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STABILITY OF NONLINEAR HAWKES PROCESSES

By Pierre Brémaud and Laurent Massoulié

CNRS and CNET

We address the problem of the convergence to equilibrium of a general
class of point processes, containing, in particular, the nonlinear mutually
exciting point processes, an extension of the linear Hawkes processes, and
give general conditions guaranteeing the existence of a stationary version
and the convergence to equilibrium of a nonstationary version, both in
distribution and in variation. We also give a new proof of a result of Kerstan
concerning point processes with bounded intensity and general nonlinear
dynamics satisfying a Lipschitz condition.

1. Nonlinear Hawkes processes. Let N be a simple point process on
R, that is, a family �N�C��C∈B�R� of random variables with values in N̄ =
N ∪ �+∞� indexed by the Borel σ-algebra B�R� of the real line R, where
N�C� = ∑

n∈Z 1C�Tn� and �Tn�n∈Z is a sequence of extended real-valued
random variables such that, almost surely T0 ≤ 0 < T1, Tn < Tn+1 on
�Tn < +∞� ∩ �Tn+1 > −∞�. Let �Ft�t∈R be a history of N, that is, a non-
decreasing family of σ-fields such that, for all t ∈ R, F N

t = σ�N�C�; C ∈
B�R�; C ⊂ �−∞; t�� ⊂ Ft. The history �F N

t �t∈R is called the internal history
of N. Any nonnegative Ft-progressively measurable process �λ�t��t∈R such
that

E�N��a; b���Fa� = E
[∫ b
a
λ�s�ds

∣∣Fa

]
a.s.

for all intervals �a; b�, is called an Ft-intensity of N. Note that N�C� < ∞
P-a.s. if and only if

∫
C λ�s�ds < ∞ P-a.s., and therefore N is a.s. a Radon

measure if and only if �λ�t��t∈R is a.s. locally integrable. Stochastic intensity
is a generalization of the notion of the hazard rate (see [3], [8] and [15]). We
recall a result and reproduce a proof due to Jacod [8].

Lemma 1 (Hazard rate). Let N be a point process admitting an F N
t -

predictable intensity λ�t� = v�t;N� on R+. Then, for all t ∈ R+∪�+∞�, the con-

ditional probability P�N��0; t�� = 0�F N
0 � equals exp−

∫ t
0 v�s;N−�ds, where

N− is, by definition, the restriction ofN to R− �N−�C� =N�C∩R−�; C ∈ B�R��.

Proof. For all t > 0, it holds that

1N�0; t�=0 = 1−
∫
�0; t�

1N�0; s�=0N�ds�:
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For all events A ∈ F N
0 , the process 1A�ω�1�0; t��s�1N�0; s�=0 is F N

s -predictable,
so that, multiplying both sides of the previous inequality by 1A, one can replace
the integral with respect to N�ds� by an integral with respect to λ�s�ds when
taking expectations, which yields

P�N�0; t� = 0y A� = P�A� −E
[
1A

∫ t
0

1N�0; s�=0λ�s�ds
]
:

The processes 1N�0; s�=0 and 1N�0; s�=0 differ on a set of zero Lebesgue measure
so that the first may be replaced by the second in the above equality; observ-
ing that 1N�0; s�=0λ�s� = 1N�0; s�=0v�s;N−�, where v�s;N−� is F N

0 -measurable,
implies that

P�N�0; t� = 0�F N
0 � = 1−

∫ t
0

P�N�0; s� = 0�F N
0 �v�s;N−�ds:

Iterating this equality gives the announced result. 2

Remark 1. The fact that the F N
t -intensity λ�t� is of the form v�t;N� is

not an assumption: it holds since λ�t� is F N
t -predictable. See, for instance, [3],

Appendix 2.

The present work is concerned with simple point processes N admitting an
F N
t -intensity of the form

λ�t� = φ
(∫
�−∞; t�

h�t− s�N�ds�
)
;(1)

where φ: R→ R+ and h: R+ → R. A particular case is Hawkes’ self-exciting
point process, for which h is nonnegative and φ�x� = ν + x where ν > 0 (see
[6]; see also Daley and Vere-Jones [5], Chapter 10, page 367), and we therefore
call such processes nonlinear Hawkes processes.

The notion of multivariate Hawkes processes, or mutually exciting point
processes, can be extended to multivariate nonlinear Hawkes processes, that
is, a family Ni, 1 ≤ i ≤ K, of simple point processes without common points,
of respective Ft-intensities

λi�t� = φi
( K∑
j=1

∫
�−∞; t�

hji�t− s�Nj�ds�
)
;(2)

where Ft = ∨Ki=1F
Ni

t , φi: R→ R+, hji: R+→ R.
Nonlinear Hawkes processes model a variety of situations.

Example 1. In the univariate case, for instance, taking

φ�x� = λ1�0;K−1/2��x�; h�t� = 1�0; a��t�;
N is the input process to an M/D/K/0 queue, that is, a queue with Poisson
arrivals of intensity λ > 0, service time a > 0, no waiting room and K servers
(see [2], page 81, for instance).
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Example 2. Multivariate Hawkes processes also model neuronal activity
and we shall therefore occasionally call them neural networks. In this context,

Xi�t� =
K∑
j=1

∫
�−∞; t�

hji�t− s�Nj�ds�

is the potential of neuron i at time t, φi is its excitation function and hij is the
transfer function from neuron i to neuron j. If 1/λiφi�x� = 1−1�0; σi��x�; λi >
0, σi is called the excitation threshold of neuron i, and this neuron is said
to be excited at time t if Xi�t� ≥ σi, and at rest (or inhibited) at time t if
Xi�t� < σi.

Example 3. Consider a network of K neurons, where neuron i, i ∈
�1; : : : ;K�, fires at rate λi if for all j ∈ �1; : : : ;K� no firing of neuron j
occurred during the last θji time units for some constant θji ≥ 0, and is
inhibited otherwise (see Example 3 in [4]). Calling Ni the point process of
spikes of neuron i, the dynamics of this network are of the general type above,
with

φi�x� = λi1�0;1��x�
and

hij�t� = 1�0; θij��t�:

Our goal in the present work is to find conditions bearing on the functions
φi and hji, guaranteeing the existence and uniqueness of a stationary version
of N = �Ni; 1 ≤ i ≤ K�, as well as the stability of the stationary solution (a
concept that we shall explain soon). Our results extend and/or are related to
the previous results of Hawkes and Oakes [7], Kerstan [10] and Lindvall [13]
(see the discussion after each theorem below).

For any t ∈ R and any stochastic processX, StX± will denote the restriction
to R± of the process X shifted t time units to the left: for instance, if X =N is
a multivariate point process �N1; : : : ;NK�, then StN± = �StN±i ; 1 ≤ i ≤K�,
where StN

±
i = �Ni��t+C� ∩R±�; C ∈ B�R��. One says that N has an initial

condition �P−� if its restriction to R−, S0N
−, is fixed and verifies condition

�P−�. An example of initial condition �P−� is: limt→+∞ t
−1Ni��−t;0�� = αi

a.s., 1 ≤ i ≤K, for fixed αi > 0, 1 ≤ i ≤K.
The space of integer-valued measures is endowed with the topology of

vague convergence; that is, a sequence mn of point measures converges to a
limit m if and only if, for any continuous function f with compact support,∫
f�x�mn�dx� →

∫
f�x�m�dx�. The notion of weak convergence for point

processes that we consider is the one derived from this topology. We shall also
consider the stronger notion of convergence in variation for (distributions of)
point processes: the sequence �Nn� converges in variation to a limit N if and
only if

lim
n→∞

sup
C

�P�Nn ∈ C� −P�N ∈ C�� = 0;
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where the supremum is taken over the sets C in the Borel σ-field associated
with the vague topology.

Definition 1 (Stability). One says that the dynamics (2) are stable in dis-
tribution (resp. in variation) with respect to an initial condition �P−� if for all
point processes N′ with initial condition �P−� and following the dynamics (2)
on R+ one can exhibit a point process N such that:

(i) N follows the dynamics (2) on R and is stationary;
(ii) StN′

+→D (resp. →var) N+ as t→+∞.

Remark 2. Stability in variation of the dynamics (2) with respect to an
initial condition �P−� will hold if for all N′ with initial condition �P−� and
following the dynamics (2) on R+ one can construct N and N′ on the same
probability space, satisfying (i) above, and such that they couple, that is, such
that:

(ii′) StN+ ≡ StN′+ for all t ≥ T, where P�T < +∞� = 1.

The reader is referred to Lindvall [14] for more insight into the notion of
coupling.

Remark 3. Assume that one can exhibit some initial condition �P−� for
which the dynamics (2) are stable and such that the distribution of the sta-
tionary point process N in (i) is the same for any N′ satisfying �P−�. Then any
stationary solution N′ satisfying �P−� is distributed as this N: indeed, for any
t > 0, StN′

+ is distributed as S0N
′+, so that the laws of S0N

′+ and S0N
+

are identical; since the two processes are stationary, the laws of S−tN+ and
S−tN

′+ also coincide for any t > 0. Letting t→ +∞, one sees that N′ =D N.
Assume further that any stationary solution necessarily satisfies �P−�. One
then obtains uniqueness of the stationary solution.

Remark 3 will actually be used to prove the uniqueness of the stationary
distribution in some cases. The situation in which all the transfer functions
hij have compact support and the excitation functions φi are bounded is an
easy consequence, for instance, of the more general results of Lindvall [13]
(see Theorem 3). The difficulty lies in the unbounded case for the excitation
function and/or the absence of a compact support assumption for the transfer
functions (see Theorems 1 and 2).

Remark 4. Our use of the term stability in the title of this article does not
seem to be standard in the theory of stochastic processes. The parallel with the
notion of stability in the theory of ODE is the following: the initial condition
is (the law of) S0N

−, the past of the point process at time 0. Considering (the
law of) StN− as the state at time t, this state converges (weakly) to some limit
as t → ∞ if StN+ →D some limit as t → ∞. The parallel, in general, does
not exist for stability in variation. Indeed, consider the following dynamics:
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whatever the past StN− of the process at time t, StN+ is independent of
StN

− and Poisson with intensity λ > 0 (this corresponds to the choice φ ≡ λ).
For the empty initial condition S0N

− = \ a.s., StN+ converges in variation
as t→ ∞ to the Poisson process with intensity λ > 0, and one therefore has
stability in variation as in Definition 1. However, StN− fails to converge in
variation, since it has almost surely finitely many points for all t > 0, which
ensures that its law and the law of the Poisson process with intensity λ > 0
(under which there are a.s. infinitely many points) are mutually singular.

The article is structured as follows. In Section 2, we state the basic stability
results for the single neuron case. In Section 3, we give the necessary propo-
sitions on Poisson imbedding, since all the constructions are based on them.
In Section 4 we prove the results announced in Section 2, and in Section 5 we
give extensions to the multivariate case.

2. Stability results for the single neuron. Hawkes and Oakes [7] have
studied the stability of linear mutually exciting point processes. We shall state
the two main generalizations of their results. Theorem 1 is a strict general-
ization, and Theorem 2 is more relevant to neuronal activity modeling.

Theorem 1 (Unbounded Lipschitz dynamics). Let φ be α-Lipschitz for some
α > 0, and let h be such that

α
∫
R+
�h�t��dt < 1:(3)

(a) There exists a unique stationary distribution of N with finite average
intensity EN��0;1�� and with dynamics (1).

(b) The dynamics (1) are stable in distribution with respect to either initial
condition (i) or (ii) below:

(i) supt≥0 εa�t� < +∞ a.s. and limt→+∞ εa�t� = 0 a.s. for all a > 0,
(ii) supt≥0 E�εa�t�� < +∞ and limt→+∞Eεa�t� = 0 for all a > 0,

where εa�t� x=
∫ t
t−a

∫
R− �h�s− u��N�du�ds.

(c) The dynamics (1) are stable in variation with respect to the initial con-
dition:

(iii)
∫
R+
�h�t��N��−t;0��dt =

∫
R+
dt
∫ 0

−∞
�h�t− s��N�ds� < +∞ a.s.

if, moreover,
∫
R+
t�h�t��dt < +∞:(4)

Remark 5. Condition (iii) says that the direct influence of the initial con-
dition N− vanishes as t→∞: indeed, in the linear case, each point Tn < 0 of
N− generates on R+ a Poisson process of intensity h�t−Tn� with, conditionally
on N−, an average number of points equal to

∫
R+ h�t−Tn�dt. Summing up the
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(direct) contributions of all Tn < 0, one obtains a total number of points on R+

equal to
∫
R+ dt

∫ 0
−∞ h�t − s�N�ds�. Since this number is finite, the aftereffect

of N− vanishes in finite time. In the Lipschitz case, the direct influence of N−

produces a total number of points on R+ less than α
∫
R+ dt

∫ 0
−∞ �h�t−s��N�ds�,

and when this number is finite, the aftereffect of N− also vanishes in finite
time. Condition (ii) has an analogous interpretation.

Remark 6. Observe that if φ�0� = 0 the empty point process is a solution,
and therefore the solution with finite average intensity of the existence prob-
lem. This shows, in particular, that there is no linear stationary Hawkes pro-
cess with stochastic intensity

∫
�−∞; t� h�t− s�N�ds� (and finite average inten-

sity) when
∫
R+ h�t�dt < 1, and that any transient process with these dynamics

and an initial condition as in Theorem 1 eventually dies out in distribution or
in variation.

We shall now relate Theorem 1 to the result of Hawkes and Oakes [7], tak-
ing α = 1, since the general case α > 0 is easily obtainable from the case
α = 1. In [7], existence is proven in the linear case [φ�x� = ν+x, where ν > 0]
for nonnegative h verifying the condition

∫
R+ h�t�dt < 1, by constructing the

corresponding stationary point process as a Poisson branching process or clus-
ter Poisson process and using the elementary theory of branching processes.
Hawkes and Oakes then prove uniqueness and stability in distribution with
respect to an empty initial the condition, that is, �P−� ≡ �N�R−� = 0 a.s.�.
Their results are presented in Daley and Vere-Jones [5], where it is stated
that the condition

∫
R+ th�t�dt < +∞ guarantees stability in variation with

respect to the empty initial condition. In this article, this initial condition will
be replaced by more general ones. From a systems theory point of view, such
general conditions are needed to take into account the previous behavior of
the system before a change in the parameters, for instance.

The proofs of stability in Hawkes and Oakes [7] are based on arguments
where the linearity of φ is crucial. More direct proofs can be devised using only
purely branching arguments. In any case, both types of arguments (linear or
branching) are not available in the generality we have placed the problem,
and we shall have to resort to the theory of stochastic intensity.

The Lipschitz condition allows a treatment of existence analogous in some
way to Picard’s existence proof for ordinary differential equations. Another
feature of our approach is the use of imbedded representations of point pro-
cesses with stochastic intensities which permit coupling arguments for proving
convergence in distribution or in variation. Since imbedding is realized in a
homogeneous Poisson process on R2 which is mixing with respect to trans-
lations along the time axis, mixing of the constructed point process follows
immediately if this point process is compatible with the translations of the
homogeneous Poisson process on R2 (by this we mean that the first one is
shifted by t whenever the second one is shifted by t along the first coordinate
axis; see [2], Chapter 1, for formal definitions).
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Theorem 2 (Bounded Lipschitz dynamics). Let φ be α-Lipschitz for some
α > 0 and bounded by 3 > 0, and let h be such that

∫
R+ �h�t� �dt < ∞ and

that (4) holds. Then there exists a unique stationary distribution of N with
dynamics (1). Moreover, the dynamics (1) are stable in variation with respect
to the initial condition

lim
t→+∞

∫ +∞
t

ds
∫
R−
�h�s− u��N�du� = 0 a.s.(5)

The difference with Theorem 1 is that, at the expense of a boundedness
condition, we can avoid fixing a maximal value of the L1-norm of h which
depends on the Lipschitz coefficient. Consider, for instance, the case where

φ�x� =





ν; if x ≤ A− ε;
ν + 3− ν

ε
�x−A+ ε�; if A− ε ≤ x ≤ A;

3; if x ≥ A;

where A > ε > 0; 3 > ν > 0. Theorem 2 shows that if h is in L1 and if (4)
holds, there exists a unique stationary distribution of N with the dynamics
(1), and that the dynamics (1) are stable with respect to the initial condition
(5), and this for all ε; 0 < ε < A. Choosing ε arbitrarily small yields an
approximation of the pure threshold case φ�x� = ν if x < A, φ�x� = 3 if
x ≥ A. Strictly speaking, however, this limiting case is not in the scope of
Theorem 2. However, we can still say something about this case if h has a
compact support (see Theorem 3).

Kerstan [10] obtained Theorem 2 in 1964, in an apparently more general
form, since this author does not require the special form of intensity (1), but
only a direct Lipschitz condition

�λ�t;N1� − λ�t;N2�� ≤ α
∫
�−∞; t�

�h�t− s�� �N1 −N2��ds�:

The proofs of Theorems 1 and 2 in the present article only use this condition.
Our Theorem 2 is therefore of the same generality as the corresponding result
of Kerstan, but does not contain more. However, our proof seems more easy,
due to the fact that in his pioneering article Kerstan did not have at his
disposal the martingale theory of stochastic intensity.

In order to state Theorem 3, some notation is needed. Call �M;M � the
measurable space of Radon measures on R, where M is generated by the
mappings m → m�C�, C ∈ B�R�. Let St denote the usual shift operator on
the space �M;M �: Stm�C� =m�C+ t�.

Definition 2. The mapping ψ: �M;M � → �R;B�R�� is causal if, whenever
m ≡ m′ on �−∞;0�, ψ�m� = ψ�m′�. Furthermore, ψ has a bounded memory
if there exists A, 0 < A < ∞, such that, whenever m ≡ m′ on �−A;0�,
ψ�m� = ψ�m′� (in particular, a mapping ψ with a bounded memory is a fortiori
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causal). A point process N is said to have dynamics with bounded memory if
it admits an F N

t -intensity of the form

λ�t� = ψ�StN�;(6)

where ψ: �M;M � → �R;B�R�� has a bounded memory.

For instance, if the support of the transfer function h is compact, the dy-
namics (1) have bounded memory.

Theorem 3 (Bounded memory dynamics). There exists a unique station-
ary distribution of a point process N with bounded memory dynamics (6) if

sup
m∈M

ψ�m� = 3 <∞:(7)

Moreover, in this case, irrespective of the initial condition, the dynamics are
stable in variation, and convergence in variation is exponentially fast.

Stationary point processes with bounded memory dynamics have been stud-
ied by Lindvall [13]. The class of processes studied by this author are the
�A;m�-processes, for which the intensity λ�t� depends only on the m last
events before t and the events in the interval �t−A; t�. An extension to con-
sistent finite random memory was made by Brémaud and Massoulié [4], to
which the reader is referred for the exact definitions. Whether in [13] or [4],
construction of the stationary point processes with the prescribed dynamics
was made by first finding suitable regenerative events. Lindvall’s technique in
[13] was based on Harris recurrence theory, whereas the technique of [4] was
based on imbedding (see, however, [16], pages 12–16, where [4] was revisited,
for a shorter proof relying on a Doeblin-like minoration). A simple corollary
of the main result of [13], or of [4], which contains Theorem 3 is given in [2]
(Example 4.2.3, Chapter 2). Note that an unbounded support for the function
h makes the memory always infinite, and regenerative arguments do not come
up naturally, although they may exist.

Theorem 4 ensures the existence of stationary distributions for N with
dynamics (1) without requiring finite memory or Lipschitz assumptions on φ.
Instead, some form of monotonicity is required from the dynamics (see [13] for
a discussion on the corresponding monotonic property of stochastic intensity
kernels).

Theorem 4 (Increasing kernel). Let φ be a nonnegative, nondecreasing
and left-continuous function, satisfying

φ�x� ≤ λ+ αx; x ∈ R;(8)

for some λ > 0 and some α ≥ 0. Let h: R+→ R+ be such that

α
∫
R+
h�t�dt < 1:(9)

Then there exists a stationary p.p. N with dynamics (1).
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If α = 0, the result of the theorem holds even for nonintegrable h.
The proofs of Theorems 1–4 will be given in Section 4, after we give some

basic results concerning imbedding.

3. Poisson imbedding. We need to introduce some notation. Let N =
�Tn�n∈Z be a simple, nonexplosive point process, and let �Zn�n∈Z be a sequence
of E-valued variables, where �E;E � is an arbitrary measurable space. The
double sequence ��Tn;Zn��n∈Z is denoted NZ and called a marked, simple,
nonexplosive point process with marks in E. For any function H: R×E→ R+,
one denotes ∫

R×E
H�t; z�NZ�dt× dz� =

∑
n∈Z

H�Tn;Zn�(10)

and, for C ⊂ R×E,

NZ�C� =
∑
n∈Z

1C�Tn;Zn�:(11)

For t ∈ R, denote by F
NZ
t the σ-field generated by the random variables

NZ�C�, C ∈ B��−∞; t�� ⊗ E . The next two results are well known and were
used by Kerstan [10] in a similar context as ours, and by Lewis and Shedler
[12] and Ogata [18] in a simulation context (see the discussion in Daley and
Vere-Jones [5]; see also Last [11]).

Lemma 2. Let N̄ = ��Tn;Un��n∈Z be a marked point process for which
�Tn�n∈Z is a Poisson process with intensity 3, �Un�n∈Z is an i.i.d. sequence
of �0;1�-uniform random variables, independent of �Tn�n∈Z. Let �Ft�t∈R be a
history of N̄ such that Fs and StN̄

+ are independent for all s ≤ t. Let �λ�t��t∈R
be a nonnegative Ft-predictable process bounded uniformly in �t;ω� by 3. The
point process N defined by

N�C� =
∑
n∈Z

1C�Tn�1�0; λ�Tn�/3��Un� =
∫
C
N̄

(
dt×

[
0;
λ�t�
3

])
(12)

for all C ∈ B�R� admits �λ�t��t∈R as an F N̄
t -intensity.

A possible candidate for Ft is F N̄
t ∨ F Z

t , where the processZ is independent
of N̄. For any simple point process N̄ on R2 and any t ∈ R, denote by F N̄

t the
σ-field generated by the random variables N̄�C�, C ∈ B��−∞; t� × R�. The
next lemma is a variant of Lemma 2.

Lemma 3. Let N̄ be a Poisson process of intensity 1 on R2. Let Ft be a
history of N̄ (i.e., F N̄

t ⊂ Ft, t ∈ R) such that Fs and StN̄
+ are independent for

all s < t. Let �λ�t��t∈R be a nonnegative F N̄
t -predictable process and define the

point process N by

N�C� =
∫
C×R

1�0; λ�t���z�N̄�dt× dz�(13)

for all C ∈ B�R�. Then N admits the F N̄
t -intensity �λ�t��t∈R.
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Example 4. Let N′ be some F N̄
t -adapted p.p. Let φ be a nonnegative func-

tion on R, and let h be a function on R+. If the process

λ�t� = φ
[∫
�−∞; t�

h�t− s�N′�ds�
]
; t ∈ R;

is a.s. locally integrable, then the p.p. N defined by (13) is F N̄
t -adapted, and

admits �λ�t�� as an F N̄
t -intensity. Indeed, this follows from Lemma 3 if �λ�t��

is F N̄
t -predictable, which can be shown by means of [3], Theorem 24, Ap-

pendix A2, page 304 [the fact that the integral defining λ�t� is taken on �−∞; t�
rather than on �−∞; t� is crucial to ensure predictability].

The result to follow is a kind of converse of Lemma 3, and is a special case
of the results of Jacod [9], Chapter 14, pages 469–478.

Lemma 4 (Poisson inversion). Let N = �Tn�n∈Z be a simple, nonexplosive
point process on R with Ft-intensity �λ�t��t∈R, and assume that this intensity is
Ft-predictable. Let �Un�n∈Z be a sequence of i.i.d. random variables, uniformly

distributed on �0;1� and independent of F∞. Let N̂ be a homogeneous Poisson
process on R2 with intensity 1, independent of F∞∨F U

∞ . Define a point process
N̄ on R2 by

N̄��a; b� ×L� =
∑
n∈Z

1�a; b��Tn�1L�λ�Tn�Un� +
∫
�a; b�

∫
L−�0; λ�t��

N̂�dt× dz�:

Then N̄ is a homogeneous Poisson process on R2 with intensity 1 and such that

StN̄
+ is independent of Fs ∨F N̄

s for all s < t; that is, it is an Ft ∨F N̄
t -Poisson

process.

The physical meaning of Lemma 4 is the following: it shows that any point
process with a stochastic intensity can be constructed as in Lemma 3. The
corresponding bivariate homogeneous Poisson process N̄ is any such process
outside the strip ��t; z�: t ∈ R; 0 < z ≤ λ�t�� (a “random” strip), and in-
side this strip N̄ is obtained by marking the events Tn of N by the marks
Zn = λ�Tn�Un or, equivalently, by placing a point at random in the segment
��Tn;0�; �Tn; λ�Tn���.

4. Proofs. Let us start with the proof of Theorem 3, which is simpler than
the other proofs, since the construction of the stationary solution is done in
only one step, whereas in the proofs of Theorems 1, 2 and 4 the stationary
solution is identified as the limit of an iterative construction scheme.

Proof of Theorem 3. Let ��;F � be the canonical space of marked point
processes on R, with �0;1�-valued marks. Endow it with the probability P
under which ω = �Tn;Un� is distributed as the marked point process N̄ of
Lemma 2; that is, �Tn� is Poisson with intensity 3 = supm∈Mψ�m� [which is
finite according to (7)] and independent of the marks �Un� which are i.i.d. and
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uniform on �0;1�. Note N̄�ω� = ω for convenience. Let �θt� denote the usual
shift operator on ��;F � (although the shift �θt� is of the same nature as the
shift �St� previously defined, we use a different notation because of the special
role played by the point process ω, as the stochastic basis of the following
construction). As is well known, ��;F ;P� is ergodic (and even mixing; see
[5]) for the shift �θt�. Assume that one can construct a p.p. N that is θt-
compatible [i.e., for all t ∈ R, ω ∈ �, StN�ω� = N�θtω�: a translation of the
basis ω upon which N is constructed yields a translation of the same length
for the resulting N] and such that

N�C� =
∫
C
N̄

(
dt×

[
0;
ψ�StN�
3

])
; C ∈ B�R�:

If N is F N̄
t -adapted, then, by the causality of ψ, λ�t� = ψ�StN� is F N̄

t -
predictable (see Example 4), and according to Lemma 2, it is an F N̄

t -intensity
of N. Since it is also F N

t -adapted, it is an F N
t -intensity of N as well. The

θt-compatibility of N then ensures that it is a stationary (and even mixing)
p.p. with the expected dynamics. Indeed, the stationarity of N means that, for
every bounded, measurable functional f, one has

E�f�N�ω��� = E�f�StN�ω���:

By θt-compatibility, the right-hand side of the above equation equals
E�f�N�θtω���, which equals E�f�N�ω��� because P is θt-invariant, and
thus the above equality holds; that is, N is stationary. Using θt-compatibility,
one shows in a similar fashion that N inherits properties such as ergodicity,
weak mixing and mixing if they are true for the underlying probability space
��;F ;P� endowed with the shift �θt�.

The announced construction is feasible indeed: let �Rk� be the point process
counting those points Tn of N̄ such that Tn −Tn−1 > A. The p.p. �Rk� is, by
definition, θt-compatible, and has finite, nonnull (average) intensity 3e−3A.
Since ψ�m� depends on the p.p. m ∈M through its behavior on �−A;0� only,
the p.p. N may be constructed as announced on �Rk;+∞� without knowledge
of N on �−∞;Rk� for all k ∈ Z. Since Rk tends to −∞ with k, N can thus be
constructed on R, and it is θt-compatible since N̄ and �Rk� are so. Also, it is
F N̄
t -adapted, since, for all s < t,N�s; t� can be constructed from the restriction

of N̄ to �R−�s�; t�, where R−�s� = sup�Rk � Rk ≤ s� is clearly F N̄
t -measurable.

LetN′ be some p.p. admitting the F N′
t -intensity λ′�t� = ψ�StN′� on R+. Use

Lemma 4 to define (on the probability space where N′ lives, possibly enlarged)
a marked p.p. N̄ distributed as above and such that

N′�C� =
∫
C
N̄

(
dt×

[
0;
λ′�t�
3

])

for all C ⊂ R+. Construct the stationary p.p. N from N̄ as above, and define

T = 1�T1≤A�

[
T1 +

∑
n≥2

�Tn −Tn−1�
n∏
k=2

1�Tk−Tk−1≤A�

]
:
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That is,T = 0 ifT1 > A; otherwise it is the first pointTk such thatTk+1−Tk >
A. Clearly, T is a coupling time for N and N′, so that the variation distance
between the distributions of StN+ and StN′

+ is less than P�T > t�, which,
by Chebyshev’s inequality, is less than �EeαT�e−αt for all α > 0 (see Lindvall
[14]). Writing

eαT = 1�T1>A� + 1�T1≤A�e
αT1

∑
n≥2

1�Tn−Tn−1>A�
n−1∏
k=2

eα�Tk−Tk−1�1�Tk−Tk−1≤A�;

one sees that the expectation E�eαT� is finite iff

3

α− 3 �e
�α−3�A − 1�

is strictly less than 1, which holds for α small enough; this ensures that the
convergence in variation of the law of StN′

+ as t → ∞ takes place at an
exponential speed. 2

One could have taken R1, which is the first point Tn > 0 such that Tn −
Tn−1 > A, instead of T as a coupling time for N and N′. However, the bounds
thus obtained are not as sharp as those obtained with T: indeed, since T ≤ R1
a.s., if eαR1 has finite expectation, then so has eαT. Also, because R1 ≥ T1,
which is exponential with parameter 3, in order to have EeαR1 < ∞, it is
necessary that α < 3, whereas

3

α− 3 �e
�α−3�A − 1�

can be less than 1 with α > 3 (for fixed α and 3, when A decreases to 0 this
quantity is equivalent to 3A, which eventually becomes less than 1 no matter
how large α is).

Proof of Theorem 4. Let ��;F � be the canonical space of a p.p. on R2,
which we endow with the probability P under which N̄�ω� = ω is Poisson
with intensity 1 (and is therefore distributed as in Lemma 3). The shift �θt�
corresponds to translations along the x-axis. Let λ0�t� = 0, t ∈ R, and let N0

be the p.p. counting the points of N̄ below the curve t→ λ0�t� (i.e., N0 = \).
Construct recursively the processes �λn�t�� and Nn, n ≥ 0, as follows:

λn+1�t� = φ
[∫
�−∞; t�

h�t− s�Nn�ds�
]
; t ∈ R;

Nn+1�C� =
∫
C
N̄�dt× �0; λn+1�t���; C ∈ B�R�:

(14)

These processes are θt-compatible; also, it is easily seen by induction on n,
using Lemma 3 and Example 4, that each Nn is F N̄

t -adapted, each �λn�t��
is F N̄

t -predictable and is an F N̄
t -intensity of Nn. Moreover, h ≥ 0 and φ

nondecreasing imply that λn�t� and Nn�C� increase with n for all ω ∈ �,
t ∈ R, C ∈ B�R�, so that the limiting processes �λ�t�� and N (which are
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θt-compatible by construction) are defined for all ω ∈ �. Stationarity of the
processes �λn�t�� implies, together with assumption (8),

E λn+1�0� ≤ λ+ �E λn�0�� α
∫
R+
h�s�ds; n ≥ 0;

so that, recalling (9), Eλ�0� ≤ λ�1 − α
∫
h�s�ds�−1 < ∞. Here �λ�t�� is F N̄

t -
predictable as a limit of such processes; the p.p. N, which counts the points
of N̄ below the curve t → λ�t�, therefore admits (by Lemma 3) �λ�t�� as an
F N̄
t -intensity. The proof will be complete if

λ�t� = φ
[∫
�−∞; t�

h�t− s�N�ds�
]
; t ∈ R:(15)

The monotonicity properties of Nn and �λn�t�� ensure that, for all n ≥ 0,
t ∈ R,

λn�t� ≤ φ
[∫
�−∞; t�

h�t− s�N�ds�
]

and

λ�t� ≥ φ
[∫
�−∞; t�

h�t− s�Nn�ds�
]
:

Letting n go to ∞ in both inequalities (this is valid in the second one because
φ is left-continuous) then yields (15). 2

Remark 7. Under the hypotheses of Theorem 4, it is not clear whether the
stationary law for N is unique (nothing is known, a fortiori, on the asymptotic
stationarity of transient processes with such dynamics). Still, one can note that
the process N constructed in the proof is the smallest stationary solution, in
the sense that, given another stationary solution Ñ, one can construct (using
Lemma 4) a version of N on the space where Ñ lives, so that N�C� ≤ Ñ�C�
for all C ∈ B�R�. If φ is also right-continuous (and therefore continuous),
one can construct a largest stationary solution (among those with finite mean
intensity) to the problem: initiate the recursive construction procedure in the
proof by taking for N0 a stationary p.p. with stochastic intensity λ0�t� =
λ+

∫
�−∞; t� h�t− s�N0�ds�; (8) implies then that the scheme is decreasing and

that its limit is the largest solution to the problem considered.

Proof of Theorem 1. (a) Without loss of generality, assume that α = 1
[this amounts to replacing φ�·� by φ�α−1·� and h by αh]. Construct exactly
as in the proof of Theorem 4 the sequence of θt-compatible processes Nn and
�λn�t�� [see (14)]. The Lipschitz property of φ ensures that

E�λn+1�0� − λn�0�� ≤ E
∫
�−∞;0�

�h�−s�� �Nn −Nn−1��ds�; n ≥ 1;

where the p.p. �Nn − Nn−1� is defined by �Nn − Nn−1���t�� = �Nn��t�� −
Nn−1��t���, t ∈ R [it counts the points of N̄ that fall between the two curves
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t → λn�t� and t → λn−1�t�]. By an easy modification of Lemma 3, it admits
��λn�t� − λn−1�t��� as an F N̄

t -intensity, so that

E�λn+1�0� − λn�0�� ≤
[∫
R+
�h�s��ds

]
E�λn�0� − λn−1�0��:(16)

The sum
∑
n≥0 E�λn+1�0�−λn�0�� is therefore finite according to hypothesis (3),

so that λn�0� converges in L1 to a limit λ�0�. This convergence is a.s.: indeed,
it follows from Chebyshev’s inequality and (16) that

P
[
�λn+1�0� − λn�0�� ≥

(∫ ∞
0
�h�s��ds

)n/2]
≤ φ�0�

(∫ ∞
0
�h�s��ds

)n/2
;

the sum of which is finite, and a.s. convergence is then a consequence of Neveu
[17], Proposition 2.4.2, page 45. Also, the calculations

∑
n≥0

P
(∫

C
�Nn+1 −Nn��ds� 6= 0

)
≤
∑
n≥0

E
(∫

C
�Nn+1 −Nn��ds�

)

=
(∫

C
ds

) ∑
n≥0

E�λn+1�0� − λn�0��

< +∞;
where C is any bounded set in B�R�, imply, by the Borel–Cantelli lemma,
that the processes Nn remain eventually constant on any bounded set as
n increases; they therefore converge to a limiting, θt-compatible p.p. N as
n→+∞. This limiting process counts the points of N̄ below t→ λ�t�: indeed,
for all bounded C, by Fatou’s lemma,

E
∫
C
�N�ds� − N̄�ds× �0; λ�s����

≤ lim
n→∞

E
∫
C
�N̄�ds× �0; λn�s��� − N̄�ds× �0; λ�s����

=
(∫

C
ds

)
lim
n→∞

E�λn�0� − λ�0��

= 0:

Let us check that �λ�t�� is a modification of �φ�
∫
�−∞; t� h�t− s�N�ds���, which

will establish the existence part of Theorem 1. Use again the Lipschitz prop-
erty of φ to check that

E
∣∣∣∣λ�0� −φ

[∫
�−∞;0�

h�−s�N�ds�
]∣∣∣∣

≤ E�λ�0� − λn�0�� +E
∫
�−∞;0�

�h�−s�� �N−Nn−1��ds�

= E�λ�0� − λn�0�� +
[∫
R+
�h�s��ds

]
E�λ�0� − λn−1�0��;

and let n tend to +∞ in the above expression to conclude.



NONLINEAR HAWKES PROCESSES 1577

We shall show in (b) below that any transient Ñ with the expected dynamics
on R+ is such that StÑ converges in law to the stationary processN as t→∞,
provided Ñ satisfies any of the two initial conditions (i) or (ii). Uniqueness in
law of a stationary solution with finite mean intensity will therefore hold if
any such solution satisfies (ii). Let us show that this is indeed the case: for
stationary Ñ with finite mean intensity λ̃, the corresponding quantity εa�t� is
such that

E�εa�t�� = λ̃
∫ t
t−a

ds
∫
R−
�h�s− u��du

= λ̃
∫ t
t−a

ds
∫ +∞
s
�h�u��du

≤ λ̃a
∫ +∞
t−a
�h�u��du:

It follows from this bound that the mean E�εa�t�� is bounded in t [take
λ̃a
∫
R+ �h�u��du as the upper bound] and goes to 0 as t→∞, these two prop-

erties being true for all a > 0. That is to say, Ñ satisfies initial condition
(ii).

(b) Now let N′ be some transient p.p. with dynamics (1) on R+ and initial
condition (i). We will show later that the F N′

t -intensity λ′�t� of N′, which
equals φ�

∫
�−∞; t� h�t − s�N′�ds��, is such that t → E�λ′�t��F N′

0 � is a.s. locally
integrable. This ensures that N′ is nonexplosive. One can then use Lemma 4
to construct N̄ distributed as above and such that N′ counts the points of N̄
below t→ λ′�t� on R+; then construct the stationary p.p. N from the same N̄,
as above. Set

f�t� =
{

E��λ�t� − λ′�t�� � F N′
0 �; if t ≥ 0;

0; otherwise.
(17)

Since E�λ′�t��F N′
0 � is a.s. locally integrable, then so is f. Calling λ the (aver-

age) intensity of N, the Lipschitz property of φ ensures

f�t� ≤
∫
R−
�h�t− s��N′�ds� + λ

∫
R−
�h�t− s��ds

+
∫ t

0
�h�t− s��f�s�ds; t ≥ 0:

(18)

Fix a > 0, and set F�t� =
∫ t
t−a f�u�du, t ∈ R. Integrating (18) between t and

t+a, one gets after rearrangement (and further bounding for the second term
on the right-hand side)

F�t� ≤ εa�t� + λa
∫ +∞
t−a
�h�s��ds+

∫ t
0
F�t− s��h�s��ds:

Noting ε′a�t� the sum of the first two terms on the right-hand side of the above
inequality,

F�t� ≤ ε′a�t� +
∫ t

0
F�t− s��h�s��ds; t ∈ R:
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Iterating this inequality gives, for all n and t,

F�t� ≤
n−1∑
i=0

ε′a ∗ �h�∗i�t� +F ∗ �h�∗n�t�;(19)

where F is bounded on any finite interval since f is locally integrable; also,
the L1-norm of h is less than 1. Therefore, the last term on the right-hand
side of the above inequality vanishes as n→+∞, and

F�t� ≤
∫
R+
ε′a�t− s�H�s�ds;(20)

where H = ∑
n≥0 �h�∗n is the density of the defective renewal measure asso-

ciated with � h �, which is of finite total mass �1 −
∫
�h�s��ds�−1. Under (i),

ε′a�t� is bounded and tends to 0 as t→∞, so that, by dominated convergence,
limt→∞F�t� = 0. Observing that

F�t� = E
[∫
�t−a; t�

�N−N′��ds�
∣∣F N′

0

]
≥ 1−P�N′ ≡N on �t− a; t��F N′

0 �;

this implies that the finite-dimensional distributions of StN′ converge in vari-
ation, as t → ∞, to those of N, and therefore StN′ →D N as t → +∞ [see
Theorem 9.1.6, page 274 in [5]]. Under (ii), take expectations in (18) and apply
the same arguments to obtain the same results.

Uniqueness of the stationary law of a p.p. with such dynamics and finite
average intensity follows, since condition (ii) is verified for such a process.

(c) Now integrate (18) with respect to t between 0 and T > 0, to obtain

∫ T
0
f�t�dt ≤

[
1−

∫
R+
�h�t��dt

]−1 [∫
R+
�h�t��N′�−t;0�dt+ λ

∫
R+
t�h�t��dt

]
:

Under (4) and (i′), the right-hand side of the above inequality is a.s. finite and
independent of T, so that

∫ +∞
0 f�t�dt is a.s. finite. Since

∫ +∞
0 f�t�dt is, by the

definition of stochastic intensity, the mean number of points of �N−N′� on R+
conditionally on F N′

0 , there are a.s. finitely many points of �N −N′� on R+;
that is, N and N′ couple.

It remains to show that E�λ′�t��F N′
0 � is a.s. locally integrable. Set λ′0�t� =

φ�
∫
R− h�t − s�N′�ds��, and let N′0 be the point process that coincides with

N′ on R− and that counts the points of N̄ below λ′0�t� on R+. Similar to the
construction of N, construct recursively the processes λ′n�t� = φ�

∫
�−∞; t�h�t−

s�N′n−1�ds�� and N′n to be the p.p. that coincides with N′ on R− and that
counts the points of N̄ below λ′n�t� on R+. Fix T > 0; using the Lipschitz
property of φ, one easily derives the inequality

∫ T
0

E��λ′n+1�t� − λ′n�t�� �F N′
0 �dt

≤
[∫
R+
�h�t��dt

] ∫ T
0

E��λ′n�t� − λ′n−1�t�� �F N′
0 �dt:
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It also ensures that λ′0�t� is less than φ�0�+
∫
R− �h�t−s��N′�ds�; since N′ has

initial condition �i�, it follows that λ′0�t� is a.s. locally integrable. The above
inequality then implies that every λ′n�t�, n > 0, is a.s. locally integrable. Re-
calling (3), it also ensures the existence of limiting processes λ′∞�t�;N′∞ such
that N′∞ coincides with N′ on R− and counts the points of N̄ below λ′∞�t�
on R+, and λ′∞�t� equals φ�

∫
�−∞; t� h�t − s�N′

∞�ds�� (the detailed arguments
are the same as for the existence of N). This also implies that the integral∫ T

0 E�λ′∞�t��F N′
0 �dt is a.s. finite, so that E�λ′∞�t��F N′

0 � is a.s. locally inte-
grable. Let us finally check that N′∞; λ′∞ coincide with N′, λ′. This will follow
if the point process N′′ = �N′∞ −N′� is such that N′′��0;+∞�� = 0 a.s. Its
stochastic intensity λ′′�t� equals �λ′∞�t�−λ′�t��, and satisfies (by the Lipschitz
property of φ and since N′∞ coincides with N′ on R−)

λ′′�t� ≤
∫
�0; t�
�h�t− s��N′′�ds�:

This inequality and Lemma 1 then ensure that N′′��0;+∞�� = 0 a.s. 2

Proof of Theorem 2. We first establish the existence of a stationary so-
lution. The proof is then concluded by using Lemma 5 below.

Let ��;F ;P� and θt be as in the proof of Theorem 3. Construct recursively
the F N̄

t -predictable processes �λn�t�� and the p.p. Nn according to

Nn�C� =
∫
C
N̄

(
ds×

[
0;
λn�t�
3

])
; C ∈ B�R�;(21)

λn+1�t� = φ
[∫
�−∞; t�

h�t− s�Nn�ds�
]
; t ∈ R;(22)

the procedure being initialized by λ0�t� ≡ 0.
Suppose (as will be proved later) that, for all bounded C ⊂ R+, with prob-

ability 1 the processes Nn remain eventually constant on C as n increases,
and let N denote the limiting process. This process, which is θt-compatible,
is therefore stationary (and mixing), and will have the expected dynamics if
it counts the points of N̄ below the curve t → λ�t�, where λ�t� is given by
(1). Let C be some bounded set in R. By Fatou’s lemma and an extension of
Lemma 3,

E
∫
C

∣∣∣∣N�ds� − N̄
(
ds×

[
0;
λ�s�
3

])∣∣∣∣

≤ lim
n→∞

E
∫
C

∣∣∣∣N
n�ds� − N̄

(
ds×

[
0;
λ�s�
3

])∣∣∣∣

=
(∫

C
ds

)
lim
n→∞

E�λn�0� − λ�0��:

(23)
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The Lipschitz property of φ ensures

�λn�0� − λ�0�� ≤ α
∫
R−
�h�−s�� �Nn −N��ds�:

The right-hand side of the above inequality tends to 0 as n → ∞; there-
fore, by Lebesgue’s dominated convergence [the dominating variable is∫
R− �h�−s��N̄�ds × �0;1��], the first term in (23) is null, so that N has its

intensity given by (1). Convergence of the p.p. Nn will hold if the p.p. Ñ
defined by

Ñ��t�� = lim sup
n→∞

Nn��t�� − lim inf
n→∞

Nn��t��; t ∈ R;

is a.s. equal to the null measure \. Note that an F N̄
t -intensity of Ñ is

λ̃�t� = lim sup
n→∞

λn�t� − lim inf
n→∞

λn�t�; t ∈ R:

Indeed, Ñ counts exactly the points of N̄ between the two predictable curves
�lim supn→∞ λ

n�t�� and �lim infn→∞ λn�t��. Writing λ̃�t� as

lim
n→∞

sup
i; j≥n
�λi�t� − λj�t��;

it follows from the Lipschitz property of φ that

λ̃�t� ≤ α lim
n→∞

[
sup
i≥n

∫
�−∞; t�

�h�t− s��Ni�ds� − inf
j≥n

∫
�−∞; t�

�h�t− s��Nj�ds�
]

= αA+ αB;
where

A = lim
n→∞

[
sup
i≥n

∫
�−∞; t−a�

�h�t− s��Ni�ds� − inf
j≥n

∫
�−∞; t−a�

�h�t− s��Nj�ds�
]

and B is the similar quantity with the interval �t−a; t� instead of �−∞; t−a�
and where a > 0 is arbitrary. Since there are only a finite number of points of
N̄ involved in B, we have

B ≤
∫
�t−a; t�

�h�t− s��Ñ�ds�;

whereas for A we have the immediate bound

A ≤
∫
�−∞; t−a�

�h�t− s��N̄�ds× �0;1��:

Therefore, for arbitrary a > 0,

λ̃�t� ≤ α
[∫
�−∞; t−a�

�h�t− s��N̄�ds× �0;1�� +
∫
�t−a; t�

�h�t− s��Ñ�ds�
]
:

Letting a tend to +∞, we obtain the majoration

λ̃�t� ≤ α
∫
�−∞; t�

�h�t− s��Ñ�ds�:(24)
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The process Ñ will be a.s. equal to the null measure if P�Ñ�0;+∞� = 0� =
1. Since �Ñ�t;+∞� = 0� ⊂ �Ñ�0;+∞� = 0�, by the ergodicity of P, this
will hold if P�Ñ�0;+∞� = 0� > 0, which will hold in turn if, with positive
probability, P�Ñ��0;+∞��F Ñ

0 � = 0� > 0. The F Ñ
t -intensity of Ñ, which is of

the form v�t; Ñ�, equals E�λ̃�t��F Ñ
t � and therefore satisfies majoration (24); it

follows that v�t; Ñ−� is less than
∫
R− �h�t−s��N̄�ds×�0;1��, so that, according

to Lemma 1,

P�Ñ��0;+∞��F Ñ
0 � = 0� ≥ exp−

[∫ +∞
0

dt
∫
R−
�h�t− s��N̄�ds× �0;1��

]
:

The argument of the exponential in the above expression is a.s. finite in view
of (4), so that P�Ñ�0;+∞� = 0�F Ñ

0 � > 0 a.s., which concludes the first part of
the proof (existence of the stationary solution).

Let N′ be a p.p. with initial condition (5). Use Lemma 4 (this is valid since
N′, having bounded intensity, is nonexplosive on R+) to construct a homoge-
neous Poisson process N̄ such that N′ counts, on R+, the points of N̄ below

t→ λ′�t� = φ
[∫
�−∞; t�

h�t− s�N′�ds�
]
:

Construct the stationary p.p. N from N̄ as in the first part of the proof. Let
Ft = F N′

t ∨F N̄
t , t ∈ R. Here �Ft� is a history of both processes N and N′. For

all s; t > 0, note fs�t� = P��N−N′��s; s+t� = 0�Fs�. Note that the p.p. �N−N′�
admits ��λ�t� − λ′�t��� as an Ft-intensity on R+. The Lipschitz property of φ
can be used to derive the majoration

�λ�t� − λ′�t�� ≤ α
{∫
R−
�h�t− s��N′�ds� +

∫
R−
�h�t− s��N̄�ds�

+
∫
�0; t�
�h�t− s�� �N−N′��ds�

}
:

Then, arguing exactly as in the proof of Lemma 1, one can get the minoration

fs�+∞� ≥ exp−
[∫ +∞
s

gs�u�du
]
;

where

gs�u� = α
{∫
�−∞; s�

�h�u− v��N̄�dv� +
∫
R−
�h�u− v��N′�dv�

}
:

Setting

Z�s� = exp−α
∫ +∞
s

du
∫
�−∞; s�

�h�u− v��N̄�dv�;

ε�s� = Z�s� − exp−
[∫ +∞
s

gs�u�du
]
;
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the last inequality can be written as

P�N ≡N′ on �s;+∞��Fs� ≥ Z�s� − ε�s�:

Clearly, Z is ergodic since N̄ is so; also, it satisfies (26) below because the
argument of the exponential defining Z�s� is a.s. finite when (4) is in force.
According to (5), it holds that

∫ +∞
s du

∫
R− �h�u − v��N′�dv� tends to 0 a.s. as

s → ∞, so that ε�s� tends to 0 a.s. as s → +∞. Coupling of N and N′ then
follows from Lemma 5 below. 2

Lemma 5 (Coupling). Let ��;F ;P� be some probability space endowed
with a filtration �Ft�t∈R, and let X;Y be two Ft-adapted processes. Assume
that, for all s ≥ 0,

P�X ≡ Y on �s;+∞��Fs� ≥ Z�s� − ε�s�(25)

for some real-valued process ε, such that ε�s� tends to 0 a.s. as s → ∞, and
some real-valued, ergodic process Z, satisfying

P�Z�s� > 0� > 0:(26)

Then the processes X and Y couple in a.s. finite time.

Proof. According to (26), there exists β > 0 such that P�Z�s� ≥ β� ≥ β.
The event As = �X ≡ Y on �s;+∞�� increases as s → +∞ to the event
A∞ = �X and Y couple�, which is F∞-measurable since both processes X and
Y are Ft-adapted. Equation (25) therefore implies

P�A∞ � Fs� ≥
β

2
1�β;+∞��Z�s��1�−∞; β/2��ε�s��:

Integrating the above between s and s+ t, one obtains

1
t

∫ s+t
s

P�A∞ � Fu�du ≥
β

2
1�−∞; β/2�

(
sup
u≥s

ε�u�
) 1
t

∫ s+t
s

1�β;+∞��Z�u��du:(27)

Since P�A∞�Fs� is a uniformly integrable martingale, it converges almost
surely to 1A∞ as s → ∞ (see, for instance, [17], Proposition 4.5.6, page 134),
and therefore the left-hand side of (27) also converges a.s. to 1A∞ ; by the er-
godicity of Z, the Cesaro mean on the right-hand side of (27) converges a.s. to
P�Z�s� ≥ β�, which is greater than β; we therefore obtain

1A∞ ≥
β2

2
1�−∞; β/2�

(
sup
u≥s

ε�u�
)
:

As s → ∞ the indicator on the right-hand side of the above equation tends
to 1 a.s. so that the indicator of the event A∞ is a.s. strictly positive, and is
therefore a.s. equal to 1; that is, the processes X and Y couple. 2
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Remark 8. It follows from the proof of Theorem 1 that we have solved a
stochastic integral system, namely,

Xt =
∫
�−∞; t�

h�t− s�N�ds�;

Nt =
∫
�−∞; t�

∫
R+

1�0; φ�Xs���y�N̄�ds× dy�:

This system is “driven” by the Poisson process N̄.

5. Neuron networks (mutually exciting nonlinear Hawkes pro-
cesses). The results of Section 2 shall now be generalized to a network
consisting of K neurons, K ≥ 1. The activity of the network is summarized
by K p.p. N1; : : : ;NK without common points and with Ft-intensity (2),
where Ft = ∨F

Ni

t . For given mappings φi; hji, i; j ∈ �1; : : : ;K�, this fully
characterizes the distribution of �N1; : : : ;NK� (see [8]).

A multidimensional version of Theorem 3 is straightforward.

Theorem 5. Let ψ1; : : : ; ψK be K mappings from �MK;MK� into
�R+;B�R+��, which are bounded from above by 3 > 0 and which depend
on their arguments through their behavior on �−A;0� only, for some A > 0.
Then there exists a unique stationary law for the process N = �N1; : : : ;NK�,
where Ni admits λi�t� = ψi�StN1; : : : ; StNK� as an Ft-intensity and the Ni

do not share common points. Moreover, under these assumptions, the dynamics
are stable in variation, irrespective of the initial condition, and convergence in
variation is exponentially fast.

The proof is a straightforward adaptation of that of Theorem 3. The exten-
sion of Theorem 4 is more delicate. Here is a partial result concerning two
neurons.

Theorem 6. Let φ1; φ2 be two nonnegative, nondecreasing functions on R,
bounded from above by 3 > 0. Let h11; h22 be two nonnegative integrable func-
tions on R+, and let h12; h21 be two integrable functions on R+ that are either
both nonnegative or both nonpositive. Assume that φ1 is left-continuous. As-
sume also that φ2 is left-continuous if h12; h21 are greater than or equal to 0,
and right-continuous if h12; h21 are less than or equal to 0. Then there exists a
stationary law for the process N = �N1;N2� with dynamics (2).

Proof. Let N̄1; N̄2 be mutually independent marked point processes dis-
tributed as N̄ of Lemma 2. For i = 1;2, construct recursively the processes
�λni �, Nn

i by letting, for all measurable C ⊂ R and all t ∈ R,

Nn
i �C� =

∫
C
N̄i

(
dt×

[
0;
λni �t�
3

])
;(28)

λn+1
i �t� = φi

[ 2∑
j=1

∫
�−∞; t�

hji�t− s�Nn
j�ds�

]
;(29)
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the procedure being initialized by λ0
1�t� ≡ λ0

2�t� ≡ 0 if h12 and h21 are greater
than or equal to 0, and by λ0

1�t� ≡ 0, λ0
2�t� ≡ 3 otherwise. These processes

are stationary and mixing. Also, by Lemma 2 and Example 4, it is easily seen
by induction on n that each Nn

i is F N̄
t -adapted and admits �λni � as an F N̄

t -
intensity. In the case where h12 and h21 are greater than or equal to 0, the
nondecreasingness of the φi ensures that λni �t� and Nn

i �C� increase with n for
all t, C and i. There exist therefore limiting processes Ni and �λi�, the Ni

counting the points of N̄i below the curve t→ λi�t�/3. According to Lemma 2,
the stationary, mixing process N = �N1;N2� will have the expected dynamics
if (2) holds. However, the monotonicity properties of Nn

i and �λni � ensure that

λni �t� ≤ φi
[ 2∑
j=1

∫
�−∞; t�

hji�t− s�Nj�ds�
]
;(30)

λi�t� ≥ φi
[ 2∑
j=1

∫
�−∞; t�

hji�t− s�Nn
j�ds�

]
:(31)

Letting n go to∞ in these inequalities (which is feasible by the left continuity
of φi) yields the result. If h21 and h21 are less than or equal to 0, the nonde-
creasingness of the φi implies this time that λn1�t� and Nn

1 �C� increase with n
while λn2�t� and Nn

2 �C� decrease with n, for all t and C. The limiting processes
Ni and �λi� are still well defined, and the stationary, mixing process N will
have the expected dynamics if (2) holds. The monotonicity properties of Nn

i ,
�λni � ensure that (30) and (31) hold for i = 1, and (30) and (31) hold with the
sign of the inequalities reversed for i = 2. The left continuity of φ1 and the
right continuity of φ2 ensure that one can let go n to ∞ in these inequalities,
which yields the result. 2

Remark 9. There are straightforward extensions of Theorem 6 to arbi-
trary K. First, if each φi is bounded, left-continuous and nondecreasing and
if each hji is nonnegative, the increasing construction can be done without
modification (this corresponds to a network where each synaptic connection is
excitatory). Second, if each φi is nondecreasing and bounded, left-continuous
for i ≤ k and right-continuous for i > k, if each hji is greater than or equal to
0 for i; j ≤ k or i; j > k, and less than or equal to 0 for i ≤ k, j > k or i > k,
j ≤ k, then a monotonic construction (corresponding to the case h12; h21 ≤ 0
in the proof) is available with Nn

i ; �λni � increasing for i ≤ k and decreasing
for i > k. This corresponds to a network partitioned into two subsets (neurons
1–k and neurons k + 1–K) such that each synaptic connection between two
neurons of the same subset is excitatory, and each connection between two
neurons from different subsets is inhibitory.

The extension of Theorem 1 to the multivariate case is a strict extension of
Hawkes and Oakes [7] results on linear mutually exciting point processes.
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Theorem 7. Assume that the function φi: R → R+ is αi-Lipschitz, i =
1; : : : ;K, and that the functions hji: R+→ R are such that the K×K matrix
A with entries aij = αi

∫ +∞
0 �hji�t��dt has a spectral radius strictly less than 1.

Then there exists a unique stationary law for a process N with such dynamics
and finite average intensity.

Moreover, the dynamics are stable in distribution with respect to either ini-
tial condition (i′) or (ii′) below:

(i′) supt≥0 εa�t� < +∞ a.s. and limt→+∞ εa�t� = 0 a.s. for all a > 0,
(ii′) supt≥0 E�εa�t�� < +∞ and limt→+∞E�εa�t�� = 0 for all a > 0,

where

εa�t� =
∑
i; j

∫ t
t−a

ds
∫
R−
�hji�s− u��Nj�ds�:

Assume further that, for all i; j ∈ �1; : : : ;K�,
∫ +∞

0
t�hji�t��dt < +∞:(32)

Then the dynamics (2) are stable in variation with respect to the initial condi-
tion:

�iii′�
∑
i; j

∫ +∞
0

dt
∫
R−
�hji�t− s��N′j�ds� < +∞ a.s.

Proof. Let N̄1; : : : ; N̄K beK i.i.d. replicates of a bivariate Poisson process
on R2 with intensity 1. Construct recursively the processes �λni �t��;Nn

i , i =
1; : : : ;K, by letting

Nn
i �C� =

∫
C
N̄i�dt× �0; λni �t���; C ∈ B�R�;(33)

λn+1
i �t� = φi

[ K∑
j=1

∫
�−∞; t�

hji�t− s�Nn
j�ds�

]
; t ∈ R;(34)

the procedure being initialized by setting λ0
1 ≡ · · · ≡ λ0

K ≡ 0. For all i ∈
�1; : : : ;K�, the Lipschitz property of φi yields

E�λn+1
i �0� − λni �0�� ≤ αi

K∑
j=1

E�λnj�0� − λn−1
j �0��

∫ +∞
0
�hji�t��dt;

which we write in vector form as

E �λn+1�0� − λn�0�� ≤ AE�λn�0� − λn−1�0��:(35)

For some k ≥ 0, the norm of the matrix An is equivalent to nkρn, where ρ
is the spectral radius of A (see, e.g., Lemma 1.1, page 223, in [1]). Since, by
assumption, ρ < 1, (35) implies that λni �t� converges a.s. and in L1 to a limit
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λi�t�. The rest of the proof of the existence of a stationary solution for the
dynamics (2) is as in the univariate case.

To prove asymptotic stationarity (stability), let N′ be some transient pro-
cess with the expected dynamics on R+, and satisfying one of the initial condi-
tions (i′), (ii′) or (iii′). Enlarge the ambient probability space in order to define
N̄1; : : : ; N̄K distributed as above and such that each N′i counts the points of
N̄i below the curve t → λ′i�t� = φi�

∑
j

∫
�−∞; t� hji�t − s�N′j�ds�� [the tool for

this is Lemma 4; it can be used here since the point processes N′i are nonex-
plosive when any of the initial conditions (i′), (ii′) or (iii′) are in force: see the
proof of Theorem 1]. Let N denote the stationary solution constructed from
N̄ as above. For all i, define

fi�t� =
{

E�λi�t� − λ′i�t�� �F N′
0 �; if t ≥ 0;

0; otherwise:

Use the Lipschitz property of φi to check that

fi�t� ≤ αi
∑
j

∫
R−
�hji�t− s��N′j�ds�

+ λj
∫ +∞
t
�hji�s��ds+

∫ t
0
�hji�t− s��fj�s�ds;

(36)

where λj is the average intensity of Nj. Fix some a > 0. Define Fi�t� =∫ t
t−afi�s�ds. Integrating the above expression between t− a and t, one gets

Fi�t� ≤ εi�t� + αi
∑
j

∫ t
0
�hji�t− s��Fj�s�ds;

where

εi�t� = αi
∑
j

∫ t
t−a

du
∫
R−
�hji�u− s��N′j�ds� + λja

∫ +∞
t−a
�hji�s��ds:

When N′ satisfies initial condition (i′), εi�t� is a.s. bounded on R, and Fi�t� is
bounded on any finite interval (this follows since fi is a.s. locally integrable,
which is shown exactly as in the proof of Theorem 1). It follows then from the
last inequality that

Fi�t� ≤
∑
n≥0

∑
j

∫ t
0
εj�t− s�gnij�s�ds;(37)

where g0
ij�t� = 1�i=j�δ0�t� and gn+1

ij �t� =
∑
k αi

∫ t
0 �hki�t−s��gnkj�s�ds. Equation

(37) is the analog of (19), with a Markov renewal measure instead of a renewal
measure; see [1], Chapter 10. By the assumption on the spectral radius of A,
the right-hand side of (37) is finite; since εj�t� is bounded and tends to 0 a.s.
as t → +∞, it follows by dominated convergence that Fi�t� → 0 as t → ∞.
Convergence in distribution and uniqueness of the stationary distribution with
finite average intensities are then proven exactly as in Theorem 1.
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Assume now that (32) holds. Integrating (36) between 0 and T for some
fixed T > 0, one obtains the majoration

∫ T
0
fi�t�dt ≤ εi + αi

∑
j

∫ T
0
fj�t�dt

∫ +∞
0
�hji�t��dt;

where

εi = αi
∑
j

∫ +∞
0

dt
∫
R−
�hji�t− s��N′j�ds� + λj

∫ +∞
0

t�hji�t��dt:

Under (32) and (iii′),
∫ T

0 fi�t�dt and εi are finite for all T. Iterating the above
majoration yields (in vector form)

∫ T
0
f�t�dt ≤

∑
n≥0

Anε;

which implies, letting T go to ∞, that each
∫ +∞

0 fi�t�dt is finite. One can
then conclude as in the proof of Theorem 1 that N′ and N couple in a.s. finite
time. 2

Theorem 8. Assume that each function φi: R → R+ is αi-Lipschitz and
bounded by 3 > 0. Assume that each hij: R+→ R is integrable and such that

∫ +∞
0

t�hij�t��dt < +∞:(38)

Then there exists a unique stationary law for a process N = �N1; : : : ;NK�
with dynamics (2), and these dynamics are stable in variation with respect to
the initial condition

lim
s→+∞

∫ +∞
s

du
∫
R−
�hji�u− v��N′j�dv� = 0 a.s.; i; j ∈ �1; : : : ;K�:(39)

The proof is a straightforward adaptation of that of Theorem 2.

Example 5 (Example 3 continued). In Example 3, the φi, 1 ≤ i ≤ K, are
not Lipschitz; however, they can be replaced by any Lipschitz functions such
that φi�0� = λi and φi�x� = 0 for x ≥ 1 because the potentials Xi�t� take only
integer values. Thus Theorem 7 applies in this case, also.

6. Conclusion. We have studied from the point of view of stability a gen-
eral model of interacting point processes of the mutually exciting type. The
techniques of proof are quite general and may be applied to various extensions
of the model, for instance, neuron dynamics with potentials of the type

Xi�t� =
K∑
j=1

∑
n∈Z

1�−∞; t��T
�j�
n �hji�t−T

�j�
n ;Z

�j�
n �;
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where the �Z�i�n �n∈Z, 1 ≤ i ≤ K, are independent sequences of independent
marks. This extension is straightforward and extends the validity of the model
of Example 3 to inhibiting spikes θij which are random. The details can be
found in [16].

Other extensions concern the point process which is thinned, in the basic
model a Poisson process. Indeed, Theorems 2 and 4 are relative to thinning,
and their extension to non-Poisson processes is presently under investigation
by the authors. This extension would include in the model G/GI/K/0 queues,
for instance, as well as queues with vacations.
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