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The contents of the book are as follows:

Chapter 1. Simple random walk
Chapter 2. Harmonic measure
Chapter 3. Intersection probabilities
Chapter 4. Four dimensions
Chapter 5. Two and three dimensions
Chapter 6. Self-avoiding walks
Chapter 7. Loop-erased walk

Random walks have fascinated and perplexed the mathematical community
for about a century. Although there are a variety of complications and varia-
tions by means of which the basic model can be generalized, the behavior in
the simplest case is already complex and surprising.

Consider a symmetric nearest-neighbor random walk on the integer lattice
Zd. To what extent does the behavior of the walker depend upon the dimension
d? On one hand, the mean-squared displacement is independent of dimension
andE��Sn�2� = n for every natural number n, where Sn is the walker’s position
after n steps. On the other, Polya proved in 1921 that if d ≤ 2, such a walk is
recurrent, whereas if d ≥ 3, then the walk is transient.

The intersection properties considered by Gregory Lawler in Intersections
of Random Walks are invariably dimension-dependent. The starting point for
his investigations are the probabilities pn�x� that a walk beginning at the
origin reaches the node x ∈ Zd at the completion of its nth step. The first
observation is that this probability can only be positive if the parity of n
matches that of the sum of the components of x, in which case we write
n ↔ x. The next observation is that the central limit theorem implies that
n−1/2Sn converges in distribution to a normally distributed random variable
in Rd.

A heuristic argument suggests that for large n, pn�x� should be approxi-
mately equal to

pn�x� = 2
(
d

2πn

)1/2

exp
(−d�x�2

2n

)
:
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This is made precise by letting

E�n;x� =
{
pn�x� − pn�x�; if n↔ x,
0; otherwise,

and deriving estimates on �E�n;x��, �∇yE�n;x�� and �∇2
yE�n;x��. Here

∇yf�x� = f�x+ y� − f�x�
and

∇2
yf�x� = f�x+ y� − 2f�x� + f�x− y�:

The local central limit theorem establishes the following: if y↔ 0, then

�∇iyE�n;x�� ≤ cyO�n−�d+i+2�/2�
and

�∇iyE�n;x�� ≤ cy�x�−2O�n−�d+i�/2�
for i = 0, 1, 2, where cy depends only on y.

Lawler gratefully acknowledges his debt to Spitzer’s book [11] for his expo-
sition of the local central limit theorem, as well as for other standard results
which are proved in the opening chapter. The intended audience of this book
would appear to be upper level graduate students and working research math-
ematicians because so many standard results from measure theory and a year
of graduate level probability are assumed without proof: for example, martin-
gales, stopping times and Brownian motion. Beyond this, the text is almost
entirely self-contained, with the exception of certain routine extensions which
are included among the exercises (there are some 15 exercises included in the
first two chapters).

The most important tool needed for the corpus of theorems in Chapters 3–5
is harmonic measure; this is the topic of Chapter 2. The central question is as
follows: given a subset A of Zd and a walker who starts a random walk from
infinity, what is the probability of a particular node in A being the first one
which the walker hits, conditioned on the event that the set A is eventually
encountered? The existence of such a measure is derived in such a way that
an upper bound on the rate of convergence (which is highly dependent on
dimension) is given. The notion of capacity is developed in a way which is
independent of the usual interpretation in terms of electrical circuits.

Those familiar with topics from continuous harmonic functions including
the Dirichlet problem, Green’s function and the Harnack inequality will prob-
ably enjoy seeing this material adapted to the discrete case in Chapters 1
and 2, even if they have no interest in subsequent portions of the text.

Chapters 3–5 are devoted to questions involving the probability that the
paths of independent random walks will intersect, including lower bounds on
the probability that any intersection occurs and expected number of intersec-
tions. The primary goal is to analyze the probability that two independent
random walks with a common starting point will intersect. The techniques
are very different for four dimensions, where the probability goes to zero like
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the reciprocal of the logarithm of the number of steps, than they are for three
dimensions, where the probability goes to zero as the number of steps raised
to a negative exponent.

The most important applications of the results in Chapters 1–5 are to self-
avoiding random walks. A self-avoiding walk (SAW) is a one-to-one Zd-valued
function ω whose domain is either the natural numbers N or some initial
segment thereof: �0;1;2; : : : ; n�. Such a walk is clearly not Markovian, since
the extension of an n-step walk to an n+ 1-step walk clearly depends on the
entire history and not simply the node ω�n�. Indeed, an n-step self-avoiding
walk may be at a “dead end” in the sense that all of the nearest neighbours of
the node ω�n� could be occupied at earlier times as ω�i� for some 0 ≤ i < n. For
this reason, the SAW cannot be analyzed as a sum of i.i.d. random variables.
Although the SAW has been studied by chemists and physicists since the
1960s (as a model for polymer growth [3] and the N→ 0 limit of the N-vector
model [2], respectively), few rigorous mathematical results are known.

The central problems for SAWs involve counting and asymptotic growth
rates. Let Cn be the number of n-step SAWs. It is conjectured that Cn ∼
Aµnnγ−1 in all dimensions except d = 4, where it is believed that Cn ∼
Aµn�log n�1/4; the constants A, µ and γ depend only on the dimension d.
More importantly for the subject at hand, it is conjectured that

〈
�ω�n��2

〉
∼
{
Dn2ν; if d 6= 4,
Dn �log n�1/4 ; otherwise,

where 〈 · 〉 is the expected value over the set of all Cn n-step SAWs equipped
with uniform measure. The result clearly holds for d = 1 with D = ν = 1.
Hara and Slade [5, 6] have recently shown that the result also holds for d ≥ 5
with ν = 1/2. The question remains open for d = 2, 3, and 4. It is conjectured
that ν = 3/4 in two dimensions and ν = 0:59 in three dimensions. These
conjectures come from Monte Carlo simulation, renormalization group theory
and analogy with other models in statistical mechanics. For more details, see
the book by Madras and Slade [9] in the same series.

How might one go about generating self-avoiding walks on a computer?
Most of the popular methods involve transformations of walks of a fixed length;
see [10], for example. An entirely different approach would be as follows: gen-
erate a simple random walk of a given length. When this is done, scan the
list of nodes visited and look for repeat visits. When this occurs, erase the
intervening “loop” in the walk. Continue until all self-intersections have been
removed. The result will be a walk, shorter than the original with an unpre-
dictable length, which is self-avoiding. Clearly, all self-avoiding walks can be
obtained in such a fashion, but what measure is assigned to the set of all
n-step walks by this process?

It was Lawler himself who first proposed such a process in 1980 [7]; he
dubbed the walk so obtained a loop-erased self-avoiding walk (LESAW). In
Chapter 6 of the book we are considering here, he gives a persuasive heuristic
aaccount of why a LESAW should grow at a faster rate than an ordinary SAW,
this after introducing the SAW and its associated problems and machinery
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and describing a couple of other related models: the Joyce–Domb model, the
Edwards model and the myopic SAW.

In the final chapter of Intersections of Random Walks, Lawler exploits his
results of Chapters 3–5 in order to prove that the LESAW is qualitatively
the same as the SAW, but is quantitatively different. Specifically, he derives
upper bounds for the number of nodes erased during the loop-erasing proce-
dure and uses these to show that the mean-squared displacement

〈
�λ�n��2

〉
has

asymptotic lower bounds of the same form as the power laws quoted above for
SAWs, but with larger exponents. Perhaps the most important lower bound
is for three dimensions: in this case

〈
�λ�n��2

〉
is asymptotically bounded below

by Dn6/5. If the conjecture concerning SAWs is correct, then this clearly dis-
tinguishes LESAWs from SAWs. In two dimensions, Lawler shows that the
asymptotic lower bound for

〈
�λ�n��2

〉
is Dn3/2. This does not distinguish the

behavior of the LESAW from the conjectured behavior of the SAW, but Lawler
hypothesizes that the true growth rate for the three-dimensional LESAW is
more like n8/5. This conjecture is borne out by Monte Carlo results in the lit-
erature [4, 1]. In four dimensions,

〈
�λ�n��2

〉
/n is shown to be asymptotically

bounded between �log n�1/3 and �log n�1/2, again outstripping the growth of
the SAW. (More recently, Lawler has shown

〈
�λ�n��2

〉
/n to be asymptotically

bounded by �log n�1/3; see [8].) Finally, Lawler shows that the LESAW, like the
SAW, behaves like Brownian motion in dimensions five and higher.

It would only be a modest exaggeration to call this book a gem. It is rela-
tively short and has a unity of purpose, both of which serve to give it a manage-
able scale. It is very technical, especially in Chapters 2–5, but the organization
is efficient without descending into slickness. Most of the results are Lawler’s
own, drawn from a series of at least eight articles published between 1980
and 1990; it is far more satisfying to review these results as a coherent and
well-organized whole than in a piecemeal fashion. This book should be con-
sidered almost indispensable for those with an interest in self-avoiding walks
and will appeal to anyone interested in applications of probability theory and
harmonic measure.
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