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For controlled Markov processes taking values in a Polish space, con-
trol problems with ergodic cost, infinite-horizon discounted cost and finite-
horizon cost are studied. Each is posed as a convex optimization problem
wherein one tries to minimize a linear functional on a closed convex set of
appropriately defined occupation measures for the problem. These are char-
acterized as solutions of a linear equation asssociated with the problem.
This characterization is used to establish the existence of optimal Markov
controls. The dual convex optimization problem is also studied.

1. Introduction.

1.1. An overview. For many classical stochastic optimal control problems,
an alternative to the more traditional dynamic approaches based on dynamic
programming, maximum principle and so on is provided by posing these prob-
lems as a static optimization problem on a set of associated occupation mea-
sures. Under mild conditions, the latter set turns out to be closed convex (often
compact) and the objective functional bounded linear. By investigating the ex-
treme points of this set, one can deduce the existence of optimal controls in
some desirable classes of controls. Further, one may dualize this convex pro-
gramming (in fact, an infinite-dimensional linear programming) problem to
exhibit the associated value function as the maximal subsolution of the asso-
ciated Hamilton–Jacobi–Bellman inequality.

This approach has its roots in the linear programming approach to Markov
decision theory. Developed originally in the finite setup by Manne (1960), it
has undergone many refinements and extensions, a recent example being the
work of Hernandez-Lerma, Hennet and Lasserre (1991). The idea was also
exploited in deterministic and stochastic optimal control, prime examples of
the two being the works of Vinter and Lewis (1978) and Fleming and Vermes
(1989), respectively. A more recent contribution in the latter domain is the
work on ergodic control problem by Stockbridge (1990a, 1990b) which serves as
the immediate inspiration for the present work. Our aim here is threefold: to
pose some classical stochastic control problems as optimization problems over
sets of suitably defined occupation measures which are then characterized as
being the solutions of certain equations, to establish the existence of optimal
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controls in suitable classes of controls using the foregoing and to study the
dual problems. A detailed outline follows. Recently the authors learned that
a program similar to the one above for characterizing occupation measures
when the state space is a locally compact separable metric space has been
carried out in Kurtz and Stockbridge (1994).

We shall consider three different cost structures: the ergodic or “long-run
average” cost, the infinite-horizon discounted cost and the finite-horizon cost.
We shall call these respectively the ergodic problem, the discounted problem
and the finite-horizon problem. Following some notational preliminaries in
Section 1.2, we describe these problems in Section 1.3. Our controlled process
will be specified as being a solution to the controlled martingale problem asso-
ciated with a candidate “controlled generator.” For each of the three problems
mentioned above, a separate occupation measure will be defined in terms of the
pair of state and control processes and the control problem recast as an opti-
mization problem over these measures. Section 1.4 gives examples of such con-
trolled processes—finite/infinite dimensional controlled diffusions, controlled
nonlinear filters, and so forth. In Section 2, the aforementioned occupation
measures are characterized as being solutions of certain linear equations. The
ergodic problem serves as a model here in the sense that the other problems
will be effectively reduced to this case. Our results on the ergodic problem ex-
tend those of Stockbridge (1990a) for the locally compact case, which in turn
extend to the controlled setup the work of Echeverria (1982) [or rather its
variant decribed in Chapter 4, Section 9, of Ethier and Kurtz (1986)] on sta-
tionary solutions to the (uncontrolled) martingale problems. The latter was
extended to Polish space–valued processes in Bhatt and Karandikar (1993a).
We combine the ideas of this work with those of Stockbridge to extend the
latter’s results to Polish space–valued processes.

Section 3 establishes the existence of optimal controls in certain desirable
classes of controls (to be precise, Markov or inhomogeneous Markov controls)
for each of these problems. We take specific instances of each from the “exam-
ples” described in Section 1.4. This is in order to facilitate ready reference to
some previous work for details, which considerably simplifies and shortens this
exposition. The possibility of extensions to other cases will be remarked upon.
Specifically, we consider controlled nonlinear filters for the ergodic and the
discounted problems and controlled, possibly degenerate, finite-dimensional
diffusions for the finite-horizon problem. Section 4 studies the dual problems
in the spirit of Fleming and Vermes (1989), again for these specific cases.
Section 5 concludes by highlighting certain open issues.

1.2. Notation. The state space of our controlled process will be a Polish
(i.e., separable and metrizable with a complete metric) space E. The control
space U will be a compact metric space. For any Polish space S, B�S� will
denote the space of bounded measurable functions from S to R, Cb�S� that of
bounded continuous functions from S to R, B�S� the Borel σ-field of S and
P �S� the Polish space of probability measures on �S;B�S�� with the topology
of weak convergence. Let M �S� denote the space of positive finite measures on
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�S;B�S�� with the topology of weak convergence. Let D��0;∞�; S� denote the
space of all r.c.l.l. functions (i.e., right-continuous functions having left limits)
from �0;∞� to S, equipped with the Skorokhod topology. Let IB denote the
indicator function of the set B, ω a typical point in the underlying probability
space and δx the Dirac measure at x. Here R�· · ·� will denote the “range of
operator · · ·” and L �· · ·� will denote “the law of · · ·.” A stochastic process ξ�·�
will be time-indexed as ξ�t� or ξt depending on convenience.

For fk; f in B�E�, we say that fk→bpf (where bp stands for boundedly and
pointwise) if �fk� ≤ M for all k, for some M > 0 and fk�x� → f�x� for all
x ∈ E. A set B is said to be bp-closed if fk ∈ B, fk→bpf implies f ∈ B. Define
bp-closure �B� to be the smallest bp-closed set that contains B.

For the control space U, CU will denote the space of measurable maps
�0;∞� → P �U� with the compact metrizable topology, described on page 318
of Borkar (1991), defined on it.

1.3. Problem framework. Let A be an operator with D �A� ⊂ Cb�E� and
R�A� ⊂ Cb�E×U�. Let ν ∈ P �E�.

Definition 1.1. An E × U-valued process �X�·�; u�·�� defined on a prob-
ability space ��;F ;P� is said to be a solution to the controlled martingale
problem for �A; ν� with respect to a filtration �Ft; t ≥ 0� if:

(i) �X�·�; u�·�� is �Ft�-progressive;
(ii) L �X�0�� = ν;

(iii) for f ∈ D �A�,

f�X�t�� −
∫ t

0
Af�X�s�; u�s��ds

is an �Ft�-martingale.

We shall generally work in the relaxed control framework which we describe
next. Let V = P �U� (also a compact metric space).

Definition 1.2. An E×V-valued process �X�·�; π�·�� defined on a proba-
bility space ��;F ;P� is said to be a solution to the relaxed controlled mar-
tingale problem for �A; ν� with respect to a filtration �Ft; t ≥ 0� if:

(i) �X�·�; π�·�� is �Ft�-progressive;
(ii) L �X�0�� = ν;

(iii) for f ∈ D �A�, for a.a. t ≥ 0,

f�X�t�� −
∫ t

0

∫
U
Af�X�s�; u�πs�du�ds(1.1)

is an �Ft�-martingale.
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In both cases, we may omit the mention of the filtration �Ft� or the initial
law ν when these are understood from the context. We may define A: D �A� →
Cb�E×V� by

Af�x;µ� =
∫
U
Af�x;u�µ�du�; f ∈ D �A�; x ∈ E; µ ∈ V;

and rewrite (1.1) as

f�X�t�� −
∫ t

0
Af�X�s�; π�s��ds; t ≥ 0:(1.2)

The operator A will be required to satisfy the following conditions:

Condition 1. There exists a countable subset �gk� ⊂ D �A� such that

bp-closure���gk;Agk�: k ≥ 1�� ⊃ ��g;Ag�: g ∈ D �A��:

Condition 2. D �A� is an algebra that separates points in E and contains
constant functions. Furthermore, A1 = 0, where 1 is the constant function
identically equal to 1.

Condition 3. For each u ∈ U, let Auf ≡ Af�·; u�. Then there exists an
r.c.l.l. solution to the martingale problem for �Au; δx� for all u ∈ U;x ∈ E.

The three control problems that we consider are associated with the follow-
ing costs:

lim sup
t→∞

1
t

∫ t
0
E�k�X�s�; u�s���ds (ergodic);(1.3)

E
[∫ ∞

0
e−αsk�X�s�; u�s��ds

]
; α > 0 (discounted)(1.4)

E
[∫ T

0
k�X�s�; u�s��ds

]
; T > 0 (finite horizon)(1.5)

where k: E × U → �0;∞� is a continuous running cost function. Of course,
we assume that these quantities are finite for some u�·�. It should be kept
in mind that in case of the relaxed controlled martingale problem, one has to
replace k�X�t�; u�t�� by

∫
U k�X�t�; ·�dπt in (1.3)–(1.5).

Note that if �X�·�; u�·�� is stationary with L �X�t�; u�t�� = µ for all t ≥ 0,
then the lim sup in (1.3) is a limit and equals

∫
kdµ. In this case, we call µ

the associated ergodic occupation measure. The ergodic occupation measure for
nonstationary �X�·�; u�·�� is left undefined. For the remaining problems, the
corresponding occupation measures (i.e., discounted and finite-time occupation
measures) are defined by

∫
fdµ = αE

[∫ ∞
0
e−αtf�X�t�; u�t��dt

]
;(1.6)

∫
fdµ = T−1E

[∫ T
0
f�X�t�; u�t��dt

]
;(1.7)
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respectively for f ∈ Cb�E ×U�. Thus the above control problems amount to
minimizing the functional µ ∈ P �E×U� →

∫
kdµ ∈ R+ on the respective sets

of occupation measures [with the proviso that, in the ergodic case, we consider
only the stationary �X�·�; u�·��; this will be justified later].

1.4. Examples. The following examples are seen to fit the above frame-
work.

Example 1. Consider the d-dimensional controlled diffusion processX�·� =
�X1�·�; : : : ;Xd�·��T described by

X�t� =X0 +
∫ t

0
m�X�s�; u�s��ds+

∫ t
0
σ�X�s��dW�s�; t ≥ 0:(1.8)

Here

(i) m�·; ·� = �m1�·; ·�; : : : ;md�·; ·��T: Rd ×U→ Rd is bounded continuous
and Lipschitz in its first argument uniformly with respect to the second (U
being a compact metric space);

(ii) σ�·� = ��σij�·���1≤i; j≤d: Rd→ Rd×d is bounded Lipschitz;
(iii) X0 has a prescribed law;
(iv) W�·� = �W1�·�; : : : ;Wd�·��T is a d-dimensional standard Wiener process

independent of X0;
(v) u�·� is a U-valued control process with measurable paths satisfying:

for t ≥ s, W�t� −W�s� is independent of �u�r�;W�r�: r ≤ s�.
It should be remarked that the above conditions on m;σ can be relaxed.

Let D �A� = C2
0�Rd�, the space of twice continuously differentiable functions

from Rd to R which vanish at ∞ along with its first- and second-order partial
derivatives. For f ∈ D �A�, let Af ∈ Cb�Rd ×U� be defined by

Af�x;u� =
d∑
i=1

mi�x;u�
∂f

∂xi
�x� + 1

2

d∑
i; j; k=1

σik�x�σjk�x�
∂2f

∂xi ∂xj
�x�(1.9)

for f ∈ D �A�, x = �x1; : : : ; xd�T ∈ Rd; u ∈ U.

Example 2. LetH be a real, separable Hilbert space andX�·� anH-valued
controlled diffusion described by

X�t� =X0 +
∫ t

0
m�X�s�; u�s��ds+

∫ t
0
σ�X�s��dW�s�; t ≥ 0;

where m: H×U→H is Lipschitz in its first argument uniformly with respect
to the second, σ : H → L2�H;H� is Lipschitz continuous and W�·� is an H-
valued cylindrical Wiener process independent of X0. Here L2�H;H� denotes
the space of Hilbert–Schmidt operators on H with the HS-norm � · �HS. Here
U;u�·� are as in the previous example. Fix a CONS �ei: i ≥ 1� in H and let
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Pn: H→ Rn be the map defined by Pn�x� = ��x; e1�; : : : ; �x; en��. Let D �A� =
�f ◦Pn: f ∈ C2

0�Rn�; n ≥ 1� ⊂ Cb�H� and define A: D �A� → Cb�H×U� by

�A�f ◦Pn���h;u� =
n∑
i=1

�m�h;u�; ei�
∂f

∂xi
◦Pn�h�

+ 1
2

n∑
i; j=1

�σ∗�h�ei; σ∗�h�ej�
∂2f

∂xi ∂xj
◦Pn�h�:

Example 3. Let H;H′ be real separable Hilbert spaces and let U be the
closed unit ball ofH′ with the weak topology. Consider theH-valued controlled
stochastic evolution equation (interpreted in the mild sense)

dX�t� = −LX�t�dt+ �F�X�t�� +Bu�t��dt+ dW�t�;
where −L is the infinitesimal generator of a differentiable semigroup of con-
tractions on H such that L−1 is a bounded self-adjoint operator with discrete
spectrum, F: H → H is bounded Lipschitz, B: H′ → H is bounded linear,
W�·� is an H-valued Wiener process independent of X�0� with incremental
covariance given by a trace class operator Q and u�·� is as before. Pick the
CONS �ei� of H to be the eigenfunctions of L−1 with �λ−1

i � being the corre-
sponding eigenvalues. Let D �A� be as in the preceding example and define
A: D �A� → Cb�H×U� by

�A�f ◦Pn���h;u� =
n∑
i=1

�ei; �F�h� +Bu− λih��
∂f

∂xi
◦Pn�h�

+ 1
2

n∑
i; j=1

�ei;Qej�
∂2f

∂xi ∂xj
◦Pn�h�:

Example 4. Consider X�·� as in (1.8) in conjunction with the m-
dimensional observation process Y�·� given by

Y�t� =
∫ t

0
h�X�s��ds+W′�t�;

where h: Rd → Rm is bounded, twice continuously differentiable with
bounded first and second partial derivatives and W′�·� is an m-dimensional
standard Wiener process independent of W�·� and X0. Assume that there
exists λ0 > 0 such that �σ∗�x�y�2 ≥ λ0�y�2 for all x;y ∈ Rd. Let ��;F ;P�
denote the underlying probability space and �Ft� the natural filtration of
�X�·�; u�·�;W�·�;W′�·��. Define a new probability measure P0 on ��;F � as
follows. If Pt;P0t denote the restrictions of P;P0 to ��;Ft� for t ≥ 0, then

dPt
dP0t

= exp
(∫ t

0
�h�X�s��; dY�s�� − 1

2

∫ t
0
�h�X�s���2 ds

)
:

We shall assume that u�·� satisfies the additional condition: under P0, for
each t ≥ 0, �u�s�;Y�s�: s ≤ t� are independent of �X0;W�·�;Y�t + ·� −



CONTROLLED MARKOV PROCESSES 1537

Y�t��. These are the so-called wide-sense admissible controls. Let �Gt� =
σ�Y�s�;

∫ b
a ur dr: 0 ≤ s ≤ t; 0 ≤ a ≤ b ≤ t� and let µt denote the regular con-

ditional law of X�t� given Gt for t ≥ 0. Then �µt� is a P �Rd�-valued process
whose evolution is given by

µt�f� = µ0�f� +
∫ t

0
µs�Lf�·; u�s���ds

+
∫ t

0
�µs�fh� − µs�f�µs�h�; dŶ�s��;

(1.10)

where f ∈ D �A�, L is the operator A of Example 1 above, µ�f� x=
∫
fdµ for

µ ∈ P �Rd�; f ∈ Cb�Rd� and Ŷ�t� = Y�t� −
∫ t

0 µs�h�ds; t ≥ 0, is the so-called
innovation process. The original control problem with one of the above costs
is equivalent to the separated control problem of controlling �µt� governed by
the nonlinear filter (1.10) with the corresponding cost functional obtained by
replacing k�X�t�; u�t�� in the original by µt�k�·; u�t���; t ≥ 0. [See Borkar
(1989), Chapter 5, for details.] Now let D �A� = �f ∈ Cb�P �Rd��: f�µ� =
g�
∫
f1 dµ; : : : ;

∫
fndµ�; µ ∈ P �Rd�; for some n ≥ 1; g ∈ C2

0�Rn�; f1; : : : ; fn ∈
D �L�� and define A: D �A� → Cb�P �Rd� ×U� by

Af�µ;u� =
n∑
i=1

∂g

∂xi

(∫
f1 dµ; : : : ;

∫
fn dµ

)
µ�Lfi�·; u��

+ 1
2

n∑
i; j=1

∂2g

∂xi∂xj

(∫
f1 dµ; : : : ;

∫
fn dµ

)

× �µ�fih� − µ�fi�µ�h�; µ�fjh� − µ�fj�µ�h��:
In each of the above cases, one easily verifies the hypotheses on A, the

existence of r.c.l.l. solutions for u�·� ≡ u ∈ U being guaranteed by known re-
sults on the uncontrolled versions of these processes. [See Stroock and Varad-
han (1979), Yor (1974), Borkar and Govindan (1994) and Chapter 5 of Borkar
(1989).]

2. Characterization of occupation measures.

2.1. The ergodic problem. Note that if �X�·�; u�·�� is a stationary solution
to the controlled martingale problem for A with L �X�t�; u�t�� = µ, then, for
all f ∈ D �A�, t > 0,

0 = E�f�X�t��� − E�f�X�0���

=
∫ t

0
E�Af�X�s�; u�s���ds

= t
∫
Afdµ;

implying
∫
Afdµ = 0 for all f ∈ D �A�:(2.1)
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We shall show that (2.1) characterizes all ergodic occupation measures (with
the qualification that we move over to the relaxed controlled martingale prob-
lem) in Theorem 2.1 below. We need the following preliminary lemma which is
a straightforward generalization of Lemma 4.9.16 of Ethier and Kurtz (1986)
to the controlled setup. The proof follows by applying this result to the operator
Au; u ∈ U.

Lemma 2.1. Let φ: G ⊂ Rm → R; m ≥ 1; be convex and contin-
uously differentiable and f1; : : : ; fm ∈ D �A� satisfy R��f1; : : : ; fm�� ⊂
G; φ�f1; : : : ; fm� ∈ D �A�. Then

Aφ�f1; : : : ; fm� ≥ ∇φ�f1; : : : ; fm� · �Af1; : : : ;Afm�:

Theorem 2.1. For each µ ∈ P �E ×U� satisfying (2.1), there exists a sta-
tionary solution �X�·�; π�·�� of the relaxed controlled martingale problem for
A such that

E
[
g�X�t��

∫
U
hdπ�t�

]
=
∫
E×U

ghdµ

∀g ∈ Cb�E�; h ∈ Cb�U�; t ≥ 0:
(2.2)

Proof. The proof closely mimics the arguments in Bhatt and Karandikar
(1993a) and Stockbridge (1990a). We give here only the main steps in detail.

For n ≥ 1, define operators An as follows. Let D �An� =R�I−n−1A� and set
Ang = n��I− n−1A�−1 − I�g for g ∈ D �An�. It follows from Proposition 4.3.5
of Ethier and Kurtz (1986) that An is a well-defined bounded operator. Note
that the An’s approximate A in the following sense. Let f ∈ D �A�, fn x=
�I− n−1A�f, n ≥ 1. Then

�fn − f� → 0; �Anfn −Af� → 0 as n→∞:(2.3)

(In fact, Anfn = Af, n ≥ 1.) A straightforward verification shows that
∫
Angdµ = 0 ∀ g ∈ D �An�; n ≥ 1:

Step 1. Construction of stationary solutions corresponding to An: Fix n.
Let M ⊂ Cb�E×E×U� be the linear space of functions of the form

F�x;y;u� =
m∑
i=1

fi�x�gi�y;u� + f�y;u�;(2.4)

f1; : : : ; fm ∈ Cb�E�; f ∈ Cb�E×U�; g1; : : : ; gm ∈R�I−n−1A�; m ≥ 1. Define
a linear functional 3 on M as follows. For F as in (2.4),

3F =
∫
E×U

[ m∑
i=1

fi�x���I− n−1A�−1gi��x� + f�x;u�
]
µ�dx;du�:(2.5)

Using Lemma 2.1 and proceeding exactly as in Stockbridge (1990a), we get
�3F� ≤ �F� for F ∈ M. From the definition of 3 it is clear that 31 = 1.
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Together, these imply that 3F ≥ 0 whenever F ≥ 0. By the Hahn–Banach
theorem, 3 extends to a bounded, positive linear functional on Cb�E×E×U�
which we again denote by 3. Since E×E×U need not be compact, the Riesz
representation theorem cannot be invoked here. But note that

3Ff =
∫
fdµ1; 3Fg =

∫
gdµ;(2.6)

where Ff�x;y;u� = f�x�; Fg�x;y;u� = g�y;u� and µ1 is the marginal of µ
on E. Now we can apply Theorem 2.3 of Bhatt and Karandikar (1993a) to get
a ν ∈ P �E×E×U� such that

3F =
∫
E×E×U

Fdν ∀ F ∈ Cb�E×E×U�:(2.7)

It is known [see, e.g., Ethier and Kurtz (1986), Appendix] that there exists
a transition probability function η: E × B�E × U� → �0;1� such that, for
B1 ∈ B�E�; B2 ∈ B�E×U�,

ν�B1 ×B2� =
∫
B1

η�x;B2�µ1�dx�:(2.8)

From (2.4)–(2.8) it follows that, for g ∈R�I− n−1A�,
∫
E×U

g�y;u�η�x;dy;du� = ��I− n−1A�−1g��x� µ1-a.s.(2.9)

Let ��Y�m�; u�m��: m ≥ 0� be a Markov chain on E ×U with initial dis-
tribution µ and transition function η. Putting B1 = E in (2.8), we get

∫
E
η�x;B2�µ1�dx� = µ�B2�:

Thus ��Y�m�; u�m��� is a stationary chain. We can verify that, for any g ∈
R�I− n−1A�,

g�Y�m�; u�m�� −
m−1∑
j=0

n−1Ang�Y�j�; u�j��

is a σ�Y�i�; u�i�: i ≤ m�-martingale. Let Vn�·� be a Poisson process with
parameter n, independent of ��Y�m�; u�m���. Let

Xn�t� x= Y�Vn�t��; un�t� x= u�Vn�t�� ∀ t ≥ 0; n ≥ 1;(2.10)

and �F n
t � be the filtration defined by F n

t =σ�Xn
s ;
∫ b
a u

n
rdr: s≤t; 0≤a≤b≤t�.

Then one can show that �Xn�·�; un�·�� is a stationary solution to the (uncon-
trolled) martingale problem for �An; µ� with respect to the filtration �F n

t � for
every n ≥ 1.

Step 2. Convergence of marginals of �Xn�·�; un�·��: Define the (random)
occupation measures π∗n on B�U× �0;∞�� by

π∗n�C� =
∫
U×�0;∞�

IC�un�s�; s�ds ∀ C ∈ B�U× �0;∞��:
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Argue as in Lemma 4.3 of Stockbridge (1990a) to conclude that there exists
a subsequence of �π∗n� (which we relabel as �π∗n�), a random measure π∗ and
a P �U�-valued process π�·� such that

∫
fdπ∗n →

∫
fdπ∗ for compactly sup-

ported f ∈ Cb�U× �0;∞�� and

π∗�C� =
∫
U×�0;∞�

IC�u; s�πs�du�ds; C ∈ B�U× �0;∞��:(2.11)

Furthermore, since un�·� are stationary, π�·� may be taken to be a stationary
process [cf. Lemma 4.4 of Stockbridge (1990a)].

For extracting a convergent subsequence of �Xn�·��, we proceed as follows:
let �gm: m ≥ 1� be the countable collection that features in Condition 1 stipu-
lated for the operator A. Let �gm� = am; m ≥ 1, and Ê = ∏∞m=1�−am; am�. De-
fine g: E→ Ê by g�x� = �g1�x�; : : : ; gm�x�; : : :�. Since D �A� separates points
in Ê and vanishes nowhere, so does �gm: m ≥ 1�. Hence it follows that g is a
one–one continuous function and g�E� is a Borel subset of Ê. Also g−1 defined
on g�E� is measurable. Define g−1�z� = e for z 6∈ g�E�, where e is a prescribed
point in E. By (2.3), ξn�t� = fn�Xn�t��; φn�t� = Anfn�Xn�t�; un�t��; n ≥ 1,
satisfy the conditions of Theorem 3.9.4 of Ethier and Kurtz (1986). Along
with Condition 2 on operator A, this leads to the relative compactness of
L �f1 ◦Xn�·�; : : : ; fl ◦Xn�·�� in P �D��0;∞�;Rl�� for f1; : : : ; fl ∈ D �A�; 1 ≤
l ≤ ∞. In particular, �L �g�Xn�·���� is relatively compact in P �D��0;∞�; Ê��.
Thus each subsequence thereof has a further subsequence converging in law
to a D��0;∞�; Ê�-valued random variable, say Z�·�. Without loss of generality,
we may take a common convergent subsequence for L �π∗n�;L �g�Xn�·�� and
further suppose that L ��g�Xn�·��; π∗n�� converges along this subsequence to
L ��Z�·�; π∗��. Using a Skorokhod representation [see e.g., page 102 of Ethier
and Kurtz (1986)], we may suppose that this convergence is a.s. on a com-
mon probability space. From the stationarity of �g�Xn�·��; un�·�� for n ≥ 1,
that of �Z�·�; u�·�� follows. Also L �g�Xn�t��� = µ1 ◦g−1 for all n; t. Thus
L �Z�t�� = µ1 ◦g−1 for all t ≥ 0, implying P�Z�t� ∈ g�E�� = 1 for all t. De-
fine X�t� = g−1�Z�t��; t ≥ 0. Applying Lemma 2.2 of Bhatt and Karandikar
(1993a) , we conclude that Xn�t� → X�t� in E in probability for each t ≥ 0.
This completes step 2.

Let Ft = σ�Zs;
∫ b
a πr�f�dr: s ≤ t; 0 ≤ a ≤ b ≤ t; f ∈ C�U��, where

π�f� =
∫
U fdπ. Then �X�·�; π�·�� is �Ft�-progressive. We will now show

that �X�·�; π�·�� is a solution to the relaxed controlled martingale problem
for �A;µ1� with respect to �Ft�. Clearly, �X�·�; π�·�� is �Ft�-progressive. Let
h ∈ Cb�E×U�. Then it is easy to see that

�h�Xn�s�; un�s�� − h�X�s�; un�s��� → 0

as n→∞ in probability for each s ≥ 0. Since π∗n→ π∗ a.s.,

∫ t
0
h�X�s�; un�s��ds→

∫ t
0

∫
U
h�X�s�; u�πs�du�ds a.s.
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Thus, for all t ≥ 0,
∫ t

0
h�Xn�s�; un�s��ds→

∫ t
0

∫
U
h�X�s�; u�πs�du�ds(2.12)

in probability. Let f ∈ D �A�, �fn� as in (2.3), 0 ≤ t1 < t2 < · · · < tm <
tm+1; 0 ≤ δi ≤ ti; 1 ≤ i ≤ m; h1; : : : ; hm ∈ Cb�E × U� for some m ≥ 1.
Then, using (2.3), (2.12) and the fact that �Xn�·�; un�·�� is a solution to the
martingale problem for An, we have

E
[(
f�X�tm+1�� − f�X�tm�� −

∫ tm+1

tm

∫
U
Af�X�s�; u�πs�du�ds

)

×
m∏
i=1

∫ ti
ti−δi

∫
U
hi�X�ti�; u�πs�du�ds

]

= lim
n→∞

E
[(
fn�Xn�tm+1�� − fn�Xn�tm��

−
∫
U×�tm; tm+1�

Anfn�Xn�s�; u�π∗n�du;ds�
)

×
m∏
i=1

∫
U×�ti−δi; ti�

hi�Xn�ti�; u�π∗n�du;ds�
]

= 0:

By standard monotone class arguments, it follows that �X�·�; π�·�� is a solution
to the relaxed controlled martingale problem for �A;µ1�. This completes the
proof. 2

Corollary 2.1. The relaxed control process �πt� above may be taken to be
of the form πt = v�X�t��; t ≥ 0; for a measurable v: E→ P �U�.

Proof. Disintegrate µ as µ�dx;du� = µ1�dx�v�x;du�, where v�x;du� is
defined µ1-a.s. uniquely. Let v: E → P �U� map x ∈ E to v�x;du� ∈ P �U�.
Now repeat the above argument with A replacing A, P �U� [respectively
P �P �U��] replacing U [respectively P �U�] and µ ∈ P �E × P �U�� given by
µ�dx;dy� = µ1�dx�δv�x��dy� replacing µ.

Thus there exists anE×P �P �U��-valued stationary solution �X�·�; π�·�� to
the relaxed controlled martingale problem forA with respect to some filtration
�Ft�, satisfying

E
[
g�X�t��

∫
P �U�

hdπ�t�
]
=
∫
E×P �U�

ghdµ

∀g ∈ Cb�E�; h ∈ C�P �U��; t ∈ R:
Define a P �P �U��-valued stationary process π̃�·� by

∫
hdπ̃�t� = E

[∫
hdπ�t��F X

t

]
; t ∈ R;
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for h in a countable dense set in C�P �U��, �F X
t � being the natural filtration

of X�·�. Then it is easy to see that �X�·�; π̃�·�� is a stationary solution to the
relaxed controlled martingale problem for A with respect to �F X

t �, satisfying

E
[
g�X�t��

∫
P �U�

hdπ̃�t�
]
=
∫
E×P �U�

ghdµ

=
∫
E×P �U�

g�x�h�y�µ1�dx�δv�x��dy�

=
∫
E
g�x�h�v�x��µ1�dx�

= E�g�X�t��h�v�X�t����
∀ g ∈ Cb�E�; h ∈ C�P �U��; t ∈ R: This implies

E
[∫

P �U�
hdπ̃�t��X�t�

]
= h�v�X�t��� a.s. ∀ t

for all h ∈ C�P �U��. In particular,

E
[∫

P �U�
h2 dπ̃�t��X�t�

]
= h2�v�X�t��� a.s. ∀ t

and hence

E
[∫

P �U�
�h�y� − h�v�X�t����2π̃�t; dy��X�t�

]

= E
[∫

P �U�
h2�y�π̃�t; dy��X�t�

]
− 2E

[∫
P �U�

h�y�π̃�t; dy��X�t�
]
h�v�X�t���

+ h2�v�X�t���
= 0:

This implies π̃�t� = δv�X�t�� a.s. This completes the proof. 2

A relaxed control of this type will be called a relaxed Markov control.

2.2. The discounted problem. Let �X�·�; u�·�� satisfy the controlled mar-
tingale problem for �A; ν0� and let α > 0. Then, for f ∈ D �A�,

e−αtE�f�X�t��� − E�f�X�0��� = E
[∫ t

0
e−αs�Af�X�s�; u�s�� − αf�X�s���ds

]
:

Multiplying throughout by α and letting t→∞, we obtain
∫
Afdµ = α

(∫
fdµ−

∫
fdν0

)
∀ f ∈ D �A�(2.13)

for the discounted occupation measure µ [see (1.6)]. [We have identified f ∈
Cb�E� with f ∈ Cb�E × U� given by f�x;u� = f�x� by a slight abuse of
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notation.] Our aim here is to prove that (2.13) characterizes the discounted
occupation measures.

We will require the following imbedding of the martingale problem for A
into a compact space. [See Bhatt and Karandikar (1993a, 1993b).] Recall the
definition of Ê constructed in the proof of Theorem 2.1. Let �gm: m ≥ 1�
be the countable set of functions featured in Condition 1 on the operator A,
with �gm� = am;m ≥ 1. Without loss of generality, we may take g1 ≡ 1.
Let g: E → Ê be defined by g�x� = �g1�x�; : : : ; gm�x�; : : :�, where Ê =∏∞
m=1�−am; am�. Let D �A � be the algebra of functions on C�Ê� generated by
�f̂k ∈ C�Ê�: f̂k��z1; : : : ; zk; : : :�� = zk�. The operator A : D �A � → B�Ê×U�
is defined by

A �cf̂i1 f̂i2 · · · f̂ik��z;u� =
{
c�A�gi1gi2 · · ·gik���x;u�; if z = g�x�;
0; otherwise.

(2.14)

Note that f̂k�g�x�� = gk�x� and A f̂k�g�x�; u� = Agk�x;u�; k ≥ 1. Let
�X1�·�; π1�·�� be a solution to the relaxed controlled martingale problem for
A. Set Z1�t� = g�X1�t��; ∀ t ≥ 0: Then

P�Z1�t� ∈ g�E�� = 1 ∀ t ≥ 0:(2.15)

Let f̂ ∈ D �A � be such that f̂ ◦g = f for a prescribed f ∈ D �A�. Let 0 ≤
t1 < · · · < tm < tm+1; 0 ≤ δi ≤ ti; ĥ1; : : : ; ĥm ∈ B�Ê×U�, with ĥi�g�x�; u� =
hi�x;u� for h1; : : : ; hm ∈ B�E×U� and m ≥ 1. Then

E
[(
f̂�Z1�tm+1�� − f̂�Z1�tm�� −

∫ tm+1

tm

∫
U

A f̂�Z1�s�; u�π1s�du�ds
)

×
m∏
i=1

∫ ti
ti−δi

∫
U
ĥi�Z1�ti�; u�π1s�du�ds

]

= E
[(
f�X1�tm+1�� − f�X1�tm�� −

∫ tm+1

tm

∫
U
Af�X1�s�; u�π1s�du�ds

)

×
m∏
i=1

∫ ti
ti−δi

∫
U
hi�X1�ti�; u�π1s�du�ds

]

= 0:

It follows that �Z1�·�; π1�·�� is a solution to the relaxed controlled martin-
gale problem for A . Conversely, for any such solution �Z1�·�; π1�·�� to the re-
laxed controlled martingale problem for A satisfying (2.15), we defineX1�t� =
g−1�Z1�t��. Then �X1�·�; π1�·�� is a solution to the relaxed controlled martin-
gale problem for A.

Now we are ready to prove the result characterizing the discounted occu-
pation measures.

Theorem 2.2. If µ ∈ P �E×U� satisfies (2.13), then there exists a solution
�X�·�; π�·�� to the relaxed controlled martingale problem for �A; ν0� such that
µ is the discounted occupation measure for this process.
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Proof. We will prove the theorem in various steps.
Step 1. Reduction of the problem to the ergodic problem for a related oper-

ator B and imbedding the new martingale problem into a compact space: Let
D �B� ⊂ Cb�E× �−1;1�� be defined by

D �B� = �f1f2: f1 ∈ D �A�; f2 ∈ C��−1;1���:(2.16)

Let E0 = E×U× �−1;1�. For f = f1f2 ∈ D �B�, Bf ∈ Cb�E0� is defined by

�Bf��x;u; j� = f2�j�Af1�x;u� + α�f2�−j�
∫
E
f1 dν0 − f1�x�f2�j��:(2.17)

Define µ ∈ P �E0� by

µ = µ⊗
( 1

2δ1 + 1
2δ−1

)
:

Then it follows from (2.13) that
∫
E0

Bfdµ = 0 ∀ f ∈ D �B�:

Clearly, B satisfies Conditions 1 and 2 of Section 1.2. Condition 3 there follows
from Theorem 4.10.2 of Ethier and Kurtz (1986). Theorem 2.1 now ensures
the existence of a stationary solution �X�·�; π�·�;Y�·�� to the relaxed controlled
martingale problem for �B; µ̃� with respect to some filtration �Ft�, where µ̃ is
the marginal of µ on E × �−1;1�. Note that if µ1 denotes the marginal of µ
on E, then

µ̃ = µ1 ⊗
( 1

2δ1 + 1
2δ−1

)
:

In general, we do not know about the regularity of paths of this solution.
To overcome this, we shall imbed the controlled martingale problem for B
into a compact space as was done for the operator A at the beginning of this
subsection.

Recall the definition of Ê and A . Let D �B� = �F = f̂h: f̂ ∈ D �A �; h ∈
C��−1;1��� and define the operator B: D �B� → B�Ê×U× �−1;1�� by

�B�f̂h���z;u; j� = h�j�A f̂�z;u� + α
(
h�−j�

∫
Ê
f̂ dν̂0 − f̂�z�h�j�

)
(2.18)

where ν̂0 ∈ P �Ê� is defined by

ν̂0�0� = ν0�g−1�0 ∩ g�E���
and f̂; h are as in the definition of D �B�. The controlled martingale problems
for B and B are equivalent in the same sense as those for A and A . Let
Z�t� = g�X�t��. Then �Z�·�; π�·�;Y�·�� is a stationary solution to the relaxed
controlled martingale problem for �B; µ̂�, where µ̂ = µ1 ◦g−1 ⊗ � 1

2δ1 + 1
2δ−1�.

Without loss of generality, we assume that the process �Z�·�; π�·�;Y�·�� is
defined on the entire time axis �−∞;∞�. Since D �B� is an algebra that sepa-
rates points in g�E�×�−1;1�, it is a measure determining set [see, e.g., Theo-
rem 3.4.5 of Ethier and Kurtz (1986)]. From Theorem 4.3.6 of Ethier and Kurtz
(1986), it follows that �Z�·�;Y�·�� admit an r.c.l.l. modification �Ẑ�·�; Ŷ�·�� in
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g�E� × �−1;1�. Then �Ẑ�·�; π�·�; Ŷ�·�� is a stationary solution to the relaxed
controlled martingale problem for �B; µ̂� with respect to the filtration �Ft�,
where Ft = σ�Ẑs; Ŷs;

∫ b
a πr�f�dr: s ≤ t;0 ≤ a ≤ b ≤ t; f ∈ C�U��.

Step 2. Recovering a solution to the relaxed controlled martingale problem
for A. For k ≥ 0, define inductively stopping times �τk� by

τ0 = 0; τk = inf�t > τk−1: Ŷ�t� = −Ŷ�τk−1��

and setN�t� = k for τk ≤ t < τk+1; k ≥ 0. We want to show that, for f̂ ∈ D �A �,

f̂�Ẑ�t��I�N�t�=k�

−
∫ t

0

∫
U

[
A f̂�Ẑ�s�; u�πs�du�I�N�s�=k�

+ α
(
I�N�s�+1=k�

∫
Ê
f̂ dν̂0 − I�N�s�=k�f̂�Ẑ�s��

)]
ds; t ≥ 0;

(2.19)

is a martingale with respect to �Ft�. It suffices to prove this for a solu-
tion �Ẑy�·�; πy�·�; Ŷy�·�� to the relaxed controlled martingale problem for
�B; µ1 ◦g−1⊗δy�, y ∈ �−1;1�. (Note that E��Ẑ�·�; π�·�; Ŷ�·���Ŷ�0� = y� is one
such solution.) By the optional sampling theorem,

f̂�Ẑy�τk+1 ∧ t��h�Ŷy�τk+1 ∧ t�� − f̂�Ẑy�τk−1 ∧ t��h�Ŷy�τk−1 ∧ t��

−
∫ τk+1∧t

τk−1∧t

∫
U
�Bf̂h��Ẑy�s�; u; Ŷy�s��πs�du�ds; t ≥ 0;

(2.20)

is a martingale for h ∈ C��−1;1��. Equation (2.20) implies (2.19) on taking
h�·� = I�·=�−1�ky�.

Define �Z2�·�; π2�·�;N2�·�� x= �Ẑ�τ2+·�; π�τ2+·�;N�τ2+·��. It follows that

f̂�Z2�t��I�N2�t�=k� −
∫ t

0

∫
U

[
A f̂�Z2�s�; u�π2

s �du�I�N2�s�=k�

+ α
(
I�N2�s�+1=k�

∫
Ê
f̂ dν̂0 − I�N2�s�=k�f̂�Z2�s��

)]
ds

is an �F 2
t �-martingale, where F 2

t = Fτ2+t. This in turn implies that

I�N2�t�=N2�0�� exp�αt�(2.21)

is a mean-one martingale with respect to �F 2
t � and, more generally,

f̂�Z2�t��I�N2�t�=N2�0��e
αt

−
∫ t

0

∫
U
eαsI�N2�s�=N2�0��A f̂�Z2�s�; u�π2

s �du�ds
(2.22)

is an �F 2
t �-martingale. This suggests that �Z2�s�; π2�s�� is a solution un-

der a transformed measure to the relaxed controlled martingale problem
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for A , where the transformed measure has Radon–Nikodym derivative
I�N2�t�=N2�0�� exp�αt� on F 2

t for t > 0 with respect to the original measure P.
Indeed, this is true but this solution may not have the required occupation
measure since without well-posedness of the relaxed controlled martingale
problem we cannot show that �Ẑ�·�; π�·�� have i.i.d. cycles between τk and
τk+1.

To get the required solution, we follow an idea of Kurtz and Stockbridge
(1994). Let

τ−1 = sup�t < 0: Ŷ�t� 6= Ŷ�0��:

Then W = �α�τ1−τ−1��−1 is an F 2
0 -measurable, positive random variable with

mean 1. Thus, using (2.21) and (2.22), we get that

WI�N2�t�=N2�0�� exp�αt�(2.23)

is a mean-one martingale with respect to �F 2
t � and so is

Wf̂�Z2�t��I�N2�t�=N2�0��e
αt

−
∫ t

0
eαsWI�N2�s�=N2�0��A f̂�Z2�s�; u�π2

s �du�ds:
(2.24)

Let CU be as in Section 1.2. Let �θ;π∗� denote the coordinate process on
D��0;∞�; Ê� × CU. Define a probability measure Q on D��0;∞�; Ê� × CU
as follows. For every fixed T > 0 and 0 ≤ t1 < · · · < tm ≤ T; 0 ≤ δi ≤
ti; f1; : : : ; fm ∈ C�Ê�, h1; : : : ; hm ∈ C�Ê×U�; U1; : : : ;Um ⊂ U, m ≥ 1,

EQ
[ m∏
i=1

fi�θ�ti��
∫ ti
ti−δi

∫
Ui

hi�θ�s�; u�π∗s �du�ds
]

= E
[ m∏
i=1

fi�Z2�ti��
∫ ti
ti−δi

∫
Ui

hi�Z2�s�; u�π2
s �du�ds

×WI�N2�tm�=N2�0�� exp�αtm�
]
:

(2.25)

Since (2.23) is a mean-one nonnegative martingale, it is easy to see that (2.25)
defines a probability measure.

We claim that, under Q, �θ�·�; π∗�·�� is a solution to the relaxed con-
trolled martingale problem for �A ; ν̂0� with respect to �Gt�, where Gt =
σ�θs;

∫ b
a π

∗
r�h�dr: s ≤ t; 0 ≤ a ≤ b ≤ t; h ∈ C�U��. To see this, let

0 ≤ t1 < · · · < tm < tm+1; 0 ≤ δi ≤ ti; h1; : : : ; hm ∈ C�Ê ×U�; m ≥ 1. Since
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the process in (2.24) is an �F 2
t �-martingale, we have

EQ
[(
f̂�θ�tm+1�� − f̂�θ�tm�� −

∫ tm+1

tm

∫
U

A f̂�θ�s�; u�π∗s �du�ds
)

×
m∏
i=1

∫ ti
ti−δi

∫
U
hi�θ�ti�; u�π∗s �du�ds

]

= E
[(
f̂�Z2�tm+1��WI�N2�tm+1�=N2�0��e

αtm+1

− f̂�Z2�tm��WI�N2�tm�=N2�0��e
αtm

−
∫ tm+1

tm

∫
U
eαsWI�N2�s�=N2�0��A f̂�Z2�s�; u�π2

s �du�ds
)

×
m∏
i=1

∫ ti
ti−δi

∫
U
hi�Z2�s�; u�π2

s �du�ds
]

= 0:

By standard monotone class arguments, it follows that �θ�·�; π∗�·�� is a solution
to the relaxed controlled martingale problem for �A ;L �θ�0��� with respect to
�Gt�. Now, for 0 ∈ B�Ê�, Q�θ�0� ∈ 0� = E�WI�Ẑτ2

∈0��. Note that W is Fτ1
-

measurable. Hence it follows from (2.19) and the optional sampling theorem
that, for f̂ ∈ D �A �,

E�Wf̂�Ẑ�τ2��� = E�α�τ2 − τ1�W�
∫
f̂ dν̂0:

For f̂ = 1, this implies E�α�τ2 − τ1�W� = E�W� = 1. Thus we get

E�f̂�Ẑ�τ2��W� =
∫
f̂ dν̂0; f̂ ∈ D �A �:

Since D �A � is an algebra that separates points in g�E�, it is a measure-
determining set [cf. Theorem 3.4.5 of Ethier and Kurtz (1986)]. Thus Q�θ�0� ∈
0� = ν̂0�0�, which completes the proof of the claim.

Also, since Ẑ�t� ∈ g�E� a.s. for every t, using Fubini’s theorem, we get

E
∫ ∞

0
Ig�E�c�Ẑ�t��dt = 0:

In particular,

E
∫ ∞

0
Ig�E�c�Ẑ�t+ τ2��dt = 0:

This implies that Z2�t� ∈ g�E� for almost all t > 0, a.s. �P�. Thus

Q�θ�t� ∈ g�E�� = E�WIg�E��Z2�t��I�N2�t�=N2�0��e
αt� = 1
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for a.a. t ≥ 0. Let X2�t� = g−1�θ�t��. Then �X2�·�; π∗�·�� is a solution on
��;F ;Q� to the relaxed controlled martingale problem for �A; ν0�with respect
to �Gt�. This completes step 2.

Step 3. Finding the discounted occupation measure for �X2�·�; π∗�·��: Note
that, for f ∈ C�Ê×U�,

α
∫ ∞

0
e−αsEQ

[∫
U
f�θ�s�; ·�dπ∗�s�

]
ds

= α
∫ ∞

0
e−αsE

[∫
U
eαsf�Z2�s�; ·�dπ2�s�WI�τ3−τ2>s�

]
ds

= E
∫ τ3−τ2

0

1
τ1 − τ−1

∫
U
f�Z2�s�; ·�dπ2�s�ds

= E
[

1
τ1 − τ−1

∫ τ3

τ2

∫
U
f�Ẑ�s�; ·�dπ�s�ds

]
:

(2.26)

For simplicity of writing, let us denote V�s� =
∫
U f�Ẑ�s�; ·�dπ�s� for every s.

Let, for t ≥ 0,

τt−1 = sup�s < t: Ŷ�s� 6= Ŷ�t��;

τt1 = inf�s > t: Ŷ�s� 6= Ŷ�t��;

τt2 = inf�s > τt1: Ŷ�s� 6= Ŷ�τt1��

and

τt3 = inf�s > τt2: Ŷ�s� 6= Ŷ�τt2��:

Then

1
τt1 − τt−1

∫ τt3
τt2

V�s�ds(2.27)

is stationary in t. Also, for t ∈ �τk; τk+1�, (2.27) is the same as

1
τk+1 − τk

∫ τk+3

τk+2

V�s�ds:

Then, writing σi = τi for i ≥ 1 and σ0 = τ−1 and recalling that N�T� denotes
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the number of jumps of Ŷ in the interval �0;T�, we get

E
[

1
τ1 − τ−1

∫ τ3

τ2

V�s�ds
]

= E
[∫ T

0

1
T�τt1 − τt−1�

∫ τt3
τt2

V�s�dsdt
]

= 1
T
E
[N�T�+1∑

k=1

1
�σk − σk−1�

{∫ σk+2

σk+1

V�s�ds
}
�T ∧ σk − σk−1 ∨ 0�

]

= 1
T
E
∫ T

0
V�s�ds+ 1

T
E
T ∧ σ1

σ1 − σ0

∫ σ3

σ2

V�s�ds− 1
T
E
∫ T∧σ3

0
V�s�ds

+ 1
T
E
[
I�N�T�>0�

T− σN�T�
σN�T�+1 − σN�T�

∫ σN�T�+3

σN�T�+2

V�s�ds
]

+ 1
T
E
[
I�N�T�>1�

∫ σN�T�+2

σN�T�+1

V�s�ds
]
+ 1
T
E
[
I�N�T�>2�

∫ σN�T�+1

σN�T�
V�s�ds

]

− 1
T
E
[
I�N�T�>3�

∫ T
σN�T�

V�s�ds
]
:

Since this holds for every T, letting T→∞, we get

E
[

1
τ1 − τ−1

∫ τ3

τ2

V�s�ds
]

= lim
T→∞

E
[∫ T

0

1
T�τt1 − τt−1�

∫ τt3
τt2

V�s�dsdt
]

= lim
T→∞

1
T
E
∫ T

0
V�s�ds+ 0

= E
∫
U
f�Ẑ�s�; ·�πs�du�

= E
∫
U
f�Z�s�; ·�πs�du�:

Recalling that Z�s� = g�X�s�� and θ�s� = g�X2�s��, using (2.26) and a change
of variables, we get, for any f ∈ Cb�E×U�,

α
∫ ∞

0
e−αsEQ

[∫
U
f�X2�s�; ·�dπ∗�s�

]
ds =

∫
E×U

fdµ:

This completes the proof. 2

The following corollary follows from Corollary 2.1.

Corollary 2.2. The relaxed control process π∗�·� above may be taken to be
a relaxed Markov control.
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2.3. The finite-horizon problem. Fix T > 0. Let �X�·�; u�·�� be a solu-
tion to the controlled martingale problem for �A; ν0�. Let f ∈ D �A� and
g ∈ C1

0��0;T��, where

C1
0��0;T��

x=
{
h ∈ C��0;T��: ∂h

∂t
�·� exists and is in C��0;T��; h�T� = ∂h

∂t
�T� = 0

}
:

Then

E�f�X�T��g�T�� − E�f�X�0��g�0��

= E
[∫ T

0
f�X�s��∂g

∂s
�s� + g�s�Af�X�s�; u�s��ds

]
;

implying

T
∫
�0;T�×E×U

[(
∂

∂t
+A

)
fg

]
dµ = −g�0�

∫
E
fdν0;(2.28)

where µ is the corresponding finite-time occupation measure. Our aim is to
show that (2.28) characterizes such measures.

Before stating the result, we define a metric on �0;T�×E. Let d denote the
original metric on this space. Then, for �t1; x1�; �t2; x2� ∈ �0;T� ×E, define

d′
(
�t1; x1�; �t2; x2�

)

= min
(
d��t1; x1�; �t2; x2��; d

(
�t1; x1�;T×E

)
+ d�T×E; �t2; x2��

)
;

where d��t; x�;T×E� = infy∈E d��t; x�; �T;y��. Here d′ is a pseudo-metric and
any two points �T;x�; �T;y� for x 6= y in E are zero d′-distance away from
each other. The latter property defines an equivalence relation [viz. �t; x� ∼
�s; y� if and only if d′��t; x�; �s; y�� = 0]. Passing to the quotient space under
∼, it is easy to see that d′ becomes a complete metric on the same. By abuse of
notation we continue to denote this space as �0;T� ×E, keeping in mind that
T ×E has now collapsed to a point. Note that a sequence �tn; xn� converges
in the d′-metric if either �tn; xn� converges in the d-metric or tn → T. Now
we are ready for the characterization of the finite-time occupation measures.

Theorem 2.3. Suppose µ ∈ P ��0;T� × E × U� satisfies (2.28) for f ∈
D �A�; g ∈ C1

0��0;T��. Then:

(i) the marginal of µ on �0;T� is the normalized Lebesgue measure;
(ii) there exists a solution �X�·�; π�·�� to the relaxed controlled martingale

problem for �A; ν0� such that

E
[∫ T

0
h�s;X�s�; u�πs�du�ds

]
= T

∫
�0;T�×E×U

h�s; x; u�µ�ds;dx;du�

for all h ∈ Cb��0;T� ×E×U�.
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Proof. The first claim follows easily on setting f ≡ 1 in (2.28). We now
consider the complete, separable metric space ��0;T� ×E;d′� defined above.
By 1 we will denote the point T×E ∈ ��0;T� ×E;d′�.

Let D �B� ⊂ Cb��0;T� × E� be the algebra of functions generated by con-
stants and the set �gf: g ∈ C1

0��0;T��; f ∈ D �A��. Define the operator
B: D �B� → Cb��0;T� ×E×U� as follows: for g ∈ C1

0��0;T��; f ∈ D �A�,

�B�gf���t; x; u� = f�x�∂g
∂t
�t� + g�t�Af�x;u� if �t; x� ∈ �0;T� ×E;

= 0 if �t; x� = 1;
B1 = 0:

Note that B satisfies all the conditions of Theorem 2.2. Define µ̃ ∈ P ��0;T� ×
E×U� by

∫
�0;T�×E×U

f�t; x; u�µ̃�dt;dx;du�

=
∫
�0;T�×E×U

e−t/Tf�t; x; u�µ�dt;dx;du� + e−1
∫
U
f�1;u�η�du�

∀ f ∈ Cb��0;T� ×E×U�;

where η is the marginal of µ on U. Then, for f ∈ D �A�; g ∈ C1
0��0;T��,

∫
�0;T�×E×U

B�fg�dµ̃

=
∫
�0;T�×E×U

e−t/T
(
∂

∂t
+A

)
fgdµ

=
∫
�0;T�×E×U

(
∂

∂t
+A

)
fe−t/Tgdµ+ 1

T

∫
�0;T�×E×U

e−t/Tfgdµ

= − 1
T
g�0�

∫
E
fdν0 +

1
T

∫
�0;T�×E

fgdµ1;

where µ1 is the marginal of µ̃ on �0;T�×E. This is of the form (2.13) and thus
we can apply Theorem 2.2 to get a solution �Y�·�;X�·�; π�·�� to the relaxed
controlled martingale problem for �B;δ0 ⊗ ν0� such that, for f ∈ Cb��0;T� ×
E×U�,

∫ ∞
0
e−s/TE

[∫
U
f�Y�s�;X�s�; u�πs�du�

]
ds

=
∫
�0;T�×E×U

f�t; x; u�µ̃�dt;dx;du�:
(2.29)
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From the definition of B, it is clear that Y�t� = t∧T. Picking f above so that
f�1;u� = 0 for all u, we have

∫ T
0
e−s/TE

[∫
U
f�s;X�s�; u�πs�du�

]
ds

=
∫
�0;T�×E×U

e−t/Tf�t; x; u�µ�dt;dx;du�:

The second claim follows. 2

We shall call π�·� a relaxed time inhomogeneous Markov control if πt =
v�X�t�; t�, t ≥ 0, for some measurable v: E × �0;∞� → P �U�. The following
corollary follows from Corollary 2.2.

Corollary 2.3. In the above theorem, π�·� may be taken to be a relaxed
time-inhomogeneous Markov control.

The foregoing developments have an interesting offshoot. Suppose �η�·�� is
a P �E×U�-valued process satisfying

∫
E
fdν�t� =

∫
E
fdν�0� +

∫ t
0

∫
E×U

Afdη�s�ds; ∀ t ≥ 0; f ∈ D �A�;(2.30)

where ν�t� is the marginal of η�t� on E for all t ≥ 0.

Theorem 2.4. Suppose that �L �X�·�; π�·����X�·�; π�·�� solves the relaxed
controlled martingale problem for �A;ξ�� ⊂ P �C��0;∞�;E� × CU� is com-
pact for each choice of ξ. Let η�t� satisfy (2.30). Then there exists a solution

�X�·�; π�·�� of the relaxed controlled martingale problem for �A; ν�0�� such that

E
[∫
U
f�X�t�; u�πt�du�

]
=
∫
E×U

fdη�t� ∀ t ≥ 0; f ∈ Cb�E×U�:(2.31)

Furthermore, π�·� may be taken to be a relaxed time-inhomogeneous Markov
control.

Proof. For t > 0, define µ�t� ∈M �E×U� by
∫
E×U

fdµ�t� =
∫ t

0

∫
E×U

fdη�s�ds; ∀ f ∈ Cb�E×U�

and let L�t� = �L �X�·�; π�·����X�·�; π�·�� solves the relaxed controlled mar-
tingale problem for �A; ν�0�� and its finite-time occupation measure on �0; t� is
t−1µ�t��. From our hypotheses and the foregoing, L�t� is a compact, nonempty
set for each t > 0. So is L = ∩t>0L�t�. If L �X�·�; π�·�� ∈ L, then �X�·�; π�·��
is a solution to the relaxed controlled martingale problem for �A; ν�0�� and,
for each t > 0, its finite-time occupation measure on �0; t� is t−1µ�t�. Thus

∫ t
0
E
[∫
U
f�X�s�; u�πs�du�

]
ds =

∫ t
0

∫
E×U

fdη�s�; ∀ f ∈ Cb�E×U�:
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Clearly, (2.31) holds for a.a. t. The qualification “a.a.” can be dropped by suit-
ably modifying s 7→ πs on a set of zero Lebesgue measure. The last claim
follows from Corollary 2.3. 2

In particular, it follows that if η�·� is such that (2.31) holds for some so-
lution �X�·�; π�·�� to the relaxed controlled martingale problem for �A; ν�0��,
then there is another solution �X′�·�; π ′�·�� such that π ′�·� is the relaxed time
inhomogeneous Markov control and (2.31) holds with �X′�·�; π ′�·�� replacing
�X�·�; π�·��. This settles a conjecture of Borkar (1993) in the affirmative.

3. Existence of optimal controls.

3.1. The ergodic problem. We shall work with a specific test case viz.
the controlled nonlinear filter described in Example 4. Recall the processes
�X�·�;Y�·�; µ�·�� and the operators L and A defined there. We consider the
following two conditions.

Condition 4. lim�x�→∞ infu k�x;u� = ∞.

Condition 5. There exists a twice continuously differentiable function
w: Rd→ R+ such that:

(i) lim�x�→∞w�x� = ∞ uniformly in �x�;
(ii) lim�x�→∞ supuLw�x;u� = −∞ uniformly in �x�;

(iii) E�
∫ T

0 �σ∗�X�t�� ∇w�X�t���2 dt� <∞ for allT > 0 and allX�·� as above.

Let 0 ⊂ P �P �Rd� × U� denote the set of all possible ergodic occupation
measures. Then, by Theorem 2.1,

0 = �η ∈ P �P �Rd� ×U�:
∫
Afdη = 0 ∀ f ∈ D �A��:

Clearly, 0 is closed. Let β = inf 0
∫
kdη, where k: P �P �Rd� × U� → R is

defined by k�µ;u� =
∫
k�·; u�dµ for µ ∈ P �Rd�; u ∈ U.

Lemma 3.1. Under either Condition 4 or 5; there exists a stationary solution
�µ�·�; π�·�� of the relaxed controlled martingale problem for A such that if η∗

is the corresponding ergodic occupation measure, then
∫
kdη∗ = β.

Proof. Condition 4 implies that the sets �η:
∫
kdη < c� are compact for

all c <∞. Since η 7→
∫
kdη is lower semicontinuous, the claim follows.

Now assume Condition 5 and let �µ�·�; π�·��be a stationary solution to the
relaxed controlled martingale problem for A. Let X�·� be the actual controlled
process in the background. If ξt = L �X�t��, then

∫
fdξt = E�

∫
fdµ�t�� for

f ∈ Cb�Rd�; t ≥ 0, implying in particular that ξt ≡ ξ0 for all t ≥ 0. It follows
as in Corollary 5.1, page 174, of Borkar (1989) that ξ0 belongs to a tight
set of probability measures on Rd. From Lemma 3.6, page 126, of the above



1554 A. G. BHATT AND V. S. BORKAR

reference, it follows that L �µ�t�� belongs to a tight set of P �P �Rd�� regardless
of the choice of the stationary solution. Since U is compact, it follows that 0
is tight and hence compact. The claim follows. 2

Let �µ�·�; π�·�� be any solution of the relaxed controlled martingale problem
for A. Define a P �Rd�-valued process �φt� by

∫
fdφt =

1
t

∫ t
0
E
[∫
U
f�X�s�; u�πs�du�

]
ds ∀ t ≥ 0; f ∈ Cb�Rd ×U�;

and a P �P �Rd��-valued process �8t� by
∫
fd8t =

1
t

∫ t
0
E
[∫
U
f�µ�s�; u�πs�du�

]
ds ∀ t ≥ 0; f ∈ Cb�P �Rd� ×U�:

Lemma 3.2. lim inf t→∞
∫
kd8t ≥ β.

Proof. Consider Condition 5 first. Then �φt� is tight as argued in Sec-
tion 6.5 of Borkar (1989). By Lemma 3.6, page 126, of this reference, �8t� is
also tight. Now, for f ∈ D �A�,

E�f�µ�t��� − E�f�µ�0��� = t
∫
Afd8t; t ≥ 0:

Dividing by t and letting t→ ∞, we conclude that any limit point 8 of �8t�
must satisfy

∫
Afd8 = 0, implying that 8 ∈ 0. The claim follows.

Now, consider Condition 4. Suppose that along a subsequence tn ↑
∞ of �0;∞�; 8�tn� is tight. Then arguing as above, we conclude that
lim infn→∞

∫
kd8�tn� ≥ β. If not, Condition 4 implies that lim

∫
kd8�tn� = ∞

and thus lim inf
∫
kd8�tn� ≥ β trivially. The claim follows. 2

This result justifies confining our attention to stationary solutions of the re-
laxed controlled martingale problem. Using Lemma 3.1 and Corollary 2.1, we
conclude that there exists an optimal relaxed Markov control such that the cor-
responding pair �X�·�; π�·�� is stationary. In fact, we may replace “stationary”
by “ergodic” by invoking the ergodic decomposition thereof. Now, we shall show
the existence of an optimal Markov solution along the lines of Borkar (1995).
For this purpose, we need a result from Borkar and Sunilkumar (1995) which
we outline below. Recall the space CU. Let a′ = �L �µ�·�; π�·����µ�·�; π�·�� is
a solution of the relaxed controlled martingale problem for �A; ν0��, where
ν0 is prescribed. Then a′ ∈ P �P �Rd� × CU� is compact and convex. Define
an equivalence relation ∼ on a′ as follows: L �µ�·�; π�·�� ∼ L �µ′�·�; π ′�·�� if
L �µ�t�; π�t�� = L �µ′�t�; π ′�t�� for a.a. t and let a denote the equivalence
classes under ∼. Then a is compact and convex in the quotient topology. We
denote by �µ�·�; π�·��̃ the ∼-equivalence class that contains L �µ�·�; π�·��. It
is proved in Borkar and Sunilkumar (1995) that each representative of an
extremal element of a is a Markov process.
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Let L �µ�·�; π�·��;L �µi�·�; πi�·�� ∈ a′; αi ∈ �0;1�; 1 ≤ i ≤ m; m ≥ 2, be
such that

∑
i αi = 1; π�·� = v�X�·�� for a measurable v: P �Rd� → P �U� and

�µ�·�; π�·��̃ =
m∑
i=1

αi�µi�·�; πi�·��̃:

Lemma 3.3. For 1 ≤ i ≤m; πi�t� = v�µi�t�� a.s for a.a. t.

Proof. For all t outside a set of zero Lebesgue measure, the following
holds. Let ξi; ξ;ψi; ψ denote the laws of �µi�t�; πi�t��; �µ�t�; π�t��; µi�t�; µ�t�,
respectively, for 1 ≤ i ≤m. Disintegrate ξi; ξ as

ξi�dx;dy� = ψi�dx�qi�x;dy�; 1 ≤ i ≤m;
ξ�dx;dy� = ψ�dx�δv�x��dy�;

where qi: P �Rd� → P �P �U�� are measurable. Clearly, ψ =∑i αiψi. Let

3i�x� = αi
dψi
dψ
�x�; x ∈ P �Rd�:

Then ξ =∑i αiξi must disintegrate as

ξ�dx;dy� = ψ�dx�
(∑

i

3i�x�qi�x;dy�
)
;

implying that, for all x outside a ψ-null set,
∑
i

3i�x�qi�x;dy� = δv�x��dy�:

Since a Dirac measure cannot be a convex combination of two or more distinct
probability measures, the claim follows. 2

Fix L �µ�·�; π�·�� ∈ a′. By the result of Borkar and Sunilkumar (1995)
mentioned above and Choquet’s theorem [see pages 140–141 of Choquet
(1969)], it follows that �µ�·�; π�·��̃ is the barycenter of a probability mea-
sure on ��µ′�·�; π ′�·��̃ ∈ a�µ′�·� is a Markov process�. Thus there exists
a process �µ�·�; π�·�� such that L �µ�·�; π�·�� ∈ �µ�·�; π�·��̃ and such that
L �µ�·�; π�·�� is the barycenter of a probability measure 8 on the set
M = �L �µ′�·�; π ′�·�� ∈ a′�µ′�·� is a Markov process�. From Theorem 1.1.5,
page 12, and the remarks at the beginning of page 132 in Borkar (1989),
it follows that when L �µ′�·�; π ′�·�� ∈ M, then π ′�t� = v�µ′�t�; t� a.s. for a
measurable v: P �Rd� × R+→ P �U�. Suppose π�·� = v�µ�·�� as before.

Lemma 3.4. For 8-a.s. γ; where γ = L �µ̂�·�; π̂�·�� �say�; π̂�t� = v�µ̂�t��
a.s. for a.a. t.
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Proof. Construct on P �a′�×C��0;∞�; P �Rd��×CU the probability mea-
sure ψ�dρ;dx;dy� = 8�dρ�ρ�dx;dy� and let �ξ; µ̃�·�; π̃�·�� be the canoni-
cal random variables on this space. That is, if ω = �ω1;ω2;ω3�, with ω1 ∈
P �a′�; ω2 = ω2�·� ∈ C��0;∞�;P �Rd�� and ω3 = ω3�·� ∈ CU, denotes a typ-
ical element of P �a′� × C��0;∞�;P �Rd�� × CU, then ξ�ω� = ω1, µ̃t�ω� =
ω2�t� and π̃t�ω� = ω3�t�; ∀ t ≥ 0. For each such t, we define a measur-
able evaluation map y�·� ∈ CU 7→ y�t� ∈ P �U� such that t 7→ y�t� a.e.
agrees with y�·�. [See the first paragraph of Section 3 of Borkar (1995).] Let
ξt�dρ;dx;du� = 8�dρ�ρt�dx;du�, where ρt is the image of ρ under the map
�x�·�; y�·�� ∈ C��0;∞�;P �Rd��×CU 7→ �x�·�; y�t�� ∈ C��0;∞�;P �Rd��×P �U�.
Thus ξt is the law of �ξ; µ̃�·�; π̃�t��, where the evaluation map π̃�·� 7→ π̃�t� is
in the above sense. For all t outside a set of Lebesgue measure 0, the following
argument applies.

Since 8 is supported on M, by the remarks preceding the statement of this
lemma, it follows that ξt must disintegrate as

ξt�dρ;dx;du� = 8�dρ�νρ�dx�δf�ρ; x�t�; t��du�;

where ρ 7→ νρ is the regular conditional law of µ̃�·� given ξ and f: P �a′� ×
P �Rd� × R+ → P �U� is a measurable map. Of course, x�t� is the evaluation
of x = x�·� ∈ C��0;∞�;P �Rd�� at t. Thus, for any h ∈ C�P �U��,

E�h�π̃�t���ξ; µ̃�t�� = h�f�ξ; µ̃�t�; t�� a.s.

for a.a. t. Let An = �An1; : : : ;Anmn
�; n ≥ 1, be a sequence of finite partitions

of a′ such that:

(i) An+1 refines An;
(ii) Ani are Borel with 8�Ani� > 0;

and if σ�An� is the σ-field generated by An for n ≥ 1, then
(iii) ∨nσ�An� is the Borel σ-field of a′.

Such a sequence of partitions exists as a′ is Polish. Now

E�h�π̃�t���µ̃�·�; I�ξ∈Ani�; 1 ≤ i ≤mn�

=
mn∑
i=1

8�Ani�E�h�π�t���µi�·� = α�·��
∣∣
α�·�=µ̃�·�;

where L �µi�·�; πi�·�� is the barycenter of the probability measure

8�dρ�I�ρ∈Ani�
8�Ani�

; 1 ≤ i ≤ n:

(Recall that a′ is convex.) Clearly, �µ̃�·�; π̃�·��̃ = �µ�·�; π�·��̃ is a convex combi-
nation of ��µi�·�; πi�·��̃; 1 ≤ i ≤ n�. By the preceding lemma, πi�t� = v�µi�t��
a.s. Thus

E�h�π̃�t���µ̃�·�; I�ξ∈Ani�; 1 ≤ i ≤mn� = h�v�µ̃�t��� a.s.
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Let n→∞. The martingale convergence theorem yields

h�v�µ̃�t��� → h�f�ξ; µ̃�t�; t�� a.s.

Since h ∈ C�P �U�� was arbitrary, v�µ̃�t�� = f�ξ; µ̃�t�; t� a.s. Thus

E�v�µ̃�t���ξ = ρ� = E�f�ξ; µ̃�t�; t��ξ = ρ� for 8-a.s. ρ:

In other words, v�µ̂�t�� = f�ρ; µ̂�t�; t� a.s. for a.a. t and 8 a.s. ρ =
L �µ̂�·�; π̂�·��. The claim follows. 2

If the L �µ�·�; π�·�� that we started with was an optimal stationary so-
lution, a little thought (in view of Lemma 3.2) shows that for 8-a.s. γ, if
γ = L �µ̂�·�; π̂�·��, then L �µ̂�·�; π̂�·�� is also optimal. Thus we have the ex-
istence of optimal solutions such that the control is relaxed Markov and the
corresponding µ�·� is either stationary (even ergodic) and/or Markov. Ideally,
one would like to ensure both stationarity and the Markov property at the
same time, but such a result eludes us at present.

For the finite-dimensional controlled diffusions described in Section 1.4, the
foregoing goes over in toto and this program has, in fact, been carried out in
Borkar (1995).

For the Hilbert space–valued controlled diffusions and stochastic evolutions
described in Section 1.4, the above program can be carried out if one finds
appropriate analogs of Conditions 4 and 5 above that enable us to generalize
Lemmas 3.1 and 3.2 to this setup. Condition 5 clearly should be replaced by
some uniform stability condition that ensures compactness of 0 and tightness
for the empirical measures �8t� defined by

∫
fd8t =

1
t

∫ t
0
E
[∫
U
f�X�s�; ·�πs�du�

]
ds ∀ t ≥ 0; f ∈ Cb�E×U�;

for any control policy. As for Condition 4, one would like to mimic it in its
original form, but this does not seem to work out. Instead, a more convenient
condition viz. ��x;u�: k�x;u� ≤ r� is compact for all r ∈ R, has to be im-
posed. Note, incidentally, that if this condition is true, k cannot be finite valued
everywhere.

3.2. Other problems. As for the existence results for discounted and finite-
time problems, we shall confine ourselves only to brief remarks for two reasons.
The first is that the details mimic (and are generally simpler than) those
for the ergodic problem. The second reason is that the end product, that is,
the existence result, does not improve upon results already deduced by other
means such as Krylov’s Markov selection method. [See El Karoui, Nguyen and
Jeanblanc-Pique (1987, 1988)].

Consider first the discounted problem for the nonlinear filter µ�·�. The ex-
istence of an optimal solution for a prescribed initial condition can be eas-
ily established by standard compactness methods. One proves that the so-
lution measures L �µ�·�; π�·�� for a prescribed law L �µ�0�� form a tight set
[Lemma 3.7, page 128, of Borkar (1989)] and therefore so do the discounted
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occupation measures. But the latter set, characterized by (2.13), is clearly
closed and hence compact. Since the cost functional is lower semicontinuous,
it attains a minimum. By Corollary 2.2, the optimal control may be taken to
be relaxed Markov. Now the arguments of Lemmas 3.3 and 3.4 above may be
used to deduce that there exists an optimal solution L �µ�·�; π�·�� (for a pre-
scribed initial condition) such that µ�·� is a Markov process and π�·� a relaxed
Markov control. Similar arguments apply to the other examples. [For stochas-
tic semilinear evolutions, see Borkar and Govindan (1994) for compactness
results.]

Analogous comments apply to the finite-horizon problem.

4. Dual optimization problems.

4.1. Infinite-dimensional linear programming. We recall from Anderson
and Nash (1987) some facts concerning infinite-dimensional linear program-
ming. Two topological vector spaces X;Y will be said to form a dual pair
if there exists a bilinear form �·; ·�: X × Y → R such that the functions
x 7→ �x;y� for y ∈ Y separate points of X and the functions y 7→ �x;y�
for x ∈ X separate points of Y. We shall endow X with the σ�X;Y� topol-
ogy which is the coarsest topology required to render continuous the maps
x 7→ �x; y�; y ∈ Y, and endow Y with the dual topology. Let P be the positive
cone in X and define the dual cone P∗ ⊂ Y by

P∗ = �y ∈ Y: �x;y� ≥ 0 for all x ∈ P�:
Let Z;W be a dual pair. Let F: X→ Z be a σ�X;Y�−σ�Z;W�-continuous

linear map. Define F∗: W → X∗, the algebraic dual of X, by �Fx;w� =
�x;F∗w�; x ∈X; w ∈W. The primal linear programming problem is

minimize �x; c�
subject to Fx = b; x ∈ P;

where b ∈ Z; c ∈ Y are given. Let β denote the infimum of �x; c� subject to
these constraints. The dual problem is

maximize �b;w�
subject to −F∗w+ c ∈ P∗; w ∈W:

Let β′ denote the supremum of �b;w� subject to these constraints. It is known
that β ≥ β′. Let

C = �x ∈ P: Fx = b�;
D = ��Fx; �x; c��: x ∈ P�:

We shall use the following result from Anderson and Nash (1987) (see page 53).

Theorem 4.1. If C is nonempty, D is closed and x 7→ �x; c� attains its
minimum on C; then β = β′.
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4.2. The ergodic problem. We assume that there exists a continuous
function h: E → R+ with inf x∈E h�x� > 0 and supx;u �k�x;u�/h�x�� < ∞.
Let X denote the space of finite signed measures µ on E × U satisfying∫
E×U h�x��µ�dx;du�� <∞ and let Y denote the space of continuous functions
f: E ×U → R satisfying supx;u �f�x;u�/h�x�� < ∞. These form a dual pair
under the bilinear form �µ;f�X;Y =

∫
E×U fdµ. Let A be the operator as

in Section 2.1. Let W = D �A�, rendered a normed linear space with norm
�f� = supx �f�x��+ supx;u �Af�x;u��, and let Z =W∗ be the space of bounded
linear functionals on W. Let Z = Z×R; W =W×R, rendered a dual pair with
the bilinear form �z;w�Z;W = �z;w�W∗;W + ab, where z = �z; a�; w = �w;b�.
Letting 1 denote the constant function identically equal to 1, defineF: X→ Z

by F�µ� = �ν;
∫

1dµ�, where ν ∈W∗ is defined by

�f; ν�W;W∗ = −
∫
Afdµ; f ∈W = D �A�:

Our primal problem is

minimize �µ;k�X;Y
subject to Fµ = �θ;1�; µ ∈ P;

where θ is the zero element of Z. In other words,

minimize
∫
kdµ

subject to
∫
Afdµ = 0 for f ∈ D �A�; µ is a probability measure.

The dual problem becomes

maximize ��θ;1�; �f;a��Z;W = a
subject to Af− a+ k ≥ 0; f ∈ D �A�:

Note that β is now the optimal ergodic cost. We shall assume that C, the set
of ergodic occupation measures, is compact in X [in the σ�X;Y� topology].
We then have the following analog of Theorem 4.1.

Theorem 4.2. β = sup�a ∈ R: infu�Af�x;u� + k�x;u�� ≥ a; f ∈ D �A��:

Proof. We only need to verify that the set D is closed. Let �µn� ∈ C be
such that νn = Fµn → ν ∈ Z and

∫
kdµn → d ∈ R. Let µn → µ along a

subsequence which we relabel by �µn�. Then
∫
Afdµn →

∫
Afdµ for f ∈

D �A�, implying ν = Fµ. Also,
∫
kdµn→

∫
kdµ. Thus D is closed. The above

result now follows from Theorem 4.1. 2

Remark 1. The compactness condition on C could be relaxed to: �µ ∈
C:

∫
kdµ ≤ r� is compact in X for all r ∈ R. Either condition will have

to be verified for the problem at hand on a case-by-case basis. Compare these
with Conditions 4 and 5 of Section 3.1.
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Remark 2. In particular, this theorem implies the existence of sequences
�an� ∈ R; �fn� ∈ D �A� such that an→ β and

inf
u
�Afn�x;u� − k�x;u�� ≥ an; n ≥ 1:(4.1)

Compare this with the results of Vinter and Lewis (1978).

4.3. The discounted problem. Consider the discounted problem with initial
law ν0 = δx0

for some x0 ∈ E. Let V�x0� denote the minimum discounted cost
for the initial law ν0. The function V�·� is recognized as the value function of
the dynamic approach to this problem. [See Chapter 3 of Borkar (1989).] Let
X;Y be as before and set W = D �A�; Z = D �A�∗ (our W in the preceding
subsection). Our primal problem becomes

minimize �µ;k�X;Y
subject to Fµ = δx0

; µ ∈ P;
where F: X→ Z is defined by F�µ� = ν,

�f; ν�W;W∗ = −
∫
�Af− αf�dµ ∀ f ∈ D �A�:

In other words, the problem is to minimize
∫
kdµ over all µ ∈X satisfying

∫
�Af− αf�dµ = −f�x0� ∀ f ∈ D �A�:

The dual problem becomes

maximize f�x0�
subject to Af− αf+ k ≥ 0; f ∈ D �A�:

Suppose C denotes the set of discounted occupation measures and is compact
in X. Theorem 4.1 now becomes the following.

Theorem 4.3. V�x0� = sup�f�x0�: infu�Af�x;u� − αf�x� + k�x;u�� ≥
0; f ∈ D �A��:

The proof follows along the lines of that of Theorem 4.2.

4.4. The finite-horizon problem. Let B = ∂/∂t + A with D �B� being the
algebra generated by constants and the set �gf: g ∈ C1

0��0:T��; f ∈ D �A��.
LetV�x; t� = minE�

∫ T
t k�X�s�; u�s��ds�X�t� = x�, where the minimum is over

all solutions to the relaxed controlled martingale problem for �A;δx� on the
time interval �t;T�. Assume that, for fixed initial conditions, the set of finite-
time occupation measures is compact. By considering the control problem on
the interval �t;T�, we can deduce the following along the lines of Theorem 4.2.

Theorem 4.4. V�x0; t� = sup�f�x0; t�: infu�Bf�s; x; u�+k�x;u�� ≥ 0; f ∈
D �B� with support �f� ⊂ �t;T� ×E�:
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5. Open problems. We conclude by listing some open problems suggested
by the foregoing.

1. Establish the existence of an optimal solution to the ergodic problem which
is both Markov and ergodic.

2. It is conjectured that the extreme points of the closed convex sets of
ergodic/discounted occupation measures correspond to time-homogeneous
Markov processes [i.e., they are occupation measures for a solution
�X�·�; π�·��, possibly among others, for which X�·� is a time-homogeneous
Markov process]. Prove or disprove the conjecture.

3. Find a good set of conditions under which the existence theory of Section 3.1
can be extended to Hilbert space-valued controlled diffusions and stochastic
evolutions.

4. In (4.1), show that V�x� = limn→∞ fn�x� exists for x ∈ E, thus providing a
candidate value function for the ergodic problem.
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