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ON THE CONVERGENCE OF SCALED
RANDOM SAMPLES!

BY GEOFFREY PRITCHARD

University of Wisconsin—Madison

The scaled-sample problem asks the following question: given a distri-
bution on a normed linear space E, when do there exist constants {y,}
such that {X)/ YJi=1 converges as n — < (in the Hausdorff metric given
by the norm) to a fixed set K? (Here {XV)} are ii.d. with the given
distribution.) The main result presented here relates the convergence of
scaled samples to a large deviation principle for single observations,
thereby achieving a dimension-free description of the problem.

1. Introduction. The scaled-sample problem asks the following ques-
tion: given a probability measure w on a normed linear space E, when do
there exist constants v, 1% such that {X//y,}" ; - K (a.s., or in probability),
where {X (j)};":l are ii.d. with law u, K is a (necessarily deterministic and
compact) closed subset of E and the convergence is in the Hausdorff metric
on closed bounded sets induced by the norm? [The Hausdorff metric is that
given by h(K, L) = (sup, c ¢ inf, . ;llx — yI) V (sup, . ; inf, ¢ gllx — yID.]

The simplest examples occur with E = R and u supported on [0, «). In this
case the scaled-sample problem is equivalent to the question of whether there
exist y, such that (max” _, X“))/y — 1 (a.s., or in probability) (see [6]).
This is sometimes referred to as relative stability (a.s., or in probability) of
{max?_; X7 _,. Equivalent conditions can be given in terms of the distribu-
tion function F of wu.

The almost sure convergence occurs iff [8]

= dF(x)

— < for0 < e < 1.
L 1-F(ex) ~ . FUE

The convergence in probability occurs iff [5]

1 - F(tx) o, ifx <1,
=4(1, ifx=1,
0, ifx>1.

lim —— > —
o 1 - F(t)

Also, y, ~F“(1 - 1/n) = inf{t: F(¢) > 1 — 1/n} [8]. (We will everywhere
use a, ~ b, to mean a,/b, - 1.) A simple sufficient condition for the a.s.

Received September 1994; revised April 1995.

! Supported by NSF grant DMS-90-24961.

AMS 1991 subject classification. Primary 60G70, 60B12; secondary 60B11, 60F15, 60D05.
Key words and phrases. Scaled sample, large deviations, regular variation.

1490



SCALED RANDOM SAMPLES 1491

convergence is the regular variation of —In(1 — F), that is, the condition that
for some a > 0 we have

—In(1 - F(tx))
—In(1 - F(2))

—-x% ast—> oo, Vx> 0.

This condition (or rather a multidimensional version of it) was considered in
[3]. It is a stronger condition than scaled-sample convergence, and we shall
consider shortly to what scaled-sample behaviour it is equivalent.

The situation when E = R? was considered by Kinoshita and Resnick
[6], who described the a.s. convergence of such scaled samples by a polar co-
ordinate decomposition: {max}_,[| X[} must be a.s. relatively stable, and
another condition on the relative extent of the distribution in different
directions determines the shape of the limiting set K. This approach yields
quite simple necessary and sufficient conditions for scaled-sample conver-
gence, but it is unfortunately limited to finite-dimensional spaces. (An infi-
nite-dimensional example which satisfies the hypotheses of Proposition 4.8 in
[6], but whose scaled samples do not converge is as follows: let {e;}7_; be
orthogonal unit vectors in a Hilbert space and let Z be a random vector
which takes the value e, with probability 27/. Let Y be an exponentially
distributed random variable of mean 1 which is independent of Z and let
X=YZ)

In infinite dimensions the best-known example of scaled-sample conver-
gence occurs for Gaussian measures. The limiting set is then the unit ball of
the reproducing kernel Hilbert space associated with the measure (see, for
example, [1]).

Finally, Fisher [4] considered the scaled-sample problem for E = R? and u
a product of two identical measures supported on [0, ). He discovered that
the limiting sets could only be balls G.e., {(x, y): x > 0, y > 0 and x? + y? <
1} for some p €[0,«]). His results contain the essential idea of regular
scaled-sample convergence defined in the next section.

2. The main result. We use the following notation. For a subset K of a
vector space E, dg: E — [0, =] is given by dx(x) = (sup{t > 0: tx € K})"! (or
« if the sup is 0). Also,

B, (K,p)={(x,,...,x,) €E™: Y. dg(x;)" <1} for0<p <,
i=1

Bm(I<’0)= an(K7p)’ Bm(K’OO)sz
p>0

and we write B(K, p) for By(K, p).

We shall say that a family {u,},., of measures on E indexed by the
positive real numbers satisfies a large deviation principle (LDP) with good
rate function I: E — [0, ] if the following hold: I is lower semicontinuous,
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the “level sets” {x: I(x) < a} are compact Va > 0 and for all measurable A,
limsup eln u,(A) < —inf I,
50 c A
liminfe ln u,(A) > —infl.
e—0 A°
A family of random elements will be said to satisfy a LDP if the family of
probability laws it generates does so.

THEOREM 1. Let E be a normed linear space and use the Hausdorff metric
on its closed subsets. Let u be a probability measure on E and let X, {X(j)}f: 1
and (X7 ,_1 all be i.i.d. with law p. Let {y,};_, be a positive sequence
increasing to © and let f: (0,) — (0,) be decreasing with f(1/In n) = v,. Let
K C E be closed with {0} a proper subset of K.

(i) Let p € (0,x]. The following are equivalent:
(a) {X/f(e)), ., satisfies a large deviation principle as & — 0, with
good rate function
de(x)”, if 0<p <,
I(x) =10, ifp=xandx € K,
o, ifp=oandx & K.

(X, X i
(b) { = } - B, (K,p) a.s.forallm e N.
Y j=1

(C) { (Xl(j), Xéj))
’Yn

} -, B(K, p)
j=1

xX\" n’
“ { } -, K and vl > r¥P  V¥r>0.
j=1

Yn Yn

(If p = o, the limit is 1 for all r > 0.)

G If (X, X$ /v, =, N, then N has the form B(K, p) for some
p €[0,].

(ii1) Suppose {X/f(e)},. , satisfies an LDP with a rate function I which is
“good” (has compact level sets) and such that (a) if I(x) = 1, then inf; I < 1
for all neighborhoods U of X, (b) Ax # 0 with I(x) < 3 and (c) I(tx) < I(x)
for x € E, t €[0,1]. Then the equivalent conditions of (1) hold, for some
p € (0,].

REMARKS. (ii) is a dimension-free generalization of the result in [4]. It is
equally valid for products of any finite number of copies of u. [Apply a
projection onto any pair of components. If p > 0, we can use (i); if p = 0, note
that a set in E™ whose every projective onto two coordinates is B(K, 0) must
be B,,(K,0).]

The requirement that I have compact level sets is a natural one, since a
limiting set K of scaled samples must always be compact. (For any ¢ > 0, it
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will be covered by a family of balls of radius ¢ centered at the points of some
sufficiently large scaled sample.)

The equivalent conditions of (i) define, for each p € (0,«], a class of
distributions on E which will be described as exhibiting “regular scaled-sam-
ple convergence of index p.”

The large deviation principle is a dimension-free generalization of the
regular variation condition mentioned in the previous section. This is demon-
strated (in one dimension) by the next result.

ProPOSITION 2.1.  With notation as in Theorem 1, suppose that E = R, u is
supported on [0,°), 0 < p < o, and K = [0, 1]. Then the following statements
are equivalent:

(i) The large deviation principle of (i)(a) above holds.
(1) ¢ given by ¢(x) = —In uw((x, ) is regularly varying of index p at ©
and vy, ~ ¢ (In n).

ProoF. First note that (i) is equivalent to lim, _, , £ In u((af(e),»)) = —a”
for all a > 0 [i.e., the LDP just for sets of the form [a, «)]. This implies
(2.1) ep(f(e)) > 1 ase— 0.

We now show that (2.1) is also implied by (ii). For ¢(y,) ~ ¢(¢ “(Inn)) ~Inn
by regular variation of ¢ [note ¢(¢ < (In n)) differs from In n only when ¢ is
discontinuous at ¢ < (In n); the difference can be no more than the size of the
discontinuity, which (again by regular variation) must be o(In n)]. We thus
have ¢,¢(f(&,)) > 1 when &, = (In n)"!, and hence (2.1) in general.

The equivalence now follows by writing

d(af(¢))

eb(af(e)) = ed(f(e)) - (o)

3. Examples.

ExamPLE 1. Let p € (0,%) and s € R. Consider the distribution on [2, «)
given by

B(x) = P(X > x) = | XP(~="(plnn) ™, forx>2,

1, for x < 2.
Let y, = ® '(1/n). Calculation shows that y, ~ (In n)/?(Inln n)°. Then by
Proposition 2.1, we see that the LDP of Theorem 1 is satisfied (for any
suitable f) with rate function I(x) = x?. Hence this distribution exhibits
regular scaled-sample convergence of index p. The limiting set is [0, 1]. The
member of this family with p = 2, s = 0 is closely analogous to (and has the
same scaled-sample behaviour as) the one-dimensional Gaussian distribution.

ExaMmPLE 2. The distribution on [0, ) with ®(x) = P(X > x) = exp(—e”®).
Here y, = Inln n is the natural choice. The function —In ® is regular varying
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of order «, so this distribution exhibits scaled-sample convergence of order .
The limiting set is [0, 1].

ExaMPLE 3 (Example 5.2 from [6]). The distribution on [0,*)? given by
w([x,°) X [y,°)) = (e* + e — 1) forx,y > 0.

The LDP for single observations for this distribution has normalizer f(e) =
&1 and rate function I(x;, x,) = 2(x; V x,) — (x; A x,) for x; > 0, x, > 0.
To check this, it is enough to check it only for sets of the form (i) [a, ®) X
[b, b,], where 0 < b; < b, < a (and images of such sets under interchanging
the coordinates), and (ii) [a,*)?, where a > 0. For the large deviation lower
bound notice that any ball contains a difference of two sets of type (i) with
different values of a, hence different large deviation rates. For the upper
bound notice that {x: I(x) > c} is always contained in a union U of finitely
many sets of types (i) and (ii) with inf}; I arbitrarily close to c. For the type (1)

sets,
lin(l)aln P(X/f(e) € [a,©) X [by,b,])

= limeIn(1/(e** +e®/* = 1) = 1/(e%/* + e"2/¢ — 1))

-0
=b, — 2a
—I(a,by)

- inf I
[a,2)X[by, by]

For the type (ii) sets,
lim £ In P(X/f() € [a,%)?)
e—0

—a

— inf I, similarly.

[a,)
This rate function has the form I(x) = dx(x)? with p = 1 and K the convex
hull of {(0,0),(%,0),(0,4),(1,1)}. By Theorem 1, the distribution exhibits
regular scaled-sample convergence of index 1 to K. The normalizers are
v, =f(1/Inn) = In n.

ExamMpPLE 4. This example shows that convergence of scaled samples need
not be regular of any order.
Let A: (0,%) — (0,©) be the piecewise linear, continuous, increasing func-
tion with A(0) = 0 and
sy, on(n,n + 1), forall even n,

N(t) =
(£) Sy, on(n,n + 1), forall odd n.

Here 0 < s; < s,. Define a distribution on [1, %) by
®(¢) =P(X>t) =exp(—exp(A(lnt¢))) for¢> 1.
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First, we show that the scaled samples from this distribution converge
(a.s.) by checking the integral condition of [8]. We need that for every
e€(0,1),

© dd(t)

-, b(ot) di <

w |D'(t)]
< ®, thatis, [ (D((t))
1 &

We have
|®' ()] =|P(¢)In ()N (Int)e !
< O(t)In d(t)|s,t L.
Also (using the mean value theorem twice),
d(t)
P(et)

— exp(exp(A(ln & + In t)) — exp(A(In ¢)))

< exp(exp(A(In¢))(AMIne+1Int) — A(In¢)))
< exp(exp(A(Int))s;In &).
Since A(¢) < s,t we have
1D ()l
d(et)

< exp(exp(A(Int))s;In e+ A(Int))s,t~*

<exp(t?s;lne+s,Int)s,t 7,

which is integrable on [1, ) for 0 < & < 1. Hence the scaled samples conver-
gence when they are normalized by, for example, constants y, = ® 1(1/n) =
exp(A~11n n)).

Second, we show that the LDP does not hold; equivalently that —In @ is
not regularly varying. For a,t > 0,

—In ®(at)

o " exp(AM(lna +Int) — A(In ¢t))

=exp((Ina)X(c)),

where c lies between In ¢ and In ¢ + In a. If In a| < 1, then lim sup, _, ., X'(¢)
= s, and liminf, ,, X(c) = s;.

ExampPLE 5. Let {e;}_; be the usual basis vectors of [,; that is, e, is an
infinite vector with a 1 in the ith position and 0 in all other positions. Choose
a positive sequence r, —> 0. Let N be a N-valued random variable with
P(N =1i) > 0Viandlet Y be an exponential random variable independent of
N. Let p be the law of X = Yryey. (Compare this example with the
infinite-dimensional example of Section 1.)

The relevant LDP for this u has f(¢) = ¢! and I = dg, where

K= | ({te:0 <t <r}.
=1

1=
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To show the large deviation upper bound, let A be measurable and let
t =inf, 4, I. If ¢t = o, then P(X/f(e) € A) = 0 Ve > 0, so this case is trivial.
Otherwise, the upper bound follows from

P(X/f(e) € A) <P(dg(X/f(e)) =2t)=P(Y>t/c) =exp(—t/¢).
To show the lower bound, let A be measurable and let ¢ = inf,. I. If ¢ = »
there is nothing to show. Otherwise, for § > 0 arbitrary, we can find i,r, s
such that t <r <s<t¢+ 6 and ur;e; CA for r <u <s. The lower bound
then follows from

P(X/f(e) € A) > P(X/f(&) = ur;e; for some u € [r,s])
— P(N =) P(Y/f(e) € [r,5]).

Samples from u scaled by the normalizers vy, = In n thus have limiting
set K.

4. Proof of Theorem 1. Our first result will eventually show part (iii) of
Theorem 1.

PROPOSITION 4.1. Suppose the conditions of Theorem 1(iii) hold. Then
(XD, X)) /y,}*_, = N a.s. for some N C E%. Furthermore, N # B(K,0) for
any K.

LemMmA 4.2.  Let {p.}, ., be a family of probability measures on a topologi-
cal space S (with a o-algebra containing the Borel o-algebra), satisfying a
large deviation lower bound with rate I, that is, liminf, ;& 1ln pu (A) >
—inf,. I for all measurable A. Then {u, X .}, ., satisfies a large deviation
lower bound on S? with rate J(x,y) = I(x) + I(y), which is good (i.e., has
compact level sets) if I is.

ProoF. This is the lower bound of Lemma 2.8 in [7]. Note that the space
is not required to be Polish for this lower bound. O

REMARK. The large deviation upper bound for compact sets could be
proved similarly, but the upper bound for closed sets cannot be proved
without an additional exponential tightness assumption. We can prove Propo-
sition 4.1 without this additional assumption, however.

PROOF OF PROPOSITION 4.1. We use the product norm [|(x, y)Il = [lx]l V ||yl
in E2. For any set S, S° denotes the set of points whose distance from S is
less than ¢, and S° denotes the complement of S. Let F, = {(X{", X{")/y,}/" ;.
Let J(x,y) =1I(x) + I(y). We will show that the limiting set is N = {z:
J(z) < 1}. Fix & > 0. We show that eventually F, c N° and N C F/.

F, c N? eventually. Let A = (N®)°. The proof falls into two parts: first
showing that

&'\ ¢ &'\ ¢

Ac({(x,y):I(x) <1}7) U ({(x,9): I(y) =1}7)
(4.1) k ore ore
O U [t 1) = ) 0 () 1) < BY) ]
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for some &' > 0, where each «; + B, > 1, and then using (4.1) to complete the
proof.
To show (4.1), first we cover the compact set

A((N*/2)) n {(x,y): I(x) < 1,I(y) < 1}

in a similar manner. Let (a, b) € cl((N°/2)°). Then J(a,b) > 1. By lower
semicontinuity of JJ, we have § > 0 and A such that infp, 5)pp 5 = A > 1.
[B(x,r) denotes a ball of center x, radius r.] Let o = infp, 5y I and B =
infg 5) 1. Then a + B> 1. Take ', B’ such that o' < a, B’ < B and o' +
B’ > 1. Then (a, b) € ({(x, y): I(x) < a'}?)° N {(x, y): I(y) < B'}°)°. By com-
pactness, then,

A((N/2)) N {(x,9): I(x) < 1,1(y) < 1}

(42) k £\ C e\ ¢
< U (e 1) = @) 0 (I ): 100 < 8],
where each «; + B; > 1 and ¢; > 0.

Now to show (4.1) itself, choose &' < 3(s A & A - A g,) and take
Qyy..., @, B,-.., B, as above. Suppose (a, b) € A, but (a, b) € {(x, y): I(x)
< 1}* and (a,b) € {(x, y): I(y) < 1}*. Then I(a,, b,) with I(a,) <1 and
I(a, b) — (a;, bl < &', and also (a,,b,) with I(b,) <1 and [(a,b) —
(ay, by)ll < €. Put (¢, d) = (ay, by). Then [(a, b) — (¢, d)Il < &'. Since (a, b)
(N®), we have (¢, d) € (N*/2)¢ as well as I(c) < 1 and I(d) < 1. By (4.2) we
have

(e,;d) € ({(x,9): I(x) <)) 0 ({(x,9): 1(3) < BY)
for some i, and so
(a,b) € ({(x,): I(x) < a)") N ({(x,9): I(y) < B)")

To use (4.1), let X,Y be iid. with law u. We use (4.1) to get an upper
bound on P((X,Y)/f(8) € A). We have for each i,

c

&'\ ¢

P((X,Y)/f(8) € ({(%,): I(x) <)) 0 ({(2,3): I(») < B}"))
= P(X/(8) € ({x: I(x) = &))" ) P(X/f(5) € ({x: I(x) = B)")').

Let r; = inf{I(x): x € cl(({x: I(x) < &;}*)°)}. Note that r, > «; since by the
goodness of o/, the infimum will be achieved. The large deviation principle
then gives

lim sup 8 In P(X/f(5) € ({x: I(x) < ai}gl)c) < -r<aq
80

and so

P(X/f(8) € ({x: I(x) < a}")) < exp(—a;/8)
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for all sufficiently small 6. Together with similar arguments for B;, this
produces

X, Y e w
P( (f(a)) c ({(x,y); I(x) < oy} ) N ({(x,y): I(y) < B} ) )
a; + B
-
for all sufficiently small 8. Similarly,

P((X,Y)/f(8) € ({(x,9): I(x) <1}")") < exp(—s/5)

for all small enough &, where s > 1. Using (4.1), then, we have that for some
t>1,

< exp(—

P((X,Y)/f(8) € A) < (k + 2)exp(~1/5)
for all small enough 8. Put § = (In n) " !. Then for all large enough n,
P(X,Y)/y,€A)<(k+2)n""
and so these probabilities are summable n — . By the Borel-Cantelli lemma,
(XM Y™)/y, € A only finitely often, a.s. Thus F, C N eventually, a.s.

N C F? eventually. Cover N by balls B(z,, &/2),..., B(z,, ¢/2) with each
z; € N. Then

&
P(Ng¢F?) < P(Fn does not intersect each ball B(zi Y ))

IA

k &
Y P(Fn disjoint from B(zi, E))
i-1

£ enle )
k

Y exp(—nP(M e B(zi, f)))

i=1 Yn 2
Now by our assumption on I, we have infy, . 4 ¢J <1 Vi, so choose r such
that max; infp, , 9 J <r < 1. By Lemma 4.2,

IA

IA

o (Xy, X5) € . .
liminfé In P| —————— € Bl|z;,=|| = — inf J> —r Vi.
5-0 f(5) 2 B(z;,¢/2)

Hence,

P((X,,X,)/f(8) € B(z;,¢/2)) > exp(—r/8) Vi, for small enough 8,
and so

P((X,,X,)/v, € B(z;,¢/2)) >n"" Vi, forlarge enough n.
We thus have

o

Y, P(N ¢Fy) < i kexp(—n'"") <=

n=1 n=1

and so the result follows.
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The assertion that N # B(K, 0) follows from the assumption that 3x # 0
with I(x) < 3 [since points in B(K, 0) can have at most one nonzero compo-
nent]. O

The next major step in the proof of Theorem 1 is to show that the limiting
set of scaled samples for a product of two identical measures can only be a
“pall” B(K, p). We first prove some lemmas

LemMA 4.3. If {XYV/y}., —, K, then (v} is slowly varying (i.e.,
Yirn)/ Yo = 1 for all r > 0).

ProoF. It is enough to show the required limit for any positive integer r.
Suppose dn, — © with ¥.,,/v, — ¢, where ¢ # 1; necessarily ¢ > 1. Let
F,={XY/y}, and G, = {X(j)/ynk}j’;"i. We see that the Hausdorff distance
h(c™ Gy, F,,,) — 0 as k — <. Hence G, -, cK as k — . Choose ¢ > 0 such

that ¢cK ¢ K?¢. Then P(G, € K°) — 0, but since G,, consists of r indepen-
dent copies of F, , P(G, € K*) = P(F, c K*)" - 1, a contradiction. O

REMARK. We used above the useful observation that if F, -, K, then (i)
Vx € K and neighborhood A of x, we have P(F, N A # <) — 1 and (ii)
Vx & K there is a neighborhood A of x such that P(F, N A + &) — 0. We
will slightly strengthen this point in a moment.

LEMMA 4.4. Let F, -, K, as in Lemma 4.3. Then K is star-shaped.

ProoF. Let x € K and 0 < ¢ < 1. For &£ > 0 we have P(F, N B(x, ¢/2) #
@) —» 1 as n — «. However, for ¢ small enough,

{F, " B(x,¢/2) + @} C{F,,,, N B(tx, ¢) + D},

where m(n) is chosen so that |y, /¥,,,, — t| < (&/3)ll x|l (this is possible by the
slow variation of v,). Hence P(F,,,, N B(tx, ) # J) + 0 as n — <. Since ¢
is arbitrary, tx € K. O

DEFINITION. A semicone is a subset S of E such that ¢S c S V¢ > 1.

REMARK. Now that we know K is star-shaped, we can strengthen the
previous remark to: if x & K, there is a semicone neighborhood A of x such
that P(F, N A # &) — 0.

LEMMA 4.5. (a) Let {X‘j)/'yn}j":1 —, K as in Lemma 4.3. Then (i) Vx € K
and every neighborhood A of x, nP(X/y, € A) - « and (ii) Vx & K and every
semicone neighborhood A of x, nP(X/y, € A) — 0.

(b) Let (X", X§"/v,}-1 =, N in E*. Then (iii) Y(x,y) € N and every
pair of neighborhoods A, B of x, y, respectively, nP(X/y, € A)P(X/v, € B)
— o and (iv) Y(x,Y) & N and every semicone neighborhoods A, B of x, v,
respectively, nP(X /vy, € A)P(X/v, € B) — 0.
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REMARK. The quantities in the conclusions of (a) and (b) are the expected
number of points from the scaled sample in A and A X B, respectively.

ProoF oF LEMMA 4.5(G)-(ii). Use the remark following Lemma 4.4 to-
gether with the fact that if 0 < x, < 1, then

(1-x,)">0=nx, >
and

(1-x,)" > 1=nx, > 0.

[For the first implication, note that if nx, < M for infinitely many n, then
limsup,(1 — x,)" > liminf,(1 — M/n)" = e ™. For the second, take loga-
rithms.] We show (i) and (ii) by letting x, = P(X/y, € A), and we show (iii)
by letting x, = P(X/v, € A)P(X/y, € B). This would also show (iv) if A
and B were not required to be semicones. O

LEMMA 4.6. Let {(X{", X{")/y,}-1 =, N.If (x,y) € N, then (ax, By) €
N for all o, B [0, 1].

ProOF. We show the result for 8 = 1. This suffices since N is star-shaped
and invariant under exchanging the two coordinates.
Let ¢ > 0. We have

nu(y,B(x,/2))u(v,B(y, &) = =
It will be enough to show

nu(y,B(ax,&))u(y,B(y, &) » 0,

which we will achieve by showing that u(y, B(ax, &) > su(y, B(x, ¢/2)) for
infinitely many n. Were this not the case, 2 u(y, B(ax, &) < u(y,B(x, £/2))
would hold for all large enough n. As in (4.4), for all large enough n there
exists m(n) with |y,/v,,, — al < &/3lxll, giving wu(y,B(x, £/2)) <
(Y nyB(ax, £)). These inequalities yield 2 u(y, B(ax, £)) < u(y,,,,Blax, £))
for all large enough n, which quickly gives, for some n and all &,

,LL(y B(ax,s)) > 28u(y,B(ax, €)),

m(m(---m(n)-+))

k

a contradiction since all probabilities are bounded by 1. O

PrOOF OF LEMMA 4.5(iv). Let (x,y) ¢ N. By Lemma 4.6, C = {(sx, ty):
s, t > 1} is disjoint from N. Define the semicone neighborhoods A, B, of x, y,
respectively, by A, = U,.sBlx,¢] and B, = U,_.¢Bly, ¢]. Then N,. A,
X B, = C. By the finite intersection property of the compact set N, some
A, X B,, is disjoint from N, making A, X B, disjoint from N?°. Hence
PA(X, X)) /v, }1 N A, X B, # @) — 0 and so Lemma 4.5(iv) obtains by
the same argument used for the other parts of Lemma 4.5. O
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LEMMA 4.7.  Suppose (X", X)) /y,}'-1 =, N.

(a) If (x,x) € Nand (y,y) & N, then (x,y) & N.
(b) If (x,x) € Nand (y,y) €N, then (x,y) € N.

REMARK. This is a generalization of Lemma 5 in [4].

Proor oF LEMMA 4.7. (a) By Lemma 4.5, there are semicone neighbor-
hoods A, B of x, y, respectively, such that nP(X/y, € A)? > 0 and nP(X /v,
€ B)?> - 0. Hence

nP(X/v, € A)P(X/, € B) = (nP(X/y, € A)*-nP(X/y, € B)*) " >0
and so (x, y) € N. (b) is similar. O

LEmMA 4.8. (a) Let vy, 1 and suppose there exists p € (0,°) be such that
liminf, y,:/y, > 2Y/?. Then there exists n, — % such that for any r, € (0,1)
dk, €N,

yl”ZJ < rl/P»ynk fOT'T' (S []"0’]_] andk > kO‘

(b) The same holds if the lim inf condition is replaced by lim sup,, v,2/7, <
2P and the inequality in the conclusion is reversed.

ProOF. We prove (a); (b) is similar. Let f(x) = ¥|exp(x)- Then f is nonde-
creasing and liminf, _ . f(2x)/f(x) > 2'/7. Pick q so that liminf, . f(2x)/
f(x) > 2Y9 > 21/P and pick x, so that f(2x) > 2'/9f(x) when x > x,. Let
g(x) = f(x)x" 19, s0 g(2x) > g(x) for x > x,. For each k € N, choose x, in
the interval [In 2,21In k) to maximize g within that interval. Since g de-
creases on each interval [In j,In(j + 1)), the maximum will be attained and,
in fact, x, = In n, for some integer n,. For r, € (0, 1), take &, € N such that
roInky, > x,. Then if r €[r,,1] and & > k,, we can find a nonnegative
integer m such that r2™x, € [In k£,21n k). This gives g(rx,) < g(r2™x,) <
g(x,), which is vy, < r"%, . O

PROOF OF THEOREM 1(ii). We are to show that if {(X{”, X{")/y,}"; =N,
then N = B(K, p) for some K CE and p €[0,«]. In fact, K must be the
projection of N onto one copy of E.

By projecting it is clear that {X)/y,}", —», K. Also, N c K*. Our first
goal will be to show that

limﬁ = sup{¢: tx € K, for some x with (x, x) & N}
n Y
= inf{¢: tx & K, for some x with (x, x) € N}.
Refer to the above sup and inf as I; and I,, respectively. By inspection,

I, > I,. Suppose (x, x) € N and ¢x € K. By Lemma 4.5(iv) there is a semicone
neighborhood A of x such that nP(X/y, € A)> > 0. Replacing n by n?



1502 G. PRITCHARD

yields n?P(X/y,» € A)> > 0, and so nP(X/y, € A) — 0. However, by
Lemma 4.5(G), nP(X /v, € tA) — =, that is, nP(X € ty, A) — ». Thus P(X €
ty,A) > P(X € y,: A) eventually, and so v,: > ty, eventually (since A is a
semicone). Hence liminf, y,:/v, > t > I,. Now suppose (x, x) € N and #x &
K. Take A such that nP(X/y, € tA) — 0 [using Lemma 4.5(ii)]. We also have
[by Lemma 4.5(iii)] that nP(X/y, € A)? - «. Arguing as before we find that
Y2 < tvy, eventually. We can now write

o el . n?
liminf — > 1, > I, > limsup —,

showing the result.

If lim, vy,2/7, = ©, then (considering the expression for I, as an inf) we
have (x,x) € N = tx ¢ K for any ¢ > 0 = x = 0 (since K is bounded). Mak-
ing use of Lemma 4.7 gives that N = B(K, 0).

If lim, vy,2/v, = 1, then (considering the expression for I; as a sup) we
have di(x) <1 = (x, x) € N. Making use of Lemma 4.7 and noting that N
is closed gives that

N2oclf(x,y):dg(x) <land dg(y) <1}.

Hence N = K2.

For the rest of the proof, then, we assume lim, v,./y, € (1,°). Let p €
(0,%) be such that lim, y,./y, = 2'/7. To complete the proof we show that
N = {(x,y): dg(x)? + dg(y)? < 1}). First, let («x, y) be such that dgi(x)? +
dg(y)? > 1. Take s,t €(0,1) and p' > p such that s +¢t? > 1, x/s € K
and y/t ¢ K. Choose semicone neighborhoods A, B of x/s, v /¢, respectively,
with nu(y,A) - 0 and nu(y,B) » 0. By Lemma 4.8(a), take n, — «
such that y(Ln}"]) < sy,, and y(ln}']) < ¢y, for all k. Then

e 8(0,54)(0,B) = my w(x([ni” | 4))m(3(| 0| B))

< (L") m(r(Ini"]4))) (1o ] w(v(122] B))

-0 -0

and we conclude (x, y) & N.

Second, let (x, y) be such that dx(x)? + dx(y)? < 1. Take s,¢t € (0,1) and
p' <p such that x/s €K, y/t €K and s? +t” <1. Let A, B be any
semicone neighborhoods of x/s, y/t, respectively. Then nu(y, A) - « and
nu(y,B) - «. By Lemma 4.8(b), take n, — « with y(ln?flj) > sy,, and
y(lny' D) > ty, for all k. Then

n (0, 54) (1, 1B) = m w(v (03" A)) (v (|4 B))

> (L] m(r(Ini"14))) ([2"] w(v(122] B))

— — ®

and we conclude (x, y) € N. Since N is closed, it follows that N contains all
(x, y) with dg(x)? + dx(y)? < 1. O
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ProoF oF (¢) = (d) IN THEOREM 1(i). Suppose 0 < p < » and
(X, X7 /y,)-1 =, B(K, p). Choose (appealing to the Hahn-Banach the-
orem) a bounded linear map ¢: E — R such that ¢(K) c[-1,1] and 1 €
¢(K). Then

{6(X9D) /%) i1 =, $(K)

[since the map C — ¢(C), taking the compact subsets of E to those of R, is
continuous] and similarly,

{®(X, X$) /v.}i-1 =, ®(B(K, p)),
where ®(x, y) = (¢(x), ¢(y)). Letting ¢, denote ¢ Vv 0, we then have
{6.(XD)/}7-1 =, [0,1]
and
(64 (X17), &4 (X87)) /% imy =, ®(B(K, p)) N [0,%)" = B([0,1], p).
By the result of [8] mentioned in the first section, we note that we must have

Y, ~ L(n), where L(n) = inf{y: P(¢(X) <y) > 1 — 1/n}. By the result of [4],
we have L(n")/L(n) — r'/? for all r € (0, 1), and hence for all » > 0. Hence

Yy _ Yy LA2") L(n7)  L(n)
Y  L(r") L) L)
-1 -1 - rl/p -1

[the second limit on the right-hand side holds by Lemma 4.3, since {L(n)} is
also a valid normalising sequence for scaled samples of ¢, (X)]. O

ProoF OF (d) = (a) IN THEOREM 1(i). Suppose {X“)/v,}., —, K and that
the normalizers {v,} satisfy v, /7y, = r/? Yr > 0. (If p = o, the limit is 1
for all r.) We wish to show that the large deviation principle of (a) holds.

It is straightforward to see that I is lower semicontinuous and that it has
compact level sets. (Recall that the limit set in a scaled-sample convergence is
always compact.)

Large deviation upper bound:

limsupeln P(X/f(e) €A) < — ilnj' I for measurable A.

e—0 c
It is enough to show this for closed A. Also, we may assume inf, I > 0
(otherwise there is nothing to prove). Take ¢ with 0 < ¢ <inf, dg. If p = o,
we further require that ¢ > 1 (which is possible since A is disjoint from the
star-shaped K and dj has compact level sets, so inf, dx is attained). Then
¢t A is closed and disjoint from K. By compactness of K we have 8 > 0 such
that ¢~ 'A € (K°)°. Now nP(X € y,(K®)°) — 0 [since P{XY/y,}", N (K?)
+ ) - 0; see Lemma 4.5] and (K?°)° is a semicone. Hence nP(X €
ylnrjt(K‘s)”) — 0 for any r > ¢7? (or if p = %, we only need r > 0). We then
see that

exp(r—lg)P(Xe f(e)t(K®)) >0 ase—0
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[this is true along the sequence &, = 1/In|n" |, and note P(X € f(&)t(K°)%) is
a monotone function of ¢]. Thus

1
limsupeln P(X €f(e)A) < ——.
. r

Hence the result since r and ¢ were arbitrary.
Large deviation lower bound:

liminfe In P(X/f(e) € A) > —infl for measurable A.
=0 A°

It is enough to show this for A open and nonempty.

For 0 < p < =, take x, § such that 0 # B(x,38) CA. Let u =1 — 25§/ x|l
Take v, s such that 0 < ud(x) < v <s < dg(x). Take A, to be the semicone
generated by some ball centered at x with radius less than §, such that
inf, A, dy > s (this is possible since dy is lower semicontinuous). Then

limsupeIn P(X € f(e)A,) < — infd}
-0 cl A,
so that if r; > s77, then P(X € f(&)A,) < exp(—1/r;¢) for all small enough
e. Note also that uA, —A; CA. In addition, v 'ux € K, so nP(X €
y,v 'uA,) — «. This gives
nP(X € y,nuA;) — © whenever ry/? <v™'.

For such r,, then, exp(1/r,e)P(X € f(e)ud,) - © as ¢ — 0 (see the upper
bound argument), so P(X € f(g)uA,) = exp(—1/r, &) for all small enough &.
Choose r,, r, such that s™! < r{/? < rj3/? <v~!. Then we have

P(X €f(e)A) = P(X € f(e)(uA; — Ay))

-1 -1
> exp : — exp :
2 1

for all small . From this we obtain

limiglfg InP(Xef(e)A) = r—l > —sP > —dg(x)".
£ 2
Since x € A was arbitrary, the result follows.

For p = o, the proof is similar. If dx(y) > 1 Vy € A, there is nothing to
prove. If some y € A has dx(y) < 1, then note that the result for A/d;(y)
implies that for A. [This is true at least if f is continuous and strictly
decreasing, since then we can write f(&)/dx(y) = f(e(&)) for some e(e) < &.
However, to show the result for any f we have only to show it along the
sequence &, = (In n)~'.] Thus we can assume dy € A with dg(y) = 1. Take
y,8 such that 0 ¢ B(y,8) CA and di(y)=1. Let x =y(1 + §/llyl) and
u=1-28/llx|l. Take v,s such that 0 < udz(x) <v <1 <s < dg(x). Take
A, to be a semicone generated by a ball with center x and radius less than 6.
Then &ln P(X € f(¢)A;) > —x© as & = 0. The rest is similar to the case
0 < p < =. Note that when we choose r;, r, the only requirement is r; <r,.
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O

PROOF OF THE REMAINING PARTS OF THEOREM 1. Part (). (b) = (¢) is
obvious; (¢) = (d) = (a) has already been shown. We thus have (a) = (b) left
to prove.

If (a) holds, then we have the hypothesis of part (iii). By Proposition 4.1 we
have (b) holding for m = 2, but now note that if the condition of (b) holds for
any particular m, then (¢) and (d) follow. Hence (d) holds with u replaced by
u X . We thus have (a) for this measure, and hence the hypothesis of (iii) for
it. Using Proposition 4.1, we then obtain

(Xl(J), XZ(J)’ Xé])’ Xij))

- B(B(K,p),p) = By(K, p).
yn j=1
Iterating this argument gives us (b) when m is any power of 2; hence for all
m (by projecting onto smaller product spaces).
Part (i1). Is already shown.
Part (iii). Apply Proposition 4.1. As we now know, the limiting set N must
be a ball B(K, p); as we noted in Proposition 4.1, it cannot be B(K,0). O

5. Some further remarks on {y,}. The asymptotic behaviour of the
normalizers vy, for a distribution showing regular scaled-sample convergence
of index p can be fairly closely described.

LEMMA 5.1. Let 0 <p < » and let vy, 1 be a positive sequence with the
property that vy, ./, = r/? for all r > 0.

G) If 0 <p' < p, then vy, = o((In n)/?"),

Gi) If p < p" < =, then (In n)/?" = o(y,).

PROOF. Let f(x) = ¥|yp(x)- Then f is regularly varying at = of order p~"
(slowing varying if p = =) since, if r € (0, «), we have for any s € (r,*) and
large x that |x]” < x” < |x]® and so, as x — o,

Yiepy  F(rInfx])  f(rlnx)  f(sIn|x]) vy, L Sl/p,

rl/p = =

Y] f(lnx) = f(Inx) = f(lnx) Yix)

The result then follows by Potter’s theorem on regularly varying functions
([2], Theorem 1.5.6). O
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