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We consider non-Markovian, self-interacting random walks (SIRW) on
the one-dimensional integer lattice . The walk starts from the origin and
at each step jumps to a neighboring site. The probability of jumping along
a bond is proportional to w (number of previous jumps along that lattice
bond), where w:N→ R+ is a monotone weight function. Exponential and
subexponential weight functions were considered in earlier papers. In the
present paper we consider weight functionswwith polynomial asymptotics.
These weight functions define variants of the “reinforced random walk.” We
prove functional limit theorems for the local time processes of these random
walks and local limit theorems for the position of the random walker at
late times. A generalization of the Ray–Knight theory of local time arises.

1. Introduction. In the present paper we consider self-interacting ran-
dom walks (SIRW) Xi on the one-dimensional integer lattice �, defined as
follows: the walk starts from the origin of the lattice and at time i+1 it jumps
to one of the two neighboring sites of Xi, so that the probability of jumping
along a bond of the lattice is proportional to

w�number of previous jumps along that bond�;
where

w:N→ R+
is a weight function to be specified later. More formally, for a nearest neighbor
walk xi0 = �x0; x1; : : : ; xi� we define

r�xi0� =
{

0 ≤ j < i: �xj; xj+1� = �xi; xi + 1� or �xi + 1; xi�
}
;(1.1)

l�xi0� =
{

0 ≤ j < i: �xj; xj+1� = �xi; xi − 1� or �xi − 1; xi�
}
y(1.2)

that is, the number r�xi0� [respectively l�xi0�] shows how many times had the
walk xi0 visited the edge adjacent from the right (respectively from the left) to
the terminal site xi. The random walk Xi is governed by the law

P�Xi+1 =Xi + 1�Xi
0 = xi0� =

w�r�xi0��
w�r�xi0�� +w�l�xi0��

= 1−P�Xi+1 =Xi − 1�Xi
0 = xi0�:

(1.3)
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Our aim is to prove limit theorems for these random walks and their local
time processes, with proper scaling.

The “true” self-avoiding random walks defined by the weight functions
w�n� = exp�−g ·n�, g > 0 [respectively, generalizations with weight functions
w
(
n
)
= exp�−g · nκ�, g > 0, κ ∈ �0;1�], have been considered in Tóth (1995)

[respectively, Tóth (1994)]. In the present paper we shall consider weight func-
tions satisfying the following two conditions:

1. Monotonicity. Nonincreasing w defines a self-repelling random walk, while
nondecreasing w defines a self-attracting one.

2. Regular polynomial asymptotic behavior. The most convenient way to for-
mulate this condition is

w�n�−1 = 2−α�α+ 1�nα + 21−αBnα−1 + O �nα−2�;(1.4)

where α ∈ R and B ∈ R are two constant parameters. Since in the definition
(1.3) of jump probabilities only ratios of w’s play any role, the constant fac-
tor in front of the leading term is chosen for convenience only. Note, that
the next-to-leading term is assumed asymptotically “smooth.” The mono-
tonicity condition (1) implies that α < 0 defines self-attracting walks, α > 0
defines self-repelling walks, while for α = 0, lower order terms determine
the character of the self-interaction.

Due to Davis (1990) the recurrence properties of these walks, with w
(
n
)
∼

n−α, α ∈ R are well understood: for α ∈ �−1;∞�, with probability 1, the walk
visits infinitely often every site of the lattice, whereas for α ∈ �−∞;−1� the
walk eventually sticks to one edge of the lattice jumping back and forth on it,
indefinitely. The case α = −1 is somewhat special: w�n� = w�0�+n, w�0� > 0,
defines the so-called (linearly) reinforced random walk. From the results of
Pemantle (1988) it follows that in this case the random walkXi has an asymp-
totic (random) distribution on �, without any scaling. These remarks suggest
that only the cases α ∈ �−1;∞� will show interesting, nontrivial scaling be-
havior. There are three essentially different regimes according to the value of
the parameter α:

Case A. α = 0. We shall call this the asymptotically free case.

Case B. α ∈ �0;∞�. We shall refer to this as the polynomially self-repelling
case.

Case C. α ∈ �−1;0�. This will be called the weakly reinforced case.

Cases A and B show similar scaling behavior and will be treated in parallel
in the main body of the paper. Case C differs essentially from the first two,
the results referring to this case will be presented in a separate note [Tóth
(1996)].
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A very special case of A, the “random walk with partial reflection at ex-
trema” or “once reinforced random walk” has been recently considered in Davis
(1994, 1995) and Nester (1994). These walks are defined by the weight function

w�n� =





2
δ
; for n = 0;

1; for n 6= 0
(1.5)

with the parameter δ > 2. Davis and Nester prove pathwise convergence for
these very special cases. See also the remark at the end of Section 3.

The outline of the paper is as follows: In Section 2 we define the random
processes and variables which will appear as weak limits in later sections.
In Section 3 we formulate the limit theorems referred to in the title. Sec-
tion 4 contains the convenient representation of local time processes of the
self-interacting random walks considered. In Section 5 we prove the limit the-
orems referring to the local times of SIRW—this section is the core of the
paper. In Section 6 the limit theorem for the position of SIRW is proved. In
the Appendix we analyse the “generalized Ray–Knight processes” defined in
Section 2. The results presented in the Appendix are technically needed in
the proof of Theorems 2A and 2B, but they are self-contained and might be
interesting from a purely diffusion-theoretic point of view.

2. Generalized Ray–Knight processes I. The random processes and
variables defined in this section will appear as weak limits in the limit theo-
rems stated in the next section.

The squared Bessel process (BESQδ) of generalized dimension δ ∈ R+ is well
understood. For exhaustive description of these processes and their properties
we refer the reader to Revuz and Yor (1991). For our present purposes it is
more convenient to consider 1

2 times the conventional BESQδ: the stochastic
process R+ 3 t 7→ Z�δ��t� ∈ R+ which solves the SDE

dZ�δ��t� = δ
2
dt+

√
2Z�δ��t�dW�t�; Z�δ��0� ∈ R+;(2.1)

where W�t� is a standard Brownian motion. These processes are well defined
for any δ ≥ 0. The infinitesimal generator of the Feller semigroup acting on
the Banach space

C0�0;∞� =
{
f ∈ C�0;∞�: lim

x→∞
f�x� = 0

}
(2.2)

corresponding to the process Z�δ��·� is

G�δ� = x ∂
2

∂x2
+ δ

2
∂

∂x
(2.3)
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defined on the domain

D �δ� =
{
f ∈ C0�0;∞� ∩C2�0;∞�:

[
G�δ�f ∈ C0�0;∞�

]

∧
[

lim
x↘0

xf′′�x� = 0
]}
:

(2.4)

Let σ0 be the first hitting of zero by Z�δ�:

σ0 = σ0�Z�δ��·�� = inf� t > 0 �Z�δ��t� = 0 �:(2.5)

It is well known that for δ ≥ 2, σ0 = ∞ a.s. and for 0 ≤ δ < 2, σ0 < ∞ a.s.
Furthermore, if δ = 0, then zero is an absorbing point, that is, for t ≥ σ0,
Z�0��t� ≡ 0.

For 0 ≤ δ < 2, we denote by Z̃�δ��·� the process stopped at σ0:

Z̃�δ��t� =
{
Z�δ��t�; for t ∈ �0; σ0�,
0; for t ∈ �σ0;∞�.

(2.6)

The process Z̃�δ��·� is naturally defined for δ < 0, too, as the solution of the
SDE (2.1) until the first hitting of 0, and identically zero afterward. For δ ∈
�−∞;2�, the generator of the process Z̃�δ��·� is the operator G̃�δ� formally given
in (2.3), but now defined on the domain

D̃
�δ� =

{
f ∈ C0�0;∞� ∩C2�0;∞�:

[
G�δ�f ∈ C0�0;∞�

]

∧
[

lim
x↘0

G�δ�f�x� = 0
]}
:

(2.7)

Let δ > 0 and two other parameters, a ≥ 0 and h ≥ 0, be fixed. We define
the process S�δ�a;h�·� by patching together three different, independent BESQ’s:

Z̃
�2−δ�
l �·�, Z�δ��·� and Z̃�2−δ�r �·�, in the following way:

S
�δ�
a;h�y� =





(
Z̃
�2−δ�
l �−y�

∥∥Z̃�2−δ�l �0� = h
)
; for y ∈ �−∞;0�,(

Z�δ��y�
∥∥Z�δ��0� = h

)
; for y ∈ �0; a�,

(
Z̃
�2−δ�
r �y− a�

∥∥Z̃�2−δ�r �0� = Z�δ��a�
)
; for y ∈ �a;∞�;

(2.8)

δ, a and h are fixed parameters of the process and y ∈ R is the “time” variable.
The process S�δ�a;h�·� is graphically represented on Fig. 1. For reasons which

will soon become obvious we call the process S�δ�a;h�·� a generalized Ray–Knight
process.

We denote

ω
�δ�−
a;h = ω−

(
S
�δ�
a;h

)
= inf�y ≤ 0�S�δ�a;h�y� > 0�(2.9)

ω
�δ�+
a;h = ω+

(
S
�δ�
a;h

)
= sup�y ≥ a�S�δ�a;h�y� > 0�:(2.10)

For any δ > 0, that is, 2− δ < 2,
∣∣ω±

∣∣ are finite a.s.
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Fig. 1. The generalized Ray–Knight process S�δ��x�;h�y�. (a) δ ∈ �0;2�; (b) δ ∈ �2;∞�.

Since the process Z̃�2−δ��·� almost surely hits 0 in finite time and it is
stopped at this hitting time, the process S�δ�a;h�·� almost surely has compact

support and the total area under S�δ�a;h�·�,

T
�δ�
a;h =

∫ ω�δ�+a;h

ω
�δ�−
a;h

S
�δ�
a;h�y�dy =

∫ ∞
−∞

S
�δ�
a;h�y�dy;(2.11)

is almost surely finite. For any δ, a and h, the random variable T�δ�a;h defined
in (2.11) has an absolutely continuous distribution. Let

%�δ��t; a; h� = ∂

∂t
P�T�δ�a;h < t�(2.12)

be the density of the distribution of T�δ�a;h. From scaling the BESQ processes
we easily get

λ2%�δ��λ2t; λa; λh� = %�δ��t; a; h�(2.13)



SELF-INTERACTING RANDOM WALKS ON Z 1329

for any λ > 0. Define R+ × R 3 �t; x� 7→ π�δ��t; x� ∈ R+ as

π�δ��t; x� =
∫ ∞

0
%�δ�

(
t

2
; �x�; h

)
dh:(2.14)

The scaling property (2.13) of %�δ� implies

λπ�δ��λ2t; λx� = π�δ��t; x�:(2.15)

We denote by %̂�δ� and π̂�δ� the Laplace transforms of %�δ� (respectively, π�δ�):

%̂�δ��s; a; h� = s
∫ ∞

0
exp�−st�%�δ��t; a; h�dt = sE

(
exp�−sT�δ�a;h�

)
;(2.16)

π̂�δ��s; x� = s
∫ ∞

0
exp�−st�π�δ��t; x�dt =

∫ ∞
0
%̂�δ��2s; �x�; h�dh:(2.17)

These functions scale as

λ2%̂�δ��λ−2s; λa; λh� = %̂�δ��s; a; h�;(2.18)

λπ̂�δ��λ−2s; λx� = π̂�δ��s; x�:(2.19)

In the particular case, δ = 2, S�2�a;h�·� is well known: according to the by now
classical Ray–Knight theorems it is identical to the local time process of stan-
dard one-dimensional Brownian motion stopped at appropriately chosen sam-
pling times. More precisely, let B�t� be a standard Brownian motion on R and
L �x; t� be its local time process. The Ray–Knight theorems [see Chapter XI
of Revuz and Yor (1991)] state that given x ∈ R, h ≥ 0 fixed, if we stop the
Brownian motion B�·� at the stopping time

Tx;h = inf� t ≥ 0: L �x; t� > h�(2.20)

and consider the (shifted) local time process

S x;h�y� = L �x− sgn�x�y;Tx;h�; y ∈ �−∞;∞�;(2.21)

then

Sx;h�·� =d: S
�2�
�x�; h�·�;(2.22)

where =d stands for equality in distribution. Since

Tx;h =
∫ ∞
−∞

Sx;h�y�dy(2.23)

clearly holds, we actually have
(
S x;h�·�;Tx;h

)
=d:

(
S
�2�
�x�; h�·�;T

�2�
�x�; h

)
:(2.24)

This is exactly the content of the Ray–Knight theorems on Brownian local
time. [See XI.2.2. and XI.2.3. of Revuz and Yor (1991).]

Now, using the straightforward identity
∫ ∞

0
|
(
Tx;h < t

)
dh = L �x; t�(2.25)
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we readily get

π�2��t; x� = ∂

∂t

∫ ∞
0

P
(
Tx;h < t

)
dh = ∂

∂t
E
(
L �x; t�

)

= 1√
2πt

exp
(−x2

2t

)(2.26)

or, equivalently,

π̂�2��s; x� =
√
s

2
exp�−√s�x��y(2.27)

that is, R 3 x 7→ π�2��t; x� ∈ �0;∞� [respectively, R 3 x 7→ π̂�2��s; x� ∈ �0;∞�]
are the densities of the distribution of the Brownian motion stopped at time t
(respectively, stopped at an independent random time of exponential distri-
bution with expectation s−1). For the special values δ = 2 and δ = 0 of the
dimension parameter, formulas relating to functionals of the squared Bessel
process become more explicit and, consequently, (2.26) and (2.27) could have
been established by direct computation, without any reference to Ray–Knight
theorems. However, this is not the case for other values of the parameter δ.
Nevertheless, Theorem 4 formulated and proved in the Appendix general-
izes the statement made above: from Theorem 4 it follows that indeed given
t ∈ �0;∞� [respectively s ∈ �0;∞�] fixed, the function x 7→ π�δ��t; x� [re-
spectively x 7→ π̂�δ��s; x�] is a probability density, that is, for any t ∈ �0;∞�
[respectively s ∈ �0;∞�],

∫ ∞
−∞

π�δ��t; x�dx = 1 =
∫ ∞
−∞

π̂�δ��s; x�dx:(2.28)

The two assertions of (2.28) are, of course, equivalent: π̂�δ��s; ·� is the distri-
bution π�δ��t; ·� observed at a “random time” of exponential distribution with
mean value s−1. Furthermore, using the scaling relations (2.15) [respectively
(2.19)], one can eliminate the t (respectively s) parameters from these inte-
grals; that is, one has to prove, say, the right-hand side equality with s = 1.
However, for δ 6= 2 the integrals in (2.28) seem to evade any attempt at ex-
plicit computation. The integrals cannot be computed even for δ = 1, which is
another very special case. We shall prove a further generalization of (2.28) in
the Appendix.

There are no explicit formulas for the distributions π�δ�; however, according
to recent results of Carmona, Petit and Yor (1995) and Davis (1995) they
coincide with the one-dimensional marginal distributions of the “Brownian
motion perturbed at extrema.” See also the remark at the end of Section 3.

In Cases A and B (that is, for the asymptotically free and polynomially
self-repelling walks) the generalized Ray–Knight processes S�δ�a;h�·� will arise
as scaling limits of properly defined local time processes, and later the distri-
butions π̂�δ��s; x�dx will arise as weak limits for the properly scaled position
of the SIRW’s at late times.
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Remark. BESQδ and ˜BESQ
2−δ

processes with δ > 0 also have been re-
cently found as local time processes of reflecting Brownian motion perturbed
by its local time at zero, that is, Xt = �Bt� − µL �0; t� with µ = 2/δ. For de-
tails of different approaches to this problem, see, for example, Le Gall and Yor
(1986), Carmona, Petit and Yor (1994), Perman (1995) or Werner (1995); the
most general approach is that of Carmona, Petit and Yor (1995).

3. Limit theorems. The present section is divided into two subsections:
in Section 3.1. we formulate limit theorems for the local time processes and
hitting times of the SIRW’s. In Section 3.2. we formulate the limit theorems
for the position of the SIRW at late times.

3.1. The local time process and hitting times. Our first results are limit
theorems for the local time processes of the random walks Xi, stopped at
appropriately defined stopping times. We define the (bond) local time process

L�l; i� = #�0 ≤ j < i:Xj = l; Xj+1 = l− 1�; l ∈ Z; i ∈ N;(3.1.1)

and stopping times

T>k;−1 = 0;

T>k;m = inf�i > T>k;m−1:Xi−1 = k− 1;Xi = k�; k > 0;m ≥ 0:
(3.1.2)

T<k;0 = 0;

T<k;m = inf�i > T<k;m−1:Xi−1 = k+ 1;Xi = k� k ≥ 0;m ≥ 1:
(3.1.3)

In plain words, L�l; i� is the number of leftward jumps on the bond l→ l− 1
performed by the random walk up to time i, T>k;m is the time of the m + 1th
arrival to the lattice site k coming from the left and T<k;m is the time of the
mth arrival to the lattice site k coming from the right.

In formula (3.1.4) and thereafter the superscript asterisk (*) stands for
either < or >. We consider the following shifted (bond) local time processes of
the walk stopped at T∗k;m:

S∗k;m�l� = L�k− l;T∗k;m�(3.1.4)

S∗k;m�l� is roughly half of the total number of jumps across the bond �k− l−
1; k− l�:

#�0 ≤ j < T∗k;m: �Xj;Xj+1� = �k− l− 1; k− l��
= 2S∗k;m�l� + |�0; k��l�:

(3.1.5)

Denote

ω∗−k;m = ω−�S∗k;m� = inf�l ≤ 0:S∗k;m�l� > 0�;(3.1.6)

ω∗+k;m = ω+�S∗k;m� = sup�l ≥ k:S∗k;m�l� > 0�:(3.1.7)
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In plain words, k−ω∗+k;m (respectively k−ω∗−k;m−1) is the leftmost (respectively

rightmost) site visited by the stopped walk X
T∗k;m
0 .

From (3.1.5) it clearly follows that

T∗k;m = 2
ω∗+k;m∑
l=ω∗−k;m

S∗k;m�l� + k = 2
∞∑

l=−∞
S∗k;m�l� + k:(3.1.8)

Looking at the formal definitions only, in principle, these local times or
hitting times might be infinite, that is, it could happen that the site k ∈ Z
is never hit. From the results of Davis (1990) it follows that in the cases
considered in the present paper, with probability 1, this is not the case: all the
random variables defined above are finite almost surely.

The following two theorems and their corollaries describe the precise
asymptotics of the local time processes S∗k;m�·� and hitting times T∗k;m in the
asymptotically free and polynomially self-repelling cases.

Theorem 1A (Asymptotically free case: α = 0). The limit

δ = 2w�0�−1 + 2
∞∑
j=1

�w�2j�−1 −w�2j− 1�−1�(3.1.9)

exists; δ ∈ �0;2� for self-repelling walks (i.e., w nonincreasing) and δ ∈ �2;∞�
for self-attracting walks (i.e., w nondecreasing).

Let x ∈ �0;∞�, h ≥ 0 and ∗ = < or > be fixed. In the A → ∞ limit the
following weak convergence holds in the space R− × R+ ×D�−∞;∞�:

(
ω∗−�Ax�;�Ah�

A
;
ω∗+�Ax�;�Ah�

A
;
S∗�Ax�;�Ah���Ay��

A

)

⇒
(
ω
�δ�−
x;h ; ω

�δ�+
x;h ; S

�δ�
x;h�y�

)
:

(3.1.10)

Theorem 1B [Polynomially self-repelling case: α ∈ �0;∞�]. Denote

β = 1
2α+ 1

∈ �0;1�:(3.1.11)

Let x ∈ �0;∞�; h ≥ 0 and ∗ = < or > be fixed. In the A→∞ limit the following
weak convergence holds in the space R− × R+ ×D�−∞;∞�:

(
ω∗−�Ax�;�Aβh�

A
;
ω∗+�Ax�;�Aβh�

A
;
S∗�Ax�;�Aβh���Ay��

Aβ

)

⇒
(
ω
�1�−
x;h ;ω

�1�+
x;h ; S

�1�
x;h�y�

)
:

(3.1.12)

The generalized Ray–Knight process S�δ�x;h�·� and random variables ω�δ�±x;h

appearing on the right hand side of (3.1.10) and (3.1.12) are defined in (2.8)–
(2.10).
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Remark. It seems rather surprising (at least for the author) that in the
polynomially self-repelling case (Case B), the exponent α is reflected only in
the constant scaling factor β and the limit process is unaffected; it is always
a squared Wiener process.

Immediate corollaries of the previous theorems are the following limit laws
for the hitting times defined in (3.1.2) and (3.1.3):

Corollary 1A (Asymptotically free case: α = 0). Let x, h, ∗ and δ be as
in Theorem 1A. Then

T∗�Ax�; �Ah�
2A2

⇒ T
�δ�
x;h(3.1.13)

as A→∞.

Corollary 1B [Polynomially self-repelling case: α ∈ �0;∞�]. Let x, h, ∗
and β be as in Theorem 1B. Then

T∗�Ax�; �Aβh�
2A2β

⇒ T
�1�
x;h:(3.1.14)

as A→∞.

The random variables T�δ�x;h appearing on the right-hand side of (3.1.13) and
(3.1.14) are defined in (2.11). These corollaries will be used in the proof of
Theorems 2A and 2B.

3.2. Local limit theorem for the position of the random walk. The sec-
ond group of results concerns the limiting distribution of the SIRW Xn for
late times. We denote by P�n;k�, n ∈ N, k ∈ Z, the distribution of our self-
interacting random walk at time n,

P�n;k� = P�Xn = k�;(3.2.1)

and by R�s; k�, s ∈ R+, k ∈ Z, the distribution of the walk observed at an
independent random time θs, of geometric distribution

P�θs = n� = �1− e−s�e−sn;(3.2.2)

R�s; k� = P�Xθs
= k� = �1− e−s�

∞∑
n=0

e−snP�n;k�:(3.2.3)

We define the following rescaled “densities” of the above distributions

πA�s; x� = A1/2P��At�; �A1/2x��;(3.2.4)

π̂A�s; x� = A1/2R�A−1s; �A1/2x��(3.2.5)

t, s ∈ R+, x ∈ R. It is straightforward that π̂A is exactly the Laplace transform
of πA.
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Theorem 2A (Asymptotically free case: α = 0). For any s ∈ R+ and almost
all x ∈ R;

π̂A�s; x� → π̂�δ��s; x�(3.2.6)

as A→∞; where the probability density R 3 x 7→ π̂�δ��s; x� is that defined in
�2:17� with δ given in �3:1:9�.

Theorem 2B [Polynomially self-repelling case: α ∈ �0;∞�]. For any s ∈ R+
and almost all x ∈ R;

π̂A�s; x� → β1/2π̂�1��s; β1/2x�(3.2.7)

as A→∞; where the probability density R 3 x 7→ π̂�1��s; x� is that defined in
�2:17� with δ = 1 and β is given in �3:1:11�.

These are of course local limit theorems for the self-interacting random
walks, observed at an independent random time θs/A of geometric distribution
with mean e−s/A�1 − e−s/A�−1 ∼ A/s. In particular, the (integral) limit laws
follow:

�3:2:8� Case A, for α = 0, P�A−1/2Xθs/A
< x� →

∫ x
−∞

π̂�δ��s; y�dyy

�3:2:9� Case B, for α ∈ �0;∞�, P�A−1/2Xθs/A
< x� →

∫ β1/2x

−∞
π̂�1��s; y�dy:

These are a little bit short of stating the limit theorems for deterministic time:

�3:2:10� Case A, for α = 0, P�A−1/2X�At� < x� →
∫ x
−∞

π�δ��t; y�dyy

�3:2:11� Case B, for α ∈ �0;∞�, P�A−1/2X�At� < x� →
∫ β1/2x

−∞
π�1��t; y�dy

Of course, we can conclude that the sequence A−1/2X�At�, with t ∈ R+ fixed
and A→∞, is tight and if it converges in distribution, then (3.2.10)/(3.2.11)
also hold.

Remark. Carmona, Petit and Yor (1995) and Davis (1995) considered the
“Brownian motion perturbed at extrema,” that is, the stochastic process for-
mally defined by

Yt = Bt + α sup
s≤t

Ys + β inf
s≤t
Ys:(3.2.12)

It turns out that for α = β = 2/δ these processes have the same family of local
time processes as those appearing in our Theorems 1A and 1B. Furthermore,
Davis (1995) proves that the properly scaled once reinforced random walk,
defined by (1.5), converges to Y· as a process. In Theorems 2A and 2B we
prove only convergence of one-dimensional distributions, but for a much wider
family of self-interacting random walks. Actually, our limiting one-dimensional
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distributions coincide with the one-dimensional marginal distributions of the
process Yt. The problem of higher-dimensional distributions of our general
SIRW’s remains open.

4. Representation of the local time process in terms of Pólya urns.

4.1. Generalized Pólya urn schemes. Given two weight functions

r:N→ R+(4.1.1)

b:N→ R+;(4.1.2)

a generalized Pólya urn scheme is a Markov chain �ρi; βi� on N × N with
transition probabilities

P��ρi+1; βi+1� = �k+ 1; l���ρi; βi� = �k; l�� =
r�k�

r�k� + b�l� ;(4.1.3)

P��ρi+1; βi+1� = �k; l+ 1���ρi; βi� = �k; l�� =
b�l�

r�k� + b�l�(4.1.4)

and no other transitions allowed. Usually the initial values �ρ0; β0� = �0;0�
are assumed and βi and ρi are interpreted as the number of blue and red
marbles, respectively, drawn from the urn up to time i. Denote by τm the time
when the mth red marble is drawn and by µ�m� the number of blue marbles
drawn before the mth red one:

τm = min� i �ρi =m�;(4.1.5)

µ�m� = βτm :(4.1.6)

The following functions are essential in the study of the Pólya urn scheme
defined above:

Rp�n� =
n−1∑
j=0

�r�j��−p; p ∈ N;(4.1.7)

Bp�n� =
n−1∑
j=0

(
b�j�

)−p
; p ∈ N:(4.1.8)

We shall be particularly interested in p = 1;2;3;4.

Lemma 1. For any m ∈ N and λ < min�r�j�: 0 ≤ j ≤ m− 1� the following
identity holds:

E
(µ�m�−1∏

j=0

(
1+ λ

b�j�

))
=

m−1∏
j=0

(
1− λ

r�j�

)−1

:(4.1.9)
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In particular,

E�B1�µ�m��� = R1�m�;(4.1.10)

E��B1�µ�m�� −EB1�µ�m���2�
= R2�m� +E�B2�µ�m���;

(4.1.11)

E��B1�µ�m�� −EB1�µ�m���4�
= 6R4�m� + 9R2

2�m� + 6R2
1�m�R2�m�

− 12R1�m�E�B1�µ�m��B2�µ�m���
+ 8R1�m�E�B3�µ�m���
+ 12�R2

1�m� +R2�m��E�B2�µ�m���
+ 6 E�B2

1�µ�m��B2�µ�m���
− 8 E�B1�µ�m��B3�µ�m��� + 6 E�B4�µ�m���
+ 6 E�B2�µ�m���2:

(4.1.12)

Proof. The proof of (4.1.9) follows from standard martingale considera-
tions. One possibility is using Rubin’s representation of the generalized Pólya
urn scheme, given in the Appendix of Davis (1990). Expanding (4.1.9) to fourth
order in λ yields (4.1.10)–(4.1.12). We leave the standard details of this proof
as an exercise for the reader. 2

Remark. The explicit form of the expressions on the right-hand sides of
(4.1.10) and (4.1.11) will be used later. The right-hand side of (4.1.12) looks
rather discouraging, but in our concrete application, we shall need only esti-
mates on its order of magnitude.

4.2. The local time process. For the sake of definiteness we consider the
case of superscript >, that is, we stop the SIRW at the hitting time T>k;m. The
case of superscript < is done in a very similar way, with straightforward slight
changes.

Let �ρ�l�i ; β
�l�
i �, l ∈ Z, be independent Pólya urn schemes with weight func-

tions

r�l��j� = w�2j+ 1�; b�l��j�=w�2j�; for l∈ �−∞;0� ∪ �k+ 1;∞�;(4.2.1)

r�l��j� = w�2j�; b�l��j�=w�2j+ 1�; for l∈ �1; k− 1�;(4.2.2)

r�l��j� = w�2j� + 1; b�l��j�=w�2j�; for l=k:(4.2.3)
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Denote by µ�l��m� the random variables defined in (4.1.6), the superscript l
shows to which of the urn schemes it belongs.

The extension to self-interacting walks of Knight’s (1963) description of the
local time process S>k;m�l�, l ∈ �, as a Markov chain is formally exhaustively
explained in several papers; see, for example, Davis (1990) or Tóth (1995).
According to these arguments S>k;m�l�, l ∈ �, is obtained by patching together
three homogeneous Markov chains in the following way:

1. In the interval l ∈ �0; k − 2�, that is, steps 0 → 1;1 → 2; : : : ; �k − 2� →
�k− 1�,

S>k;m�0� =m; S>k;m�l+ 1� = µ�l+1��S>k;m�l� + 1�;
l = 0;1; : : : ; k− 2:

(4.2.4)

This process will be the object of a “first Ray–Knight theorem.”
2. The single step �k− 1� → k is exceptional:

S>k;m�k− 1� = given by (4.2.4);

S>k;m�k� = µ�k��S>k;m�k− 1� + 1�:
(4.2.5)

3. In the intervals l ∈ �−∞;0� [respectively, l ∈ �k + 1;∞�], that is, steps
0 → −1, −1 → −2, −2 → −3; : : : [respectively, k → �k + 1�, �k + 1� →
�k+ 2�; �k+ 2� → �k+ 3�; �k+ 3� → �k+ 4�; : : :],

S>k;m�0� =m; S>k;m�l− 1� = µ�l��S>k;m�l��; l = 0;−1;−2; : : :(4.2.6)

respectively

S>k;m�k� = given by (4.2.5);

S>k;m�l+ 1� = µ�l+1��S>k;m�l��; l = k; k+ 1; k+ 2; : : :�:
(4.2.7)

Due to (4.2.1) these last two Markov chains have the same transition laws.
These will be the object of a “second Ray–Knight theorem.”

The proof of Theorems 1A and 1B will consist of proving limit theorems for
the Markov chains given in (4.2.4) [respectively, (4.2.6)–(4.2.7)] and proving
that the single exceptional step given in (4.2.5) does not have any effect on
the limit (i.e., it does not spoil continuity of the limit process).

5. Proof of Theorems 1A and 1B.

5.1. Preparations. As suggested by the representation of the local times
given in the previous section, we consider two homogeneous Markov chains
Z �l� and Z̃ �l�, l = 0;1;2; : : :, on the state space N, defined as follows:

Z �l+ 1� = µ�l+1��Z �l� + 1�; Z̃ �l+ 1� = µ̃�l+1��Z̃ �l��;(5.1.1)
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where the processes �µ�l��·��l∈N are those defined in (4.1.5) and (4.1.6), belong-

ing to i.i.d. Pólya urn schemes ��ρ�l�i ; β
�l�
i ��l∈N, with weight functions

r�j� = w�2j�; b�j� = w�2j+ 1�:(5.1.2)

Similarly, the processes �µ̃�l��·��l∈N belong to i.i.d. Pólya urn schemes

��ρ̃�l�i ; β̃
�l�
i ��l∈N, with weight functions

r̃�j� = w�2j+ 1�; b̃�j� = w�2j�:(5.1.3)

We shall also need the hitting time

σ̃0 = σ̃0�Z̃ �·�� = inf�l: Z̃ �l� = 0�:(5.1.4)

From (5.1.1), (4.1.5) and (4.1.6) we see that σ̃0 is actually the extinction time
of Z̃ �·�:

Z̃ �l� ≡ 0 for l ≥ σ̃0:(5.1.5)

Lemma 1 suggests the introduction of the functions

Up�n� =
n−1∑
j=0

�w�2j��−p; p = 1;2;3;4;(5.1.6)

Vp�n� =
n−1∑
j=0

(
w�2j+ 1�

)−p
; p = 1;2;3;4:(5.1.7)

Using formulas (4.1.10) and (4.1.11) of Lemma 1 and the functions introduced
above, we get the identities

E�V1�Z �l+ 1���Z �l� = n� = U1�n+ 1�;(5.1.8)

D2�V1�Z �l+ 1���Z �l� = n� = U2�n+1�+E�V2�Z �l+1���Z �l�=n�;(5.1.9)

E�U1�Z̃ �l+ 1���Z̃ �l� = n� = V1�n�;(5.1.10)

D2�U1�Z̃ �l+ 1���Z̃ �l� = n� = V2�n� +E�U2�Z̃ �l+ 1���Z̃ �l� = n�:(5.1.11)

As both functions n 7→ U1�n� and n 7→ V1�n� are bijections between N and
their ranges it is more convenient to consider the Markov chains

Y �l� = V1�Z �l��; Ỹ �l� = U1�Z̃ �l��; l = 0;1;2; : : : ;(5.1.12)

instead of Z �l� [respectively Z̃ �l�]. With this change of variable, formulas
(5.1.8)–(5.1.11) transform as

E�Y �l+ 1��Y �l� = x� = U1�V−1
1 �x� + 1�;(5.1.13)
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D2�Y �l+ 1��Y �l� = x� = U2�V−1
1 �x� + 1�

+E�V2 ◦V−1
1 �Y �l+ 1���Y �l� = x�;

(5.1.14)

E�Ỹ �l+ 1��Ỹ �l� = x� = V1 ◦U−1
1 �x�;(5.1.15)

D2�Ỹ �l+ 1��Ỹ �l� = x� = V2 ◦U−1
1 �x�;

+E�U2 ◦U−1
1 �Ỹ �l+ 1���Ỹ �l� = x�:

(5.1.16)

We introduce the functions F, G: Ran�V1� → R and F̃, G̃: Ran�U1� → R:

F�x� = E�Y �l+ 1��Y �l� = x� − x
= U1�V−1

1 �x� + 1� − x;
(5.1.17)

G�x� = E��Y �l+ 1� −E�Y �l+ 1��Y �l� = x��2�Y �l� = x�
= U2�V−1

1 �x� + 1� +E�V2 ◦V−1
1 �Y �1���Y �0� = x�;

(5.1.18)

F̃�x� = E�Ỹ �l+ 1��Ỹ �l� = x� − x
= V1 ◦U−1

1 �x� − x;
(5.1.19)

G̃�x� = E��Ỹ �l+ 1� −E�Ỹ �l+ 1��Ỹ �l� = x��2�Ỹ �l� = x�
= V2 ◦U−1

1 �x� +E�U2 ◦U−1
1 �Ỹ �1���Ỹ �0� = x�:

(5.1.20)

Since Y �·� and Ỹ �·� are Markov chains, from (5.1.13)–(5.1.20) it follows that
the processes

M �l� = Y �l� −Y �0� −∑l−1
j=0F�Y �j��;

M̃ �l� = Ỹ �l� − Ỹ �0� −∑l−1
j=0 F̃�Ỹ �j��

(5.1.21)

are martingales with quadratic variation processes

�M;M ��l� =
l−1∑
j=0

G�Y �j��;

�M̃ ; M̃
〉
�l� =

l−1∑
j=0

G̃�Ỹ �j��:
(5.1.22)

Later, when proving tightness, we shall also need the functions H: Ran�V1� →
� and H̃: Ran�U1� → R:

H�x� = E��Y �l+ 1� −E�Y �l+ 1��Y �l� = x��4�Y �l� = x�;(5.1.23)

H̃�x� = E��Ỹ �l+ 1� −E�Ỹ �l+ 1��Ỹ �l� = x��4�Ỹ �l� = x�:(5.1.24)
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5.2. Asymptotics of the relevant functions. In the present subsection we
give the asymptotics of the relevant functions F, G, H, F̃, G̃ and H̃ to be
used in the proof of Theorems 1A and 1B. All formulas are valid for large
values of the variable and are obtained from (1.4) in a rather straightforward
way. The three cases listed at the end of the Introduction show essentially
different asymptotic behavior. These essentially different asymptotics explain
why exactly these are the different regimes.

Asymptotically free case: α = 0 (Case A). From (1.4) we get

U1�n� = n−B log n+ u+ O �n−1�;(5.2.1)

V1�n� = n−B log n+ v+ O �n−1�;(5.2.2)

V2�n� = n+ O �log n� = U2�n�:(5.2.3)

In (5.2.1) [respectively, (5.2.2)], u and v are two real constants. We define

δ = 2 lim
n→∞
�U�n+ 1� −V�n�� = 2+ 2�u− v�:(5.2.4)

In the self-repelling case, that is, w�k+ 1� ≤ w�k�, we write

δ

2
= w�0�−1 +

∞∑
j=1

�w�2j�−1 −w�2j− 1�−1�

= 1−
∞∑
j=0

�w�2j+ 1�−1 −w�2j�−1�
(5.2.5)

and hence we conclude

0 < 2w�0�−1 ≤ δ ≤ 2:(5.2.6)

On the other hand, in the case of self-attraction, that is, w�k+ 1� ≥ w�k�, we
write

δ

2
= w�0�−1 −

∞∑
j=1

�w�2j− 1�−1 −w�2j�−1�

= 1+
∞∑
j=0

�w�2j�−1 −w�2j+ 1�−1�;
(5.2.7)

which implies

2 ≤ δ ≤ 2w�0�−1 <∞:(5.2.8)

The asymptotics of the functions F, F̃, G, G̃, H and H̃ is given in the next
lemma.
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Lemma 2A (Asymptotically free case: α = 0). The following asymptotics
hold for x� 1:

F�x� = δ
2
+ O �x−1�;(5.2.9)

F̃�x� = 2− δ
2
+ O �x−1�;(5.2.10)

G�x� = 2x+ O �log x� = G̃�x�;(5.2.11)

H�x� = O �x2� = H̃�x�:(5.2.12)

Proof. Clearly

F�x� = U1�n+ 1� −V1�n� with n = V−1
1 �x�;(5.2.13)

F̃�x� = V1�n� −U1�n� with n = U−1
1 �x�:(5.2.14)

From (5.2.1) it follows that

U−1
1 �x� = x+ O �log x� = V−1

1 �x�:(5.2.15)

Using (5.2.1), (5.2.2), (5.2.15) and (5.2.13) [respectively, (5.2.14)], we easily get
(5.2.9) [respectively, (5.2.10)].

To prove (5.2.11) note first that

U2 ◦U−1
1 �x� = x+ O �log x� = V2 ◦V−1

1 �x�:(5.2.16)

Hence, using (5.1.17)–(5.1.19), (5.2.9)/(5.2.10) and Jensen’s inequality,

E�U2 ◦U−1
1 �Y �1���Y �0� = x�

= x+ O �log x� = E�V2 ◦V−1
1 �Y �1���Y �0� = x�:

(5.2.17)

Using this in the expressions (5.1.18)–(5.1.20), we get (5.2.11).
The details of the proof of (5.2.12) are lengthy and not very illuminating.

The first three terms on the right-hand side of (4.1.12) are estimated directly.
For the remaining seven terms, one applies repeatedly the method of the proof
of (5.2.23). We omit these details. 2

Polynomially self-repelling case: α ∈ �0;∞� (Case B). In this case, (1.4)
implies

U1�n� = nα+1 +
(
B

α
+ α+ 1

2

)
nα + O �nα−1 ∨ 1�;(5.2.18)

V1�n� = nα+1 +
(
B

α
− α+ 1

2

)
nα + O �nα−1 ∨ 1�;(5.2.19)

U2�n� =
�α+ 1�2
2α+ 1

n2α+1 + O �n2α� = V2�n�:(5.2.20)
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We shall denote

β = 1
2α+ 1

:(5.2.21)

Using (5.2.18)–(5.2.20), we get the following asymptotic expressions for the
functions F, F̃, G, G̃, H and H̃.

Lemma 2B [Polynomially self-repelling case: α ∈ �0;∞�]. The following
asymptotics hold for x� 1:

F�x� = α+ 1
2

xα/�α+1� + O �x�α−1�/�α+1� ∨ 1� = F̃�x�;(5.2.22)

G�x� = 2
�α+ 1�2
2α+ 1

x�2α+1�/�α+1� + O �x2α/�α+1�� = G̃�x�;(5.2.23)

H�x� = O �x�4α+2�/�α+1�� = H̃�x�:(5.2.24)

Proof. From (5.2.18) and (5.2.19) we get

U−1
1 �x� = x1/�α+1� + O �1� = V−1

1 �x�:(5.2.25)

Now, from (5.2.18), (5.2.19), (5.2.25) and (5.2.13) [respectively, (5.2.14)], the
asymptotic formulas (5.2.22) follow directly.

The derivation of (5.2.23) is slightly more complicated: first note that from
(5.2.19) and (5.2.25) it follows that there are two finite constants, say C1 and
C2, so that for any x > 0 and z ≥ 0,

C1x
α/�α+1��z− x�
≤ V2 ◦V−1

1 �z� −V2 ◦V−1
1 �x�

≤ C1x
α/�α+1��z− x� +C2x

−1/�α+1��z− x�2:
(5.2.26)

We insert this in the definition (5.1.18) of the function G and get

C1x
α/�α+1�F�x� ≤ G�x� − ��U2�V−1

1 �x� + 1� +V2 ◦V−1
1 �x���

≤ C1x
α/�α+1�F�x� +C2x

−1/�α+1�G�x�:
(5.2.27)

From these bounds and the explicitly known asymptotics of the functions in-
volved, the asymptotics (5.2.23) of the function G now follows in a straight-
forward way. An identical derivation holds also for the function G̃.

The proof of (5.2.24) goes through very similar steps, but it is considerably
longer. Again, the first three terms on the right-hand side of (4.1.12) are esti-
mated directly and the remaining seven terms are estimated by considerations
similar to (5.2.26) and (5.2.27). As the details are lengthy and of no particular
interest, we do not present them here.
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5.3. Scaling. The proper scaling of the processes Y �·� and Ỹ �·� is deter-
mined by the dominant terms in the asymptotics of the functionsF,G (respec-
tively F̃, G̃). The scaling of the processes Z �·� and Z̃ �·�will be later determined
by the functional relations (5.1.12).

Asymptotically free case: α = 0 (Case A). Equations (5.2.9)–(5.2.11) suggest
the scaling

YA�t� = A−1Y ��At��; ỸA�t� = A−1Ỹ ��At��:(5.3.1)

The rescaled martingales MA�·� and M̃A�·� and their quadratic variation pro-
cesses will be

MA�t� = A−1M ��At��

= YA�t� −YA�0� −
∫ A−1�At�

0
F�AYA�s��ds;

(5.3.2)

M̃A�t� = A−1M̃ ��At��

= ỸA�t� − ỸA�0� −
∫ A−1�At�

0
F̃�AỸA�s��ds;

(5.3.3)

�MA;MA��t� = A−2�M;M ���At��

=
∫ A−1�At�

0
A−1G�AYA�s��ds;

(5.3.4)

�M̃A; M̃A��t� = A−2�M̃ ; M̃ ���At��

=
∫ A−1�At�

0
A−1G̃�AỸA�s��ds:

(5.3.5)

Polynomially self-repelling case: α ∈ �0;∞� (Case B). Now, (5.2.22) and
(5.2.23) suggest

YA�t� = �βA�−�α+1�Y ��At��; ỸA�t� = �βA�−�α+1�Ỹ ��At��:(5.3.6)

The rescaled martingales MA�·� and M̃A�·� and their quadratic variation pro-
cesses will be now

MA�t� = �βA�−�α+1�M ��At��

= YA�t� −YA�0� −
∫ A−1�At�

0
β−1�βA�−αF��βA�α+1YA�s��ds;

(5.3.7)

M̃A�t� = �βA�−�α+1�M̃ ��At��

= ỸA�t� − ỸA�0� −
∫ A−1�At�

0
β−1�βA�−αF̃��βA�α+1ỸA�s��ds;

(5.3.8)

�MA;MA��t� = �βA�−2�α+1��M;M� ��At��

=
∫ A−1�At�

0
β−1�βA�−�2α+1�G��βA�α+1YA�s��ds

(5.3.9)
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�M̃A; M̃A��t� = �βA�−2�α+1��M̃ ; M̃ ���At��

=
∫ A−1�At�

0
β−1�βA�−�2α+1�G̃��βA�α+1ỸA�s��ds:

(5.3.10)

The functional relations (5.1.12), the asymptotics (5.2.15) [respectively,
(5.2.25)] and the scaling (5.3.1) [respectively, (5.3.6)] determine the proper
scaling of the processes Z �·� and Z̃ �·�:

Asymptotically free case: α = 0 (Case A):

ZA�t� = A−1Z ��At��; Z̃A�t� = A−1Z̃ ��At��:(5.3.11)

Polynomially self-repelling case: α ∈ �0;∞� (Case B):

ZA�t� = �βA�−1Z ��At��; Z̃A�t� = �βA�−1Z̃ ��At��:(5.3.12)

5.4. Tightness. Given the asymptotic estimates (5.2.9)–(5.2.12) [respec-
tively, (5.2.22)–(5.2.24)], the proof of tightness is rather standard: we have
to check Kolmogorov’s criterion; that is, the conditions of Theorem 12.3 from
Billingsley (1968). We give the details of the proof for the processes YA�·� in
the asymptotically free case (α = 0); the proof for the other cases is completely
identical.

Let Ml, l = 0;1;2; : : : ; be an arbitrary discrete parameter martringale and
write

ξl =Ml −Ml−1; l = 1;2;3; : : : :(5.4.1)

The following identity holds:

E��Ml −Mk�4� = 6
l∑

j=k+1

E�ξ2
j�Mj−1 −Mk�2�

+ 4
l∑

j=k+1

E�ξ3
j�Mj−1 −Mk�� +

l∑
j=k+1

E�ξ4
j�;

(5.4.2)

which, via Jensen’s inequality, yields

E��Ml −Mk�4� ≤ 6
l∑

j=k+1

E�E�ξ2
j �Fj−1��Mj−1 −Mk�2�

+4
l∑

j=k+1

√
E�E�ξ4

j�Fj−1�3/2�Mj−1 −Mk�2�

+
l∑

j=k+1

E�E�ξ4
j �Fj−1��:

(5.4.3)
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Applied to the martingale MA�·� defined in (5.3.2) this gives

E��MA�t� −MA�s��4�

≤ 6
∫ �At�/A
�As�/A

E�A−1G�AYA�r���MA�r� −MA�s��2�dr

+ 4A−1/2
∫ �At�/A
�As�/A

√
E��A−2H�AYA�r���3/2�MA�r� −MA�s��2�dr

+A−1
∫ �At�/A
�As�/A

E�A−2H�AYA�r���dr:

(5.4.4)

From the asymptotics (5.2.11) and (5.2.12) it follows that there exists a finite
constant C, such that for any y > 0,

A−1G�Ay� < C�y+ 1�; A−2H�Ay� < C�y2 + 1�:(5.4.5)

Consider the stopping times

τy;A = inf�t ≥ 0: YA�t� ≥ y�:(5.4.6)

From (5.4.4) we easily get for t, s ≤ τy;A,

E��MA�t ∧ τy;A� −MA�s ∧ τy;A��4�
≤K�y���t− s� ∨A−1�2;

(5.4.7)

where K�y� is a constant depending on y only. Hence, applying Theorem 12.3
of Billingsley (1968), we get the tightness of the martingales MA�t∧ τy;A� for
any y <∞. This also implies tightness of the martingales MA�t�. From (5.3.2)
it is straightforward to see that tightness of the processes MA�·� and YA�·� is
equivalent.

5.5. Identification of the limiting processes. Assume, with some abuse of
notation, that YA�·� and ỸA�·� are weakly convergent subsequences:

YA�·� ⇒ Y�·�; ỸA�·� ⇒ Ỹ�·�:(5.5.1)

From this it follows that the martingales MA�·� and M̃A�·� converge weakly,
too:

MA�·� ⇒M�·�; M̃A�·� ⇒ M̃�·�:(5.5.2)

Asymptotically free case: α = 0 (Case A). We use (5.3.2)–(5.3.5) and the
asymptotics (5.2.9)–(5.2.11) and get

M�t� = Y�t� −Y�0� − δ
2
t; �M;M��t� = 2

∫ t
0
Y�s�ds;(5.5.3)

M̃�t� = Ỹ�t� − Ỹ�0� − 2− δ
2

t; �M̃; M̃��t� = 2
∫ t

0
Ỹ�s�ds:(5.5.4)



1346 B. TÓTH

These relations yield the following SDE’s for Y�·� [respectively, Ỹ�·�]:

dY�t� = δ
2
dt+

√
2Y�t�dW�t�;

dỸ�t� = 2− δ
2

dt+
√

2Ỹ�t�dW̃�t�;
(5.5.5)

which are valid as long as Y�t� > 0 [respectively, Ỹ�t� > 0]. These are pre-

cisely the SDE’s of the BESQδ (respectively, ˜BESQ
2−δ

) processes described in
Section 2.

Polynomially self-repelling case: α ∈ �0;∞� (Case B). Now, (5.3.7)–(5.3.10),
(5.2.22), (5.2.23) and the explicit value of β given in (5.2.21) lead to

M�t� = Y�t� −Y�0� − �α+ 1��2α+ 1�
2

∫ t
0
Y�s�α/�α+1� ds;(5.5.6)

�M;M��t� = 2�α+ 1�2
∫ t

0
Y�s��2α+1�/�α+1� ds;(5.5.7)

M̃�t� = Ỹ�t� − Ỹ�0� − �α+ 1��2α+ 1�
2

∫ t
0
Ỹ�s�α/�α+1� ds;(5.5.8)

�M̃; M̃��t� = 2�α+ 1�2
∫ t

0
Ỹ�s��2α+1�/�α+1� ds:(5.5.9)

We write these relations again as SDE’s:

dY�t� = �α+ 1��2α+ 1�
2

Y�t�α/�α+1� dt

+
√

2�α+ 1�Y�t��2α+1�/�2α+2� dW�t�;

dỸ�t� = �α+ 1��2α+ 1�
2

Ỹ�t�α/�α+1� dt

+
√

2�α+ 1�Ỹ�t��2α+1�/�2α+2� dW̃�t�:

(5.5.10)

These SDE’s are again valid as long as Y�t� > 0 [respectively, Ỹ�t� > 0]. The
SDE’s in (5.5.10) are easily identified as the SDE’s of the �α + 1�th power of
BESQ1.

The SDE’s (5.5.5) and (5.5.10) determine uniquely the limit processes Y�·�
and Ỹ�·� as long as these processes do not hit the boundary 0 = ∂R+. In order
to identify completely the limit processes we have to describe precisely their
behavior at the boundary.

5.6. Reflection at the boundary. In this subsection we prove that the limit
processes Y�·� are reflected instantaneously at 0 = ∂R+. For y ∈ R+ let us
denote

τy = inf�l ≥ 0: Y �l� ≥ y�;(5.6.1)

τy;A = inf�t ≥ 0:YA�t� ≥ y�:(5.6.2)
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We shall prove that for any η > 0,

lim
y→0

lim sup
A→∞

P�τy;A > η�YA�0� = 0� = 0;(5.6.3)

from which the assertion follows.
Asymptotically free case: α = 0 (Case A). In this case,

τy;A = A−1τAy:(5.6.4)

We apply directly the optional sampling theorem [see Breiman (1968)] to the
martingale M �l� defined in (5.1.21) with the stopping time τy:

0 = E�M �τy ∧ l��Y �0� = 0�

= E�Y �τy ∧ l��Y �0� = 0� −E
(τy∧l−1∑

j=0

F�Y �j���Y �0� = 0
)
:

(5.6.5)

However, from (5.2.5) and (5.2.7) we see that

inf
x≥0

F�x� = min
{

2
w�0� ;2

}
> 0:(5.6.6)

From (5.6.5) and (5.6.6) we conclude

E�τy ∧ l�Y �0� = 0� ≤ max
{
w�0�

2
;

1
2

}
E�Y �τy ∧ l��Y �0� = 0�:(5.6.7)

Using this inequality it follows that for any t <∞,

lim sup
A→∞

E�τy;A ∧ t�YA�0� = 0�

= lim sup
A→∞

E�A−1�τAy ∧ �At���Y �0� = 0�(5.6.8)

≤ max
{
w�0�

2
;

1
2

}
lim sup
A→∞

E�A−1Y �τAy ∧ �At���Y �0� = 0�:(5.6.9)

In order to estimate the right-hand side of (5.6.8) and (5.6.9), note first that
the following simple bound holds for the biggest jump of Y �·� before τy ∧ l:

E
(

max
1≤k≤τy∧l

�Y �k� −Y �k− 1��
)
≤
(
l max

0≤z≤y
H�z�

)1/4

:(5.6.10)

Hence, using the asymptotics (5.2.12) of the function H, we get the “overshoot
bound”

lim sup
A→∞

E
(
A−1Y �τAy ∧ �At��

∣∣∣∣
∣∣∣∣Y �0� = 0

)
≤ y;(5.6.11)

which combined with (5.6.9) leads us to

lim sup
A→∞

E�τy;A ∧ t�YA�0� = 0� ≤ max
{
w�0�

2
;

1
2

}
y;(5.6.12)
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which is valid for any t < ∞. Hence, via Markov’s inequality, (5.6.3) follows
for the asymptotically free case.

Polynomially self-repelling case: α ∈ �0;∞� (Case B). This is slightly more
complicated. In this case,

τy;A = A−1τ�βA�α+1y:(5.6.13)

For any x > 0, z ≥ 0, the following inequality holds:

z1/�α+1� − x1/�α+1� ≥ 1
α+ 1

x−α/�α+1��z− x�

− 1
2

α

�α+ 1�2x
−�2α+1�/�α+1��z− x�2:

(5.6.14)

From this it follows that

E�Y �l+ 1�1/�α+1��Y �l� = x� − x1/�α+1�

≥ 1
α+ 1

x−α/�α+1�F�x� − 1
2

α

�α+ 1�2x
−�2α+1�/�α+1�G�x�

= 1
2�2α+ 1� + O �x−1/�α+1� ∨ x−1/�α+1��:

(5.6.15)

Fix x0 so that for x ≥ x0,

E�Y �l+ 1�1/�α+1��Y �l� = x� − x1/�α+1� >
1

4�2α+ 1�(5.6.16)

and denote x1 = �x
1/�α+1�
0 +1�α+1. We consider the sequence of sampling times

k0 = 0; kl = min�i > kl−1: Y �i� > x0�(5.6.17)

and the time-changed process

Ŷ �l� = Y �kl�; l ≥ 1:(5.6.18)

Due to (5.6.16) the process

N̂ �l� = Ŷ �l�1/�α+1� − 1
4�2α+ 1� l(5.6.19)

is submartingale. We define the following sequence of stopping times:

s0 = 0;(5.6.20)

ti = min�l > si−1: Y �l� ≥ x1�;(5.6.21)

si = min�l > ti: Y �l� ≤ x0�:(5.6.22)
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For y ≥ x1 fixed, let

τ̂y = inf�l > 0: Ŷ �l� ≥ y�;(5.6.23)

ry = max�i: si ≤ τy�;(5.6.24)

ˆ̂τy =
ry+1∑
i=1

�ti − si−1�:(5.6.25)

In plain words, τ̂y denotes the time spent in the interval �x0;∞�, ry denotes
the number of downcrossings of the interval �x0; x1� and ˆ̂τy denotes the time
spent in the interval �0; x1� by the process Y �l�, before τy. Clearly

τy ≤ τ̂y + ˆ̂τy(5.6.26)

and

ry + 1 ≤ τ̂y:(5.6.27)

Applying the optional sampling theorem for the submartingale N̂ �l� defined
in (5.6.19), we get

E�τ̂y ∧ l�Y �0� = 0� ≤ 4�2α+ 1�E�Ŷ �τ̂y ∧ l�1/�α+1��Y �0� = 0�

≤ 4�2α+ 1�E�Ŷ �τ̂y ∧ l��Y �0� = 0�1/�α+1�:
(5.6.28)

Hence

lim sup
A→∞

E�A−1�τ̂�βA�α+1y ∧ �At���Y �0� = 0�

≤ 4�2α+ 1� lim sup
A→∞

E�A−1Ŷ �τ̂�βA�α+1y ∧ �At���Y �0� = 0�1/�α+1�:
(5.6.29)

An estimate identical to (5.6.10) on the biggest jump of the process Ŷ �·� and
the asymptotics (5.2.24) of the function H yields now the “overshoot bound”

lim sup
A→∞

E��βA�−�α+1�Ŷ �τ̂�βA�α+1y ∧ �At���Y �0� = 0� ≤ y;(5.6.30)

which combined with (5.6.29) leads to

lim sup
A→∞

E�A−1�τ̂�βA�α+1y ∧ �At���Y �0� = 0� ≤ 4�2α+ 1�y1/�α+1�:(5.6.31)

Hence, by Markov’s inequality,

lim
y→0

lim sup
A→∞

P�A−1τ̂�βA�α+1y > η�Y �0� = 0� = 0:(5.6.32)

To estimate ˆ̂τy, note first that the random variables

ti − si−1; i = 1;2;3; : : : ;(5.6.33)
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are uniformly stochastically bounded:

m = max
x≤x0

E�τx1
�Y �0� = x�(5.6.34)

is finite since the Markov chain Y �·� is not trapped in any finite interval.
Using in turn this fact, Markov’s inequality and (5.6.32), we find

lim
y→0

lim sup
A→∞

P�A−1 ˆ̂τ�βA�α+1y > η�Y �0� = 0�

≤ lim
y→0

lim sup
A→∞

P
(
�A−1 ˆ̂τ�βA�α+1y > η�

∧ �A−1�r�βA�α+1y + 1� ≤ ε�
∥∥Y �0� = 0

)

+ lim
y→0

lim sup
A→∞

P�A−1�r�βA�α+1y + 1� > ε�Y �0� = 0�

≤ mε
η
+ lim
y→0

lim sup
A→∞

P�A−1τ̂�βA�α+1y > ε�Y �0� = 0� = mε
η
:

(5.6.35)

Letting ε→ 0 on the right-hand side of (5.6.35), we get

lim
y→0

lim sup
A→∞

P
(
A−1 ˆ̂τ�βA�α+1y > η

∥∥Y �0� = 0
)
= 0:(5.6.36)

Finally, (5.6.26), (5.6.32) and (5.6.36) imply (5.6.3) for the polynomially self-
repelling case, α ∈ �0;∞�.

5.7. Absorption at the boundary. We prove that the limit processes Ỹ�·�
are absorbed at 0 = ∂R+. When proving this latter assertion we also get the
weak convergence of the extinction times σ̃0;A.

For x ∈ R+ we denote

σ̃x = inf�l ≥ 0: Ỹ �l� ≤ x�;(5.7.1)

σ̃x;A = inf�t ≥ 0: ỸA�t� ≤ x�(5.7.2)

We prove now that for any η > 0,

lim
y→0

lim sup
A→∞

P�σ̃0;A > η�ỸA�0� = y� = 0:(5.7.3)

Asymptotically free case: α = 0 (Case A). In this case (5.7.3) is equivalent
to

lim
y→0

lim sup
A→∞

P�σ̃0 > Aη�Ỹ �0� = Ay� = 0:(5.7.4)

δ > 2 and 0 < δ ≤ 2 are treated separately.
Case A1. First we consider the self-attracting cases with δ > 2. From

(5.2.10) it follows that there exists an x0 <∞ such that for x ≥ x0,

F̃�x� ≤ 2− δ
4

< 0(5.7.5)



SELF-INTERACTING RANDOM WALKS ON Z 1351

and thus

N �l� = Ỹ �l� + δ− 2
4

l(5.7.6)

is supermartingale as long as Ỹ �l� ≥ x0. Applying the optional sampling the-
orem to the supermartingale N �l� we get for y > x0,

E�σ̃x0
�Ỹ �0� = y� ≤ 4

δ− 2
y:(5.7.7)

Now we prove (5.7.4):

lim
y→0

lim sup
A→∞

P�σ̃0 > Aη�Ỹ �0� = Ay�

≤ lim
y→0

lim sup
A→∞

P�σ̃x0
> Aη/2�Ỹ �0� = Ay�

+ lim sup
A→∞

sup
0≤x≤x0

P�σ̃0 > Aη/2�Ỹ �0� = x�:

(5.7.8)

Applying Markov’s inequality and (5.7.7) we get

lim
y→0

lim sup
A→∞

P
(
σ̃x0

>
Aη

2

∥∥∥∥Ỹ �0� = Ay
)
≤ lim

y→0

8y
�δ− 2�η = 0:(5.7.9)

On the other hand, since x0 is constant independent of A, the second limit on
the right hand side of (5.7.8) clearly vanishes. Hence (5.7.4) for this case.

Case A2. Next we deal with the cases when δ ≤ 2. Choose

γ <
δ

2
≤ 1:(5.7.10)

For any x > 0, z ≥ 0, the following inequality holds:

zγ − xγ ≤ γxγ−1�z− x� − γ�1− γ�
2

xγ−2�z− x�2

+ γ�γ − 1��γ − 2�
6

xγ−3�z− x�3
(5.7.11)

From this it follows that

E�Ỹ �l+ 1�γ�Ỹ �l� = x� − xγ

≤ γxγ−1F̃�x� − γ�1− γ�
2

xγ−2G̃�x�

+ γ�γ − 1��γ − 2�
6

xγ−3H̃�x�3/4

= −γ�δ− 2γ�
2

xγ−1 + O �xγ−3/2�;

(5.7.12)

where we have used the asymptotics (5.2.10)–(5.2.12). Fix x0 < ∞ such that
for x ≥ x0,

E�Ỹ �l+ 1�γ�Ỹ �l� = x� − xγ ≤ −γ�δ− 2γ�
4

xγ−1:(5.7.13)
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Thus

N �l� = Ỹ �l�γ + γ�δ− 2γ�
4

l−1∑
k=0

Ỹ �k�γ−1(5.7.14)

is supermartingale as long as Y �l� > x0, Hence, for y ≥ x0,

E
(
σ̃x0

[
sup

0≤k≤σ̃x0
−1

Ỹ �k�
]γ−1∥∥∥∥Ỹ �0� = y

)

≤ E
(σ̃x0

−1∑
k=0

Ỹ �k�γ−1

∥∥∥∥Ỹ �0� = y
)

≤ 4
γ�δ− 2γ�y

γ:

(5.7.15)

Since Ỹ �k�γ, 0 ≤ k ≤ σ̃x0
, itself is a supermartingale, we also have

P
(

sup
0≤k≤σ̃x0

−1
Ỹ �k� > λ

∥∥∥∥Ỹ �0� = y
)
≤ y

γ

λγ
:(5.7.16)

Finally, using (5.7.15) and (5.7.16) we derive

P
(
σ̃x0

>
Aη

2

∥∥∥∥Ỹ �0� = Ay
)

≤ P
([
σ̃x0

>
Aη

2

]
∧
[

sup
0≤k≤σ̃x0

−1
Ỹ �k� ≤ Aλ

]∥∥∥∥Ỹ �0� = Ay
)

+P
(

sup
0≤k≤σ̃x0

−1
Ỹ �k� > Aλ

∥∥∥∥Ỹ �0� = Ay
)

≤ P
(
σ̃x0

[
sup

0≤k≤σ̃x0
−1

Ỹ �k�
]γ−1

>
Aγλγ−1η

2

∥∥∥∥Ỹ �0� = Ay
)

+P
(

sup
0≤k≤σ̃x0

−1
Ỹ �k� > Aλ

∥∥∥∥Ỹ �0� = Ay
)

≤ 8
γ�δ− 2γ�

yγ

ηλγ−1
+ y

γ

λγ
:

(5.7.17)

Hence

lim
y→0

lim sup
A→∞

P�σ̃x0
> Aη/2�Ỹ �0� = Ay� = 0(5.7.18)

and from an argument identical to (5.7.8) we get (5.7.4).
Polynomially self-repelling case: α ∈ �0;∞� (Case B). In this case (5.7.3) is

equivalent to

lim
y→0

lim sup
A→∞

P�σ̃0 > Aη
∥∥Ỹ �0� = Aα+1y� = 0:(5.7.19)
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The proof is completely identical to the previous one, with the choice of

γ <
1

2�α+ 1� <
1
2
:(5.7.20)

We omit the repetition of the details.

5.8. End of proof. Collecting the results of Sections 5.4, 5.5, 5.6 and 5.7
we conclude the following:

In the asymptotically free case, α = 0 (Case A),

ZA�·� ⇒ Z�δ��·�(5.8.1)

in the space D��0;∞�� and

�Z̃A�·�; σ̃0;A� ⇒ �Z̃�2−δ��·�; σ̃0�(5.8.2)

in the space D��0;∞�� × �0;∞�, where Z�δ��·� is the BESQδ process and

Z̃�2−δ��·� is the ˜BESQ
2−δ

process defined in Section 2. The parameter δ is
given in (5.2.4).

In the polynomially self-repelling case, α ∈ �0;∞� (Case B),

ZA�·� ⇒ Z�1��·�(5.8.3)

in the space D��0;∞�� and

�Z̃A�·�; σ̃0;A� ⇒ �Z̃�1��·�; σ̃0�(5.8.4)

in the space D��0;∞�� × �0;∞�.
Given the representation of the local time process described in Section 4.2,

Theorem 1A (respectively, Theorem 1B), follows directly from (5.8.1) and
(5.8.2) [respectively (5.8.3) and (5.8.4)] after noting that due to (4.1.11) it is
easily seen that the single exceptional step (4.2.5) does not spoil the continuity
of the limit process S∗x;h�y� at y = x. 2

Corollaries 1A and 1B follow directly from Theorems 1A and 1B, respec-
tively. Note that the joint convergence of the processes S∗�Ax�; �Ah���A·��/A and
extinction times ω∗±�Ax�; �Ah�/A is needed in this proof.

6. Proof of Theorems 2A and 2B. We prove a general abstract version
of Theorems 2A and 2B:

Let R 3 y 7→ Sa;h�y� ∈ R+ be a generalized Ray–Knight process, as defined
in Section A.5 of the Appendix and let Ta;h be the total area under Sa;h�·�. De-
fine the functions %�t; a; h�, π�t; x�, %̂�s; a; h� and π̂�t; x� via formulas (2.12),
(2.14), (2.16), and (2.17), respectively, with the superscript �δ� erased. Accord-
ing to Theorem 4 (proved in the Appendix) the functions R 3 x 7→ π�t; x� ∈ R+
and R 3 x 7→ π̂�s; x� ∈ R+ are probability densities.

Consider a nearest neighbor, self-interacting random walkXi on � with law
given by (1.1)–(1.3), with arbitrary weight function w�·� and denote by T∗k;m
the hitting times defined in (3.1.2) and (3.1.3). Further, let P�n;k� and R�s; k�
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be the distributions of the random walk Xi at time n and at the geometrically
distibuted time θs, respectively, as given in (3.2.1)–(3.2.3).

Theorem 2′. Assume there are two constants β > 0 and γ > 0 so that for
any x > 0; h > 0 and ∗=< or >;

T∗�Ax�; �Aγβh�
2βA1+γ ⇒ Tx;h(6.1)

as A→∞. Then for any s > 0 and almost all x ∈ R;

π̂A�s; x� → β1/�1+γ�π̂�s; β1/�1+γ�x�(6.2)

as A→∞; where π̂A�s; x� is the properly rescaled distribution of the random
walk:

π̂A�s; x� = A1/�1+γ�R�A−1s; �A1/�1+γ�x��:(6.3)

Proof. We note first that

P�n;k� = P�Xn = k� =
∞∑
m=0

�P�T>k;m = n� +P�T<k;m = n��:(6.4)

On the other hand, from the definition (6.3) of π̂A,

π̂A�s; x� =
1− e−s/A
s/A

sA−γ/�1+γ�
∞∑
n=0

e−ns/AP�n; �A1/�1+γ�x��:(6.5)

Combining (6.4) and (6.5) we are led to

π̂A�s; x� =
1− exp�−s/A�

s/A
sA−γ/�1+γ�

∞∑
m=0

[
E
(

exp
{
− s
A
T>�A1/�1+γ�x�;m

})

+E
(

exp
{
− s
A
T<�A1/�1+γ�x�;m

})]
:

(6.6)

Defining

%̂∗A�syx;h� = sE
(

exp
{
− s

2βA
T∗�A1/�1+γ�x�;�Aγ/�1+γ�βh�

})
(6.7)

(6.6) reads

π̂A�s; x� =
1− e−s/A
s/A

1
2

∫ ∞
0

(
%̂>A�2βs; x; h� + %̂<A�2βs; x; h�

)
dh:(6.8)

From (6.1) it follows that for any s > 0, x ∈ R and h > 0,

%̂∗A�s; x; h� → %̂�s; x; h�(6.9)
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as A→∞ and the functions %̂ and π̂ scale as follows: ∀λ > 0,

λ%̂�λ−1s; λ1/�1+γ�x; λγ/�1+γ�h� = %̂�s; x; h�(6.10)

λ1/�1+γ�π̂�λ−1s; λ1/�1+γ�x� = π̂�s; x�:(6.11)

by Faton’s lemma, equations (6.8), (6.9) and (6.11) imply for any x ∈ R,

lim inf
A→∞

π̂A�s; x� ≥
∫ ∞

0
%̂�2βs; �x�; h�dh

= π̂�βs; x� = β1/�1+γ�π̂�s; β1/�1+γ�x�:
(6.12)

On the other hand, by Theorem 4,
∫ ∞
−∞

π̂A�s; x�dx = 1 =
∫ ∞
−∞

b1/�1+γ�π̂�s; b1/�1+γ�x�dx:(6.13)

From (6.12) and (6.13) follows the statement of Theorem 2′. 2

Clearly, the statements of Theorems 2A and 2B are just particular cases of
Theorem 2′.

APPENDIX

Generalized Ray–Knight processes II. This appendix is devoted to the
proof of (2.28). Actually, we define a more general notion of Ray–Knight pro-
cess and we prove (2.28) in a much more general context. This Appendix is
completely self-contained and we think that it might be interesting on its own,
from a purely diffusion-theoretic point of view.

A.1. Conjugate diffusions. Let

a:
◦
R+→ �0;∞�; b:

◦
R+→ �−∞;∞�(A.1.1)

be twice continuously differentiable functions and define the second order dif-
ferential operators

�Gf��x� = 1
2a�x�f′′�x� + � 1

4a
′�x� + b�x��f′�x�;(A.1.2)

�Hf��x� = 1
2a�x�f′′�x� + � 1

4a
′�x� − b�x��f′�x�:(A.1.3)

We call the operators G and H a conjugate pair of diffusion generators on R+.
The analytic content of this conjugacy is the (equivalent) pair of commutation
relations

d

dx
G =H∗ d

dx
;

d

dx
H = G∗ d

dx
;(A.1.4)
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where G∗ and H∗ are the formal Lebesgue adjoints of G and H, respectively:

�G∗f��x� = 1
2a�x�f′′�x� + � 3

4a
′�x� − b�x��f′�x�

+� 1
4a
′′�x� − b′�x��f�x�

(A.1.5)

�H∗f��x� = 1
2a�x�f′′�x� + � 3

4a
′�x� + b�x��f′�x�

+ � 1
4a
′′�x� + b′�x��f�x�:

(A.1.6)

Integration by parts yields the identities
∫ x1

x0

�G∗f��y�g�y�dy =
∫ x1

x0

f�y�
[
Gg

]
�y�dy

+ ��H
∫
f��y�g�y� − 1

2a�y�f�y�g′�y��
x1
x0

(A.1.7)

∫ x1

x0

�H∗f��y�g�y�dy =
∫ x1

x0

f�y��Hg��y�dy

+ ��G
∫
f��y�g�y� − 1

2a�y�f�y�g′�y��
x1
x0

(A.1.8)

where by
∫
f we denoted the function �

∫
f��y� =

∫ y
0 f�z�dz and we adopted

the notation �h�y��x1
x0 = h�x1� − h�x0�.

Define the functions

u�x� =
√

2
a�x� exp

{
−
∫ x

1

2b�y�
a�y� dy

}
(A.1.9)

v�x� =
√

2
a�x� exp

{∫ x
1

2b�y�
a�y� dy

}
:(A.1.10)

With the help of these functions we can express the differential operators G,
H, G∗ and H∗ as

G = 1
v

d

dx

1
u

d

dx
; G∗ = d

dx

1
u

d

dx

1
v
;(A.1.11)

H = 1
u

d

dx

1
v

d

dx
; H∗ = d

dx

1
v

d

dx

1
u
:(A.1.12)

We consider two diffusion processes on R+: Xt and Yt with generators G (re-
spectively,H). More precisely, the generators ofXt (respectively,Yt) restricted
to smooth functions with compact support in

◦
R+ act as G (respectively, H).

The diffusions Xt and Yt are uniquely determined by these generators as long
as they do not hit the boundary �0� = ∂R+. The ambiguity in the behavior of
the processes Xt and Yt at 0 is eliminated in the following way: Xt is reflected
instantaneously at 0 [see Definition VII.3.11. in Revuz and Yor (1991)] and Yt

is stopped at

τ0 = inf�t:Yt = 0�:(A.1.13)
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We call the processes Xt and Yt conjugate diffusions. The scale functions
and speed measures of the processes Xt (respectively, Yt) are r�x� and n�dx�
[respectively, s�x� and m�dx�]. According to standard results about one-
dimensional diffusions [see Exercise VII.3.20. in Revuz and Yor (1991)], on◦
R+ we have

r�x� =
∫ x
u�y�dy; n�dx� = v�x�dx;(A.1.14)

s�x� =
∫ x
v�y�dy; m�dx� = u�x�dx:(A.1.15)

The lower limits in the integrals defining r and s are chosen in an arbitrary
way. Formulas (A.1.14) and (A.1.15) give the probabilistic content of conjugacy
of the diffusions Xt and Yt: the derivative of the scale function of one is the
Radon–Nikodym derivative of the speed measure of the other, and vice versa.
In accordance with the behavior at the boundary described in the previous
paragraph, we define

n��0�� = 0; m��0�� = ∞:(A.1.16)

The conjugacy of a pair of diffusions is invariant under diffeomorphisms of
◦
R+: let

3:
◦
R+→

◦
R+(A.1.17)

be a C2 bijection which has a C2 inverse 3−1, and preserves the orientation
of the half-line R+:

lim
x↘0

3�x� = 0; lim
x↗∞

3�x� = ∞:(A.1.18)

Consider the diffusions

X̃t = 3�Xt�; Ỹt = 3�Yt�:(A.1.19)

It is easy to check that if Xt and Yt are a conjugate pair of diffusions on R+,
then so are X̃t and Ỹt, with

ã = ��3′�2 · a� ◦ 3−1;(A.1.20)

b̃ = �3′ · b� ◦ 3−1:(A.1.21)

Our notion of conjugacy of the pair of diffusions Xt, Yt is closely related to
the conjugacy notion introduced in Biane (1985). By time-reversing the process
Yt,

Ŷt = Yτ0−t; 0 ≤ t ≤ τ0;(A.1.22)

we get a transient diffusion Ŷt stopped at its last hitting of y ∈ R+. The
diffusions Ŷt and Xt are conjugate in Biane’s sense. Biane introduced his
notion of conjugacy in order to generalize the Cieselski–Taylor identities. This
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fact suggests that the identity proved in Section A.4 [and, consequently, (2.28)
too] must have some connection to the Cieselski–Taylor identities that we have
not been able to elucidate yet.

A.2. Boundary conditions. Throughout this Appendix we shall use the fol-
lowing stopping times: for y ∈ �0;∞�,

σy = inf�t:Xt = y�;(A.2.1)

τy = inf�t:Yt = y�(A.2.2)

with the usual convention inf \ = ∞.
We impose some conditions on the behavior of the diffusions Xt and Yt

near 0 and ∞:
Condition at 0. We give two equivalent formulations—one referring to the

diffusion Xt and the other to Yt—of the same single condition

∫ 1

0

(∫ 1

y
u�z�dz

)
v�y�dy =

∫ 1

0
�r�1� − r�y��n�dy� <∞;(A.2.3)

∫ 1

0

(∫ z
0
v�y�dy

)
u�z�dz =

∫ 1

0

[
s�z� − s�0�

]
m�dz� <∞:(A.2.4)

[We could have chosen any positive number instead of 1 as upper limit of
integration in (A.2.3)/(A.2.4).] The left-hand sides in the two formulas (A.2.3)
and (A.2.4) are clearly the same, so we emphasize again that these are just
two different formulations of the same condition. In probabilistic terms, these
conditions are equivalent to

�σx�X0 = 0� −→P0 as x→ 0;(A.2.5)

�τ0�Y0 = x� −→P0 as x→ 0;(A.2.6)

where →P stands for convergence in probability. In plain words, (A.2.5) [re-
spectively, (A.2.6)] means that Xt does not stick to 0 (respectively, Yt can hit
0) in finite time.

In particular, from (A.2.4) it also follows that

s�x� − s�0� =
∫ x

0
v�y�dy <∞(A.2.7)

and we can choose

s�x� =
∫ x

0
v�y�dy; that is, s�0� = 0:(A.2.8)

Conditions at∞. Again, we give two equivalent formulations of the bound-
ary condition at infinity. The first formulation refers to the diffusion Xt, the
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second one to Yt:
∫ ∞

1

( ∫ ∞
y
u�z�dz

)
v�y�dy =

∫ ∞
1
�r�∞� − r�y��n�dy� = ∞;(A.2.9)

∫ ∞
1

(∫ z
1
v�y�dy

)
u�z�dz =

∫ ∞
1

[
s�z� − s�1��m�dz� = ∞:(A.2.10)

[Now, we could have chosen any positive number instead of 1 as lower limit
of integration in (A.2.9)/(A.2.10).] Clearly, the left-hand sides of (A.2.9) and
(A.2.10) are the same again. The probabilistic content of these conditions is
the following: for any fixed y ≥ 0,

�σx�X0 = y� −→P∞ as x→∞;(A.2.11)

�τy�Y0 = x� −→P∞ as x→∞:(A.2.12)

Condition (A.2.11) [respectively, (A.2.12)] means that Xt does not escape to
infinity (respectively Yt does not come in from infinity) in finite time.

In addition to condition (A.2.9)/(A.2.10) we also impose

lim
x↗∞

s�x� = s�∞� = ∞:(A.2.13)

We do not give the standard (but lengthy) details here of the deriva-
tion of the equivalence of the analytic versus probabilistic formulations
(A.2.3)∼(A.2.5), (A.2.4)∼(A.2.6), (A.2.9)∼(A.2.11) and (A.2.10)∼(A.2.12).

It is straightforward to check that the boundary conditions (A.2.3)/(A.2.4),
(A.2.9)/(A.2.10) and (A.2.13) are invariant under diffeomorphic images (A.1.17)
and (A.1.18).

A.3. Examples.

Example 1. Our main class of examples consists of pairs of squared Bessel
processes. Fix δ > 0 and let

a�x� = 2x; b�x� ≡ δ− 1
2

:(A.3.1)

The corresponding generators G and H will be

G = x ∂
2

∂x2
+ δ

2
∂

∂x
; H = x ∂

2

∂x2
+ 2− δ

2
∂

∂x
y(A.3.2)

that is, Xt (respectively Yt) will be the squared Bessel processes of Z�δ�t (re-
spectively Z̃�2−δ�t ) given in Section 2.

The various functions arising in this case are

u�x� = x−δ/2; v�x� = x�δ−2�/2

r�x� =





2
2− δx

�2−δ�/2; if δ 6= 2;

lnx; if δ = 2;
s�x� = 2

δ
xδ/2:

(A.3.3)
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Conditions (A.2.3)/(A.2.4), (A.2.9)/(A.2.10) and (A.2.13) are easily checked.

Using diffeomorphisms 3:
◦
�+ →

◦
R+ we get a wider class of examples. For

example, 3�x� = √x transforms the pair of squared Bessel processes into a
pair of Bessel processes of the same generalized dimensions δ (respectively
2 − δ). With the particular choice δ = 1 = 2 − δ and 3�x� = √x we get a
pair of Brownian motions reflecting (respectively stopped at) 0: Xt = �Wt�,
Yt = �Wt∧τ0

�.

Example 2. second class of examples (not exploited in this paper) is pro-
vided by pairs of Brownian motions with drift:

a�x� ≡ 1; b�x� ≡ b > 0:(A.3.4)

In this case the relevant functions will be

u�x� =
√

2e−2bx; v�x� =
√

2e2bx;

r�x� =
√

2
1− e−2bx

2b
; s�x� =

√
2
e2bx − 1

2b
:

(A.3.5)

The processes defined by these parameters will be Xt = Brownian motion
with constant drift b reflected at 0 (respectively, Yt = Brownian motion with
constant drift −b absorbed at 0). The boundary conditions (A.2.3)/(A.2.4),
(A.2.9)/(A.2.10) and (A.2.13) are again easy to check.

A.4. Technical result. We consider the function

φ�y� = E
(

exp
{
−
∫ τ0

0
Ysds

}∥∥∥∥Y0 = y
)
:(A.4.1)

The function φ is the unique bounded solution on R+ of the ordinary differen-
tial equation

�Hφ��y� − yφ�y� = 0(A.4.2)

with boundary condition

φ�0� = 1;(A.4.3)

which holds due to (A.2.4) or equivalently (A.2.6). Differentiating (A.4.2) and
using the commutation relation (A.1.4), we get another very useful relation
for φ:

φ�y� =
[
G∗φ′

]
�y� − yφ′�y�:(A.4.4)

The following simple lemma will be used in the proof of the forthcomming
theorem:

Lemma 3. Assume that conditions (A.2.10) and (A.2.13) hold. The funda-
mental solution φ of the ODE (A.4.2) satisfies the following integral equation

φ�x� =
∫ ∞
x

(
s�y� − s�x�

)
u�y�yφ�y�dy:(A.4.5)
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Proof. From the ODE (A.4.2), using the form (A.1.12) of the differential
operator H, by one quadrature, we get

φ′�y�
v�y� −

φ′�x�
v�x� =

∫ y
x
u�z�zφ�z�dz:(A.4.6)

As φ is decreasing (i.e., φ′ is negative), from (A.4.6) it follows that the limit

A = − lim
y→∞

φ′�y�
v�y�(A.4.7)

exists and is finite. Taking the limit y→∞ in (A.4.6) we get

−φ′�x� = Av�x� + v�x�
∫ ∞
x
u�y�yφ�y�dy(A.4.8)

and by a second quadrature

φ�x� −φ�y� = −φ
′�y�
v�y� �s�y� − s�x�� +

∫ y
x

(
s�z� − s�x�

)
u�z�zφ�z�dz:(A.4.9)

We keep in mind that φ is positive and decreasing. From (A.2.10) and (A.2.13)
it follows that

lim
x→∞

φ�x� = φ�∞� = 0(A.4.10)

and

− lim
x→∞

φ′�x�
v�x� = A = 0;(A.4.11)

respectively. Otherwise the right-hand side of (A.4.9) would explode while the
left-hand side would remain finite in the y → ∞ limit. Thus, in the y → ∞
limit, (A.4.9) transforms to

φ�x� = − lim
y→∞

(
φ′�y�
v�y� s�y�

)
+
∫ ∞
x

(
s�z� − s�x�

)
u�z�zφ�z�dz:(A.4.12)

Taking in (A.4.12) the x→∞ limit and using (A.4.10) it follows that not only
(A.4.11), but actually

lim
y→∞

φ′�y�
v�y� s�y� = 0(A.4.13)

holds and consequently the assertion (A.4.5) of the lemma is valid. 2

A second function considered will be

ψ�y� =
∫ ∞

0

{∫ ∞
0

E
(

exp
{
−
∫ t

0
Xs ds

}
|�Xt > y�

∥∥∥∥X0 = z
)
dt

}

×φ�z�dz:
(A.4.14)
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Theorem 3. Let Xt and Yt be a pair of conjugate diffusions on R+ with
the coefficients a and b satisfying conditions (A.2.3)/(A.2.4), (A.2.9)/(A.2.10)
and (A.2.13). Then the functions φ and ψ defined in (A.4.1) and (A.4.14), re-
spectively, are identical:

φ ≡ ψ:(A.4.15)

Proof. We first prove

φ′ ≡ ψ′:(A.4.16)

Let g�y� be a smooth positive test function with supp�g� ⊂ �y;y� ⊂
◦
R+ and

h�z� =
∫ ∞

0
E
(

exp
{
−
∫ t

0
Xs ds

}
g�Xt�

∥∥∥∥X0 = z
)
dt:(A.4.17)

The function h is bounded in R+ due to (A.2.3) or equivalently (A.2.5), and
satisfies the following differential equation in

◦
R+:

�Gh
]
�y� − yh�y� = −g�y�:(A.4.18)

Using in turn the definitions (A.4.14) and (A.4.17), the identity (A.4.4), the
integration by parts formula (A.1.7) and the ODE (A.4.2), and finally the ODE
(A.4.18), we get

−
∫ ∞

0
g�y�ψ′�y�dy =

∫ ∞
0
h�z�φ�z�dz

=
∫ ∞

0
h�z���G∗φ′��z� − zφ′�z��dz

=
∫ ∞

0
��Gh��z� − zh�z��φ′�z�dz

+ �yφ�y�h�y� − 1
2a�y�φ′�y�h′�y��∞0

= −
∫ ∞

0
g�z�φ′�z�dz

+ �yφ�y�h�y� − 1
2a�y�φ′�y�h′�y��∞0 :

(A.4.19)

From this derivation it also follows that the limits limy→0;∞�yφ�y�h�y�−
1
2a�y�φ′�y�h′�y�� exist. We prove that these limits actually vanish:

lim
y→∞
�yφ�y�h�y� − 1

2a�y�φ′�y�h′�y�� = 0;(A.4.20)

lim
y→0
�yφ�y�h�y� − 1

2a�y�φ′�y�h′�y�� = 0:(A.4.21)

Proof of (A.4.20). Since g�y� = 0 for y ≥ y, using the strong Markov
property of the diffusion Xt we can write

h�y� = κ�y�h�y� if y ≥ y;(A.4.22)
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where

κ�y� = E
(

exp
{
−
∫ σy

0
Xs ds

}∥∥∥∥X0 = y
)
; y ≥ y;(A.4.23)

is the unique bounded solution in the interval �y;∞� of the differential equa-
tion

�Gκ��y� − yκ�y� = 0(A.4.24)

with

κ�y� = 1:(A.4.25)

By one quadrature (similar to the first step in the proof of Lemma 3) the
differential equation (A.4.24) transforms to

κ′�y�
u�y� −

κ′�x�
u�x� =

∫ y
x
v�z�zκ�z�dz:(A.4.26)

As κ is decreasing (i.e., κ′ is negative), from (A.4.26) it follows now that the
limit

B = − lim
y→∞

κ′�y�
u�y�(A.4.27)

exists and is finite.
Now, using (A.4.22), (A.4.11) and (A.4.27) we get

lim
y→∞

1
2
a�y�h′�y�φ′�y� = h�y� lim

y→∞
1
2
a�y�κ′�y�φ′�y�

= h�y� lim
y→∞

κ′�y�
u�y�

φ′�y�
v�y� = h�y�AB = 0:

(A.4.28)

Next, from (A.2.10) and the finiteness of the integral on the left-hand side of
(A.4.5) it follows that

lim inf
y→∞

yφ�y� = 0(A.4.29)

and hence

lim inf
y→∞

yφ�y�h�y� ≤ h�y� lim inf
y→∞

yφ�y� = 0(A.4.30)

However, the limit limy→∞�yφ�y�h�y� − 1
2a�y�φ′�y�h′�y�� exists, so (A.4.28)

and (A.4.30) imply (A.4.20).

Proof of (A.4.21). From boundedness of the functions φ and h it follows
that

lim
y→0

yφ�y�h�y� = 0(A.4.31)

so we have to prove only

lim
y→0

1
2a�y�h′�y�φ′�y� = 0:(A.4.32)
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Using again the strong Markov property of the process Xt we write now

h�y� = h�0�
λ�y� ; y ∈ �0; y�;(A.4.33)

with

λ�y� = E
(

exp
{
−
∫ σy

0
Xs ds�

∥∥∥∥X0 = 0
)
; y ∈ �0; y�:(A.4.34)

Let 0 ≤ y ≤ z ≤ y. Then

1 ≥ λ�z�
λ�y� = E

(
exp

{
−
∫ σz

0
Xs ds

}∥∥∥∥X0 = y
)

≥ exp
{
−E

(∫ σz
0
Xs ds

∥∥∥∥X0 = y
)}
:

(A.4.35)

By use of VII.3.8. of Revuz and Yor (1991) we find the expectation in the
exponent on the right-hand side of (A.4.35):

E
( ∫ σz

0
Xs ds

∥∥∥∥X0 = y
)
=
∫ y

0

[
r�z� − r�y�

]
xv�x�dx

+
∫ z
y
�r�z� − r�x��xv�x�dx

≤ �r�z� − r�y��zs�z�:

(A.4.36)

Hence

�λ′�y�� ≤ λ�y�yu�y�s�y�(A.4.37)

and by (A.4.33)

�h′�y�� ≤ h�y�yu�y�s�y�:(A.4.38)

Using this and (A.4.5) we have

1
2
�a�y�h′�y�φ′�y�� =

∣∣∣∣
h′�y�
u�y�

φ′�y�
v�y�

∣∣∣∣ ≤ h�y�ys�y�
∫ ∞
y
u�z�zφ�z�dz

≤ h�y�y
∫ ∞

0
s�z�u�z�zφ�z�dz = h�y�yφ�0�:

(A.4.39)

The right-hand side clearly vanishes in the y → 0 limit. Hence (A.4.32) and
(A.4.21). 2

Thus we proved (A.4.20) and (A.4.21) for arbitrary test functions g. From
this and (A.4.19) the identity (A.4.16) follows. Equation (A.4.15) will follow
from a straightforward monotone convergence argument: clearly the integrand
in (A.4.14) is monotone decreasing in the parameter y, and by (A.2.9), or
equivalently (A.2.11),

lim
y→∞

E
(

exp
{
−
∫ t

0
Xs ds

}
|�Xt > y�

∥∥∥∥X0 = z
)
= 0:(A.4.40)



SELF-INTERACTING RANDOM WALKS ON Z 1365

Hence

ψ�∞� = 0:(A.4.41)

The assertion of the theorem follows from (A.4.16), (A.4.10) and (A.4.41). 2

Let now 3 be a diffeomorphism, as given in (A.1.17) and (A.1.18) and define

φ
3
�y� = E

(
exp

{
−
∫ τ0

0
3�Ys�ds

}∥∥∥∥Y0 = y
)
;(A.4.42)

ψ
3
�y� =

∫ ∞
0

{∫ ∞
0

E
(

exp
{
−
∫ t

0
3�Xs�ds

}

× |�Xt > y�
∥∥∥∥X0 = z

)
dt

}
φ

3
�z�3′�z�dz:

(A.4.43)

Applying Theorem 3 to the conjugate pair of diffusions X̃t = 3�Xt�, Ỹt =
3�Yt� defined in (A.1.19) we easily get the following more general theorem.

Theorem 3′. Under the conditions of Theorem 3 the functions φ
3

and ψ
3

defined in (A.4.42), and (A.4.43), are identical:

φ
3
≡ ψ

3
:(A.4.44)

Remark. As we mentioned already, in the light of Biane’s results we ex-
pect that identity (A.4.15), or more generally (A.4.44), must be related to
the generalized Ciesielski–Taylor identities. However, we could not clarify
yet the intimate relation between the two. For more information on gener-
alized Ciesielski–Taylor identities and more “mysterious” formulas, we refer
the reader to Donati-Martin and Yor (1991), Yor (1991), Carmona, Petit and
Yor (1994) and Donati-Martin, Song and Yor (1994).

A.5. Generalized Ray–Knight processes and Proof of (2.28). We define a
wider notion of generalized Ray–Knight process. Let us fix two parameters
a ≥ 0 and h ≥ 0 and define a process �−∞;∞� 3 y 7→ Sa;h�y� ∈ R+ [with time
variable y ∈ �−∞;+∞�] by patching together three independent diffusions,
X�·�, Yl�·�, and Yr�·�, in the following way:

Sa;h�y� =





�Yl�−y��Yl�0� = h�; for y ∈ �−∞;0�;
�X�y��X�0� = h�; for y ∈ �0; a�;
�Yr�y− a��Yr�0� =X�a��; for y ∈ �a;∞�;

(A.5.1)

where the diffusions Yl�·� and Yr�·� are conjugate to the diffusion X�·� in the
sense of the previous subsections. We define the random variable Ta;h and
the functions %, π, %̂ and π̂ by the formulas (2.11), (2.12), (2.14), (2.16) and
(2.17), with the superscript �δ� erased.

The following assertion is a direct corollary of Theorem 3′, but due to its
importance in our context, we prefer to formulate it as a separate theorem.
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Theorem 4. For any fixed t > 0 (respectively s > 0) the functions
�−∞;∞� 3 x 7→ π�t; x� ∈ �0;∞� [respectively, �−∞;∞� 3 x 7→ π̂�s; x� ∈
�0;∞�] are probability densities; that is,

∫ ∞
−∞

π�t; x�dx = 1 =
∫ ∞
−∞

π̂�s; x�dx(A.5.2)

holds for any generalized Ray–Knight process.

Proof. Apply Theorem 3′ with 3�x� = sx. It is straightforward to check
that

∫ ∞
0
π̂�s; x�dx = −

∫ ∞
0
φ

3
�h�ψ′

3
�h�dh = −

∫ ∞
0
φ

3
�h�φ′

3
�h�dh

= 1
2�φ2

3
�0� −φ2

3
�∞�� = 1

2 :

(A.5.3)

Indeed, given the definition of π̂�s; x� via (2.8)-(2.11)-(2.16)-(2.17) on one hand
and the definitions (A.4.42) and (A.4.43) of the functionsφ

3
and ψ

3
on the other

hand, the first equality follows from a careful application of the Feynman–
Kac formula. (Actually this is the reason why we introduced and analyzed the
functions φ and ψ.) The second equality follows from (A.4.44), and the last
one from (A.4.3) and (A.4.10). 2
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