

(
sup
f ∈F

(
Rnf − (f,x, y)

)
> 0

)
< 1 − β.(3.1)

Then the following theorem holds.

THEOREM 2. Assume that (3.1) holds. Then for any t ≥ log β−1,

P

(
∃f ∈ F , Qnf ≥ Ey(f, x, y) +

√
V t

n

)
≤ exp

(
1 − (√

t −
√

log β−1 )2
)
.

PROOF. We will first prove that for any α ≥ 0 the statement of the theorem
holds with the right-hand side substituted by β−α exp(1 − αt/(α + 1)). The result
will follow by optimization over α. First of all, by Corollary 1 it is enough to prove
that

P

(
∃f, Snf ≥ (f,x, y) +

√
Wt

n

)
≤ 1

βα
exp

(
− α

α + 1
t

)
.
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Since (f,x, y) is invariant under permutations π ∈ �, we can write

P

(
∃f, Snf ≥ (f,x, y) +

√
Wt

n

)

= P

(
∃f, Rnf ≥ (f,x, y) +

√
Wt

n

)
(3.2)

= EPε

(
∃f, Rnf ≥ (f,x, y) +

√
Wt

n

)
.

For a fixed (x, y) consider a set

A =
{
ε : sup

f ∈F

(
Rnf − (f,x, y)

) ≤ 0
}
.

By condition (3.1), Pε(A) ≥ β . If we denote At = {ε :f 2
c (A, ε) ≤ t} then (1.1)

implies that

Pε(At ) ≥ 1 − β−α exp
(
− α

α + 1
t

)
.

Let us take ε ∈ At and ε′ ∈ A. The definition of A implies that for any f ∈ F ,

1

n

n∑
i=1

ε′
i

(
f (yi) − f (xi)

) ≤ (f,x, y)

and, therefore,

1

n

n∑
i=1

εi

(
f (yi) − f (xi)

) − (f,x, y)

≤ 1

n

n∑
i=1

(εi − ε′
i )

(
f (yi) − f (xi)

)

≤ 2

n

n∑
i=1

|f (yi) − f (xi)|I (ε′
i �= εi).

But since ε ∈ At , (1.2) implies that one can choose ε′ ∈ A so that

2

n

n∑
i=1

|f (yi) − f (xi)|I (ε′
i �= εi) ≤

(
t

4

n2

n∑
i=1

(
f (yi) − f (xi)

)2
)1/2

=
(

Wt

n

)1/2

.

Note that we stated Talagrand’s concentration inequalitity on the discrete cube
{0,1}n, but it applies to the case of the cube {−1,+1}n without any changes. This
proves the theorem. �
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Let us consider a special case of a �-invariant function (f,x, y), satisfying
condition (3.1). Let us note here that application of Talagrand’s concentration
inequality for two point space as it was implemented in Theorem 2 is not crucial
for the examples of this section. It is a well-known fact that the chaining technique
that we will only use here to bound the (1 − β)-quantile implies tail estimates as
well. The only thing that we will really need here is the symmetrization idea of
Lemma 1. But it is hard to argue with the fact that the application of Talagrand’s
inequality even for these examples is more elegant as it immediately provides the
tail estimates once the bound for the quantile is obtained.

We will assume from now on that 0 ≡ f ∈ F . Let d be a (semi)metric on F .
Given u > 0 we say that a subset F ′ ⊂ F is u-separated if for any f �= g ∈ F ′ we
have d(f, g) > u. Let a packing number D(F , u, d) be the maximal cardinality of
a u-separated set.

THEOREM 3. There exists a constant K(β) > 0 that depends on β only such
that the function

(f,x, y) = K(β)n−1/2
∫ √

W/2

0

(
logD(F , u, dx,y)

)1/2
du

satisfies condition (3.1). Here

dx,y(f, g) =
(

1

n

n∑
i=1

(
f (yi) − f (xi) − g(yi) + g(xi)

)2
)1/2

.

The proof is based on the standard chaining technique and will not be
reproduced here. One can follow, for example, the proof of Theorem 3 in [13].

Next, we will specialize Theorem 3, which deals with random entropies, to
the important particular case when there is an upper bound for all entropies and,
even more, when this upper bound is polynomial, for example, in the case of
VC-subgraph classes of functions.

Let us introduce a uniform packing numbers D(F , u) as any function such that

sup
Q

D
(
F , u,L2(Q)

) ≤ D(F , u)(3.3)

where the supremum is taken over all discrete probability measures. One can easily
check that (

1

n

n∑
i=1

(
f (xi) − f (yi) − g(xi) + g(yi)

)2
)1/2

≤ 2

(
1

2n

n∑
i=1

((
f (xi) − g(xi)

)2 + (
f (yi) − g(yi)

)2
))1/2
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and, therefore, in the case when the packing numbers are bounded uniformly we
get

D(F , u, dx,y) ≤ D(F , u/2).

Hence,

Ey(f, x, y) ≤ K(β)n−1/2
Ey

∫ √
W/2

0

(
logD(F , u/2)

)1/2
du

≤ 2K(β)n−1/2
∫ √

V /4

0

(
log D(F , u)

)1/2
du.

COROLLARY 3. If the class F satisfies condition (3.3) then for any β ∈ (0,1)

there exists a constant K(β) > 0 that depends on β only such that, for any
t ≥ logβ−1,

P

(
∃f ∈ F , Qnf ≥ 2K(β)

n1/2

∫ √
V /4

0

(
logD(F , u)

)1/2
du +

√
V t

n

)

≤ exp
(
1 − (√

t −
√

logβ−1 )2
)
.

Next, let us consider the case when F is a VC-subgraph class with VC
dimension d (for definition, see [19]), and all functions f ∈ F are uniformly
bounded, that is, supx,f |f (x)| ≤ 1. In this case the result of [7] gives

D(F , u) ≤ e(d + 1)

(
2e

u2

)d

(3.4)

and, therefore, the following corollary.

COROLLARY 4 (Normalization by variance). If (3.4) holds then for any
β ∈ (0,1) there exists a constant K(β) > 0 that depends on β only such that,
for any t ≥ log β−1,

P

(
∃f ∈ F , |Qnf | ≥ 2U

(
Varf + Varnf

1 − 4U2

)1/2)

≤ 2 exp
(
1 − (√

t −
√

log β−1 )2
)
,

where

U = K(β)

√
d log n

n
+

√
t

n
.
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PROOF. Using condition (3.4) in Corollary 3 one can get

P

(
∃f ∈ F ,

Qnf√
V

≥ K

√
d logn

n
+

√
t

n

)
≤ exp

(
1 − (√

t −
√

logβ−1 )2
)
.

Let us rewrite V as

V = V (x) = 4
(
Varf + Varnf + (Pf − Pnf )2) = 4

(
Varf + Varn f + (Qnf )2)

,

where

Varn f = 1

n

n∑
i=1

(
Pnf − f (xi)

)2

is a sample variance. Now one only needs to solve the above inequality for Qnf

to complete the proof.
Let us compare this to an “optimistic” inequality of Vapnik and Chervonenkis

[20], which states that if F = {f :� → {0,1}} is a VC-class of indicator functions
with VC dimension d , then with probability at least 1 − e−t/4, for all f ∈ F ,

1

n(Pf )1/2

n∑
i=1

(
Pf − f (xi)

) ≤ 2
(

d

n
log

2en

d
+ t

n

)1/2

.

Compared to the inequality of Vapnik and Chervonenkis the inequality of
Corollary 4 controls the deviation of Pnf from Pf in both directions and the
deviation is controled by the mixture of variance and sample variance rather than
by expectation Pf, which can be considered as a significant improvement.

Finally, let us look at the case when F consists of one function f . We will
simply write f (X) = ξ . Let us take β = 1/2 and let

(ξ) = Eξ ′Mε

(
1

n

n∑
i=1

εi(ξi − ξ ′
i )

)
= 0.

Obviously, with this choice of β and  condition (3.1) holds and Theorem 2
implies

P

(
|ξ̄ − Eξ | ≥ 2

(
(Varξ + Varnξ + (Eξ − ξ̄ )2)t

n

)1/2)

≤ 2 exp
(
1 − (√

t − √
log 2

)2
)
.

Solving the inequality for |ξ̄ − Eξ | we get

P

(
|ξ̄ − Eξ | ≥ 2

(
(Varξ + Varn ξ)t

n − 4t

)1/2)
≤ 2 exp

(
1 − (√

t − √
log 2

)2
)
.(3.5)
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One should compare this to Bernstein type inequalities. First of all, we do not
assume any moment conditions other than the existance of variance of ξ . Second,
in Bernstein’s inequality

|ξ̄ − Eξ | <∼
(

t Var ξ

n

)1/2

for t ≤ nVarξ,

|ξ̄ − Eξ | <∼
t

n
for t ≥ nVarξ,

(3.6)

whereas (3.5) gives

|ξ̄ − Eξ | ≤ 2
(

2(Varξ + Varnξ)t

n

)1/2

for t ≤ n/8.

This, basically, means that the deviation of the average ξ̄ from the expectation Eξ

can be large only when the sample variance is large. �
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