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GENERALIZED COVARIATIONS, LOCAL TIME AND
STRATONOVICH ITÔ’S FORMULA FOR FRACTIONAL
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Université Henri Poincaré, Université Paris 13 and Université Henri Poincaré

Given a locally bounded real function g, we examine the existence of
a 4-covariation [g(BH ),BH ,BH ,BH ], where BH is a fractional Brownian
motion with a Hurst index H ≥ 1

4 . We provide two essential applications.
First, we relate the 4-covariation to one expression involving the derivative of
local time, in the case H = 1

4 , generalizing an identity of Bouleau–Yor type,
well known for the classical Brownian motion. A second application is an Itô
formula of Stratonovich type for f (BH ). The main difficulty comes from the
fact BH has only a finite 4-variation.

1. Introduction. The present paper is devoted to generalized covariation
processes and an Itô formula related to the fractional Brownian motion. The classi-
cal Itô formula and classical covariations constitute the core of stochastic calculus
with respect to semimartingales. Fractional Brownian motion, which, in general,
is not a semimartingale, has been studied intensively in stochastic analysis, and it
is considered in many applications in hydrology, telecommunications, economics
and finance. Finance is the most recent one in spite of the fact that, according
to [34], the general assumption of no arbitrage opportunity is violated. Interesting
remarks have recently been made in [7] and [40].

Recall that a mean-zero Gaussian process X = BH is a fractional Brownian
motion with Hurst index H ∈]0,1[ if its covariance function is given by

KH(s, t) = 1
2

(|s|2H + |t|2H − |s − t|2H ), (s, t) ∈ R
2.(1.1)

An easy consequence of this property is that

E(BH
t − BH

s )2 = (t − s)2H .(1.2)

Before concentrating on this self-similar Gaussian process, we would like to make
some general observations.

Calculus with respect to integrands that are not semimartingales is now 20
years old. A large number of papers has been produced, and it is impossible to
list them here; however, we are still not close to having a truly efficient approach
for applications.

There are essentially three techniques for studying non-semimartingale integra-
tors:
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• Pathwise and related techniques;
• Dirichlet forms;
• anticipating techniques (Malliavin calculus, Skorohod integration and so on).

Pathwise-type integrals are often defined using discretization as the limit of
Riemann sums: an interesting survey on the subject is the book by Dudley and
Norvaisa [13]. They emphasize the large historical literature in the determin-
istic case. The first contribution in the stochastic framework was provided by
Föllmer [18] in 1981; through this significant and simply written contribution, the
author wished to discuss integration with respect to a Dirichlet process X, that is to
say, a local martingale plus a zero quadratic variation (or sometimes zero energy)
process. This approach has been continued and performed by Bertoin [4].

Since 1991, Russo and Vallois [35] have developed a regularization procedure,
whose philosophy is similar to discretization. They introduced forward (generaliz-
ing Itô), backward and symmetric (generalizing Stratonovich) stochastic integrals
and a generalized quadratic variation. Their techniques are of a pathwise nature,
but they are not truly pathwise. They make large use of ucp (uniform convergence
in probability) related topology. More recently, several papers have followed that
strategy; see, for instance, [16], [36]–[38] and [41]. One advantage of the regular-
ization technique is that it allows us to generalize directly the classical Itô integral.
Our forward integral of an adapted square-integrable process with respect to the
classical Brownian motion is exactly Itô’s integral; the integral via discretization is
a sort of Riemann integral and it does allow us to define easily, for instance, a to-
tally discontinuous function as the indicator of rational numbers on [0,1]. How-
ever, the theorems contained in this paper can be translated without any difficulty
into the language of discretization.

The terminology “Dirichlet processes” is inspired by the theory of Dirichlet
forms. Tools from that theory have been developed to understand such processes
as integrators; see, for instance, [27] and [28]. Dirichlet processes belong to the
class of finite quadratic variation processes.

Even though Dirichlet processes generalize semimartingales, fractional
Brownian motion is a finite quadratic variation process (even Dirichlet) if and only
if the Hurst index is greater than or equal to 1

2 . When H = 1
2 , one obtains the

classical standard Brownian motion. If H > 1
2 , it is even a zero quadratic variation

process. Moreover, fractional Brownian motion is a semimartingale if and only if
it is a classical Brownian motion.

The regularization, or discretization technique, for those and related processes
has been performed by [15], [17], [22], [39], [43] and [44] in the case of zero
quadratic variation, so H > 1

2 . Young’s [42] integral can often be used under this
circumstance. This integral coincides with the forward (but also with the backward
or symmetric) integral since the covariation between the integrand and integrator
is always 0.
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As we will explain later, when the integrator has paths with finite p-variation
for p > 2, there is no hope to make use of forward and backward integrals and the
reference integral will be for us the symmetric integral which is a generalization
of the Stratonovich integral.

The following step was done by Lyons and co-authors, see [25] and [26], who
considered, through an absolutely pathwise approach based on the Lévy stochastic
area, integrators having p-variation for any p > 1, provided one could construct
a canonical geometric rough path associated with the process. This construction
was done in [8] when the integrator is a fractional Brownian motion with Hurst
parameter H > 1

4 ; in that case, paths are almost surely of finite p-variation
for p > 4.

Using Russo–Vallois regularization techniques, Errami and Russo [16] have
considered a stochastic calculus and some ordinary SDEs with respect to
integrators with finite p-variation when p ≤ 3. This applies directly to the
fractional Brownian motion case for H ≥ 1

3 . A significant object introduced in [16]
was the concept of n-covariation [Y1, . . . , Yn] of n processes Y1, . . . , Yn.

Since fractional Brownian motion is a Gaussian process, it was natural to
use the Skorohod–Malliavin approach, which, as we said, constitutes a powerful
tool for the analysis of integrators that are not semimartingales. Using this
approach, integration with respect to fractional Brownian motion, was attacked
by Decreusefonds and Ustunel [11] and it was studied intensively, see [1], [2]
and [6] even when the integrator is a more general Gaussian process. Malliavin–
Skorohod techniques allow to treat integration with respect to processes, in several
situations where the variation is larger than 2. In particular, [1] includes the case
of a fractional Brownian motion BH such that H > 1

4 . The key tool there is the
Skorohod integral, which can be related to the symmetric-Stratonovich integral,
up to a trace term of some Malliavin derivative of the integrand. In the case of
fractional Brownian motion, [1] discussed an Itô formula for the Stratonovich
integral when the Hurst index H is strictly greater than 1

4 .
Other significant and interesting references about stochastic calculus with frac-

tional Brownian motion, especially for H > 1
2 , are [12], [14], [24], [29] and [30].

Some activity is also going on with stochastic PDEs driven by fractional sheets;
see [21].

Our paper follows “almost pathwise calculus techniques” developed by Russo
and Vallois, and it reaches the H = 1

4 barrier, developing very detailed Gaussian
calculations. As we said, one motivation of this paper, was to prove an Itô–
Stratonovich formula for the fractional Brownian motion X = BH for H ≥ 1

4 .
Such a process has a finite 4-variation in the sense of [16] and a finite pathwise
p-variation for p > 4, if one refers, for instance, to [14] and [25]. We even prove
that the cubic variation in the sense of [16] is 0 even when the Hurst index is strictly
bigger than 1

6 ; see Proposition 2.3.
If one wants to remain in the framework of “pathwise” calculus, Itô’s formula

has to be of Stratonovich type. In fact, if H < 1
2 , such a formula cannot make use
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of the forward integral
∫ ·

0 g(BH )d−BH considered, for instance, in [36] because
that integral, as well as the bracket [g(BH ),BH ], is not defined since an explosion
occurs in the regularization. For instance, as pointed out in [1], the forward integral∫ T

0 BH
s d−BH

s does not exist. The use of the Stratonovich-symmetric integral is
natural and it provides cancellation of the term involving the second derivative.

Our Itô formula is of the following type:

f (BH
t ) = f (BH

0 ) +
∫ t

0
f ′(BH

u ) d◦BH
u .

As we said, when H > 1
4 , the previous formula has already been treated in [1]

using Malliavin calculus techniques.
The natural way to prove an Itô formula for an integrator having a finite

4-variation is to write a fourth-order Taylor expansion,

f (Xt+ε) = f (Xt ) + f ′(Xt )(Xt+ε − Xt) + f ′′(Xt )

2
(Xt+ε − Xt)

2

+ f (3)(Xt )

6
(Xt+ε − Xt)

3 + f (4)(Xt )

24
(Xt+ε − Xt)

4,

plus a remainder term, which can be neglected. The second- and third-order terms
can be essentially controlled because one will prove the existence of suitable
covariations, and the fourth-order term provides a finite contribution because X has
a finite fourth variation. If H = 1

4 , the third-order term can be expressed in terms of
a 4-covariation term [f (3)(X),X,X,X]; it compensates then for the fourth-order
term.

From our point of view, the main achievement of this paper is the proof of the
existence of the 4-covariation [g(BH ),BH ,BH ,BH ] for H ≥ 1

4 , g being locally
bounded; see Theorem 3.7. Moreover, we prove that it is Hölder continuous with
parameter strictly smaller than 1

4 . The local boundedness assumption on g can,
of course, be relaxed, making a more careful analysis on the density of fractional
Brownian motion at each instant. For the moment, we have not investigated this
generality.

This result provides, as an application, the Itô–Stratonovich formula for f (BH ),
f being of class C4; see Theorem 4.1.

A second application is a generalized Bouleau–Yor formula for fractional
Brownian motion. Fractional Brownian motion BH has a local time (lHt (a)) which
has a continuous version in (a, t), for any 0 < H < 1, as the density of the
occupation measure; see, for instance, [3] and [20]. In particular, one has∫ t

0
g(BH

s ) ds =
∫

R

g(a)lHt (a) da.

First, we mention the result for the classical Brownian motion B = B1/2.
A direct consequence of [5], [19] and [38] is the following: for a locally bounded
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function f , we have the equality

[f (B),B]t = −
∫

R

f (a)l
1/2
t (da),

where the right-hand side is well defined, since (l
1/2
t (a))a∈R is a semimartingale.

We will refer to the previous equality as the Bouleau–Yor identity.
Our generalization of the Bouleau–Yor identity is the following:[

f (B1/4),B1/4,B1/4,B1/4]
t = −3

∫
R

f (a)
(
l
1/4
t

)′
(a) da.

This is done in Corollary 3.8. We recall also that, for H > 1
3 , a Tanaka-type formula

has been obtained in [9] involving the Skorohod integral.
The technique used here is a “pedestrian” but accurate exploitation of the

Gaussian feature of fractional Brownian motion. Other recent papers where
similar techniques have been used are, for instance, [23] and [31]. Some of the
computations are made using a Maple procedure.

A natural question is the following: is H = 1
4 an absolute barrier for the validity

of the Bouleau–Yor identity and for the Itô–Stratonovich pathwise formula?
Concerning the extended Bouleau–Yor identity, this is certainly not the case.

Similar methods with more technicalities allow one to establish the 2n-covariation
[g(BH ),BH , . . . ,BH ] and its relation with the local time of BH when H =
1/2n,n ≥ 3. We have decided not to develop these details because of the heavy
technicalities.

As far as the “pathwise” Itô formula is concerned, it is a different story. It
is, of course, immediate to see that, for any 0 < H < 1, if B = BH , one has
B2

t = 2
∫ t

0 Bs d◦Bs . On the other hand, proceeding by an obvious Taylor expansion,
one would expect

B3
t = 3

∫ t

0
B2

s d◦Bs − 1
2 [B,B,B]t ,(1.3)

provided that [B,B,B]t exists; Remark 2.4 says that for H < 1
6 this quantity does

not exist and for H > 1
6 it is 0. Therefore, an Itô formula of the type (1.3) is

valid for H > 1
6 and not valid for H < 1

6 . The study of a pathwise Itô formula for
H ∈]1

4 , 1
6 [ is under investigation.

The paper is organized as follows: we recall some basic definitions and results
in Section 2. In Section 3, we state the theorems, we make some basic remarks and
we prove part of the results. Section 4 is devoted to the proof of the Itô formula,
and Section 5 contains the technical proofs.

2. Notation and recalls of preliminary results. We start by recalling some
definitions and results established in previous papers (see [36]–[39]). In the
following, X and Y will be continuous processes. The space of continuous
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processes will be a metrizable Fréchet space C if it is endowed with the topology
of the uniform convergence in probability on each compact interval (ucp). The
space of random variables is also a metrizable Fréchet space, denoted by L0(�),
and it is equipped with the topology of the convergence in probability.

We define the forward integral∫ t

0
Yu d−Xu := lim

ε↓0
ucp

1

ε

∫ t

0
Yu(Xu+ε − Xu)du(2.1)

and the covariation

[X,Y ]t := lim
ε↓0

ucp
1

ε

∫ t

0
(Xu+ε − Xu)(Yu+ε − Yu) du.(2.2)

The symmetric-Stratonovich integral is defined as∫ t

0
Yu d◦Xu := lim

ε↓0
ucp

1

2ε

∫ t

0
Yu(Xu+ε − X(u−ε)∨0) du,(2.3)

and the following fundamental equality is valid∫ t

0
Yu d◦Xu =

∫ t

0
Yu d−Xu + 1

2 [X,Y ]t ,(2.4)

provided that the right-hand side is well defined. However, as we will see in the
next section, the left-hand side may exist even if the covariation [X,Y ] does not
exist. On the other hand, the symmetric-Stratonovich integral can also be written
as ∫ t

0
Yu d◦Xu = lim

ε↓0
ucp

∫ t

0
(Yu+ε + Yu)

Xu+ε − Xu

2ε
du.(2.5)

Previous definitions will be relaxed later.
If X is such that [X,X] exists, X is called a finite quadratic variation process. If

[X,X] = 0, then X will be called a zero quadratic variation process. In particular,
a Dirichlet process (the sum of a local martingale and a zero quadratic variation
process) is a finite quadratic variation process. If X is a finite quadratic variation
process and if f ∈ C2(R), then the following Itô formula holds:

f (Xt) = f (X0) +
∫ t

0
f ′(Xu) d−Xu + 1

2 [f ′(X),X]t .(2.6)

We recall that finite quadratic variation processes are stable by C1-transformations.
In particular, if f,g ∈ C1 and the vector (X,Y ) is such that all mutual co-
variations exist, then [f (X), g(Y )]t = ∫ t

0 f ′(Xs)g
′(Xs) d[X,Y ]s . Hence, formulas

(2.4) and (2.6) give

f (Xt) = f (X0) +
∫ t

0
f ′(Xu) d◦Xu.(2.7)
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REMARK 2.1. (i) If X is a continuous semimartingale and Y is a suitable
previsible process, then

∫ ·
0 Yu d−Xu is the classical Itô integral (for details,

see [36]).
(ii) If X and Y are (continuous) semimartingales, then

∫ ·
0 Yu d◦Xu is the Fisk–

Stratonovich integral and [X,Y ] is the ordinary square bracket.
(iii) If X = BH , then its paths are a.s. Hölder continuous with parameter strictly

less than H . Therefore, it is easy to see that, if H > 1
2 , then BH is a zero quadratic

variation process. When H = 1
2 , B = B1/2 is the classical Brownian motion and

so [B1/2,B1/2]t = t . In particular, Itô formula (2.7) holds for H ≥ 1
2 .

(iv) If X = B is a classical Brownian motion, then formula (2.6) holds even
for f ∈ W

1,2
loc (R) (see [19] and [38]). On the other hand, if (lt (a)) is the local time

associated with B , then in [5] it was shown that

f (Bt ) = f (B0) +
∫ t

0
f ′(Bu) dBu − 1

2

∫
R

f ′(a)lt (da).(2.8)

The integral involving local time on the right-hand side of (2.8) was defined
directly by Bouleau and Yor for a general semimartingale. However, in the
case of Brownian motion, Corollary 1.13 in [5] states that, for fixed t > 0,
(lt (a))a∈R is a classical semimartingale; indeed, that integral has a meaning as
a deterministic Itô integral. Thus, for g ∈ L2

loc(R), setting f such that f ′ = g and
using (2.6) and (2.8), we obtain the Bouleau–Yor identity:∫

R

g(a)lt (da) = −[g(B),B]t .(2.9)

Corollary 3.8 will generalize this result to the case of fractional Brownian
motion B1/4.

(v) An accurate study of “pathwise stochastic calculus” for finite quadratic
variation processes has been done in [39]. One provides necessary and sufficient
conditions on the covariance of a Gaussian process X so that X is a finite quadratic
variation process and X has a deterministic quadratic variation.

Since the quadratic variation is not defined for BH when H < 1
2 , we need to

find a substitution tool. A concept of α-variation was already introduced in [39].
Here it will be called strong α-variation and is the following increasing continuous
process:

[X](α)
t := lim

ε↓0
ucp

∫ t

0

|Xu+ε − Xu|α
ε

du.(2.10)

A real attempt to adapt the previous approach to integrators X which are not of
finite quadratic variation has been done in [16]. For a positive integer n, in [16] one
defines the n-covariation [X1, . . . ,Xn] of a vector (X1, . . . ,Xn) of real continuous
processes in the following way:

[X1, . . . ,Xn]t := lim
ε↓0

ucp
∫ t

0

(X1
u+ε − X1

u) · · · (Xn
u+ε − Xn

u)

ε
du.(2.11)



ITÔ FORMULA FOR FRACTIONAL BROWNIAN MOTION 1779

Clearly, if n = 2, the 2-covariation [X1,X2] is the covariation previously defined.
In particular, if all the processes Xi are equal to X, then the definition gives

[X, . . . ,X]︸ ︷︷ ︸
n times

(t) := lim
ε↓0

ucp
∫ t

0

(Xu+ε − Xu)
n

ε
du,(2.12)

which is called the n-variation of process X. Clearly, for even integer n,
[X](n) = [X, . . . ,X]︸ ︷︷ ︸

n times

.

REMARK 2.2. (i) If the strong n-variation of X exists, then, for all m > n,
[X, . . . ,X]︸ ︷︷ ︸

m times

= 0 (see [16], Remark 2.6.3, page 7).

(ii) If [X, . . . ,X]︸ ︷︷ ︸
n times

and [X](n) exist, then, for g ∈ C(R),

lim
ε↓0

ucp
∫ t

0
g(Xu)

(Xu+ε − Xu)
n

ε
du =

∫ t

0
g(Xu) d[X,X, . . . ,X]u(2.13)

(see [16], Remark 2.6.6, page 8, and Remark 2.1, page 5).
(iii) Let f1, . . . , fn ∈ C1(R) and let X be a strong n-variation continuous

process. Then

[f1(X), . . . , fn(X)]t =
∫ t

0
f ′

1(Xu) · · ·f ′
n(Xu) d [X, . . . ,X]︸ ︷︷ ︸

n times

(u).

(iv) In [16], Proposition 3.4, one writes an Itô-type formula for X a continuous
strong 3-variation process and for f ∈ C3(R):

f (Xt) = f (X0) +
∫ t

0
f ′(Xu) d◦Xu − 1

12

∫ t

0
f (3)(Xu) d[X,X,X]u.(2.14)

In particular, the previous point implies that

f (Xt) = f (X0) +
∫ t

0
f ′(Xu) d◦Xu − 1

12 [f ′′(X),X,X]t .

(v) Let us return to the process X = BH . In [16], Proposition 3.1, it is proved
that its strong 3-variation exists if H ≥ 1

3 but, even for the limiting case H = 1
3 ,

we have that the 3-covariation [BH ,BH ,BH ] ≡ 0.
(vi) In [39], Proposition 3.14, page 22, it is proved that the strong 1

H
-variation

of BH exists and equals ρH t , where ρH = E[|G|1/H ], with G a standard normal
random variable. Consequently,

[BH ](4)
t =

{
3t, if H = 1

4 ,

0, if H > 1
4 .

(2.15)
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In Section 4, we will be able to write an Itô formula for the fractional Brownian
motion with index 1

4 ≤ H < 1
3 . Let us stress that, in this case, BH admits a (strong)

4-variation but not a strong 3-variation.
We end this section with the following remark: as it follows from the fifth part

of the remark above, the 3-variation of a fractional Brownian motion BH is 0 when
H ≥ 1

3 . This result can be extended to the case of lower Hurst index:

PROPOSITION 2.3. Assume H > 1
6 . Then the 3-covariation [BH ,BH ,BH ]

exists and vanishes.

PROOF. For simplicity, we fix t = 1. It suffices to prove that the limit, when
ε goes to 0, of E[(∫ 1

0
1
ε
(BH

u+ε − BH
u )3)2] is 0. We will prove, in fact, that the limit,

when ε ↓ 0, of the following integral,

Iε := 2
∫ ∫

0<u<v<1
E
(

(BH
u+ε − BH

u )3(BH
v+ε − BH

v )3

ε2

)
dudv,

equals 0.
For any centered Gaussian random vector (N,N ′), we have

E
(
N3(N ′)3)= 6 Cov3(N,N ′) + 9 Cov(N,N ′)Var(N)Var(N ′).

Indeed, it is enough to write E(N3(N ′)3) = E[N3 E((N ′)3|N)] and to use linear
regression (see also the proof of Lemma 3.7, page 15, in [39] for a similar
computation).

Denote (N,N ′) = (BH
u+ε − BH

u ,BH
v+ε − BH

v ) and ηε(u, v) = Cov(N,N ′).
Therefore, the previous integral Iε can be written as

Iε = 12
∫ ∫

0<u<v<1

(ηε(u, v))3

ε2
dudv

+ 9 · 24H+1ε4H−2
∫ ∫

0<u<v<1
ηε(u, v) dudv

=: I1
ε + I2

ε.

Since

ηε(u, v) = 1
2

(|v − u + ε|2H + |v − u − ε|2H − 2|v − u|2H
)
,

a direct computation shows that∫ v

0
ηε(u, v) du

= 1

2(2H + 1)

{
(v + ε)2H+1 + (v − ε)2H+1 − 2v2H+1, if v ≥ ε,
(v + ε)2H+1 − (ε − v)2H+1 − 2v2H+1, if 0 ≤ v ≤ ε,
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and then ∫ ∫
0<u<v<1

ηε(u, v) dudv

=
∫ ε

0
dv

∫ v

0
ηε(u, v) du +

∫ 1

ε
dv

∫ v

0
ηε(u, v) du

∼ 1

H
ε2 − 1

2H(H + 1)(2H + 1)
ε2H+2

∼ 1

H
ε2 as ε ↓ 0.

Hence, I2
ε ∼ 9 · 24H+1 1

H
ε4H , when ε ↓ 0, for any H > 0, and limε↓0 I2

ε = 0 for
any H > 0.

To compute I1
ε , we set ζ = v − u. Then

I1
ε = 3

2ε2

∫ 1

0

(
(ζ + ε)2H + |ζ − ε|2H − 2ζ 2H

)3
(1 − ζ ) dζ

= 3ε6H−1
∫ 1/ε

0

(
(θ + 1)2H + |θ − 1|2H − 2θ2H )3(1 − εθ) dθ

=: 3ε6H−1I11
ε − 3ε6HI12

ε .

Clearly,

lim
ε↓0

I11
ε =

∫ ∞
0

(
(θ + 1)2H + |θ − 1|2H − 2θ2H )3 dθ < ∞ if H < 5

6 .

A similar calculation shows that the second term tends to a convergent integral
under the same condition on H . This yields

I2
ε ∼ 3ε6H−1

∫ ∞
0

(
(θ + 1)2H + |θ − 1|2H − 2θ2H )3 dθ as ε ↓ 0

and gives the conclusion, since H > 1
6 . �

REMARK 2.4. From the previous proof, we can also deduce that

lim
ε↓0

E
[(∫ 1

0

1

ε
(BH

u+ε − BH
u )3

)2]

is infinite for H < 1
6 ; therefore, if H < 1

6 , then the 3-variation [BH ,BH ,BH ]
virtually does not exist.

3. Third-order-type integrals and 4-covariations. To understand the case
of fractional Brownian motion for H ≥ 1

4 , besides the family of integrals
introduced until now, we need to introduce a new class of integrals.
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Let again X,Y be continuous processes. We define the following third-order
integrals for t > 0:∫ t

0
Yu d−3Xu := lim

ε↓0
prob

1

ε

∫ t

0
Yu(Xu+ε − Xu)

3 du,

∫ t

0
Yu d+3Xu := lim

ε↓0
prob

1

ε

∫ t

0
Yu(Xu − X(u−ε)∨0)

3 du,

∫ t

0
Yu d◦3Xu := lim

ε↓0
prob

1

2ε

∫ t

0
(Yu + Yu+ε)(Xu+ε − Xu)

3 du.

(3.1)

We will call them, respectively, (definite) forward, backward and symmetric third-
order integrals. If the above L0(�)-valued function

t �→
∫ t

0
Yu d−3Xu, respectively t �→

∫ t

0
Yu d+3Xu, t �→

∫ t

0
Yu d◦3Xu

exists for any t > 0 (and equals 0 for t = 0), and it admits a continuous version,
then such a version will be called a third-order forward (respectively, backward,
symmetric) integral, and it will be denoted again by(∫ t

0
Yu d−3Xu

)
t≥0

, respectively
(∫ t

0
Yu d+3Xu

)
t≥0

,

(∫ t

0
Yu d◦3Xu

)
t≥0

.

REMARK 3.1. If X is a strong 3-variation process, then [X,X,X] will be a
finite variation process and∫ t

0
Yu d−3Xu =

∫ t

0
Yu d+3Xu =

∫ t

0
Yu d[X,X,X]u.(3.2)

In particular, if X = BH is a fractional Brownian motion, with H ≥ 1
3 , all the

quantities in (3.2) are 0. If H < 1
3 , the strong 3-variation does not exist (see [16],

Proposition 3). Recall that if 1
6 < H < 1

3 , the 3-covariation [BH ,BH ,BH ] exists
and vanishes (see Proposition 2.3); hence,

∫ t
0 Yu d[X,X,X]u = 0. We shall prove

that if 1
4 < H < 1

3 and if Y = g(BH ) then the third-order integrals also vanish,
so (3.2) is still true (see Theorem 3.4). If H = 1

4 and Y = g(BH ), the third-order
integrals are not necessarily 0.

The following results relate third-order integrals with the notion of 4-covariation.

PROPOSITION 3.2. (i)∫ t

0
Yu d◦3Xu = 1

2

(∫ t

0
Yu d−3Xu +

∫ t

0
Yu d+3Xu

)
,

provided two of the three previous quantities exist.
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(ii) ∫ t

0
Yu d+3Xu −

∫ t

0
Yu d−3Xu = [Y,X,X,X]t ,

provided two of the three previous quantities exist.

COROLLARY 3.3. Let X be a continuous process having a 4-variation and
take f ∈ C1(R).

(i) If
∫ t

0 f (Xu) d−3Xu exists, then
∫ t

0 f (Xu) d+3Xu exists and∫ t

0
f (Xu) d+3Xu =

∫ t

0
f (Xu) d−3Xu +

∫ t

0
f ′(Xu) d[X,X,X,X]u.

(ii) If
∫ t

0 f ′(Xu) d−3Xu exists and if furthermore f ∈ C2(R), then

[f (X),X,X]t =
∫ t

0
f ′(Xu) d−3Xu + 1

2

∫ t

0
f ′′(Xu) d[X,X,X,X]u.

PROOF. The first point follows immediately from Proposition 3.2 and Re-
mark 2.2(iii). To prove the second part, a second-order Taylor expansion gives,
for s, ε > 0,

f (Xs+ε) − f (Xs) = f ′(Xs)(Xs+ε − Xs) + f ′′(Xs)

2
(Xs+ε − Xs)

2

+ R(f, ε, s)(Xs+ε − Xs)
2,

where R(f, ε, s) converges to 0, ucp in s, when ε goes to 0, by the uniform
continuity of f and of paths of X on each compact interval. Multiplying the
previous expression by (Xs+ε − Xs)

2, integrating from 0 to t , dividing by ε and
using Remark 2.2(ii), we obtain the result. �

In spite of the now classical notion of the symmetric integral given in (2.5), we
need to relax this definition. From now on, we will say that the symmetric integral
of a process Y with respect to an integrator X exists if

lim
ε↓0

1

2ε

∫ t

0
Yu(Xu+ε − X(u−ε)∨0) du

exists in probability and the limiting L0(�)-valued function has a continuous
version. We will still denote that process (unique up to indistinguishability) by∫ t

0 Yu d◦Xu.
Similarly, in this paper, the concept of 4-covariation will be understood

in a weaker sense with respect to (2.11). We will say that the 4-covariation
[X1,X2,X3,X4] exists if

lim
ε↓0

∫ t

0

(X1
u+ε − X1

u) · · · (X4
u+ε − X4

u)

ε
du
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exists in probability and the limiting L0(�)-valued function has a continuous
version.

Clearly, if
∫ t

0 Yu d◦Xu exists in the classical sense of Russo and Vallois, then
it also exists in this relaxed meaning; similarly, if [X1,X2,X3,X4] exists in
the (2.11) sense, then it will exist in the relaxed sense. We note that when all the
processes are equal, then a Dini-type lemma, as in [39], allows us to show that
the two definitions of 4-covariations are equivalent. We note that Proposition 3.2
and Corollary 3.3 are still valid with these conventions.

From now on, we will concentrate on the case when X = BH is the fractional
Brownian motion with Hurst index H .

In the statement of the fundamental result of this section, we use the following
definition: we say that a real function g fulfills the subexponential inequality if

|g(x)| ≤ Lel|x| with l,L positive constants.(3.3)

THEOREM 3.4. Let 1
4 ≤ H < 1

3 , let t > 0 and let g be a real locally bounded
function. The following properties hold:

(a) The third-order integrals
∫ t

0 g(BH
u ) d±3BH

u exist and vanish if 1
4 < H < 1

3 .
Henceforth, we assume H = 1

4 .

(b) The third-order integrals
∫ t

0 g(B
1/4
u ) d±3B

1/4
u exist and are opposite, that

is, for any t > 0, ∫ t

0
g(B1/4

u ) d+3B1/4
u = −

∫ t

0
g(B1/4

u ) d−3B1/4
u .(3.4)

Moreover, the processes (
∫ t

0 g(B
1/4
u ) d±3B

1/4
u )t≥0 are Hölder continuous with

parameter strictly less than 1
4 .

(c) If, furthermore, g fulfills the subexponential inequality (3.3), the expecta-
tion and the second moment of third-order integrals are given by

E
{∫ t

0
g(B1/4

u ) d−3B1/4
u

}

= −E
{∫ t

0
g(B1/4

u ) d+3B1/4
u

}
= −3

2

∫ t

0

du√
u

E
[
g(B1/4

u )B1/4
u

](3.5)

and

E
{(∫ t

0
g(B1/4

u ) d±3B1/4
u

)2}

= 9
2

∫ ∫
0<u<v<t

dudv E
[
g(B1/4

u )g(B1/4
v )

× (
λ11λ12(B

1/4
u )2

+ (λ11λ22 + λ2
12)B

1/4
u B1/4

v

+ λ12λ22(B
1/4
v )2 − λ12

)]
,

(3.6)
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where the right-hand sides of (3.5) and (3.6) are absolute convergent integrals.
Here

λ11 =
√

v√
uv − K1/4(u, v)2 ,

λ22 =
√

u√
uv − K1/4(u, v)2 ,

λ12 = − K1/4(u, v)√
uv − K1/4(u, v)2

.

(3.7)

(d) If g ∈ C1(R), then the quantity in (3.4) is equal to 1
2

∫ t
0 g′(B1/4

u ) d[B1/4](4)
u .

The proof of Theorem 3.4 is postponed to the last section. Let us note that
composing Borel functions and fractional Brownian motion is authorized.

REMARK 3.5. If g is a Lebesgue a.e. defined, locally bounded Borel function,
then the composition g(BH

t ), t > 0, is well defined, up to an a.s. equivalence,
random variable. Precisely, if g1, g2 are two Lebesgue a.e. modifications of g,
then g1(B

H
t ) = g2(B

H
t ) a.s. (since BH

t has a density function). Consequently,∫ t
0 g1(B

H
u ) d±3BH

u exists if and only if
∫ t

0 g2(B
H
u ) d±3BH

u exists and they are
equal.

The proof of the following result is easily obtained by a localization argument.

PROPOSITION 3.6. The maps

g �→
∫ t

0
g(B1/4

u ) d±3B1/4
u and g �→

∫ t

0
g(B1/4

u ) d◦3B1/4
u

are continuous from L∞
loc(R) to L0(�).

The next result states the existence of a significant fourth-order covariation
related to the fractional Brownian motion BH with Hurst index H = 1

4 . Its proof is
obvious using parts (b) and (d) in Theorem 3.4, Proposition 3.6, Proposition 3.2(ii)
and Remark 2.2(iii).

THEOREM 3.7. Let g ∈ L∞
loc(R) and fix t > 0. The process ([g(B1/4),B1/4,

B1/4,B1/4]t )t≥0 is well defined, has Hölder continuous paths of parameter strictly
less than 1

4 and is given by[
g(B1/4),B1/4,B1/4,B1/4]

t

= 2
∫ t

0
g(B1/4

u ) d+3B1/4
u = −2

∫ t

0
g(B1/4

u ) d−3B1/4
u .

(3.8)

One consequence of Theorem 3.7 concerns the local time of the fractional
Brownian motion. Let (lHt (a)) be the local time as the occupation measure density
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(see [3] and [20]). It exists for any 0 < H < 1; moreover, if H < 1
3 , it is absolutely

continuous with respect to a. We denote by (lHt )′(a) the corresponding derivative.
The following result extends to the fractional Brownian motion with H = 1

4 the
Bouleau–Yor-type equality (2.9) discussed in Remark 2.1 for the case of classical
Brownian motion.

COROLLARY 3.8. Let g ∈ L∞
loc. Then, for fixed t > 0,

[
g(B1/4),B1/4,B1/4,B1/4]

t = −3
∫

g(a)(l
1/4
t )′(a) da.(3.9)

PROOF. Recall that [g(B1/4),B1/4,B1/4,B1/4]t = 3t and so [g(B1/4),B1/4,

B1/4,B1/4]t = 3
∫ t

0 g′(B1/4
s ) ds, whenever g ∈ C1(R) with compact support. By

the density occupation formula, the previous expression becomes −3
∫

g′(a) ×
l
1/4
t (a) da. Integrating by parts, we obtain the right member of (3.9). This shows

the equality for smooth g. To obtain the final statement, we regularize g ∈ L∞
loc(R)

by taking gn = g ∗ φn, where (φn) is a sequence of mollifiers converging to the
Dirac delta function, we apply the equality for g being smooth and we take the
limit. For the limit of left members, we use the continuity of the considered
4-covariation. For the right members, we use the Lebesgue dominated convergence
theorem: in fact, we recall that a → λ′

t (a) is integrable with compact support and
on each compact the upper bound of |gn| is bounded by the upper bound of |g|.

�

4. Itô formula. Let BH be again a fractional Brownian motion with Hurst
index H .

THEOREM 4.1. Let H ≥ 1
4 and f ∈ C4(R). Then the symmetric integral∫ t

0 f ′(BH
u ) d◦BH

u exists and an Itô-type formula can be written as

f (BH
t ) = f (BH

0 ) +
∫ t

0
f ′(BH

u ) d◦BH
u .(4.1)

REMARK 4.2. The most interesting case concerns the critical limiting case
H = 1

4 . When H > 1
4 , the result was also established in [1] using other methods.

PROOF OF THEOREM 4.1. Theorem 4.1 will be a consequence of Theo-
rem 3.4. Fix t > 0. In fact, we prove that, for any f ∈ C4(R),

f (BH
t ) = f (BH

0 ) +
∫ t

0
f ′(BH

u ) d◦BH
u − 1

12

∫ t

0
f (3)(BH

u ) d◦3BH
u ,(4.2)

which implies the final result since
∫ t

0 f (3)(BH
s ) d◦3BH

s vanishes [see Theo-
rem 3.4(a) and (b) and Proposition 3.2(i)].
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We start with the Taylor formula: for a, b ∈ R, we have

f (b) − f (a) = f ′(a)(b − a) + f ′′(a)
(b − a)2

2
+ f (3)(a)

(b − a)3

6

+ (b − a)4

6

∫ 1

0
λ3f (4)(λa + (1 − λ)b

)
dλ

(4.3)

and also

f (a) − f (b) = f ′(b)(a − b) + f ′′(b)
(a − b)2

2
+ f (3)(b)

(a − b)3

6

+ (a − b)4

6

∫ 1

0
λ3f (4)(λb + (1 − λ)a

)
dλ

= −f ′(b)(b − a) + f ′′(b)
(b − a)2

2
− f (3)(b)

(b − a)3

6

+ (b − a)4

6

∫ 1

0
(1 − λ)3(f (4)

(
λa + (1 − λ)b

))
dλ.

Since

f ′′(b) = f ′′(a) + f (3)(a)(b − a) + (b − a)2
∫ 1

0
λ
(
f (4)(λa + (1 − λ)b

))
dλ

and

f (3)(b) = f (3)(a) + (b − a)

∫ 1

0
f (4)

(
λa + (1 − λ)b

)
dλ,

we can write

f (a) − f (b) = −f ′(b)(b − a) + f ′′(a)
(b − a)2

2
+ f (3)(a)

(b − a)3

3

+ (b − a)4
∫ 1

0

(
λ2

2
− λ3

6

)
f (4)(λa + (1 − λ)b

)
dλ.

(4.4)

Taking the difference between (4.3) and (4.4) and dividing by 2, we get

f (b) − f (a) = f ′(a) + f ′(b)

2
(b − a) − 1

12
f (3)(a)(b − a)3

+ (b − a)4
∫ 1

0

(
λ3

6
− λ2

4

)
f (4)

(
λa + (1 − λ)b

)
dλ.

(4.5)

On the other hand, exchanging the roles of a and b, we get

f (a) − f (b)

= −f ′(a) + f ′(b)

2
(b − a) + 1

12
f (3)(b)(b − a)3

+ (b − a)4
∫ 1

0

(
(1 − λ)3

6
− (1 − λ)2

4

)
f (4)

(
λa + (1 − λ)b

)
dλ.

(4.6)
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Taking this time the difference between (4.5) and (4.6) and dividing by 2, we obtain

f (b) − f (a) = f ′(a) + f ′(b)

2
(b − a)

− f (3)(a) + f (3)(b)

24
(b − a)3 + (b − a)4J (a, b),

(4.7)

where

J (a, b) =
∫ 1

0

(
λ3

6
− λ2

4
+ 1

24

)
f (4)(λa + (1 − λ)b

)
dλ

=
∫ 1

0

(
λ3

6
− λ2

4
+ 1

24

)(
f (4)(λa + (1 − λ)b

)− f (4)(a)
)
dλ,

since

∫ 1

0

(
λ3

6
− λ2

4
+ 1

24

)
dλ = 0.

Setting in (4.7) a = BH
u and b = BH

u+ε , we get

f (BH
u+ε) − f (BH

u ) = (
f ′(BH

u ) + f ′(BH
u+ε)

)BH
u+ε − BH

u

2

− f (3)(BH
u ) + f (3)(BH

u+ε)

2

(BH
u+ε − BH

u )3

12

+ J (BH
u ,BH

u+ε)(B
H
u+ε − BH

u )4.

(4.8)

Using the uniform continuity on each compact real interval I of f (4) and of BH ,
we observe that supu∈I J (BH

u ,BH
u+ε) → 0 in probability when ε ↓ 0. Take t > 0,

integrate (4.8) in u on [0, t] and divide by ε:

1

ε

∫ t

0

(
f (BH

u+ε) − f (BH
u )
)
du

=
∫ t

0

(
f ′(BH

u+ε) + f ′(BH
u )
)BH

u+ε − BH
u

2ε
du

−
∫ t

0

f (3)(BH
u ) + f (3)(BH

u+ε)

2

(BH
u+ε − BH

u )3

12ε
du

+
∫ t

0
J (BH

u ,BH
u+ε)

(BH
u+ε − BH

u )4

ε
du.



ITÔ FORMULA FOR FRACTIONAL BROWNIAN MOTION 1789

By a simple change of variable, we can transform the left-hand side and obtain

1

ε

∫ t+ε

t
f (BH

u ) du − 1

ε

∫ ε

0
f (BH

u ) du

=
∫ t

0

(
f ′(BH

u+ε) + f ′(BH
u )
)BH

u+ε − BH
u

2ε
du

−
∫ t

0

f (3)(BH
u ) + f (3)(BH

u+ε)

2

(BH
u+ε − BH

u )3

12ε
du

+
∫ t

0
J (BH

u ,BH
u+ε)

(BH
u+ε − BH

u )4

ε
du.

(4.9)

The left-hand side of (4.9) tends, as ε ↓ 0, toward f (BH
t ) − f (BH

0 ). Since
supu∈[0,t] J (BH

u ,BH
u+ε) tends to 0, the last term on the right-hand side of (4.9)

also tends to 0, by the existence of the strong 4-variation. The second term on the
right-hand side converges to

∫ t
0 f (3)(BH

u ) d◦3BH
u , which exists by Theorem 3.4.

Therefore, the first term on the right-hand side of (4.9) is also forced to have
a limit in probability. According to part (b) of Theorem 3.4, the symmetric
third-order integral has a continuous version in t ; therefore, the second term
must have a continuous version and it will, of course, be the symmetric integral∫ t

0 f ′(BH
u ) d◦BH

u . Equation (4.2) is proved. �

5. Proofs of existence and properties of third-order integrals. The main
topic of this section is the proof of Theorem 3.4, which will be articulated from
Step I to Step VI.

Recall that 1
4 ≤ H < 1

3 . We will consider only the third-order forward integral,
since for the third-order backward integral the reasoning is similar. Hence, let us
denote

Iε(g)(t) := 1

ε

∫ t

0
g(BH

u )(BH
u+ε − BH

u )3 du(5.1)

and recall that the forward third-order integral
∫ t

0 g(BH
u ) d−3BH

u was defined as
the limit in probability of Iε(g)(t). For simplicity, we will fix t = 1 and simply
denote Iε(g) := Iε(g)(1).

First, let us outline the proof of Theorem 3.4.

I. Computation of limε↓0 E[Iε(g)]. The limit vanishes for 1
4 < H < 1

3 . If H = 1
4

and assuming the existence stated in part (b), the computation also gives (3.5).
II. Computation of limε↓0 E[Iε(g)2]. We state Lemma 5.1, which allows us to

give an equivalent of this second moment as ε ↓ 0. Again, the limit vanishes
for 1

4 < H < 1
3 ; hence, we get part (a). Henceforth, we assume H = 1

4 .
Equation (3.6) is obtained assuming again the existence stated in (b).

III. Integrals on the right-hand sides of (3.5) and (3.6) are absolute convergent and
the proof of part (c) is complete.
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IV. Proof of the existence of the forward third-order integral [as a first step in
proving (b)]. First, we reduce the study to the case of a bounded function g

and then we establish the existence under this hypothesis.
V. We prove the existence of a continuous version of the forward third-order

integral and the Hölder regularity of its paths.
VI. End of part (b) proof. We verify (3.4) proving at the same time (d). We state

and use Lemma 5.3.

The end of the section is devoted to the proofs of Lemmas 5.1 and 5.3, which are
stated at Steps II and VI and used in the proof of parts (b) and (d) of Theorem 3.4.

STEP I (Computation of limε↓0 E[Iε(g)]). To compute the expectation of
Iε(g), we will use the linear regression for BH

u+ε − BH
u , which is a centered

Gaussian random variable with variance ε2H . It can be written as

BH
u+ε − BH

u = KH(u,u + ε) − KH(u,u)

KH(u,u)
BH

u + Zε,(5.2)

where Zε is a Gaussian mean-zero random variable, independent of BH
u with

variance ε2H − (1/4u2H)((u + ε)2H − u2H − ε2H)2. Therefore,

BH
u+ε − BH

u = αε(u)BH
u + βε(u)N,(5.3)

where N is a standard normal random variable independent from BH
u and where,

for u > 0 fixed, as ε ↓ 0,

αε(u) := 1

2u2H

(
(u + ε)2H − u2H − ε2H )= 1

2

(
ε

u

)2H

φ0

(
ε

u

)
(5.4)

and

β2
ε (u) := ε2H − α2

ε (u)u2H = ε2Hφ1

(
ε

u

)
,(5.5)

where x2Hφ0(x) := (1 + x)2H − 1 − x2H and φ1(x) := (1 − 1
4x2Hφ2

0(x))+, with
φ0 being a continuous bounded function and φ1 a bounded function with the
property limx↓0 φ0(x) = −1, limx↓0 φ1(x) = 1. Since 2H < 1, we can also write

αε(u) = − ε2H

2u2H

(
1 − 2Hu2H−1ε1−2H + o(ε1−2H)

)
as ε ↓ 0.(5.6)

Moreover,

β2
ε (u) = ε2H

(
1 − ε2H

4u2H

)
+ o(ε4H) as ε ↓ 0.(5.7)

We can now compute the first moment of Iε(g). Replacing (5.3) in the expression
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of Iε(g) and from the independence of N and BH
u , we obtain

E[Iε(g)] =
∫ 1

0

α3
ε (u)

ε
E
[
g(BH

u )(BH
u )3]du

+
∫ 1

0

3αε(u)β2
ε (u)

ε
E
[
g(BH

u )BH
u

]
du.

The Cauchy–Schwarz inequality and the hypothesis on g imply that, for 0 < u < 1,

E
[|g(BH

u )BH
u |]≤ LE

[
el|BH

u ||BH
u |]

≤ L′E
[
elBH

u |BH
u |]≤ const

√
E
[
(BH

u )2
]≤ const uH < ∞.

In a similar way, it follows that

E
[|g(BH

u )(BH
u )3|]≤ const

√
E[(BH

u )6] = const u3H .

Hence, since 1
4 ≤ H < 1

3 , as ε ↓ 0,

α3
ε (u)

ε
u3H = 1

8

ε6H−1

u3H
φ3

0

(
ε

u

)
with

∫ 1

0

du

u3H
< ∞.

Since 1
4 ≤ H < 1

3 , letting ε go to 0, we get

lim
ε↓0

E[Iε(g)] =
∫ 1

0

(
lim
ε↓0

3αε(u)β2
ε (u)

ε

)
E
[
g(BH

u )BH
u

]
du

and (3.5) is obtained using (5.4) and (5.5). Indeed, since 1
4 ≤ H < 1

3 , we have

αε(u)β2
ε (u)

ε
uH = 1

2

ε4H−1

uH
(φ0φ1)

(
ε

u

)
with

∫ 1

0

du

uH
< ∞.

Clearly,

lim
ε↓0

E[Iε(g)] = 0 if 1
4 < H < 1

3 .(5.8)

If H = 1
4 , Lebesgue dominated convergence implies that

lim
ε↓0

E[Iε(g)] = −3

2

∫ 1

0

1√
u

E
[
g(BH

u )BH
u

]
du

and then (3.5) follows, assuming the existence in the first part of (b) of
Theorem 3.4.

Let us also explain the opposite sign in (3.5) for the backward third-order
integral. We need to consider [see (5.3)]

BH
u − BH

u−ε = α̂ε(u)BH
u + β̂ε(u)N (assume that u − ε > 0),
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where [see (5.4) and (5.5)]

α̂ε(u) = 1

2u2H

(
u2H − (u − ε)2H + ε2H

)
, β̂ε(u)2 = ε2H − α̂ε(u)2u2H .

Hence [see (5.6)],

α̂ε(u) = ε2H

2u2H

(
1 + 2Hu2H−1ε1−2H + o(ε1−2H)

)
as ε ↓ 0,

while (5.7) is still true for β̂ε(u)2. These relations give the opposite sign in (3.5)
for the backward third-order integral. �

STEP II (Computation of limε↓0 E[Iε(g)2]). The computation of the second
moment of Iε(g) is done using again the Gaussian feature of the process. We
express the linear regression for the random vector (BH

u+ε − BH
u ,BH

v+ε − BH
v ).

We denote by G = (G1,G2,G
ε
3,G

ε
4) the Gaussian mean-zero random vector

(BH
u ,BH

v ,BH
u+ε − BH

u ,BH
v+ε − BH

v ) and we use a similar idea as in Step I. For
instance, (5.2) will be replaced by(

Gε
3

Gε
4

)
= Aε

(
G1

G2

)
+
(

Zε
1

Zε
2

)
,(5.9)

where the Gaussian mean-zero random vector Zε = (Zε
1,Z

ε
2) is independent

of (G1,G2). Clearly,

Iε(g)2 = 2
∫ ∫

0<u<v<1
g(BH

u )g(BH
v )

(BH
u+ε − BH

u )3

ε

(BH
v+ε − BH

v )3

ε
dudv.

Hence,

E[Iε(g)2]

= 2E
{∫ ∫

0<u<v<1
g(G1)g(G2)E

(
(Gε

3)
3(Gε

4)
3

ε2

∣∣∣G1,G2

)
dudv

}
.

(5.10)

Therefore, we need to compute the conditional expectation in (5.10). For that
reason, we need the following lemma, which will be useful again in Step IV(2),
where we prove the existence of the L2-limit of Iε. For random variables ξ, ζ , φε,
we will denote

ξ
(law)= ζ + o(ε) as ε ↓ 0, if ξ

(law)= ζ + εφε, with E
[

sup
0<ε<1

|φε|p
]

< ∞ ∀p.

LEMMA 5.1. Consider the Gaussian mean-zero random vector

G = (
G1(u),G2(v),Gε

3(u),Gε
4(v)

)
:= (BH

u ,BH
v ,BH

u+ε − BH
u ,BH

v+ε − BH
v )

(5.11)
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and denote(
λ11 λ12
λ12 λ22

)
:=
(

u2H KH(u, v)

KH(v,u) v2H

)−1

= Cov−1
(G1,G2)

,(5.12)

Q1(u, v) := −1
2(λ11G1 + λ12G2),

Q2(u, v) := −1
2(λ12G1 + λ22G2).

(5.13)

(a) For 1
4 ≤ H < 1

3 , as ε ↓ 0,

E
(

(Gε
3)

3(Gε
4)

3

ε2

∣∣∣G1,G2

)
(law)= ε8H−2

(
9Q1Q2 − 9

4
λ12 + o(1)

)
;(5.14)

(a′) for 1
4 ≤ H < 1

3 , as ε ↓ 0,

E
(

(Gε
3)

3

ε

∣∣∣G1,G2

)
(law)= ε4H−1(3Q1 + o(1)

)
,

E
(

(Gε
4)

3

ε

∣∣∣G1,G2

)
(law)= ε4H−1(3Q2 + o(1)

)
.

(5.15)

(b) Denote Gδ
4(v) = BH

v+δ − BH
v and G1,G2,G

ε
3 as previously. Then, for

H = 1
4 , as ε ↓ 0, δ ↓ 0,

E
(

(Gε
3)

3(Gδ
4)

3

εδ

∣∣∣G1,G2

)
(law)= 9Q1Q2 − 9

4
λ12 + o(1).(5.16)

(c) Equivalents in (5.14), (5.15) and (5.16) are uniform on {1 < u,1 < v −u}.
(d) For κ > 0, (

G1(κu),G2(κv),Gκε
3 (κu),Gκε

4 (κv)
)

(law)= κH (G1(u),G2(v),Gε
3(u),Gε

4(v)
)(5.17)

and (
G1(κu),G2(κv),Q1(κu, κv)Q2(κu, κv) − 1

4λ12(κu, κv)
)

(law)=
(
κHG1(u), κHG2(v), κ−2H

(
Q1(u, v)Q2(u, v) − 1

4λ12(u, v)
))

.
(5.18)

REMARK 5.2. The computation of limits when ε or (ε, δ) go to 0 re-
quires asymptotic equivalent expressions of the conditional expectations [parts
(a) and (b) of Lemma 5.1]. However, since we have to integrate on the domain
{0 < u < v < 1}, we need to check that those are uniform on u, v [see part (c) of
Lemma 5.1].
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We postpone the proof of Lemma 5.1 and we finish the proof of (3.6). Let
0 < ρ < 1. The second moment of Iε(g) can be written as

E
[

1

2
I 2
ε (g)

]
=
∫ ∫

0<u<ε1−ρ ,u<v<1
E
{
g(G1)g(G2)

(Gε
3)

3(Gε
4)

3

ε2

}
dudv

+
∫ ∫

0<v−u<ε1−ρ ,0<u,v<1
E
{
g(G1)g(G2)

(Gε
3)

3(Gε
4)

3

ε2

}
dudv

+
∫ ∫

ε1−ρ<u<1,ε1−ρ<v−u<1,v<1
E
{
g(G1)g(G2)

(Gε
3)

3(Gε
4)

3

ε2

}
dudv.

Using assumptions on g, we can bound the first term by

const
∫ ∫

0<u<ε1−ρ ,u<v<1

ε3Hε3H

ε2
dudv = const ε6H−2+1−ρ.

In the rest of this step, we will use in a significant way part (d) of Lemma 5.1.
Choosing 0 < ρ < 6H − 1, we can see that the first term converges to 0, as

ε ↓ 0. A similar reasoning implies that the second term also converges to 0. Let us
denote ε1−ρ = κ and ερ = ε̃ (hence ε = κε̃). In the third term, we make the change
of variables u = κũ and v = κṽ. Hence, as ε ↓ 0,

∫ ∫
κ<u<1,κ<v−u<1,v<1

E
{
g(G1(u))g(G2(v))

(Gε
3(u))3(Gε

4(v))3

ε2

}
dudv

=
∫ ∫

1<ũ<1/κ,1<ṽ−ũ<1/κ,ṽ<1/κ

× E
{
g(G1(κũ))g(G2(κṽ))

(Gκε̃
3 (κũ))3(Gκε̃

4 (κṽ))3

κ2ε̃2

}
κ2 dũ dṽ

(5.17)=
∫ ∫

1<ũ<1/κ,1<ṽ−ũ<1/κ,ṽ<1/κ

× E
{
g(κHG1(ũ))g(κH G2(ṽ))

κ6H(Gε̃
3(u))3(Gε̃

4(v))3

ε̃2

}
dũ dṽ

=
∫ ∫

1<ũ<1/κ,1<ṽ−ũ<1/κ,ṽ<1/κ

× E
{
g(κHG1(ũ))g(κH G2(ṽ))κ6H

× E
(

(Gε̃
3(u))3(Gε̃

4(v))3

ε̃2

∣∣∣G1(ũ),G2(ṽ)

)}
dũdṽ
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(5.14)∼
∫ ∫

1<ũ<1/κ,1<ṽ−ũ<1/κ,ṽ<1/κ

× E
{
g(κHG1(ũ))g(κH G2(ṽ))κ6H ε̃8H−2

×
(

9Q1(ũ, ṽ)Q2(ũ, ṽ) − 9

4
λ12(ũ, ṽ)

)}
dũ dṽ

=
∫ ∫

κ<u<1,κ<v−u<1,v<1

× E
{
g

(
κHG1

(
u

κ

))
g

(
κHG2

(
v

κ

))
(κε̃)6H ε̃2H−2

×
(

9Q1

(
u

κ
,
v

κ

)
Q2

(
u

κ
,
v

κ

)
− 9

4
λ12

(
u

κ
,
v

κ

))}
dudv

κ2

(5.18)=
∫ ∫

κ<u<1,κ<v−u<1,v<1

× E
{
g(G1(u))g(G2(v))(κε̃)6H ε̃2H−2κ2H−2

×
(

9Q1(u, v)Q2(u, v) − 9

4
λ12(u, v) + o(1)

)}
dudv

= ε8H−2
∫ ∫

κ<u<1,κ<v−u<1,v<1

× E
{
g(G1(u))g(G2(v))

×
(

9Q1(u, v)Q2(u, v) − 9

4
λ12(u, v) + o(1)

)}
dudv,

where we have also used part (c) of Lemma 5.1 to replace the conditional
expectation by the uniform equivalent asymptotics in (5.14) on {1 < ũ,1 < ṽ − ũ}.
Therefore, as ε ↓ 0,

E[Iε(g)2] ∼ ε8H−2E
{

9
2

∫ ∫
dudv g(G1)g(G2)

× (
(λ11G1 + λ12G2)(λ12G1 + λ22G2) − λ12

)}
.

Equation (3.6) follows from the above expression. Moreover,

lim
ε↓0

E[Iε(g)2] = 0 if 1
4 < H < 1

3 ,(5.19)

which together with (5.8) gives (a) of Theorem 3.4. �
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STEP III [Absolute convergence of the integrals in (3.5) and (3.6)]. The
absolute convergence of the integral on the right-hand side of (3.5) is already
explained by the reasoning given in Step I. We need to justify, however, the
absolute convergence of the integral on the right-hand side of (3.6), which means

J :=
∫ ∫

0<u<v<1
dudv E

∣∣g(B1/4
u )g(B1/4

v )
(
λ11λ12(B

1/4
u )2

+ (λ11λ22 + λ2
12)B

1/4
u B1/4

v + λ12λ22(B
1/4
v )2 − λ12

)∣∣
< ∞.

We can write J = J1 + J2 + J3 + J4, where

Ji :=
∫ ∫

0<u<v<1
E
(|Ei(u, v)|)dudv, i = 1,2,3,

J4 :=
∫ ∫

0<u<v<1
E
(|g(B1/4

u )g(B1/4
v )λ12|)dudv,

where

E1(u, v) = g(B1/4
u )g(B1/4

v )(λ11λ12 + λ11λ22 + λ2
12 + λ12λ22)(B

1/4
u )2,

E2(u, v) = g(B1/4
u )g(B1/4

v )(λ11λ22 + λ2
12)B

1/4
u (B1/4

v − B1/4
u ),

E3(u, v) = g(B1/4
u )g(B1/4

v )λ12λ22(B
1/4
v + B1/4

u )(B1/4
v − B1/4

u ).

(5.20)

We set v = u(1 + η) so that

Ji =
∫ ∫

0<u<1,0<η<1/u−1
E(|Ei(u, η)|)u dudη, i = 1,2,3,

J4 =
∫ ∫

0<u<1,0<η<1/u−1
E
(∣∣g(B1/4

u )g
(
B

1/4
u(1+η)

)
λ12(u, η)

∣∣)ududη.

We introduce the following notation:

K1/4
(
u,u(1 + η)

)= √
uK̂(η), with K̂(η) := 1

2

(
1 +√1 + η − √

η
)
,√

u · u(1 + η) − K2
1/4
(
u,u(1 + η)

)= u�̂(η), with �̂(η) :=√
1 + η − K̂2(η).

We note that

K̂(η) ∼ 1 as η ↓ 0 and K̂(η) ∼ 1
2 as η ↑ ∞,

�̂(η) ∼ √
η as η ↓ 0 or as η ↑ ∞.
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Using (3.7), we can write

λ11 = 1√
u

√
1 + η

�̂(η)
, λ22 = 1√

u

1

�̂(η)
, λ12 = − 1√

u

K̂(η)

�̂(η)
.

We can now prove that each Ji is a convergent double integral. To illustrate this
fact, we prove the convergence of J2, the computation being similar for the other
integrals Ji . We recall that

J2 =
∫ ∫

0<u<1,0<η<1/u−1
E
(|λ11λ22 + λ2

12|

× ∣∣g(B1/4
u )g

(
B

1/4
u(1+η)

)
B1/4

u

(
B

1/4
u(1+η) − B1/4

u

)∣∣)ududη

=
∫ ∫

0<u<1,0<η<1/u−1

√
1 + η + K̂2(η)

�̂2(η)

× E
(∣∣g(B1/4

u )g
(
B

1/4
u(1+η)

)
B1/4

u

(
B

1/4
u(1+η) − B1/4

u

)∣∣)dudη.

By the Cauchy–Schwarz inequality and taking in to account the assumption on g,
we can write

E
∣∣g(B1/4

u )g
(
B

1/4
u(1+η)

)
B1/4

u

(
B

1/4
u(1+η) − B1/4

u

)∣∣≤ const u1/2η1/4.

On the other hand,
√

1 + η + K̂2(η)

�̂2(η)
∼ 2

η
as η ↓ 0

and √
1 + η + K̂2(η)

�̂2(η)
∼ 1√

η
as η ↑ ∞.

Hence, we now need to study respectively the integrals∫ ∫
0<u<1,0<η<1

u1/2

η3/4
dudη < ∞,

∫ ∫
0<u<1,1<η<1/u−1

u1/2

η1/4 dudη =
∫ ∞

1

dη

η1/4

∫ 1/(η+1)

0
u1/2 du

= 2

3

∫ ∞
1

dη

η1/4(η + 1)3/2
< ∞.

This concludes the proof of part (c) of Theorem 3.4. �

STEP IV (Proof of the forward third-order integral existence).
(1) (Reduction to the case of a bounded function g). Suppose, for a moment,

that we know the result when g is bounded. Since the paths of B1/4 are continuous,
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we prove by localization that the result is true when g is only locally bounded. Let
α > 0. We will show that {Iε(g) : ε > 0} is Cauchy with respect to the convergence
in probability, that is,

lim
ε↓0,δ↓0

P(|Iε(g) − Iδ(g)| ≥ α) = 0.

Let M > 0, �M = {|B1/4
u | ≤ M, ∀u ∈ [0, t +1]}. On �M , we have Iε(g) = Iε(gM )

and Iδ(g) = Iδ(gM
), where g

M
is a function with compact support, which coincides

on g on the compact interval [−M,M].
Therefore, P({|Iε(g) − Iδ(g)| ≥ α} ∩ �c

M
) ≤ P(�c

M
). We choose M large

enough, so that P(�c
M

) is uniformly small with respect to ε and δ. Then

P
({|Iε(g) − Iδ(g)| ≥ α} ∩ �

M

)= P
({|Iε(gM

) − Iδ(gM
)| ≥ α} ∩ �

M

)
≤ P

(|Iε(gM
) − Iδ(gM

)| ≥ α
)
.

Since gM has compact support, Iε(gM ) converges in probability.
(2) (Proof of the existence when g is a bounded function). Thus, it remains

to prove that the sequence {Iε(g) : ε > 0} converges in probability, when g is
bounded. For this purpose, we even show that, in this case, the sequence is even
Cauchy in L2(�).

We will prove the Cauchy criterion for {Iε(g) : ε > 0}:
lim

ε↓0,δ↓0
E
(|Iε(g) − Iδ(g)|2)

= lim
ε↓0,δ↓0

E[Iε(g)2] + E[Iδ(g)2] − 2E[Iε(g)Iδ(g)] = 0.

The first two terms converge to the same limit given in (3.6) as ε ↓ 0 and δ ↓ 0. It
remains to show that limε↓0,δ↓0 E[Iε(g)Iδ(g)] equals the right-hand side of (3.6),
and then the Cauchy criterion will be fulfilled. A simple change of variable gives

Iε(g)Iδ(g)

=
∫ ∫

0<u<v<1
g(B1/4

u )g(B1/4
v )

(B
1/4
u+ε − B

1/4
u )3

ε

(B
1/4
v+δ − B

1/4
v )3

δ
dudv

+
∫ ∫

0<u<v<1
g(B1/4

u )g(B1/4
v )

(B
1/4
u+δ − B

1/4
u )3

δ

(B
1/4
v+ε − B

1/4
v )3

ε
dudv.

Taking the expectation of the expression above gives

lim
ε↓0,δ↓0

E[Iε(g)Iδ(g)]

= 2 lim
ε↓0,δ↓0

E
{∫ ∫

0<u<v<1
g(G1)g(G2)E

(
(Gε

3)
3(Gδ

4)

εδ

∣∣∣G1,G2

)
dudv

}
so that the result will be a consequence of (5.16). �
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STEP V (Proof of the existence of a Hölder-continuous version). It is enough
to show the existence of a continuous version for t ∈ [0, T ] for any T > 0.

Suppose, for a moment, that for every g bounded we can show the existence
of a (Hölder) continuous version for (

∫ t
0 g(B

1/4
u ) d−3B

1/4
u )t∈[0,T ]. We denote it by

(Ĩ (g)t )t∈[0,T ]. Then we can define the associated version for a general g ∈ L∞
loc(R)

by

Ĩ (g)(ω) = Ĩ (gM)(ω),

where gM = g1[−M,M] if ω ∈ {supt∈[0,T ] : |B1/4
t | ≤ M}. Therefore, it remains to

prove that the forward third-order integral has a Hölder-continuous version (with
Hölder parameter less than 1

4 ), when g is bounded and continuous.

We prove that the L2-valued function t �→ I (g)(t) := ∫ t
0 g(B

1/4
u ) d−3B

1/4
u has a

Hölder-continuous version on [0, T ]. We need to control, for s < t , s, t in compact
intervals,

E
[(

I (g)(t) − I (g)(s)
)2]

= E
[(∫ t

s
g(B1/4

u ) d−3B1/4
u

)2]

≤
∫ ∫

s≤u<v≤t
du dv E

[|g(B1/4
u )g(B1/4

v )|

× |E1(u, v) + E2(u, v) + E3(u, v) − λ12|],
where Ei(u, v), i = 1,2,3, are given by (5.20). Let us denote

E1(u, v) = Ẽ1(u, v)(B1/4
u )2,

E2(u, v) = Ẽ2(u, v)B1/4
u (B1/4

v − B1/4
u ),

E3(u, v) = Ẽ3(u, v)(B1/4
v + B1/4

u )(B1/4
v − B1/4

u ).

We denote again η = v − u. Therefore,

Ẽ1(u,u + η) = λ11λ12 + λ11λ22 + λ2
12 + λ12λ22

= 1

2�2 η

√
u√

u + η + √
u

= 1

2�2 η

√
u/η√

1 + u/η + √
u/η

,

Ẽ2(u,u + η) = λ11λ22 + λ2
12

= 1

2�2

(
u + η + 3

√
u
√

u + η − √
u
√

η − √
η
√

u + η
)
,

Ẽ3(u,u + η) = λ12λ22

= − 1

2�2
u

(
1 +

√
u√

u + η + √
η

)
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= − 1

2�2 u

(
1 +

√
u/η

1 + √
1 + u/η

)
− λ12

= 1

2�

√
u

(
1 +

√
u√

u + η + √
η

)

= 1

2�

√
u

(
1 +

√
u/η

1 + √
1 + u/η

)
,

where

� := √
u(u + η) − K2

H(u,u + η)

= 1

2

√
u
√

η

(
1 +

√
u√

u + η + √
η

+
√

η√
u + η + √

u

)

≥ 1

2

√
u
√

η.

The functions ψ1(x) = √
x/(

√
x + √

1 + x), respectively, ψ2(x) = √
x/(1 +√

1 + x), are positive increasing on [0,+∞[ with limit 1
2 , respectively, 1,

as x ↑ ∞. Moreover, we see that
√

u + η ≤ √
u + √

η. Therefore,

0 ≤ Ẽ1(u,u + η) ≤ 1

u
, |Ẽ2(u,u + η)| ≤ 8

η
+ 4

u
+ 10√

u
√

η
,

|Ẽ2(u,u + η)| ≤ 4

η
, 0 ≤ −λ12 ≤ 2√

η
.

Hence, ∫ ∫
s≤u<v≤t

E
[|g(B1/4

u )g(B1/4
v )| |Ẽ1(u, v)|(B1/4

u )2]dudv

≤ const
∫ ∫

s≤u≤t,0<η≤t−s

du dη√
u

= const (t − s)3/2,

∫ ∫
s≤u<v≤t

E
[|g(B1/4

u )g(B1/4
v )| |Ẽ2(u, v)| |B1/4

u (B1/4
v − B1/4

u )|]dudv

≤ const
∫ ∫

s≤u≤t,0<η≤t−s

(
8
u1/4

η3/4
+ 4

η1/4

u3/4
+ 10

1

u1/4η1/4

)
dudη

= const
(
8(t5/4 − s5/4)(t − s)1/4

+ 4(t1/4 − s1/4)(t − s)5/4 + 10(t3/4 − s3/4)(t − s)3/4)
≤ const (t − s)3/2−ρ,
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where ρ > 0,∫ ∫
s≤u<v≤t

E
[|g(B1/4

u )g(B1/4
v )| |E3(u, v)| |(B1/4

v + B1/4
u )(B1/4

v − B1/4
u )|]dudv

≤ const
∫ ∫

s≤u≤t,0<η≤t−s

du dη√
uη3/4 = const (t − s)5/4

and ∫ ∫
s≤u<v≤t

E
[|g(B1/4

u )g(B1/4
v )| |λ12|]dudv ≤ const (t − s)3/2.

Therefore,

E
[(

I (g)(t) − I (g)(s)
)2]≤ const (t − s)1+1/2−ρ with ρ > 0.

The classical Kolmogorov criterion allows us to conclude the proof. �

STEP VI [Proof of (3.4) and part (d)]. It is not easy to make computations
or to recognize the positivity using the right-hand side of the second moment of
the third-order integrals; see (3.6). We need to give other expression of the second
moment but also to compute its covariance with the integral in part (d). This will be
possible when g is smooth. Using Proposition 3.6 and an obvious approximation
argument, it is enough to suppose that g ∈ C1(R) with g and g′ bounded.

Since the third-order integrals are continuous, to prove (3.4) we need only to
verify that, for fixed t > 0,

E
(∫ t

0
g(B1/4

u ) d±3B1/4
u ∓ 3

2

∫ t

0
g′(B1/4

u ) du

)2

= 0.(5.21)

This equality is a simple consequence of the following lemma.

LEMMA 5.3. Let g and h be real functions, g ∈ C1(R) and h locally
bounded such that g,g′, h fulfill the subexponential inequality (3.3). The following
equalities hold:

E
{(∫ t

0
g(B1/4

u ) d±3B1/4
u

)2}
= 9

4E
{(∫ t

0
g′(B1/4

u ) du

)2}
(5.22)

and

E
{(∫ t

0
g(B1/4

u ) d±3B1/4
u

)(∫ t

0
h(B1/4

u ) du

)}

= ∓3
2 E
{(∫ t

0
g′(B1/4

u ) du

)(∫ t

0
h(B1/4

u ) du

)}
.

(5.23)

Finally, by (2.15) we also get the statement in part (d). �
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This completes the proof of Theorem 3.4, and we can proceed to the proof of
Lemma 5.3.

PROOF OF (5.22) IN LEMMA 5.3. To simplify the notation, we write K for
K1/4(u, v) and � for

√
uv − K2. Hence,

λ11 =
√

v

�
, λ22 =

√
u

�
, λ12 = −K

�
.

Let us introduce the matrix

M =
(

u1/4 0
K/u1/4

√
�/u1/4

)
with M−1 =

(
u1/4 0

−u−1/4K/
√

� u1/4/
√

�

)

and observe that, by (5.12), MM∗ is the covariance matrix of (B
1/4
u ,B

1/4
v ).

Furthermore, if N1 and N2 are two independent standard normal random variables,
then (

B
1/4
u

B
1/4
v

)
= M

(
N1
N2

)
.

After some algebraic computations, we obtain

λ11λ12(B
1/4
u )2 + (λ11λ22 + λ2

12)B
1/4
u B1/4

v + λ12λ22(B
1/4
v )2 − λ12

=
(
(M−1)∗

(
N1
N2

))
1
·
(
(M−1)∗

(
N1
N2

))
2
− ((M−1)∗M−1)

12

= N1N2√
�

− K N2
2

�
+ K

�
.

Therefore, by (3.6), for t = 1,

E
{(∫ 1

0
g(B1/4

u ) d−3B1/4
u

)2}

= 9

2

∫ ∫
0<u<v<1

dudv E
[
g(u1/4N1)g

(
K

u1/4 N1 +
√

�

u1/4 N2

)

×
(

N1N2√
�

− K N2
2

�
+ K

�

)]

= 9

2

∫ ∫
0<u<v<1

dudv E
[
g′(u1/4N1)g

′
(

K

u1/4 N1 +
√

�

u1/4 N2

)]

= 9

4
E
{(∫ 1

0
g′(B1/4

u ) du

)2}
.
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The second equality is given by the following identity, for a, b, c ∈ R, a > 0,

E
[
g(aN1)g

(
b

a
N1 + c

a
N2

)(
1

c
N1N2 − b

c2 (N2
2 − 1)

)]

= E
[
g′(aN1)g

′
(

b

a
N1 + c

a
N2

)]
,

(5.24)

which can be obtained by direct calculation, using Gaussian densities, the
assumption on g and integration by parts. This concludes the proof of (5.22). �

PROOF OF (5.23) IN LEMMA 5.3. We now verify a more general covariance-
type equality between the third-order integral

∫ 1
0 g(B

1/4
u ) d−3B

1/4
u with a random

variable of the form
∫ t

0 h(B
1/4
u ) du: Let g and h be real locally bounded functions

fulfilling the subexponential inequality (3.3). Then

E
{(∫ t

0
g(B1/4

u ) d−3B1/4
u

)(∫ t

0
h(B1/4

u ) du

)}

= −3
2 E
{∫ t

0
dv

∫ t

0
dug(B1/4

u )h(B1/4
v )(λ11B

1/4
u + λ12B

1/4
v )

}
.

(5.25)

Before verifying this result, we prove (5.23). Taking again t = 1, (5.25) implies
that the left-hand side of (5.23) equals

−3

2

∫ 1

0
dv

∫ 1

0
dug(B1/4

u )h(B1/4
v )

(√
v

�
B1/4

u − K

�
B1/4

v

)
,(5.26)

where we denote again K = K1/4(u, v), � = √
uv −K2. As in the proof of (5.22),

we can write

B1/4
u = u1/4N1, B1/4

v = K

u1/4 N1 +
√

�

u1/4 N2,

where N1 and N2 are again independent N(0,1) random variables. There-
fore, (5.27) gives

−3

2

∫ 1

0
dv

∫ 1

0
du E

{
g(u1/4N1)

× h

(
K

u1/4
N1 +

√
�

u1/4
N2

)[
N1

u1/4
− K√

�u1/4

]}
.

(5.27)

Similar to identity (5.24), we can establish the following, for a, b, c ∈ R, a > 0,

E
(
g(aN1)h

(
b

a
N1 + c

a
N2

)(
N1

a
− b

ac
N2

))

= E
(
g′(aN1)h

(
b

a
N1 + c

a
N2

))
.

(5.28)
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The proof follows easily again using integration by parts. We apply (5.28) with

a = u1/4, b = K , c = √
�. Hence, (5.27) gives

−3

2

∫ 1

0
dv

∫ 1

0
du E

{
g′(u1/4N1)h

(
K

u1/4
N1 +

√
�

u1/4
N2

)}

= −3

2

∫ 1

0
dv

∫ 1

0
du E

{
g′(B1/4

u )h(B1/4
v )

}
,

which is the right-hand side of (5.23).
We come back to the proof of (5.25), and we follow a similar reasoning as for

the evaluation of the second moment of the third-order integral; see part (c) of
Theorem 3.4. Since

∫ 1
0 g(B

1/4
u ) d−3B

1/4
u is the limit in L2(�) of Iε(g),

E
(∫ 1

0
g(B1/4

u ) d−3B1/4
u

∫ 1

0
h(B1/4

v ) dv

)
is the limit of J 1

ε + J 2
ε ,

where

J 1
ε := 1

ε

∫ 1

0
dv

∫ v

0
du E

(
g(B1/4

u )(B
1/4
u+ε − B1/4

u )3h(B1/4
v )

)

=
∫ 1

0

∫ v

0
du E

(
g(G1)h(G2)

(Gε
3)

3

ε

)
,

J 2
ε := 1

ε

∫ 1

0
dv

∫ v

0
du E

(
g(B1/4

v )(B
1/4
v+ε − B1/4

v )3h(B1/4
u )

)

=
∫ 1

0

∫ v

0
du E

(
g(G2)h(G1)

(Gε
4)

3

ε

)

using the same notation as for the evaluation of the second moment in part (c). We
can write

J 1
ε =

∫ 1

0

∫ v

0
du E

{
g(G1)h(G2)E

(
(Gε

3)
3

ε

∣∣∣G1,G2

)}

= −3

2

{
E
[
g(G1)h(G2)(λ11G1 − λ12G2)

]+ o(1)
}

by part (a′) of Lemma 5.1, since H = 1
4 . Moreover, by part (c) of the same

lemma, the estimates are uniform in u and v. Therefore, the Lebesgue dominated
convergence theorem says that

lim
ε↓0

J 1
ε = −3

2

∫ 1

0
dv

∫ v

0
du E

[
g(B1/4

u )h(B1/4
v )(λ11B

1/4
u + λ12B

1/4
v )

]
.
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Proceeding similarly for J 2
ε , using again Lemma 5.1, we obtain

lim
ε↓0

J 2
ε = −3

2

∫ 1

0
dv

∫ v

0
du E

[
g(B1/4

v )h(B1/4
u )(λ12B

1/4
u + λ22B

1/4
v )

]

= −3
2

∫ 1

0
dv

∫ 1

v
du E

[
g(B1/4

u )h(B1/4
v )(λ12B

1/4
v + λ11B

1/4
u )

]
.

Finally,

lim
ε↓0

(J 1
ε + J 2

ε ) = −3
2

∫ 1

0
dv

∫ 1

0
du E

[
g(B1/4

u )h(B1/4
v )(λ11B

1/4
u + λ12B

1/4
v )

]
,

which is the desired quantity. �

This completes the proof of Lemma 5.3, and we can proceed to the proof of
Lemma 5.1.

PROOF OF PART (a) IN LEMMA 5.1. We write the covariance matrix of
(G1,G2,G

ε
3,G

ε
4) by blocks:

�ε =
(

�11 �ε
12

�ε
21 �ε

22

)
.

By classical Gaussian analysis, we know that the matrix Aε and the covariance
matrix of the vector Zε in Step IV(1) can be expressed as

Aε = �ε
21�

−1
11 and KZε = �ε

22 − Aε(�
ε
21)

∗.(5.29)

Here

�11 =
(

u2H KH(u, v)

KH(v,u) v2H

)
,

�ε
21 =

(
αε(u)u2H γε(u, v)

γε(v,u) αε(v)v2H

)
,

�ε
22 =

(
ε2H ηε(u, v)

ηε(v,u) ε2H

)
,

(5.30)

where αε is given by (5.4) and

γε(u, v) := Cov(Gε
3,G2)

= 1
2

(
(u + ε)2H − u2H − |v − u − ε|2H + |v − u|2H

)
,

ηε(u, v) := Cov(Gε
3,G

ε
4)

= 1
2

(|v − u + ε|2H + |v − u − ε|2H − 2|v − u|2H ).
Also recall that �−1

11 = (λij )i,j=1,2 is the inverse of the covariance matrix of
(G1,G2) [see (5.12)]. We can see that

γε(u, v) = H
(
u2H−1 + |v − u|2H−1)ε + o(ε) as ε ↓ 0(5.31)
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and

ηε(u, v) = H(2H − 1)|v − u|2H−2ε2 + o(ε2) as ε ↓ 0.(5.32)

We split the proof into several steps.

STEP 1 (Expansion of the matrix Aε). We express its components by

Aε :=
(

aε
11 aε

12
aε

21 aε
22

)
.(5.33)

Using (5.6), (5.29) and (5.31), when ε ↓ 0, gives

aε
11 = λ11αε(u)u2H + λ12γε(u, v)

= −λ11

2
ε2H + H

(
(λ11 + λ12)u

2H−1 + λ12|v − u|2H−1)ε + o(ε).
(5.34)

The asymptotics of the other coefficients aε
ij behaves similarly, since

aε
12 = λ12αε(u)u2H + λ22γε(u, v),

aε
21 = λ12αε(v)v2H + λ11γε(v,u),

aε
22 = λ22αε(v)v2H + λ12γε(v,u).

The expansion, as ε ↓ 0, for the matrix Aε becomes

Aε =

−λ11

2
ε2H + k11ε + o(ε) −λ12

2
ε2H + k12ε + o(ε)

−λ12

2
ε2H + k21ε + o(ε) −λ22

2
ε2H + k22ε + o(ε)


 ,(5.35)

where kij := kij (u, v), i, j = 1,2,(
k11(u, v) k12(u, v)

k21(u, v) k22(u, v)

)

= H
(

(λ11 + λ12)u2H−1 + λ12|v − u|2H−1 (λ12 + λ22)u2H−1 + λ22|v − u|2H−1

(λ12 + λ11)v2H−1 + λ11|u − v|2H−1 (λ22 + λ12)v2H−1 + λ12|u − v|2H−1

)
.

(5.36)

STEP 2 (Expansion of the matrix KZε ). We claim that the expansion of the
matrix KZε , when ε ↓ 0,

KZε =
(

KZε(1,1) KZε(1,2)

KZε(1,2) KZε(2,2)

)
,(5.37)

with

KZε(1,1) = ε2H − λ11

4
ε4H + k11ε

1+2H + o(ε1+2H),

KZε(1,2) = −λ12

4
ε4H + k12 + k21

2
ε1+2H + o(ε1+2H),

KZε(2,2) = ε2H − λ22

4
ε4H + k22ε

1+2H + o(ε1+2H).

(5.38)
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We compute KZε explicitly. Clearly, the computations for KZε(1,1) and KZε(2,2)

are similar. Using (5.29)–(5.32) and (5.35), for ε ↓ 0,

KZε(1,1) = ε2H − aε
11αε(u)u2H − aε

12γε(u, v)

= ε2H − ε4H

(
−λ11

2
+ k11ε

1−2H + o(ε1−2H)

)

×
(
−1

2
+ Hu2H−1ε1−2H + o(ε1−2H)

)

− ε1+2H

(
−λ12

2
+ k12ε

1−2H + o(ε1−2H)

)

× (
H(u2H−1 + |v − u|2H−1) + o(1)

)
= ε2H − ε4H

(
λ11

4
−
(

λ11

2
Hu2H−1 + k11

2

)
ε1−2H + o(ε1−2H)

)

− ε1+2H

(
−λ12

2
H(u2H−1 + |v − u|2H−1) + o(1)

)

= ε2H − λ11

4
ε4H + k11ε

1+2H + o(ε1+2H),

whereas

KZε(1,2) = ηε(u, v) − aε
12αε(v)v2H − aε

11γε(v,u)

= ε2(H(2H − 1)|v − u|2H−2 + o(1)
)

− ε4H

(
−λ12

2
+ k12ε

1−2H + o(ε1−2H)

)

×
(
−1

2
+ Hv2H−1ε1−2H + o(ε1−2H)

)

− ε1+2H

(
−λ11

2
+ k11ε

1−2H + o(ε1−2H)

)

× (H(v2H−1 + |v − u|2H−1) + o(1)
)

= −λ12

4
ε4H + k12 + k21

2
ε1+2H + o(ε1+2H).

STEP 3 (The law of the vector Zε). Using (5.37) and (5.38), we observe that
the Gaussian vector Zε can be written as(

Zε
1

Zε
2

)
(law)=

(
ν(ε)N1

µ(ε)N1 + θ(ε)N2

)
,(5.39)
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where N1 and N2 are independent standard normal random variables, also
independent of G1 and G2. Moreover, for ε ↓ 0,

ν(ε) = εH

(
1 − λ11

8
ε2H + c1ε + o(ε)

)
,

µ(ε) = ε3H

(
−λ12

4
+ c2ε

1−2H + o(ε1−2H)

)
,

θ(ε) = εH

(
1 − λ22

8
ε2H + c3ε + o(ε)

)
,

(5.40)

where ci := ci(u, v), i = 1,2,3,

c1(u, v) :=




k11

2
, if H >

1

4
,

k11

2
− λ2

11

128
, if H = 1

4
,

c2(u, v) :=




k12 + k21

2
, if H >

1

4
,

k12 + k21

2
− λ11λ12

32
, if H = 1

4
,

and

c3(u, v) :=




k22

2
, if H >

1

4
,

k22

2
+ λ2

12

32
− λ2

22

128
, if H = 1

4
.

Indeed, when ε ↓ 0,

ν(ε) =√
KZε(1,1)

= εH

(
1 − λ11

4
ε2H + k11ε + o(ε)

)1/2

= εH

(
1 − λ11

8
ε2H + k11

2
ε − λ2

11

128
ε4H + o(ε)

)

=




εH

(
1 − λ11

8
ε2H + k11

2
ε + o(ε)

)
, if H >

1

4
,

εH

(
1 − λ11

8
ε2H +

(
k11

2
− λ2

11

128

)
ε + o(ε)

)
, if H = 1

4
,
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µ(ε) = KZε(1,2)

ν(ε)

= ε4H(−λ12/4 + ((k12 + k21)/2)ε1−2H + o(ε1−2H))

εH (1 − (λ11/8)ε2H + c1ε + o(ε))

= ε3H

(
−λ12

4
+ k12 + k21

2
ε1−2H + o(ε1−2H)

)

×
(

1 + λ11

8
ε2H − c1ε + λ2

11

64
ε4H + o(ε)

)

= ε3H

(
−λ12

4
− λ11λ12

32
ε2H + k12 + k21

2
ε1−2H + o(ε1−2H)

)

=




ε3H

(
−λ12

4
+ k12 + k21

2
ε1−2H + o(ε1−2H)

)
, if H >

1

4
,

ε3H

(
−λ12

4
+
(

k12 + k21

2
− λ11λ12

32

)
ε1−2H + o(ε1−2H)

)
, if H = 1

4
,

and

θ(ε) =
√

KZε(2,2) − µ2(ε)

=
(
ε2H − λ22

4
ε4H + k22ε

1+2H + o(ε1+2H)

− ε6H

(
−λ12

4
+ c2ε

1−2H + o(ε1−2H)

)2
)1/2

=
(
ε2H − λ22

4
ε4H + k22ε

1+2H − λ2
12

16
ε6H + o(ε1+2H)

)1/2

= εH

(
1 − λ22

4
ε2H + k22ε − λ2

12

16
ε4H + o(ε)

)1/2

= εH

(
1 − λ22

8
ε2H + k22

2
ε −

(
λ2

12

32
+ λ2

22

128

)
ε4H + o(ε)

)

=




εH

(
1 − λ22

8
ε2H + k22

2
ε + o(ε)

)
, if H >

1

4
,

εH

(
1 − λ22

8
ε2H +

(
k22

2
− λ2

12

32
− λ2

22

128

)
ε + o(ε)

)
, if H = 1

4
.
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STEP 4 [Law of the vector (Gε
3,G

ε
4)]. We claim that, for ε ↓ 0,(

Gε
3

Gε
4

)
(law)=

(
N1ε

H + Q1ε
2H − λ11

8 N1ε
3H + R1ε + o(ε)

N2ε
H + Q2ε

2H − (λ12
4 N1 + λ22

8 N2)ε
3H + R2ε + o(ε)

)
,(5.41)

where

R1 := k11G1 + k12G2 and R2 := k21G1 + k22G2.

Indeed, using (5.33), (5.35), (5.39) and (5.40), when ε ↓ 0, we get

Gε
3 = aε

11G1 + aε
12G2 + Zε

1

(law)=
(
−λ11

2
ε2H + k11ε + o(ε)

)
G1 +

(
−λ12

2
ε2H + k12ε + o(ε)

)
G2

+ εH

(
1 − λ11

8
ε2H + c1ε + o(ε)

)
N1,

Gε
4 = aε

21G1 + aε
22G2 + Zε

2

(law)=
(
−λ12

2
ε2H + k21ε + o(ε)

)
G1

(
−λ22

2
ε2H + k22ε + o(ε)

)
G2

+ ε3H

(
−λ12

4
+ c2ε

1−2H + o(ε1−2H)

)
N1

+ εH

(
1 − λ22

8
ε2H + c3ε + o(ε)

)
N2.

STEP 5 (Evaluation of the law of Gε
3G

ε
4). As a consequence of the previous

step,

Gε
3G

ε
4

(law)= ε2H

(
N1 + Q1ε

H − λ11

8
N1ε

2H + R1ε
1−H + o(ε1−H)

)

×
(
N2 + Q2ε

H −
(

λ12

4
N1 + λ22

8
N2

)
ε2H + R2ε

1−H + o(ε1−H)

)
(law)= ε2H

(
N1N2 + (N1Q2 + N2Q1)ε

H

+
(
Q1Q2 − λ12

4
N2

1 − λ11 + λ22

8
N1N2

)
ε2H + o(ε2H)

)
(law)= ε2H(N1N2 + Sε),

where

Sε
(law)= εH

(
N1Q2 + N2Q1 +

(
Q1Q2 − λ12

4
N2

1 − λ11 + λ22

8
N1N2

)
εH + o(εH)

)
.
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STEP 6 [Evaluation of the law of (Gε
3G

ε
4)

3]. We observe that, when ε ↓ 0,

S2
ε

(law)= ε2H
(
(N1Q2 + N2Q1)

2 + o(1)
)

and S3
ε

(law)= o(ε3H).

Hence,

(Gε
3G

ε
4)

3 (law)= {ε2H(N1N2 + Sε)}3

(law)= ε6H(N3
1 N3

2 + 3N2
1 N2

2 Sε + 3N1N2S
2
ε + S3

ε )

(law)= ε6H

{
N3

1 N3
2 + 3N2

1 N2
2 [N1Q2 + N2Q1]εH

+
[
9N2

1 N2
2 Q1Q2 − 3λ12

4
N4

1 N2
2

− 3
λ11 + λ22

8
N3

1 N3
2

+ 3N3
1 N2Q

2
2 + 3N1N

3
2 Q2

1

]
ε2H + o(ε2H)

}
.

STEP 7 [Computation of the conditional expectation in (5.14)]. Consequently,
for ε ↓ 0,

(Gε
3)

3(Gε
4)

3

ε2
(law)= ε6H−2

{
N3

1 N3
2 + [3N3

1 N2
2 Q2 + 3N2

1 N3
2 Q1]εH

+
[
9N2

1 N2
2 Q1Q2 − 3λ12

4
N4

1 N2
2

− 3
λ11 + λ22

8
N3

1 N3
2

+ 3N3
1 N2Q

2
2 + 3N1N

3
2 Q2

1

]
ε2H + o(ε2H)

}
.

Since N1 and N2 are independent standard normal random variables, also
independent of G1 and G2, we obtain the conditional expectation in (5.14). �

PROOF OF (b) OF LEMMA 5.1. The proof is similar as for (a). We will only
provide the most significant arguments in several steps. The asymptotics for ε ↓ 0,
δ ↓ 0 of some functions of (ε, δ) in fractional powers can be done using a Maple
procedure. Recall that the Hurst index is H = 1

4 .

STEP 1 (Linear regression). We can write(
Gε

3

Gδ
4

)
= Aε,δ

(
G1
G2

)
+
(

Z
ε,δ
1

Z
ε,δ
2

)
,(5.42)
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with

Aε,δ = �
ε,δ
12 �−1

11 and KZε,δ = �
ε,δ
22 − Aε,δ(�

ε,δ
12 )∗.(5.43)

Here

�
ε,δ
12 =

(
αε(u)

√
u γε(u, v)

γδ(v,u) αδ(v)
√

v

)
, �

ε,δ
22 =

(
ε1/2 ηε,δ(u, v)

ηε,δ(u, v) δ1/2

)
,(5.44)

with

ηε,δ(u, v) = Cov(Gε
3,G

δ
4)

= 1
2

(|v − u + δ|1/2 + |v − u − ε|1/2 − |v − u|1/2 − |v − u + δ − ε|1/2).
Therefore, when ε ↓ 0, δ ↓ 0,

ηε,δ(u, v) = − εδ

8|v − u|3/2 + o
(
(ε + δ)2).(5.45)

STEP 2 (Expansion and computations for the matrix Aε,δ). We can write

Aε,δ :=
(

aε
11 aε

12
aδ

21 aδ
22

)
,

with

aε
11 = λ11αε(u)

√
u + λ12γε(u, v), aε

12 = λ12αε(u)
√

u + λ22γε(u, v),

aδ
21 = λ12αδ(v)

√
v + λ11γδ(v,u), aδ

22 = λ22αδ(v)
√

v + λ12γδ(v,u).

Hence, as in Step 1 of part (a), as ε ↓ 0, δ ↓ 0,

Aε,δ =

−λ11

2
ε1/2 + k11ε + o(ε) −λ12

2
ε1/2 + k12ε + o(ε)

−λ12

2
δ1/2 + k21δ + o(δ) −λ22

2
δ1/2 + k22δ + o(δ)


 ,(5.46)

where the kij are given by (5.36).

STEP 3 (Computations related to matrix KZε,δ ). We can write

KZε,δ =
(

KZε,δ (1,1) KZε,δ (1,2)

KZε,δ (1,2) KZε,δ (2,2)

)
,(5.47)

where, if ε ↓ 0, δ ↓ 0, we have

KZε,δ (1,1) = ε1/2 − λ11

4
ε + k11ε

3/2 + o(ε3/2),

KZε,δ (2,2) = δ1/2 − λ22

4
δ + k22δ

3/2 + o(δ3/2),

KZε,δ (1,2) = −λ12

4
ε1/2δ1/2 + k12

2
εδ1/2 + k21

2
ε1/2δ + o

(
(ε + δ)2).

(5.48)
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Indeed,

KZε,δ (1,1) = ε1/2 − aε
11αε(u)

√
u − aε

12γε(u, v)

and
KZε,δ (2,2) = δ1/2 − aδ

22αδ(v)
√

v − aδ
21γδ(v,u).

Hence, the expansions of these two coefficients are similar as in Step 3 of part (a).
The expansion of the remaining element behaves differently. Indeed, for ε ↓ 0,
δ ↓ 0,

KZε,δ (1,2) = ηε,δ(u, v) − aε
12αδ(v)

√
v − aε

11γδ(v,u)

= − εδ

8|v − u|3/2 + o
(
(ε + δ)2)

− ε1/2δ1/2
(
−λ12

2
+ k12ε

1/2 + o(ε1/2)

)

×
(
−1

2
+ 1

4
√

v
δ1/2 + o(δ1/2)

)

− ε1/2δ

(
−λ11

2
+ k11ε

1/2 + o(ε1/2)

)

×
(

1

4
√

v
+ 1

4
√|u − v| + o(1)

)

= −λ12

4
ε1/2δ1/2 + k12

2
εδ1/2 + k21

2
ε1/2δ + o

(
(ε + δ)2).

STEP 4 [Law of the vector (Z
ε,δ
1 ,Z

ε,δ
2 )]. Computations give(

Z
ε,δ
1

Z
ε,δ
2

)
(law)=

(
ν(ε)N1

µ(ε, δ)N1 + θ(ε, δ)N2

)
,(5.49)

where N1 and N2 are independent standard normal random variables, also
independent of G1and G2, and where

ν(ε) = ε1/4 − λ11

8
ε3/4 + o(ε3/4),

µ(ε, δ) = −λ12

4
ε1/4δ1/2 + o

(
(ε1/2 + δ1/2)2),

θ(ε, δ) = δ1/4 + λ12

8
ε1/4δ1/4 − λ22

8
δ3/4 − λ2

12

128
ε1/2δ1/4

+
(

λ11λ12

64
− k12

4
+ λ3

12

1024

)
ε3/4δ1/4

+
(

λ12λ22

64
− k21

4

)
ε1/4δ3/4 + o(ε1/2 + δ1/2).

(5.50)
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Indeed, ν(ε) is given by the first equality in (5.40), when ε ↓ 0. The other
coefficients are given by

µ(ε, δ) = KZε,δ (1,2)

ν(ε)
,

θ(ε, δ) =
√

KZε,δ (2,2) − µ2(ε, δ)

and we use the results in the previous step and the Maple procedure. Hence, we
have

Z
ε,δ
1

(law)= N1ε
1/4 − λ11

8
N1ε

3/4 + o(ε3/4),

Z
ε,δ
2

(law)= N2δ
1/4 + λ12

8
N2ε

1/4δ1/4

− λ2
12

128
N2ε

1/2δ1/4 − λ12

4
N1ε

1/4δ1/2 − λ22

8
N2δ

3/4

+
(

λ11λ12

64
− k12

4
+ λ3

12

1024

)
N2ε

3/4δ1/4

+
(

λ12λ22

64
− k21

4

)
N2ε

1/4δ3/4 + o
(
(ε1/2 + δ1/2)2).

STEP 5 [Law of the vector (Gε
3,G

δ
4)]. Using the first line of (5.41), (5.50) and

(5.48), when ε ↓ 0, δ ↓ 0, we obtain

Gε
3

(law)= N1ε
1/4 + Q1ε

1/2 − λ11

8
N1ε

3/4 + o(ε3/4),

Gδ
4

(law)= N2δ
1/4 + Q2δ

1/2 − λ22

8
N2δ

3/4 + R2δ

+ λ12

8
N2ε

1/4δ1/4 − λ2
12

128
N2ε

1/2δ1/4 − λ12

4
N1ε

1/4δ1/2

+
(

λ11λ12

64
− k12

4
+ λ3

12

1024

)
N2ε

3/4δ1/4

+
(

λ12λ22

64
− k21

4

)
N2ε

1/4δ3/4 + o
(
(ε1/2 + δ1/2)2),

(5.51)

with Q1 and Q2 given by (5.13) and R2 is as in Step 4 of part (b).
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STEP 6 (Computation of the law of Gε
3G

δ
4). From (5.51), when ε ↓ 0, δ ↓ 0,

we get

Gε
3G

δ
4

(law)= N1N2ε
1/4δ1/4 +

(
λ12

8
N1N2 + Q1N2

)
ε1/2δ1/4 + N1Q2ε

1/4δ1/2

+
(
− λ2

12

128
N1N2 − λ11

8
N1N2 + λ12

8
Q1N2

)
ε3/4δ1/4

+
(
−λ12

4
N2

1 + Q1Q2

)
ε1/2δ1/2

− λ22

8
N1N2ε

1/4δ3/4 + o
(
(ε1/2 + δ1/2)2).

STEP 7 [Computation of the conditional expectation in (5.16)]. When ε ↓ 0,
δ ↓ 0, it follows that

(Gε
3)

3(Gδ
4)

3

εδ

(law)= N3
1 N3

2 ε−1/4δ−1/4

+ 3
(

λ12

8
N3

1 N3
2 + Q1N

2
1 N3

2

)
δ−1/4 + 3Q2N

3
1 N2

2 ε−1/4

+ 3
((

λ2
12

128
− λ11

8

)
N3

1 N3
2 + Q2

1N1N
3
2 + 3λ12

8
Q1N

2
1 N3

2

)
ε1/4δ−1/4

+ 3
(
−λ22

8
N3

1 N3
2 + Q2

2N
3
1 N2

)
ε−1/4δ1/4

+ 3λ12

4
Q2N

3
1 N2

2 − 3λ12

4
N4

1 N2
2 + 9Q1Q2N

2
1 N2

2 + o(1).

Since N1 and N2 are independent standard normal random variables, independent
of G1 and G2, we finally deduce the conditional expectation in (5.16). �

PROOF OF (a′) IN LEMMA 5.1. Using (5.9), we recall that

Gε
3 =

[
Aε

(
G1
G2

)]
1
+ Zε

1, Gε
4 =

[
Aε

(
G1
G2

)]
2
+ Zε

2.

Therefore, the left-hand side of the first equality in (5.15) can be written as

E
(

(Gε
3)

3

ε

∣∣∣G1,G2

)
= E

([
Aε

(
G1
G2

)]
1
+ Zε

1

)3

=
[
Aε

(
G1
G2

)]3

1
+ 3

[
Aε

(
G1
G2

)]
1
E[(Zε

1)
2]

= (aε
11G1 + aε

12G2)
3 + 3(aε

11G1 + aε
12G2)KZε(1,1),
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according to the notation in (5.33), (5.34) and (5.37). Recall that, by (5.35)
and (5.36),

aε
11 = −λ11

2
ε2H + k11ε + o(ε),

where k11 = H(λ11 + λ12)u
2H−1 − λ12H |u − v|2H−1,

aε
12 = −λ12

2
ε2H + k12ε + o(ε),

where k12 = H(λ12 + λ22)u
2H−1 − λ22H |u − v|2H−1, and, by (5.38),

KZε(1,1) = ε2H − λ11

4
ε4H + o(ε).

Hence, we obtain

E
(

(Gε
3)

3

ε

∣∣∣G1,G2

)

=
{[

−λ11

2
ε2H + k11ε + o(ε)

]
G1 +

[
−λ12

2
ε2H + k12ε + o(ε)

]
G2

}3

+ 3
{[

−λ11

2
ε2H + k11ε + o(ε)

]
G1 +

[
−λ12

2
ε2H + k12ε + o(ε)

]
G2

}

×
(
ε2H − λ11

4
ε4H + o(ε)

)

= 3ε4H

[
−λ11

G1

2
− λ12

G2

2

]
+ o(ε).

This gives (5.15). �

PROOF OF (c) IN LEMMA 5.1. We need to show that the asymptotics in
(5.14)–(5.16) are uniform in u and v. We do the job for (5.14), the others
behaving similarly. It is enough to analyze the uniformity of the expansions on
{1 < u,1 < v − u} of αε(u), γε(u, v) and ηε(u, v), when ε ↓ 0, because the other
asymptotics are obtained in terms of these. When ε ↓ 0, by (5.4), we have

αε(u) = 1

2u2H

(
(u + ε)2H − u2H − ε2H )

= 1

2

((
1 + ε

u

)2H

− 1 −
(

ε

u

)2H)

= −1

2

(
ε

u

)2H

+ H
ε

u
+ o

(
ε

u

)
,
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which provides a uniform expansion on {u > 1}. Similarly, when ε ↓ 0, one obtains

γε(u, v) = 1

2

(
(u + ε)2H − u2H − |v − u − ε|2H + (v − u)2H

)

= 1

2

[
u2H

((
1 + ε

u

)2H

− 1
)

− (v − u)2H

(∣∣∣∣1 − ε

v − u

∣∣∣∣2H

− 1
)]

= H(u2H−1 + |v − u|2H−1)ε + o(ε),

uniformly on {1 < u,1 < v − u}, and, when ε ↓ 0,

ηε(u, v) = 1

2

(
(v − u + ε)2H + |v − u − ε|2H − 2(v − u)2H

)

= (v − u)2H

2

[(
1 + ε

v − u

)2H

+
∣∣∣∣1 − ε

v − u

∣∣∣∣2H

− 2
]

= H(2H − 1)|v − u|2H−2ε2 + o(ε2),

uniformly on {1 < v − u}. �

PROOF OF (d) IN LEMMA 5.1. We look for the homogeneity degree of all
quantities used so far. For a function f = f (ε,u, v), we shall denote

degε,u,v(f ) =: p ⇔ f (κε, κu, κv) = κpf (ε,u, v),

where we make the convention that

γ (ε,u, v) := γε(u, v), KZ(i, j)(ε, u, v) := KZε(i, j)(u, v).

We have

degε,u(α) = 0 [by (5.4)],
degε,u,v(λij ) = −2H [by (5.12)],

degε,u,v(γ ) = 2H [by (5.31)],
degε,u,v(η) = 2H [by (5.32)],

degε,u,v(aij ) = 0 [by (5.29), (5.30) and (5.33)],
degε,u,v(KZ(i, j)) = 2H [by (5.29), (5.30) and (5.37)],

degε,u,v(ν) = degε,u,v(µ) = degε,u,v(θ) = H [by (5.39)].
From this, (5.9) and (5.33), recalling that G1(u) = BH

u , G2(v) = BH
v , we deduce

that

Gκε
3 (κu) = aκε

11 (κu, κv)G1(κu) + aκε
12 (κu, κv)G2(κv) + Zκε

1 (κu, κv)

(law)= aε
11(u, v)κHG1(u) + aε

12(u, v)κHG2(v) + κH Zε
1(u, v)

(law)= κH Gε
3(u),
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and, in a similar way, Gκε
4 (κv) = κHGε

4(v). Therefore, (5.17) is proved. On the
other hand, using (3.7) and (5.13), we obtain

9Q1(κu, κv)Q2(κu, κv) − 9
4λ12(κu, κv)

= 9
4

[(
λ11(κu, κv)G1(κu) + λ12(κu, κv)G2(κv)

)
× (

λ12(κu, κv)G1(κu) + λ22(κu, κv)G2(κv)
)− λ12(κu, κv)

]
(law)= 9

4

[
κ−2H

(
λ11(u, v)G1(u) + λ12(u, v)G2(v)

)
× (λ12(u, v)G1(u) + λ22(u, v)G2(v)

)− κ−2Hλ12(u, v)
]

and, consequently, (5.18) is also proved. �

This completes the proof of Lemma 5.1.
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