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Majorizing measures provide bounds for the supremum of stochastic
processes. They represent the most general possible form of the chaining
argument going back to Kolmogorov. Majorizing measures arose from the
theory of Gaussian processes, but they now have applications far beyond
this setting. The fundamental question is the construction of these mea-
sures. This paper focuses on the tools that have been developed for this
purpose and, in particular, the use of geometric ideas. Applications are
given to several natural problems where entropy methods are powerless.
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1. Introduction. The purpose of majorizing measures is to give sharp
bounds for the supremum of a process �Xt�t∈T when T is provided with a
distance d that controls the increments of the process. Typically, we will have
a condition of the type

∀ s; t ∈ T; ∀ u > 0; P��Xs −Xt� > u� ≤ 2 exp
(
− u2

d2�s; t�

)
:(1.1)

The most important case is when �Xt�t∈T is a Gaussian process, in which case
(1.1) holds for the distance

d�s; t� = �E�Xs −Xt�2�1/2:(1.2)

In that case we can even replace the right-hand side of (1.1) by 2 exp�−u2/
2d2�s; t��. The factor 2 is irrelevant and has purposely been omitted in (1.1).
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Majorizing measures allow us to find correct orders of magnitude, but are not
adapted to the pursuit of sharp numerical constants.

Majorizing measures have long been considered as an obscure and exotic
topic. The first few sections of this paper, written in considerable detail and
self-contained, attempt to show that actually the theory of majorizing mea-
sures relies on a few simple ideas.

Majorizing measures originated in the theory of Gaussian processes (where
they play an important role). They have, however, been successfully applied
in settings increasingly far from the Gaussian case. We will present two such
applications (based on a common geometric idea), which appear today as the
core of the theory, and which fortunately now have simple proofs. Due to space
limitations, it has not been possible to make the last sections of the paper com-
pletely self-contained. Yet we have included a complete treatment of (almost)
all the ingredients pertaining to the theory of majorizing measures, and the
reader having penetrated the present paper should find no difficulty in access-
ing the more specialized literature.

Majorizing measures are simply an elaboration of the traditional chaining
argument. Unfortunately, both their name and their definition are rather mis-
leading (we feel that the name “generic chaining” would be more appropriate,
since majorizing measures represent the most general possible form of chain-
ing). For this reason we have decided not to run the risk of discouraging the
reader at such an early stage, and to give the definition only after its meaning
has been made clear. This will be done in Section 2, where we discuss chain-
ing at length, we prove the majorizing measure bound and we compare it
with Dudley’s entropy integral. This choice prevents the precise statement of
any theorem in this introduction, which therefore constitutes only a high-level
description of the contents of the paper.

We certainly wish to dispel the myth that majorizing measures are “fancy
stuff” that can safely be ignored for all practical purposes. As a first step
in that direction, we will explain in Section 3 why entropy methods fail to
explain on which ellipsoids of Hilbert space the canonical Gaussian process is
bounded.

The first major success of majorizing measures was to characterize sam-
ple boundedness and sample continuity of Gaussian processes (a problem go-
ing back to Kolmogorov). The meaning of this result is simply that, for any
Gaussian process �Xt�t∈T, there exists a “generic chaining” (i.e., majorizing
measure) that provides a bound for E supt∈TXt which is of the correct order.
This is nice to know, because we no longer have to seek other methods to
bound Gaussian processes. This, however, does not address the more impor-
tant question of how to construct such chainings, and how to determine in
practical situations the order of E supt∈TXt. Very much remains to be done
in that direction. There has, however, been one successful idea, of a geometric
nature, relying on proper use of convexity. This idea is closely connected to the
correct understanding of the ellipsoids of Section 3. It is quite interesting that
a single construction allows one to treat both the “geometric” case and the case
of general Gaussian processes. This construction is presented in Section 4, the
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characterization of boundedness of Gaussian processes is given in Section 5,
and in Section 6 we explain the structure of ellipsoids with respect to majoriz-
ing measures. As an application we sketch how to derive a theorem of Ajtai,
Komlòs and Tusnàdy, with an approach rather different from the original one.

Majorizing measures have recently made it possible to clarify and generalize
an extremely difficult result of Bourgain [3] in harmonic analysis, in a setting
very different from the Gaussian one. Due to a lack of space, we will not discuss
the entire problem, but rather we will concentrate on a result (of independent
interest) which is the main step of the new approach. This result (Section 7)
involves the construction of a majorizing measure using geometric ideas in
the spirit of Section 6.

As we have mentioned, much remains to be understood concerning the con-
struction of majorizing measures. In Section 8 we will describe a few open
questions in that direction, some of which have deceptively simple statements.

For many processes of interest, the increments are not controlled as simply
as (1.1), by one single distance, but rather by several distances. Yet in several
cases the lower bounds of Section 5 have been extended. In Section 9 we will
provide motivation for the necessary adaptations in this direction.

This paper will not discuss the history of the topic. This history, up to 1985,
is sketched in [14]; the subsequent progress discussed here is the author’s
work, and can be tracked down in the author’s publications given in the Ref-
erences ([14]–[24]).

2. Chaining, generic chaining, majorizing measures. In this section
we consider a metric space �T;d� and a process �Xt�t∈T. The word “process”
means here only a collection of r.v.’s. The notation T �= time� for the index
set has historical reasons, but does not mean that T is a subset of R or Rn.
For specificity we assume that the increment condition (1.1) holds, although
there is certainly nothing magical about this special condition. Our objective
is to find upper bounds for the “size” of the r.v. supt∈TXt. For the purposes of
this paper a good measure of this size is E supt∈TXt. To avoid problems with
the supremum of possibly uncountably many r.v.’s (each of them being defined
a.e.), we define

E sup
t∈T

Xt = sup
{
E sup

t∈F
Xt: F ⊂ T; F finite

}
:

We will assume that EXt = 0 for each t ∈ T. Then, given any point t0 in
T, we have

E sup
t∈T

Xt = E sup
t∈T
�Xt −Xt0

�:

The latter form has the advantage that we seek estimates for the expectation
of the nonnegative random variable Y = supt∈F�Xt−Xt0

� (where F is a finite
subset of T).

Then

EY =
∫ ∞

0
P�Y ≥ u�du:
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Thus we look for bounds of

P

(
sup
t∈T
�Xt −Xt0

� ≥ u
)
:

The first bound that comes to mind is

P
(

sup
t∈F
�Xt −Xt0

� ≥ u
)
≤
∑
t∈F

P�Xt −Xt0
≥ u�:(2.1)

This bound is not going to be so bad if the variables Xt −Xt0
are rather

uncorrelated. However, it is a disaster if the variables �Xt�t∈F are nearly iden-
tical. Thus it seems a good idea to regroup those variables Xt that are nearly
identical. To do this, we consider a finite subset T1 of T, and for t in T we
find p1�t� in T1, which we can think of as a (first) approximation of t. Those
values of T to which correspond the same p1�t� are, at this first level of ap-
proximation, considered as identical. We then write

Xt −Xt0
=Xt −Xp1�t� +Xp1�t� −Xt0

:(2.2)

The idea is that the terms Xp1�t� −Xt0
will be handled through (2.1), since

there are not too many of them, and since the variables �Xv�v∈T1
are really

different. On the other hand, the variables Xt−Xp1�t� are “smaller” than the
original variables Xt −Xt0

, so their supremum should be easier to handle.
The procedure will then be iterated.

How do we measure that p1�t� is close to t? One could require something
like

∀ t; d�t; p1�t�� ≤ 1
10 diamT;(2.3)

where the diameter diamT of T is sup�d�x;y�y x;y ∈ T�.
Writing (2.3) means that we measure distances with the size of T as unit

scale. This is notationally not a good idea; rather we measure distances by
comparing them with numbers r−i, i ∈ Z. For the purposes of the present
section, we could take r = 2. It will, however, be convenient for the sequel to
allow larger values of r. (Thus we assume r ≥ 2.) To measure the size of T, we
consider the largest i ∈ Z such that diamT ≤ 2r−i. The factor 2 is convenient
but unimportant. For j ≥ i, we consider a finite set 5j of T, and for t ∈ T,
we consider points πj�t� ∈ 5j. The idea is that the points πj�t� are successive
approximations of t. The fundamental relation is

Xt −Xt0
=
∑
j>i

Xπj�t� −Xπj−1�t�;(2.4)

which decomposes the increments of the processes as one moves from t0 to
t along the “chain” πj�t�. To make (2.4) true, we require that πi�t� = t0 for
every t in T. The potentially infinite series in (2.4) could also create problems;
but in fact (2.4) holds a.s. under the mild condition

lim
j→∞

d�t; πj�t�� = 0:(2.5)



MAJORIZING MEASURES 1053

To express that πj�t� approximates t, we could control the distance of t and
πj�t�. From (2.4), we see that what matters is the distance between πj�t� and
πj−1�t�. It turns out to be convenient to assume

∀ t ∈ T; ∀ j > i; d�πj�t�; πj−1�t�� ≤ 2r−j+1:(2.6)

The factor 2 is convenient but unimportant.
The traditional way to use (2.4) is as follows. Assume that for certain posi-

tive numbers aj, we have, for some u > 0,

∀ t ∈ T; ∀ j > i; Xπj�t� −Xπj−1�t� ≤ uaj:(2.7)

Then, if F is a finite subset of T on which (2.4) holds, we have, setting S =∑
j>i aj, that

∀ t ∈ F; Xt −Xt0
≤ Su:(2.8)

Consider the number Mj of all possible pairs �πj�t�; πj−1�t�� as t varies
through T. Then, using (2.6) and (1.1), we get

P�∃ t ∈ T; Xπj�t� −Xπj−1�t� > uaj� ≤ 2Mj exp−
u2a2

j

�2r−j+1�2
and thus

P
(

sup
t∈F

Xt −Xt0
≥ uS

)
≤
∑
j>i

2Mj exp−
u2a2

j

�2r−j+1�2 :(2.9)

We see then that it is a good choice to take

aj = 2r−j+1
√

log 2j−iMj:

In that case, the right-hand side of (2.9) becomes
∑
j>i

2Mj�2j−iMj�−u
2
:

For u2 ≥ 1, this is at most

∑
j>i

2�2j−i�−u2 ≤ 2 · 2−u2
(∑
j>i

2−j+i+1
)

≤ 4 · 2−u2

and thus, in particular,

E sup
t∈T

Xt ≤KS:(2.10)

Here, as well as in the rest of the paper, K denotes a universal constant, not
necessarily the same at each occurrence.

How, then, does one construct the points πj�t�? A simple method is to choose
5j such that

∀ t ∈ T; ∀ j > i; ∃ u ∈ 5j; d�t; u� ≤ r−j:
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One then picks πj�t� ∈ 5j such that d�t; πj�t�� ≤ r−j. This implies (2.5) and,
by the triangle inequality, this implies (2.6).

How does one control the number Mj? We see that, if we set Nj = card5j,
we have Mj ≤NjNj−1, so that

S ≤
∑
j>i

2r−j+1
√

log 2j−iNjNj−1:

It is more elegant to express this bound in a simpler manner. Using that√
ab ≤ √a+

√
b, we have

S ≤
∑
j>i

2r−j+1
(√

j− i
√

log 2+
√

log Nj +
√

log Nj−1

)

≤K�r�
(
r−i +

∑
j≥i
r−j

√
log Nj

)
:

(2.11)

Here, as well as in the rest of the paper, K�r� denotes a constant that depends
on r only. Let us now make a simple observation: the definition of i shows that

2r−i−1 < diamT:

Thus we cannot have Ni+1 = 1, since then we would have diamT ≤ 2r−i−1.
Thus Ni+1 ≥ 2, and thus

r−i ≤K�r�r−i−1
√

log Ni+1

and (2.11) becomes

S ≤K�r�
∑
j≥i
r−j

√
log Nj:(2.12)

Certainly it is to our benefit to take Nj as small as possible. Let us recall
the definition of covering numbers. Given a metric space �T;d�, we denote by
N�T;d; ε� the smallest number N such that for a certain subset U of T with
cardU ≤N we have

∀ t ∈ T; ∃ u ∈ U; d�t; u� ≤ ε:
Equivalently,N is the smallest integer such that T can be covered byN closed
balls of radius ε (for the distance d). Then we can take Nj = N�T;d; r−j�.
Certainly the numbers N�T;d; ε� increase when ε decreases. Thus

ε ≤ r−j ⇒N�T;d; ε� ≥Nj:

Thus
∫ r−i

0

√
log N�T;d; ε�dε ≥

∑
j≥i
�r−j − r−j−1�

√
log Nj;

so that (2.12) becomes

S ≤K�r�
∫ r−i

0

√
log N�T;d; ε�dε:
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We observe that N�T;d; ε� = 1 for ε ≥ 2r−i ≥ diamT, so that there is no loss

in writing
∫∞

0 rather than
∫ r−i

0 . Taking r = 2, we have proved the following
result.

Proposition 2.1 (Dudley’s entropy bound). Under (1.1) we have

E sup
t∈T

Xt ≤K
∫ ∞

0

√
log N�T;d; ε�dε:(2.13)

When we look back at the above proof, we realize that we have not been
very cautious. A first observation is that, since by the chaining equation (2.4)
we try to control the increments Xπj�t� −Xπj−1�t�, it is to our advantage to
arrange that

∀ s; t ∈ T; πj�t� = πj�s� ⇒ πj−1�t� = πj−1�s�;(2.14)

because this ensures that there will be fewer such increments to control. It
seems also a very minor restriction to assume

∀ v ∈ 5j; πj�v� = v;(2.15)

so that, by (2.14),

πj−1�t� = πj−1�πj�t��;(2.16)

since πj�πj�t�� = πj�t� by (2.15).
Thus, by (2.14), controlling the increments Xπj�t� −Xπj−1�t� means control-

ling the increments Xv −Xπj−1�v� for v ∈ 5j.
We should observe in passing that there are now at mostNj = card5j such

increments. This is better than our previous estimate NjNj−1. This observa-
tion does not allow us to improve upon (2.11). (It is, however, essential when
one attempts to extend (2.11) to cases where (1.1) is replaced by a moment
condition �Xt −Xs�p ≤ d�s; t�; see [16] and [13].)

We observe that, under (2.16), (2.7) becomes

∀ v ∈ 5j; Xv −Xπj−1�v� ≤ uaj:(2.17)

The crucial new idea of the majorizing measure bound is to replace (2.17) by

∀ v ∈ 5j; Xv −Xπj−1�v� ≤ uaj�v�;(2.18)

where the number aj�v� ≥ 0 depends on j; v. We observe under (2.18) that, if
(2.5) holds for each t in F, we have

∀ t ∈ F; Xt −Xt0
≤ uS;

where

S = sup
t∈T

∑
j>i

aj�πj�t��:
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Thus

P
(

sup
t∈F
�Xt −Xt0

� ≥ uS
)
≤
∑
j>i

∑
v∈5j

P�Xv −Xπj−1�v� ≥ uaj�v��

≤
∑
j>i

∑
v∈5j

2 exp
(
−
u2a2

j�v�
�2r−j+1�2

)
:

(2.19)

This bound brings information only when the right-hand side is less than
or equal to 1. Thus it is natural to require that this is the case for u = 1, and
thus

∑
j>i

∑
v∈5j

2 exp
(
−

a2
j�v�

�2r−j+1�2
)
≤ 1:

In other words, setting

wj�v� = 2 exp
(
−

a2
j�v�

�2r−j+1�2
)
;(2.20)

we want to have
∑
wj�v� ≤ 1. This condition reminds us of a “total weight

at most 1,” and this is where the idea of probability comes in. Consider a
probability µ on T, and set

∀ j > 1; ∀ v ∈ 5j; wj�v� = µ��v��:
Thus, by (2.20),

aj�v� = 2r−j+1

√
log

2
µ��v�� :

Thus, by the definition of S,

S = 2 sup
t∈T

∑
j>i

r−j+1

√
log

2
µ��πj�t���

:(2.21)

For u ≥ 1, the right-hand side of (2.19) is

∑
j>i

∑
v∈5j

2
(
wj�v�

2

)u2

≤ 21−u2
;

since

2
(
wj�v�

2

)u2

≤ wj�v�21−u2
;

and this ensures that

E sup
t∈F
�Xt −Xt0

� ≤KS:

Thus we have proved the following result.
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Proposition 2.2. If µ is a probability measure on T, then, under (1.1),
(2.5), (2.6) and (2.15), we have

E sup
t∈T

Xt ≤K sup
t∈T

∑
j>i

r−j+1

√
log

2
µ��πj�t���

:(2.22)

This is, in essence, the majorizing measure bound. The formulation is, how-
ever, neither the most useful nor the simplest possible. It thus remains to
reformulate this result.

We observe that each map πj defines a partition Aj of T. The partition Aj

is the collection of sets �Av�v∈5j , where

Av = �t ∈ Ty πj�t� = v�:
We have Ai = �T�, and condition (2.16) implies that the sequence �Aj�j≥i is
increasing.

We note also that, by (2.5), (2.6) and the triangle inequality,

∀ t ∈ T; d�t; πj�t�� ≤ 2
∑
`>j

r−`+1 ≤ 4r−j

since r ≥ 2. Thus

∀ A ∈ Aj; diamA ≤ 8r−j:(2.23)

This explains why increasing sequences of partitions that satisfy (2.23) will
play such an important role in the sequel. Rather than (2.23) we will use (for
unimportant reasons)

∀ A ∈ Aj; diamA ≤ 2r−j:(2.24)

Given an increasing sequence of partitions �Aj�j≥i, we will, throughout the
paper, denote by Aj�t� the unique element of Aj that contains t. The following
is a simple reformulation of Proposition 2.2.

Proposition 2.3. Consider an increasing sequence of partitions �Aj�j≥i of
T, such that Ai = �T�. Assume (1.1) and (2.24), and consider a probability
measure µ on T. Then

E sup
t∈T

Xt ≤K�r� sup
t∈T

∑
j>i

r−j
√

log
1

µ�Aj�t��
:(2.25)

In the statement we, of course, implicitly assume that the sets of the par-
titions are µ-measurable.

Proof. In order to apply Proposition 2.2, we choose, for each j ≥ i and
each A ∈ Aj, an arbitrary point xA ∈ A. For each t ∈ T, we define

πj�t� = xAj�t�:(2.26)

Thus (2.5) and (2.6) hold and (2.15) holds since the sequence �Aj�j≥i increases.
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Since
∑
j>i

∑
A∈Aj

2−j+iµ�A� ≤ 1, it should be obvious that there exists a
probability µ′ on T such that

∀ j > i; ∀ A ∈ Aj; µ′��xA�� ≥ 2−j+iµ�A�:

We now apply (2.22) to µ′ rather than µ to get

E sup
t∈T

Xt ≤K sup
t∈T

∑
j>i

r−j+1

√
log

2j−i+1

µ�Aj�t��
:(2.27)

This is not quite (2.25). However, we observe that
√

log
2j−i+1

µ�Aj�t��
≤
√
j− i+ 1

√
log 2+

√
log

1
µ�Aj�t��

:

Thus the right-hand side of (2.27) is at most [using 6j>ir
−j√j− i+ 1 ≤

K�r�r−i]

K�r�
(
r−i + sup

t∈T

∑
j>i

√
log

1
µ�Aj�t��

)
:

To complete the proof, it suffices to show that

r−i ≤K�r� sup
t∈T

∑
j>i

√
log

1
µ�Aj�t��

:

This is a variation of the argument used at the same place in the proof of
Proposition 2.1. By (2.4) and since diamT > 2r−i−1, we must have card Ai+1 >
1. Thus there is A ∈ Ai+1 with µ�A� ≤ 1/2. If t ∈ A, then

r−i ≤K�r�
(
r−i−1

√
log

1
µ�Ai+1�t��

)
: 2

Thus we have shown that increasing sequences of partitions of T are closely
linked to the “generic chaining” argument we have presented in this section.
Moreover, the main result of this paper will be an efficient method to con-
struct such sequences of partitions. Nonetheless, there is a stronger form of
Proposition 2.3 that is sometimes useful, and is more elegant, in the sense
that it forgets the partitions and remembers only µ. It is due to Fernique [5].
To formulate it, we denote by B�t; ε� the ball of radius ε centered at t.

Proposition 2.4. Consider a probability µ onT. Then, under (1.1), we have

E sup
t∈T

Xt ≤K sup
t∈T

∫ ∞
0

√
log

1
µ�B�t; ε�� dε:(2.28)
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Thus the measure µ provides a bound for E supt∈XXt, and hence is called
a majorizing measure (although the name is implicitly reserved for those µ
that give a decent bound!). We observe that if ε > diamT, then B�t; ε� = T, so
that µ�B�t; ε�� = 1 and the integrand is 0. Thus the integral is in fact between
0 and diamT. The link with (2.25) is that

Aj�t� ⊂ B�t;2r−j�:
Thus, after comparison of the integral with a series, (2.28) appears as an
improvement upon (2.25). It must be stressed, however, that, the historical
and elegant formulation of (2.28) notwithstanding, it is the formulation of
majorizing measures through a sequence of partitions and a family of weights
that now appears as the important concept.

To prove that (2.28) follows from (2.5), we will have, given µ, to construct an
appropriate sequence of partitions of T. This is not a triviality. The possibility
of this construction was observed around 1985, independently in [1] and [15]
(although (2.28) was known much earlier [6]). Quite remarkably, a similar
construction is now at the center of the theory (Section 4). In order to avoid
repetition, we will delay the proof of Proposition 2.4 until Section 4.

Certainly in (2.28) we are interested in the case where the right-hand side
is as small as possible. We define the quantity γ2�T;d� as

γ2�T;d� = inf sup
t∈T

∫ ∞
0

√
log

1
µ�B�t; ε�� dε;

where the infimum is taken over all probability measures, and we reformulate
Proposition 2.4 as follows.

Theorem 2.5 (The majorizing measure bound). Under (1.1), we have

E sup
t∈T

Xt ≤Kγ2�T;d�:

It should be pointed out that if we consider another metric space �T′; d′�,
such that there exists a contraction ϕ from T onto T′, it is obvious that
γ2�T′; d′� ≤ γ2�T;d�. (This is about the only result where the formuation
of Proposition 2.4 is easier to use than the formulation of Proposition 2.3.)

3. A first look at ellipsoids. In this section we explain a natural way
to look at Gaussian processes, as indexed by a subset T of the space `2 of
sequences t = �tn� for which �t� = �∑n≥1 t

2
n�1/2 < ∞. We then demonstrate

that when T is an ellipsoid, Proposition 2.1 is not sharp.
Consider a sequence �gn�n≥1 of independent standard normal r.v.’s. For t =

�tn�n≥1, we can define

Xt =
∑
n≥1

tngn(3.1)

(convergence inL2 and a.e.). Formula (3.1) defines a Gaussian process �Xt�t∈`2 .
We observe that EX2

t =
∑
n≥1 t

2
n. Since Xt −Xu =Xt−u, the distance induced
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by the process on `2 following (1.2) coincides with the distance induced by the
norm of `2.

To each subset T of `2 we associate a Gaussian process �Xt�t∈T and
we would like to understand, as a function of the “geometry” of T, when
E supt∈TXt is finite. The reason this is an important question is that this
amounts in fact to studying E supt∈UYt for any Gaussian process �Yt�t∈U. In-
deed, it can be shown that if �hn�n≥1 is an orthonormal basis of L2���, where
� is the basic probability space, and if, for t ∈ U, we set ϕ�t� = �E�Xthn��n≥1,
then

E sup
t∈U

Yt = E sup
t∈U

Xϕ�t� = E sup
t∈ϕ�U�

Xt:

The traditional example used to demonstrate the superiority of Proposition
2.4 over Proposition 2.1 is the case where

T =
{

en√
log n

y n ≥ 2
}
;

where �en� denotes the canonical basis of `2. It is left to the reader to check
that

√
log N�T;d; ε� ≥ 1

Kε

(where d denotes, of course, the distance induced by H), so that the integral
in Proposition 2.1 is infinite. On the other hand, γ2�T;d� <∞, as is witnessed
by a measure µ such that

µ

({
en√
log n

})
≥ 1
Kn�log n�2

(through a simple calculation). This example is somewhat canonical, but it is
also somewhat artificial. We will rather consider here the case of the ellipsoids

E =
{
t = �tn�y

∑
n≥1

t2n
a2
n

≤ 1
}

(3.2)

(where an > 0). Certainly it is difficult to argue that ellipsoids are unnatural.
Using (3.1), we have, by the Cauchy–Schwarz inequality,

sup
t∈E

Xt =
( ∑
n≥1

a2
ng

2
n

)1/2

;

so that

E sup
t∈E

Xt = E
( ∑
n≥1

a2
ng

2
n

)1/2

≤
(
E
∑
n≥1

a2
ng

2
n

)1/2

=
( ∑
n≥1

a2
n

)1/2

:

(3.3)
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It is not difficult to show (using the tail properties of Gaussian processes)
that (3.2) is sharp in the sense that

( ∑
n≥1

a2
n

)1/2

≤KE sup
t∈E

Xt:(3.4)

Thus we may feel that we understand the behavior of ellipsoids with respect
to the process �Xt�. This is a very dangerous illusion. We actually benefited
from a kind of coincidence that allows the computation of (3.3). We will show
that Proposition 2.1 does not explain (3.3). It turns out that for the ellipsoid
(3.2) we have

γ2�E � ≤K
( ∑
n≥1

a2
n

)1/2

;(3.5)

where we make the convention (valid throughout the paper) that we omit the
mention of the distance when we deal with subsets of Hilbert space and the
distance induced by the norm. Only after (3.5), which is not trivial, is proved,
can we say that we really understand (3.3) through Theorem 2.4. The rest of
this section is devoted to estimates of entropy numbers for ellipsoids (which
were discovered around 1960—see [12] and [9]) and a discussion of the results.

Consider the ellipsoid (3.1). For k ∈ Z, we consider

Ik = �ny 2−k ≤ an < 2−k+1�;
Jk = �ny an ≥ 2−k�:

We set nk = cardIk; mk = cardJk =
∑
`≤k n`.

Lemma 3.1. We have N�E ;2−k−1� ≥ 2mk .

Proof. Consider the space Hk of sequences �tn�n∈Jk provided with the
Euclidean norm. The map ϕ: `2 →Hk that sends �tn�n≥1 to �tn�n∈Jk satisfies

�ϕ�t� − ϕ�u�� ≤ �t− u�:
Thus

N�E ;2−k−1� ≥N�ϕ�E �;2−k−1�:
Now, if we denote by B the unit ball of Hk, we see that 2−kB ⊂ ϕ�E �. Thus

N�ϕ�E �;2−k−1� ≥N�2−kB;2−k−1�:
Setting N = N�2−kB;2−k−1�, by definition we can find points t1; : : : ; tN such
that

2−kB ⊂
⋃
`≤N
�2−k−1B+ t`�:

Thus, denoting by Vol the mk-dimensional volume, we get

Vol�2−kB� ≤NVol�2−k−1B�:
Since Vol�aB� = amkVolB, we get N ≥ 2mk . 2
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It follows from Lemma 3.1 that

2−k
√

log N�E ;2−k−1� ≥ 2−k
√
mk ≥ 2−k

√
nk:

In particular, we get
∑
k∈Z

2−k
√
nk ≤K

∫ ∞
0

√
log N�E ; ε�dε:

On the other hand,
( ∑
n≥1

a2
n

)1/2

≤ 2
( ∑
k∈Z

2−2knk

)1/2

:

In view of (3.3), this shows that Proposition 2.1 does not give a correct bound
in the case of ellipsoids, as is seen in the case

∑
2−k
√
nk = ∞;

∑
2−2knk <∞.

We now turn to upper bounds for N�E ; ε�.

Lemma 3.2. log N�E ;2−k+1� ≤K∑
`≤k�k− `+ 3�n`.

Proof.
Step 1. We observe that, if t ∈ E , then

1 ≥
∑
n/∈Jk

t2n
a2
n

≥ 22k ∑
n/∈Jk

t2n;

so that �∑n/∈Jk t
2
n�1/2 ≤ 2−k. It should then be clear that

N�E ;2−k+1� ≤N�E ′;2−k�;
where

E ′ =
{
t ∈Hk;

∑
n∈Jk

t2n
a2
n

≤ 1
}

and where Hk has been defined in the proof of Lemma 3.1.

Step 2. Consider a subset Z of E ′ with the following properties:

Any two distinct points of Z are at mutual distance greater than 2−k.(3.6)

The cardinality of Z is as large as possible.(3.7)

The last condition implies that the balls of radius 2−k centered at Z cover E ′.
Thus

N�E ′;2−k� ≤ cardZ:

On the other hand, by (3.6) the balls of radius 2−k−1 centered at the points of
Z are disjoint. These balls are contained in E ′ + 2−k−1B, where B is the unit
ball of Hk. Thus, if we denote again by Vol the mk-dimensional volume,

cardZVol�2−k−1B� ≤ Vol�E ′ + 2−k−1B�:(3.8)
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Since an > 2−k for n ∈ Jk, we have 2−kB ⊂ E ′, so that (crudely) E ′+2−k−1B ⊂
2E ′ and

Vol�E ′ + 2−k−1B� ≤ 2mkVol�E ′�:
Now

Vol�E ′� =
( ∏
n∈Jk

an

)
Vol�B�

≤
∏
`≤k

2�−`+1�n`Vol�B�;

since an ≤ 2−`+1 for n ∈ I`.
Combining with (3.8), we get

cardZ ≤ 4mk�2k+1�mk
∏
`≤k

2−`n` =
∏
`≤k

2�k−`+3�n` :

Thus

log N�E ;2−k+1� ≤ log cardZ ≤ log 2
(∑
`≤k
�k− `+ 3�n`

)
: 2

It turns out that ellipsoids for which
∑
a2
n <∞ do satisfy a certain condition

on their entropy numbers.

Proposition 3.3. For the ellipsoid E of (3.2), we have
∫ ∞

0
ε logN�E ; ε�dε ≤K

∑
n≥1

a2
n:(3.9)

Remark 1. We leave it to the reader to show, using Lemma 3.1, that
∑
n≥1

a2
n ≤K

∫ ∞
0
ε log N�E ; ε�dε:

Remark 2. In Section 6, we will prove, using the geometry of ellipsoids,
that

γ2�E � ≤
(∫ ∞

0
ε log N�E ; ε�dε

)1/2

:

Combined with (3.9) and Theorem 2.4, this provides a considerably longer, but,
as will be demonstrated, considerably more instructive proof of (3.3) (with a
worse constant).

Proof. It is standard to show that
∫ ∞

0
ε log N�E ; ε�dε ≤K

∑
k∈Z

2−2k log N�E ;2−k�:
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Using Lemma 3.2 and interverting summation, we get
∑
k∈Z

2−2k log N�E ;2−k� ≤K
∑
k∈Z

∑
`<k

2−2k�k− `+ 3�n`

=K
∑
`∈Z

(∑
k>`

2−2k�k− `+ 3�
)
n`

≤K
∑
`∈Z

2−2`n` ≤K
∑
n∈N

a2
n: 2

4. The partitioning scheme. The ancestor of the scheme we present in
this section was invented to study Gaussian processes, that is, as explained
before, subspaces of Hilbert space provided with the induced distance. Fortu-
nately, the method is valid in any metric space. It allows one, under general
conditions, to construct increasing sequences of partitions such as those of
Section 2.

Consider a metric space �T;d�. We denote by B�t; a� the ball centered at t
of radius a.

We assume that, for j ∈ Z, we are given a map ϕj: T → R+. We assume
that

S = sup�ϕj�t�y j ∈ Z; t ∈ T� <∞:(4.1)

Consider a function θ: N→ R+, and assume that

lim
n→∞

θ�n� = ∞:(4.2)

We assume that, for certain numbers r ≥ 4; β > 0, the following holds, for
any point s of T, any j ∈ Z and any n ∈ N:

Given any points t1; : : : ; tn of B�s; r−j� such that(4.3)

∀ p;q ≤ n; p 6= q⇒ d�tp; tq� ≥ r−j−1;

we have

ϕj�s� ≥ r−βjθ�n� +min
`≤n

ϕj+2�t`�:(4.4)

The parameter β will be used for later purposes; for the moment the reader
should assume β = 1. The most important case is when θ�n� =

√
log n [or

θ�n� = K−1
√

log n�. Before we comment on the more subtle aspects of condi-
tion (4.4), we state a typical result.

Theorem 4.1. Assume that condition (4.4) holds for β = 1; θ�n� =
√

log n.
Consider the largest i ∈ Z such that diamT ≤ 2r−i. Then one can find an
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increasing sequence of partitions �Aj�j≥i of T and a probability measure µ on
T such that

sup
t∈T

∑
j>i

r−j log�1/µ�Aj�t���1/2 ≤K�r�S:(4.5)

To make the case that this is useful, we must demonstrate that (4.4) is a
weak condition, and explain what these mysterious maps ϕj are and how to
find them. First, (4.4) is weak because there is a min rather than a max on
the right-hand side. The second (and crucial) reason is that on the right-hand
side of (4.4) there is the index j+ 2 rather than j+ 1. The point here is that
in all the cases we will consider ϕj�s� will be a kind of measure of the size of
B�s;3r−j�. The number ϕj+2�t`� then depends only on the ball B�t`;3r−j−2�.
Since d�t`; t`′� ≥ r−j−1 for ` 6= `′, these balls are well separated from each
other, at least for r ≥ 8, and lie well inside B�s;3r−j�. How, then, does one
choose the maps ϕj? In the setting of Theorem 4.1, the choice

ϕj�s� = γ2�T;d� − γ2�B�s;2r−j��(4.6)

always yields an essentially optimal result (and is essentially the choice made
in Section 5). However, in many cases, we want to use Theorem 4.1 to get an
upper bound on γ2�T;d�, because this quantity is so elusive; for this reason,
we cannot use the choice (4.6). Rather, one has to make a guess (based on the
geometry of the situation) of useful functions ϕj, a task that I could carry out
in several situations of interest. Other situations of interest, where I did not
succeed, are presented in Section 8.

Before proving Theorem 4.1, we feel it appropriate to provide a natural
example of a situation where condition (4.4) holds. This will help to illustrate
why it is rather weak.

Proposition 4.2. Assume that µ is a probability measure on T, and that

S = sup
t∈T

∫ ∞
0

√
log

1
µ�B�t; ε�� dε <∞:

We take r = 8, and we define

ϕj�t� = sup

{∫ r−j

0

√
log

1
µ�B�u; ε�� dεy d�t; u� ≤ 2r−j

}
:

Then conditions (4.1)–(4.4) hold with θ�n� = �1/r2�
√

log n.

Together with Proposition 2.3 and Theorem 4.1, this proves Proposition 2.4.

Proof. Conditions (4.1) and (4.2) are obvious. We prove (4.4). Consider
s; t1; : : : ; tn as in (4.3). For ` ≤ n, consider s` ∈ B�t`;2r−j−2�.

We observe that

d�s; s`� ≤ d�s; t`� + d�t`; s`� ≤ r−j + 2r−j−2 ≤ 2r−j:
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We also observe that, if ` 6= `′,
d�s`; s`′� ≥ d�t`; t`′� − 4r−j−2 ≥ r−j−1 − 4r−j−2 ≥ 4r−j−2

since r = 8. Thus the (open) balls B�s`;2r−j−2� are disjoint for ` ≤ n. Thus
we can find ` for which µ�B�s`;2r−j−2�� ≤ 1/n:

Now, since s` ∈ B�s;2r−j�, we have

ϕj�s� ≥
∫ r−j

0

√
log

1
µ�B�s`; ε��

dε

≥
∫ r−j−2

0

√
log

1
µ�B�s`; ε��

dε+ r−j−2
√

log n;

since the integrand is at least
√

log n for r−j−2 ≤ ε < 2r−j−2.
Thus

ϕj�s� ≥
1
r2
�r−j

√
log n� +min

`≤n

∫ r−j−2

0

√
log

1
µ�B�s`; ε��

dε:

Taking the supremum over all possible choices of s` finishes the proof. 2

We now perform the main construction using conditions (4.1)–(4.4) to pro-
duce a sequence of partitions, which, in some sense, is not too large.

Proposition 4.3. Assume conditions (4.1)–(4.4). Assume that T has finite
diameter, and consider the largest i ∈ Z such that diamT ≤ 2r−i. Then one can
find an increasing sequence of partitions �Aj�j≥i of T, and, for each A ∈ Aj,
one can find a natural number `j�A� such that the following properties hold:

Each set of Aj has diameter at most 2r−j.(4.7)

Given j ≥ i, any two sets A;B of Aj+1 that are contained in the
same element of Aj, we have `j+1�A� 6= `j+1�B�.(4.8)

∀ t ∈ T;
∑
j≥i
r−βjθ�`j+1�Aj+1�t��� ≤ 4S:(4.9)

Remark. One should observe that (4.3), (4.8) and (4.9) imply that each
partition Aj is finite.

Proof. Together with each set A ∈ Aj, we will also construct a distin-
guished point uj�A� ∈ A such that

∀ t ∈ A; d�t; uj�A�� ≤ r−j:(4.10)

This condition implies (4.7).
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The construction proceeds by induction over j. For j = i, we set Ai =
�T�; `i�T� = 1, and we choose ui�T� such that

ϕi+2�ui�T�� ≥ sup�ϕi+2�t�y t ∈ T� −
S

2
:

We now assume that the partition Aj has been constructed, as well as
the points uj�A�; A ∈ Aj. To construct Aj+1, it suffices to partition any
given element A of Aj into elements of Aj+1. This will be done by a kind of
exhaustion argument that will produce pieces of A one at a time. The index
of any piece will simply be the rank at which it is constructed.

At the first step, we pick t1 ∈ A such that

ϕj+2�t1� ≥ sup�ϕj+2�t�y t ∈ A� − 2i−j−1S:

Our first piece of A is then

D1 = A ∩B�t1; r−j−1�:
We then repeat this procedure replacing A by A\D1, and we continue until

A is exhausted. More formally, we construct t1; : : : ; tp in A such that

tp ∈ A\
⋃
`<p

B�t`; r−j−1�

and

ϕj+2�tp� ≥ sup
{
ϕj+2�t�y t ∈ A\

⋃
`<p

B�t`; r−j−1�
}
− 2i−j−1S;(4.11)

and we set

Dp = B�tp; r−j−1� ∩
(
A\

⋃
`<p

B�t`; r−j−1�
)
:

The sets �Dp�p≥1 are disjoint by construction, and form the partition of A
we wanted to construct. [It follows from (4.3) and (4.4) that the construction
eventually stops.]

We set

uj+1�Dp� = tp; `j+1�Dp� = p:(4.12)

In particular, (4.8) holds. Thus, it remains to prove (4.9).
We observe that, by (4.10), we have d�uj�A�; tp� ≤ r−j for each p. Also, by

construction, for ` < `′ we have d�t`; t`′� ≥ r−j−1. Thus, by (4.4), for each p we
have

ϕj�uj�A�� ≥ r−βjθ�p� +min
`≤p

ϕj+2�t`�:(4.13)

On the other hand, we have

tp ∈ A\
⋃
`<p

B�t`; r−j−1�;
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so that, by (4.11) (used for t` rather than tp where ` ≤ p), we have

ϕj+2�t`� ≥ ϕj+2�tp� − 2i−j−1S

and thus, by (4.13),

ϕj�uj�A�� ≥ ϕj+2�tp� + r−βjθ�p� − 2i−j−1S:(4.14)

Consider now t ∈ Dp. Then

A = Aj�t�; Dp = Aj+1�t�; `j+1�Aj+1�t�� = `j+1�Dp� = p;

so that (4.14) can be rewritten

ϕj�uj�Aj�t��� ≥ ϕj+2�tp� + r−βjθ�`j+1�Aj+1�t��� − 2i−j−1S:(4.15)

We now observe that

u x= uj+2�Aj+2�t�� ∈ Aj+2�t� ⊂ Aj+1�t� = Dp;

so that, by (4.10),

ϕj+2�tp� ≥ ϕj+2�u� − 2i−j−1S

and combining with (4.15) gives

ϕj�uj�Aj�t��� ≥ ϕj+2�uj+2�Aj+2�t��� + r−βjθ�`j+1�Aj+1�t��� − 2i−jS:

This holds for any t in T. We sum this relation for j ≥ i to get
∑
j≥i
r−βjθ�`j+1�Aj+1�t��� ≤ 2S+ ϕi�ui�Ai�t��� + ϕi+1�ui+1�Ai+1�t��� ≤ 4S: 2

Here is another version of Proposition 4.3.

Proposition 4.4. Consider a metric space �T;d�. Assume that for j ∈ Z
we are given a map ψj from T to R+. Assume that ψj�t� ≤ S for j ∈ Z, t ∈ T,
and that under (4.3) we have

�4:4bis� max
`≤n

ψj+2�t`� ≥ ψj�s� + r−βjθ�n�:

Then the conclusion of Proposition 4.3 holds.

Proof. Use Proposition 4.3 for ϕj�t� = S− ψj�t�. 2

We now relate condition (4.9) with majorizing measures.

Proposition 4.5. Consider a metric space �T;d� and an increasing se-
quence �Aj�j≥i of partitions of T, and assume that, to each A ∈ Aj, j ≥ i,
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we associate a number `j�A� ∈ N that satisfies (4.8). Then there is a probabil-
ity measure µ on T such that, given α; β > 0, we have

sup
t∈T

∑
j>i

r−βj�log�1/µ�Aj�t����1/α

≤K�α;β; r�
(
r−βi + sup

t∈T

∑
j>i

r−βj�log `j�Aj�t���1/α
)
;

(4.16)

where K�α;β; r� depends on α;β; r only.

Remark. For now, we care only about the case α = 2; β = 1.

Proof. For j ≥ i; A ∈ Aj, we construct numbers wj�A� as follows.
We start the construction by setting wi�T� = 1. Assuming that the numbers

wj−1�A� have been constructed for A ∈ Aj−1; if B ∈ Aj, we set

wj�B� =
1

4`j�B�2
wj−1�A�;(4.17)

where A is the element of Aj−1 that contains B. Since

∑
`≥1

1
`2
≤ 2;

we see from (4.17) that
∑
�wj�B�y B ∈ Aj; B ⊂ A� ≤ 1

2wj−1�A�:
Thus, by induction over j, we see that

∑
A∈Aj

wj�A� ≤ 2−j+i

and thus
∑
j>i

∑
A∈Aj

wj�A� ≤ 1:

It follows that there exists a probability µ on T such that

∀ j ≥ i; ∀ A ∈ Aj; µ�A� ≥ wj�A�:
Consider now t ∈ T; j > i. Then, by (4.17), we have

wj�Aj�t�� = 4i−j
∏

i<k≤j
`k�Ak�t��−2;

so that

log
1

µ�Aj�t��
≤ �j− i� log 4+ 2

∑
i<k≤j

log `k�Ak�t��:(4.18)
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We first consider the case α ≥ 1. This is the most important and also the
easiest, because in this case, setting δ = 1/α, we have �x + y�δ ≤ xδ + yδ, so
that

(
log

1
µ�Aj�t��

)δ
≤K�j− i�δ + 2δ

∑
i<k≤j

�log `k�Ak�t���δ:(4.19)

Thus, by changing the order of summations,

∑
j>i

r−βj
(
log

1
µ�Aj�t��

)δ
≤K

∑
j>i

r−jβ�j− i�δ+2δ
∑
k>i

( ∑
j≥k

r−jβ
)
�log `k�Ak�t���δ;

which finishes the proof.
In the case α < 1 (which should be omitted at a first reading), we need a

substitute for (4.19). We observe that the function x→ xδ is convex, so that,
for numbers yk ≥ 0 and numbers ak ≥ 0, with

∑
ak = 1, we have

(∑
akyk

)δ ≤
∑
aky

δ
k:

Thus, taking ak = arβ�k−j�/2δ, where a−1 = ∑`≥1 r
−β`/2δ, we see that (setting

yk = xk/ak)
( ∑
i<k≤j

xk

)δ
≤

∑
i<k≤j

aka
−δ
k y

δ
k

and thus
(

log
1

µ�Aj�t��

)δ
≤K�α;β; r�

[
�j− i�δ +

∑
i<k≤j

rβ�j−k�/2
(

log
1

µ�Aj�t��

)δ]

and the proof is then finished as before. 2

Proof of Proposition 2.4. Combining Propositions 4.2 and 4.5, we obtain
a bound

K�r��r−i +S�
for the left-hand side of (4.5). To prove that r−i ≤ K�r�S, one then uses an
argument similar to the one given after (2.11).

5. Gaussian processes. In this section we go back to general Gaussian
processes �Xt�t∈T. There is no special advantage in considering the “canonical”
setting where T is a subset of `2, so here �Xt�t∈T is simply a jointly Gaussian
family of centered r.v.’s indexed by T: We provide the index set T with the
distance (1.1).

Theorem 5.1 (The majorizing measure theorem). For some universal con-
stant K, we have

1
K
γ2�T;d� ≤ E sup

t∈T
Xt ≤Kγ2�T;d�:(5.1)
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This statement characterizes the sample boundedness of the process as a
function of the geometry of �T;d� (and results about continuity follow easily).

We observe that Theorem 5.1 does not say how to evaluate the quantity
(5.1) in concrete examples. Rather, the content of Theorem 5.1 is that there
is no other way to bound E supt∈TXt than to find a good majorizing measure
on T.

Proof of Theorem 5.1. The right-hand inequality is a special case of
Proposition 2.4. To prove the left-hand inequality, by Theorem 5.1, it suffices
to prove that the functions ϕj�t� on T given by

ϕj�t� = E sup�Xuy d�u; t� ≤ 2r−j�
satisfy (4.4) for

θ�n� = 1
K

√
log n; β = 1;

provided r is large enough.

There are two key ingredients to this proof.

Lemma 5.2 (Sudakov minoration). Assume that

`; `′ ≤ n; ` 6= `′ ⇒ d�t`; t`′� ≥ a:
Then we have, for some universal constant K1,

E sup
`≤n

Xt`
≥ 1
K1

a
√

log n:(5.2)

We refer to [10], page 83, for a proof. In what follows, the suprema of col-
lections of r.v.’s are essential suprema.

Lemma 5.3. Consider a Gaussian process �Zt�t∈V. Let σ = supt∈V �Zt�2.
Then, for some universal constant K2, we have

P

(∣∣∣∣sup
t∈V

Zt −E sup
t∈V

Zt

∣∣∣∣ ≥K2uσ

)
≤ 2e−u

2
:(5.3)

This is a very important property of Gaussian processes. We purposely do
not give a sharp form of (5.3), but rather what makes the proof work; this
is important for further extensions of the method, where sharp forms will
not be available. This property follows either from the deviation inequality of
Ibragimov, Sudakov and Tsirelson [8] or the Gaussian isoperimetric inequality.

Lemma 5.4. Consider points �t`�`≤n. Assume that `; `′ ≤ n; ` 6= `′ ⇒
d�t`; t`′� ≥ a. Consider σ > 0 and for ` ≤ n consider a set A` ⊂ B�t`; σ�.
Then, setting A = ∪`≤nA`, we have

E sup
t∈A

Xt ≥
a

K1

√
log n− σK3

√
log n+min

`≤n
E sup

t∈A`

Xt:
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Proof. For ` ≤ n, we consider

Y` = sup
t∈A`

�Xt −Xt`
� =

(
sup
t∈A`

Xt

)
−Xt`

:(5.4)

We now apply (5.3) to Zt =Xt −Xt`
, V = A`, so that

P��Y` −EY`� ≥K2uσ� ≤ 2e−u
2
:

Setting

h = max
`≤n
�Y` −EY`�;

we then have, by (5.3),

P�h ≥K2uσ� ≤ 2ne−u
2
:

Using the fact that Eh =
∫∞

0 P�h ≥ v�dv and a routine computation, we see
that

Eh ≤K3σ
√

log n;(5.5)

where K3 is universal. Now, for each ` ≤ n,

Y` ≥ EY` − h ≥ min
`≤n

EY` − h:

Thus

sup
t∈A`

Xt = Y` +Xt`
≥Xt`

+min
`≤n

EY` − h

and thus

sup
t∈A

Xt ≥ max
`≤n

Xt`
+min

`≤n
EY` − h:

Taking expectation, using Lemma 5.2 and (5.5) yield the result. 2

It is possible to give a proof of Lemma 5.4 based on the comparison prop-
erties of Gaussian processes [7]. This is, however, missing the main point.
Comparison properties are quite specific to Gaussian processes, while general
principles used in the present approach are much more general, and conse-
quently, allow for considerable extensions of Theorem 5.1 (see [18] and [20]).

Proof of (4.4). We use Lemma 5.4 with

A` = �u ∈ Ty d�u; t`� ≤ 2r−j−2�:
Since d�s; t`� ≤ r−j and since r ≥ 2, we have A` ⊂ B�s;2r−j�, so that, by the
definition of ϕj and Lemma 5.3, we have

ϕj�A� ≥
r−j−1

K1

√
log n− 2r−j−2K3

√
log n+min

`≥n
ϕj�t`�:
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Thus (4.4) holds for

θ�n� = 1
2rK1

√
log n;

provided r ≥ 4K1K2. 2

6. The ellipsoid theorem and matchings. In this section we will use
the partitioning scheme of Section 4 and geometry to explain the structure of
ellipsoids in Hilbert space with respect to majorizing measures. The geometry
will occur in the form of convexity properties, an idea that will be used again
in the next section. We will then outline why the structure of ellipsoids is the
key to deep matching theorems.

For purposes that will become apparent later, it is of importance to consider
functionals related to γ2�T;d� but where the integral condition is replaced by
a more general one.

Consider a metric space �T;d�, and α;β > 0. We define γα;β�T;d� as the
infimum over all choices of the probability measure µ on T of the quantity

sup
t∈T

(∫ ∞
0
εβ
(

log
1

µ�B�t; ε��

)β/αdε
ε

)1/β

:(6.1)

Thus γ2;1�T;d� coincides with the functional γ2�T;d�. Consider the ellip-
soid of `2 defined by (3.2). The purpose of the present section is to show how
to compute γα;β�E �. (We do not mention the distance when it is naturally in-
duced by Hilbert space.) In the case α = 2; β = 1, it follows from (3.5) and
Theorem 5.1 that

γ2�E � ≤K
( ∑
n≥1

a2
n

)1/2

:(6.2)

We are, however, mostly interested in the case β = 2, for which we must
find an entirely different proof. This proof will be mostly geometric. The geo-
metric proof will also yield (6.2), and thereby a satisfactory understanding of
ellipsoids.

For x ∈ `2, we set �x�E = �
∑
n≥1 a

2
nx

2
n�1/2:

Lemma 6.1. We have

�x�E ; �y�E ≤ 1⇒ �x+ y�E
2

≤ 1− �x− y�
2
E

8
:(6.3)

Proof. By the parallelogram identity we have

�x− y�2E + �x+ y�2E = 2�x�2E + 2�y�2E ≤ 4;

so that

�x+ y�2E ≤ 4− �x− y�2E
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and

�x+ y�E ≤ 2
(

1− 1
4
�x− y�2E

)1/2

≤ 2
(

1− �x− y�
2
E

8

)
: 2

As it turns out, (6.3) is the only property of ellipsoids that will be important
to us. This motivates the following definition.

Definition 6.2. A norm � · � in a Banach space X is called 2-convex if, for
a certain number γ, it satisfies

�x�; �y� ≤ 1⇒
∥∥∥∥
x+ y

2

∥∥∥∥ ≤ 1− γ�x− y�2:(6.4)

We now consider the following setting. The set T is the unit ball of a Banach
space W for a 2-convex norm � · �. The distance d on T is induced by another
norm � · �V, that is, d�x;y� = �x− y�V, where V is the unit ball of � · �V.

Theorem 6.3. In the setting above, for any α > 0,

γα;2�T;d� ≤K�α; γ� sup
ε>0

ε�log N�T;d; ε��1/α:

To understand this result, one should observe that it is always true that

γα;β�T;d� ≤K�α;β�
(∫ ∞

0
εβ log N�T;d; ε�β/αdε

ε

)1/β

:

This fact is an extension of the well-known fact (which simple proof we will
not give) that the integral of (2.13) dominates γ2�T;d�. However, the bound
of Theorem 6.3 is quite a bit smaller than the previous integral. In fact, it is
always true that

sup
ε>0

ε�log N�T;d; ε��1/α ≤K�β�γα;β�T;d�:

To see this, we note that if for some number η > 0 the balls B�t`; η� are
disjoint �` ≤N� and if µ is a probability measure on T, then for some ` ≤N
we have µ�B�t`; η�� ≤ 1/N.

Then
(∫ ∞

0
εβ
(

log
1

µ�B�t`; ε��

)β/α dε
ε

)1/β

≥
(∫ η

0
εβ�log N�β/αdε

ε

)1/β

=K�β�η�log N�1/α:
The content of Theorem 6.3 is that this inequality can be reversed under the
conditions of this theorem.

Corollary 6.4. If E is the ellipsoid (3.2), then

γα;2�E � ≤K�α� sup
n
ann

1/α:
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Proof. We use Theorem 6.3 with

�x� = �x�E =
( ∑
n≥1

anx
2
n

)1/2

; V = �x ∈ `2y �x� ≤ 1�;

so that �x�V is the norm of x in `2. We observe that, if B = supn ann
1/α, then

an ≤ Bn−1/α, so that, with the notation of Lemma 3.2, we have 2−k ≤ Bn−1/α
k ,

so that nk ≤ �2kB�α, and, by Lemma 3.2,

�log N�E ;2−k+1��1/α ≤K�α�2kB
and thus

sup
ε>0

ε�log N�T;d; ε��1/α ≤K�α�B: 2

To prove Theorem 6.3, we will use Proposition 4.4 with the functionals

ψj�t� = inf��v�y d�t; v� ≤ 2r−j�:
It is obvious that (4.1) holds for S = 1.

For n ≥ 2, we set

ε�n� = sup�ε > 0y ∃ t1; : : : ; tn ∈ T; ∀ `; `′; 1 ≤ ` < `′ ≤ n; d�t`; t`′� > ε�:
We observe the following simple relations:

ε <
ε�n�

2
⇒N�T;d; ε� ≥ n;(6.5)

ε > ε�n� ⇒N�T;d; ε� ≤ n:(6.6)

The center of the proof is to establish condition (4.4bis) with an appropriate
choice of θ. This is the object of the following lemma.

Lemma 6.5. Assume r = 8. Consider s ∈ T; n ≥ 2, points t1; : : : ; tn in
B�s; r−j� such that

1 ≤ ` < `′ ≤ n⇒ d�t`; t`′� ≥ r−j−1:

Then

sup
`≤n

ψj+2�t`� ≥ ψj�s� +
γr−2j

�2rε�n��2 :(6.7)

Proof. Consider u > sup`≤nψj+2�t`�. Then, for ` ≤ n, by the definition of
ψj+2, we can find a point w` ∈ uT with d�w`; t`� ≤ 2r−j−2. Thus, if ` < `′ and
since r = 8,

d�w`;w`′� ≥ d�t`; t`′� − 4r−j−2 ≥ r−j−1 − 4r−j−2 = r−j−1/2:(6.8)

Also,

d�s;w`� ≤ d�s; t`� + d�t`;w`� = r−j + 2r−j−2 ≤ 2r−j:(6.9)
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We now use (6.4) for x = w`/u; y = w`′/u, to get
∥∥∥∥
w` +w`′

2

∥∥∥∥ ≤ u
(

1− γ

u2
�w` −w`′�2

)
:(6.10)

Now (6.9) means that for each ` we have w` ∈ s+ 2r−jV. The convexity of
V implies

w` +w`′
2

∈ s+ 2r−jV

for any `; `′ ≤ n, so that, by definition,

ψj�s� ≤
∥∥∥∥
w` +w`′

2

∥∥∥∥:

Combining with (6.10), we see that, setting

R2 = u
γ
�u− ψj�s��;

we have

�w` −w`′�2 ≤ R2:

Thus, in particular, the points x` = �w` −w`′�/R belong to T.
If we recall that d comes from a norm, by (6.8) we have

1 ≤ ` < `′ ≤ n⇒ d�x`; x`′� ≥ r−j−1/2R:

Thus, by definition, we have r−j−1/2R ≤ ε�n�; that is, by the definition of R,

γ

(
r−j−1

2ε�n�

)2

≤ u�u− ψj�s��:

Taking the infimum over u and realizing that ψj+2 ≤ 1, we get the result. 2

Corollary 6.6. There exist an increasing sequence of partitions �Aj�j≥0 of
T that satisfies (4.7) and indexes `j�A� that satisfy (4.8) such that

∀ t ∈ T;
∑
j≥0

r−2j

ε�`j+1�Aj+1�t���2
≤ 16r2

γ
;(6.11)

where we make the convention that 1/ε�1� = 0.

Proof. We apply Proposition 4.4, noticing that i = 0.

Proof of Theorem 6.3. If ε�log N�T;d; ε��1/α ≤ S for each ε > 0, then
by (6.5) we have ε�n��log n�1/α ≤ 2S, so that (6.11) implies

∀ t ∈ T;
∑
j≥0

r−2j�log `j+1�Aj+1�t���2/α ≤
32S2r2

γ
:

To conclude the proof, we appeal to Proposition 4.5. 2
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We have singled out Theorem 6.3 because it has significant applications.
However, we can prove much more. Here is another statement.

Theorem 6.7. Under the conditions of Theorem 6.3, we have

γ2�T;d� ≤K�γ�
(∫ ∞

0
ε log N�T;d; ε�dε

)2

:

Remark 1. When specialized to ellipsoids, this proves (3.9).

Remark 2. Theorems 6.3 and 6.7 are special cases of a general result (with
essentially the same proof). See [21].

Proof. Consider a sequence of partitions such as in Corollary 6.5. In order
to apply Proposition 4.5, we try to bound, for a given t ∈ T, the quantity

S =
∑
j≥0

r−j
√

log `j+1�Aj+1�t��:

Consider, for k ≥ 0, the smallest integer mk such that ε�mk� < 2−k. Con-
sider, for k ≥ 1, the set

Ik = �j ≥ 0y mk ≤ `j+1�Aj+1�t�� < mk+1�:
When Ik is not empty, denote by j�k� its smallest element. Then

∑
j∈Ik

r−j
√

log `j+1�Aj+1�t�� ≤
√

log mk+1
∑
j∈Ik

r−j

≤ 2r−j�k�
√

log mk+1

and thus

S ≤ 2
∑
k≥0

r−j�k�
√

log mk+1;

where we make the convention that only the terms for which Ik 6= \ appear.
Now, by Cauchy–Schwarz,

S ≤ 2
( ∑
k≥0

r−2j�k�

2−2k

)1/2( ∑
k≥0

2−2k log mk+1

)1/2

:

We have, since j�k� ∈ Ik,

ε�`j�k�+1�Aj�k�+1�t��� ≤ ε�mk� ≤ 2−k;

so that, by (6.11),

∑
k>0

r−2j�k�

2−2k
≤
∑
j≥0

r−2j

ε�`j+1�Aj+1�t���2
≤ 16r2

γ
:
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Also, by the definition of mk, we have ε�mk − 1� ≥ 2−k, so that by (6.5) we
have

N�T;d;2−k−1� ≥mk − 1;

so that

log mk+1 ≤ log�1+N�T;d;2−k−2��:
It then follows easily that

∑
k≥0

2−2k log mk+1 ≤K
∫ ∞

0
ε log N�T;d; ε�dε:

This finishes the proof. 2

We now turn to the application of Theorem 6.3 to the Ajtai–Komlòs–
Tusnàdy matching theorem. Consider points �Xi�i≤n that are independently
uniformly distributed over �0;1�2. The problem is to understand the “trans-
portation cost” Cn from the empirical measure δX = �1/n�

∑
i≤n δXi

to the
uniform measure on �0;1�2, when the cost of moving a unit mass is simply
the distance by which it travels. Through duality (i.e., the Hahn–Banach
theorem) this cost is

Cn = sup
f∈L

∣∣∣∣
1
n

∑
i≤n
f�Xi� −Ef

∣∣∣∣;(6.12)

where L is the class of Lipschitz functions on �0;1�2, that is, functions that
satisfy

�f�x� − f�y�� ≤ d�x;y�
for all x;y in �0;1�2, and where Ef is the average of f over the unit square.
(For a simple proof of (6.12), one can, e.g., see [22], where the link between
transportation cost and matching is explained.)

Theorem 6.8 (Ajtai, Komlòs and Tusnàdy [2]). ECn ≤K
√

log n/n.

We will only sketch the proof, and we refer the reader to [19], Section 4, for
the missing details. Consider a sequence �εi�i≤n of independent Bernoulli r.v.’s
�P�εi = 1� = P�εi = −1� = 1

2 �. The first step of the proof is to establish that

ECn ≤ 2E sup
f∈L0

∣∣∣∣
1
n

∑
i≤n
εif�Xi�

∣∣∣∣

= 2E
(
Eε sup

f∈L0

∣∣∣∣
1
n

∑
i≤n
εif�Xi�

∣∣∣∣
)
;

where Eε is conditional expectation given �Xi�i≤n and L0 is �f ∈ L y Ef = 0�.
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Next, we recall the “sub-Gaussian inequality” ([10], page 90)

P

(∣∣∣∣
∑
i≤n
εiai

∣∣∣∣ ≥ u
)
≤ 2 exp

(
− u2

2
∑
i≤n a

2
i

)
:(6.13)

Consider the random distance dU on L0 given by

dU�f;g�2 =
1
n

∑
i≤n
�f�Xi� − g�Xi��2:

We see that if we set

Xf =
∑
i≤n
εif�Xi�;

we have to estimate
1
n
Eε sup

f∈L0

�Xf� =
1
n
Eε sup

f∈L0

Xf

by symmetry.
Now, by (6.13),

P��Xf −Xg� ≥ u� ≤ 2 exp
(
− u2

2nd2
U�f;g�

)
;

so that we are essentially in the situation of Section 1. Before using Proposition
2.4, we have to take care of a few details. First, we need to control the random
distance dU. This is done through the following easy lemma.

Lemma 6.9 (Talagrand [19]). There exists a random variable R with ER ≤
K such that

∀ f;g ∈ L ; dU�f;g� ≤ R
(
�f− g�2 +

√
log n
n

)
:(6.14)

Consider then a subset Z of L0 that is maximal for the property

∀ f;g ∈ Z; �f− g�2 ≥
√

log n
n

:(6.15)

Then, by maximality, given f in L0, there exists g in Z with �f − g�2 ≤√
log n/n. Thus, by (6.14), we get dU�f;g� ≤ 2R

√
log n/n and by Cauchy–

Schwarz

1
n

∣∣∣∣
∑
i≤n
εi�f�Xi� − g�Xi��

∣∣∣∣ ≤
1
n

∑
i≤n
�f�Xi� − g�Xi��

≤
(

1
n

∑
i≤n
�f�Xi� − g�Xi��2

)1/2

≤ dU�f;g� ≤ 2R

√
log n
n

:
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Thus we obtain

1
n

sup
f∈L0

∣∣∣∣
∑
i≤n
εif�Xi�

∣∣∣∣ ≤ 2R

√
log n
n
+ 1
n

sup
f∈Z

∣∣∣∣
∑
i≤n
εif�Xi�

∣∣∣∣;

and it suffices to prove that

1
n
Eε sup

f∈Z

∣∣∣∣
∑
i≤n
εif�Xi�

∣∣∣∣ ≤K
√

log n
n

:

We observe that, by (6.14) and (6.15), we have

∀ f;g ∈ Z; dU�f;g� ≤ 2R�f− g�2:(6.16)

Consider a probability measure µ on Z. Then, in order to use Proposition 2.4,
we compute

I�f� =
∫ ∞

0

√
log

1
µ�BU�f; ε��

dε;

where BU denotes the ball for dU. By (6.16) we have BU�f; ε� ∩ Z ⊃
B�f; ε/2R� ∩Z, where the latter ball is for the L2-distance. Thus

I�f� ≤
∫ ∞

0

√
log

1
µ�B�f; ε/2R�� dε = 2R

∫ K
0

√
log

1
µ�B�f; ε�� dε

by a change of variable and since the diameter of L0 is less than or equal to
K.

Setting an =
√

log n/n, for ε < an, we have B�f; ε� = �f� by (6.15), so that

I�f�
2R
≤ an

√
log

1
µ��f�� +

∫ K
an

√
log

1
µ�B�f; ε�� dε:

To evaluate the latter integral, we write

∫ K
an

√
log

1
µ�B�f; ε�� dε ≤

(∫ K
an

dε

ε

)1/2(∫ K
an

ε log
1

µ�B�f; ε�� dε
)1/2

≤
(

log
K

an

)1/2(∫ ∞
0
ε log

1
µ�B�f; ε�� dε

)1/2

≤K
√

log n
(∫ ∞

0
ε log

1
µ�B�f; ε�� dε

)1/2

:

Now,
(∫ an

0
ε log

1
µ�B�f; ε�� dε

)1/2

≥
√

log
1

µ��f��

(∫ an
0
εdε

)1/2

≥ 1
K
an

√
log

1
µ��f�� ;

so that

I�f� ≤KR
√

log nJ�f�;
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where

J�f� =
(∫ ∞

0
ε log

1
µ�B�f; ε�� dε

)1/2

:

What the previous discussion shows when combined with Proposition 2.4 is
that

1
n
E sup

f∈Z

∣∣∣∣
∑
i≤n
εnf�Xn�

∣∣∣∣ ≤K
√

log nγ2;2�Z�:

There is a simple argument showing that γ2;2�U� ≤Kγ2;2�T� if U ⊂ T, so the
only concern now is to prove that γ2;2�L0� <∞.

This will be done by using the Fourier transform, proving that L0 is a subset
of an ellipsoid to which Theorem 6.3 applies. For a function f in L2��0;1�2�,
we define

an;m�f� =
∫ ∫
�0;1�2

f�x;y� exp 2iπ�nx+my�dxdy;

so that, by the Planchel theorem,

�f�2 =
( ∑
n;m∈Z

�an;m�f��2
)1/2

:

Thus it should be obvious that it suffices to prove that γ2;2�T′� < 0, where T′ is
the set of sequences F �f� = �an;m�f��n;m∈Z for f ∈ L0. To avoid messy details,
but keep the central point, we will prove the weaker result that γ2;2�T� <∞,
where T is the set of sequences F �f� for f ∈ L1, where L1 is the set of
functions of L0 that are 0 on the boundary of �0;1�2. Then integration by
parts yields

an;m�f� = −
1

2πin
an;m

(
∂f

∂x

)
:

Since f is Lipschitz, �∂f/∂x� ≤ 1, so that, in particular,

∑
n;m∈Z

∣∣∣∣an;m
(
∂f

∂x

)∣∣∣∣
2

=
∥∥∥∥
∂f

∂x

∥∥∥∥
2

2
≤ 1:

Thus
∑
n;m∈Z n

2�an;m�f��2≤1. A similar argument yields
∑
n;m∈Zm

2�an;m�f��2≤
1. Thus

a ∈ T⇒
∑

n;m∈Z
�n2 +m2��an;m�2 ≤ 1:

That is, T is contained in a certain ellipsoid.
For k ≥ 0, the number of values of n;m such that m2 + n2 ≤ 22k is crudely

at most �2k+1 + 1�2, since �n�; �m� ≤ 2k, so it is at most 22k+4. Relabeling the
coordinates and splitting into real and imaginary parts, we view T as a subset
of the set of (real) sequences �xn�n≥1 such that

∑
nx2

n ≤K, and this concludes
the proof by Theorem 6.3.
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It can be argued that the previous approach is not superior to the original
“transportation method” of [2]. It is, however, more “generic” and thus can be
used in many situations, some of which are described in [19].

7. Restriction of operators. One towering success of the “probabilistic
method” is Bourgain’s [3] construction of 3�p�-sets of large density. A new
approach, based on the ideas of the present paper, has made this result more
accessible (see [23]). Several issues related to the 3�p�-set problem are not
connected with the present circle of ideas, so, rather than discussing this prob-
lem, we will concentrate on another result that is actually the essential step
of the proof given in [23]. The natural setting of this result is the class of
2-smooth Banach spaces. The reader who wishes to avoid the minimal effort
of understanding what this means can assume instead that all Banach spaces
are Hilbert spaces; the proofs are identical.

We say that a Banach space W is 2-smooth if, given two vectors x;y in W,
with �x� = 1, we have

1
2��x+ y� + �x− y�� ≤ 1+C�y�2;(7.1)

where C is independent of x;y. We will never use (7.1) directly. Rather we
will use the following classical facts (see Lindenstrauss and Tzafriri [11]).

Fact 1. If W is 2-smooth, it is of type 2; that is, for each n, each sequence
�Yi�i≤n of centered, independent r.v.’s valued in W, we have

E

∥∥∥∥
∑
i≤n
Yi

∥∥∥∥
2

≤K�C�
∑
i≤n
E�Yi�2:(7.2)

There, as well as in the remainder of this section, we denote byK�C� a number
that depends only on the number C of (7.1).

Fact 2. If W is 2-smooth, its dual W∗ is 2-convex; that is, if x∗; y∗ ∈
W∗; �x∗�; �y∗� ≤ 1, then

∥∥∥∥
x∗ + y∗

2

∥∥∥∥ ≤ 1− 1
K�C��x

∗ − y∗�2:(7.3)

Consider now an operator U from `2
m to W. We denote by �ei�i≤m the canon-

ical basis of `2
m. Consider a number 0 < δ < 1. We select a random sub-

set I of �1; : : : ;m� as follows. For each i ≤ m, we include (independently)
i in I with probability δ. In other words, if �δi�i≤m are independent, with
Eδi = δ; δi ∈ �0;1�, then I = �i ≤ my δi = 1�. We consider the subspace `I
of `2

m generated by the vectors �ei�i∈I. In other words, `I identifies with the
sequences �xi�i≤m for which xi = 0 whenever i /∈ I. We consider the restriction
UI of the operator U to `I.
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Theorem 7.1.

E�UI� ≤
K�C�√
log �1/δ�

(
�U� + sup

i≤m
�U�ei��

√
log i

)
:

Before we discuss the nature of Theorem 7.1, we explain why even the
weaker form

E�UI� ≤
K�C�√
log �1/δ�

(
�U� +

√
log m sup

i≤m
�U�ei��

)
(7.4)

is sharp. Consider an integer k, and m = k2k. We think of �1; : : : ;m� as 2k

consecutive blocks of length k. If i belongs to the `th such block, we define
U�ei� = k−1/2f`, where �f`�`≤2k is the canonical basis of `2

2k . It should be clear
that

�U� ≤ 1;
√

log m sup
i≤m
�U�ei�� ≤K:

Thus (7.4) implies

E�UI� ≤
K√

log �1/δ�
:

We will show that, for δ ≥ 2−k, we have

E�UI� ≥
1

K
√

log �1/δ�
:(7.5)

Consider 1 ≤ r ≤ k.
For each block B of length k, there is (crudely) a probability greater than

or equal to δr that at least r values of δi; i ∈ B, are 1. If δr ≥ 2−k, with
probability greater than or equal to 1/K this will occur for at least one block,
and thus

P

(
�UI� ≥

√
r√
k

)
≥ 1
K
;

so that E�UI� ≥
√
r/K
√
k. Taking r = �k log 2/ log�1/δ��, we get δr ≥ 2−k

and hence (7.5).
To explain Theorem 7.1, let us set for simplicity fi = U�ei�. Then

�UI� = sup�x∗�U�y��y x∗ ∈W∗1; y ∈ `I; �y� ≤ 1�

= sup
{
x∗
(∑
i∈I
aifi

)
y x∗ ∈W∗1y

∑
i∈I
a2
i ≤ 1

}

= sup
{∑
i∈I
aix

∗�fi�y x∗ ∈W∗1y
∑
i∈I
a2
i ≤ 1

}

= sup
{(∑

i∈I
x∗�fi�2

)1/2

y x∗ ∈W∗1
}
;

where W∗1 = �x∗ ∈W∗y �x∗� ≤ 1�.



1084 M. TALAGRAND

Equivalently,

�UI�2 = sup
{∑
i≤m

δix
∗�fi�2y x∗ ∈W∗1

}
:(7.6)

Consider the set

T = ��x∗�fi�2�i≤my x∗ ∈W∗1�:
For a sequence t = �ti�i≤m, consider the random variable X′t =

∑
i≤m δiti.

Thus we have

E�UI�2 = E sup
t∈T

X′t;(7.7)

which shows that the nature of the problem is familiar to us.
SettingXt =

∑
i≤m�δi−δ�ti and since [as shown by the computation leading

to (7.6)] we have
∑
i≤m ti ≤ �U�2 for t ∈ T, we get

E�UI�2 ≤ δ�U�2 +E sup
t∈T

Xt:(7.8)

The first task to bound the last term is to understand the tails of Xs−Xt =
Xs−t. This is done through the following lemma, which is a weak form of
Bennett’s inequality. For a sequence �ti�i≤m, we set �t�∞ = supi≤m �ti�; �t�2 =
�∑i≤m t

2
i �1/2.

Lemma 7.2 (See [23]). For all u > 0, we have

P

(∣∣∣∣
∑
i≤m
�δi − δ�ti

∣∣∣∣ ≥ u
)
≤ 2 exp

(
− u

4�t�∞
log

u�t�∞
δ�t�22

)
:(7.9)

This bound is useless for u�t�∞ ≤ δ�t�22, but will never be used in that range.
What (7.9) brings to light is that the tails of Xs −Xt do not depend only on
�s − t�2, but also on �s − t�∞. To find a useful bound, we need a somewhat
nontrivial adaptation of Theorem 2.4. This adaptation pertains to the material
of Section 9, and will be better discussed there.

Lemma 7.3. We have, for each number A ≥ 2,

E sup
t∈T

Xt ≤K
[
γ1�X; � · �∞�

log A
+
√
Aδγ2�X�

]
:

Taking A = 1/
√
δ, we get

E sup
t∈T

Xt ≤K
[

1
log�1/δ�γ1�X; � · �∞� + δ1/4γ2�X�

]
:

Combining with (7.8), to prove Theorem 7.1, it suffices to prove that

γ1�T; � · �∞� ≤K�C�
[
�U�2 + sup

i≤m
�U�ei��2 log i

]
;(7.10)

γ2�T� ≤K�C�
[
�U�2 + sup

i≤m
�U�ei��2 log i

]
:(7.11)
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It turns out that (7.11) is a consequence of (7.10) and of the fact that∑
i≤m ti ≤ �U�2 for t in T. This follows, in particular, from [21]. (A more direct

proof is possible but apparently not trivial.) Thus we will concentrate on the
main point, that is, the proof of (7.10). The main idea of this proof is closely
related to the idea of Theorem 6.3. It is to combine a geometric argument and
the control of the numbers N�W∗1; � · �∞; ε�, where � · �∞ is the norm on W∗

given by

�x∗�∞ = sup
i≤m
�x∗�fi��;

where we recall that fi = U�ei�.
Thus the first step is to control the numbers N�W∗1; � · �∞; ε�.

Lemma 7.4. We have

ε2 log N�W∗1; � · �∞; ε� ≤K�C� sup
i≤m
�fi�2 log�i+ 1�:(7.12)

It turns out (by geometric arguments that use the 2-convexity of W∗—see
[4]) that, to prove (7.12), it suffices to prove the following “dual” statement.

Lemma 7.5. Consider a 2-smooth Banach space W and vectors �fi�i≤m in
W. Consider the balanced convex hull T of the vectors �fi�i≤m. Then we have,
for all ε > 0,

ε2 log N�T; � · �; ε� ≤K�C� sup
i≤m
�fi�2 log�i+ 1�:(7.13)

This lemma is an exception to the policy that we have used in the present
paper, not to give any complicated proof. The reason for this exception is that
Lemma 7.5 supports some conjectures that are of potential importance and
that will be discussed in Section 8. For the reader who contents himself with
(7.4) rather than with the full strength of Theorem 7.1, it suffices to prove the
following, which is simpler, and serves as an introduction to Lemma 7.5.

Lemma 7.6. Under the hypothesis of Lemma 7.5, we have

ε2 log N�T; � · �; ε� ≤K�C� log�m+ 1� sup
i≤m
�fi�2:

Proof. This is an argument of Maurey. By homogeneity, we can assume
�fi� ≤ 1. Consider x ∈ T. Then x = ∑i≤m αifi, where

∑
i≤m �αi� ≤ 1. Consider

a sequence �Y`�`≤k of independent W-valued r.v.’s, with P�Y` = �signαi�fi� =
�αi� and P�Y` = 0� = 1−∑i≤m �αi�. Thus EY` = x. Consider Y′` = Y`−x, and
observe that �Y′`� ≤ �Y`� + �x� ≤ 2. Thus, by (7.2),

E

∥∥∥∥
∑
`≤k
Y′`

∥∥∥∥
2

≤ kK�C�:
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In particular, there exists a realization of
∑
`≤kY

′
` that is of norm less than

or equal to K�C�
√
k. This means that, for this realization,

∥∥∥∥
1
k

∑
`≤k
Y` − x

∥∥∥∥ ≤
K�C�√
k
≤ ε

if k ≥K�C�/ε2. Now, since each Y` can take at most m+ 1 values, there are
at most �m + 1�k points of the type k−1∑

`≤kY`. Since each point x of T is
within distance ε of such a point, this finishes the proof. 2

Proof of Lemma 7.5.
Step 1. For ` ≥ 0, we set I` = �i ≤ m; 2`−1 ≤ log�i + 1� < 2`�. By ho-

mogeneity, we can assume �fi�2 log�i + 1� ≤ 1, and we then have to prove
that ε2 log N�T; � · �; ε� ≤ K�C�. Consider ε ≤ 1/2 and the largest integer
`0 with 2−`0 ≥ ε. Consider a sequence �n`�`≤`0

of integers 0 ≤ n` ≤ ` with∑
`≥0 2−n` ≤ 4. Depending only on that sequence, we will construct a subset Z

of T, with cardZ ≤ exp�K/ε2� such that, whenever we consider x =∑i≤m αifi
with

∑
i∈I` �αi� ≤ 2−n` , we can find y in Z with �x − y� ≤ K�C�ε. We explain

why this completes the proof. Consider the set Z′ that is the reunion of the
sets Z for all possible choices of the sequence �n`�`≤`0

. Since `0 ≤K log�1/ε�,
very crudely, there are at most

�`0 + 1�`0 ≤ exp�K/ε2�
choices of this sequence; thus cardZ′ ≤ exp�K/ε2�. Now, given x in A, we can
write x = ∑i≤m αifi with

∑
i≤m �αi� ≤ 1. Thus, if n` is the largest integer less

than or equal to ` with
∑
i∈I` �αi� ≤ 2−n` , we easily see that

∑
`≤`0

2−n` ≤ 4.
Thus we can find y in Z′ with �x− y� ≤K�C�ε.

This shows that

log N�T; � · �;K�C�ε� ≤ exp�K/ε2�
for ε ≤ 1/2. Since N�T; � · �; ε� = 1 for ε ≥ 2, this finishes the proof.

Step 2. We observe that, given ` ≥ 0; n` ≥ 0; k ≥ 1 and x` =∑
i∈I` αifi;

∑
i∈I` �αi� ≤ 2−n` , there exists an r.v. Y`;k with the following

properties:

E�Y`;k − x`�2 ≤
K�C�
k

2−2n`

2`
:(7.14)

The random variable Y`;k takes at most �1+ cardI`�k possible
values; these possible values depend only on n`.

(7.15)

This was shown in the proof of Lemma 7.5; observe simply that x` belongs
to the balanced convex hull of the set �2−n`fiy i ∈ I`� and that �2−n`fi�2 ≤
2−2n`/2`.

Step 3. For ` ≤ `0, set

k�`� = 1+
[

2−n`

2`ε2

]
:
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Consider the r.v.

Y =
∑
`≤`0

Y`;k�`�

and set y =∑`≤`0
x`. Combining (7.2) and (7.14), we see that

E�Y− y�2 ≤K�C�
∑
`≤`0

2−2n`

k�`�2`

≤K�C�
∑
`≤`0

2−n`ε2 ≤K�C�ε2;

(7.16)

since k�`� ≥ 2−n`/2`ε2. On the other hand, by (7.15), the number of possible
values that Y takes is at most

∏
`≤`0

�1+ cardI`�k�`� ≤ exp
(
K
∑
`≤`0

2`
(

1+ 2−n`

2`ε2

))

≤ exp
K

ε2
:

Moreover,

�x− y� ≤
∥∥∥∥
∑
`>`0

x`

∥∥∥∥ ≤
∑
`>`0

�x`� ≤
∑
`>`0

2−n`

2`
≤ 2−`0 ≤Kε:

The proof is finished. 2

We now turn to the proof of (7.10). Consider the function h from R to R
given by h�x� = �signx�x2 = x�x�. For x∗ in W∗1, we set

h�x∗� = �h�x∗�fi���i≤m
and we consider the set

T1 = �h�x∗�y x∗ ∈W∗1�:
For technical reasons, rather than (7.10) we will prove

γ1�T1; � · �∞� ≤K�C�
[
�U�2 + sup

i≤m
�fi�2 log i

]
:(7.17)

Since T1 is the image of T under the map

�xi�i≤m→ ��xi��i≤m;
which is a contraction, it is obvious by definition that γ1�T; � · �∞� ≤ γ1�T1;
� · �∞�.

The proof of (7.17) will rely on Proposition 4.4 with β = 1, θ�n� =
log n/K�C�; r = 8.

For t ∈ T1, j ∈ Z, we set

Cj�t� = �x∗ ∈W∗1y �h�x∗� − t�∞ ≤ 2r−j�:
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We observe that

Cj�t� is convex.(7.18)

(This is why we replaced T by T1.)
Also, given s in T1, such that �t− s�∞ ≤ r−j, we have for all x∗ that

�h�x∗� − t�∞ ≤ �h�x∗� − s�∞ + r−j;

so that

�t− s�∞ ≤ r−j ⇒ Cj+2�s� ⊂ Cj�t�:(7.19)

This is the reason for the factor 2 in the definition of Cj.
We now set, for t ∈ T1,

ψ′j�t� =
∑
i≤m
��ti� −min��ti�;2r−j��;

ψ′′j�t� = inf��x∗�y x∗ ∈ Cj�t��;
ψj�t� = ψ′j�t� +Sψ′′j�t�;

where S = supi≥1 �U�ei��2 log�i+ 1�.
Since for t in T we have

∑
i≤m �ti� ≤ �U�2, it follows that ψ′j�t� ≤ �U�2, so

that ψj�t� ≤ �U�2+S. Thus it suffices to prove (4.4bis). Before we do this, we
collect a few facts. The following is well known.

Lemma 7.7. Consider a Banach space Y of dimension k and its unit ball
B. Then

N�B;ε� ≤
(

1+ 2
ε

)k
:

Proof. Consider points x1; : : : ; xn in B such that

`; `′ ≤ n⇒ �x` − x`′� > ε/2:

The balls of radius ε/2, centered at the points x`, are disjoint and contained
in the ball of radius 1+ ε/2. Thus

nVol
(
ε

2
B

)
≤ Vol

((
1+ ε

2

)
B

)
;(7.20)

that is,

n

(
ε

2

)k
≤
(

1+ ε
2

)k
;

so that n ≤ �1+ 2/ε�k. If the family �x1; : : : ; xn� is chosen maximal, the balls
of radius ε/2 centered at these points cover B. This completes the proof. 2
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Lemma 7.8. If s ≥ 2r−j, we have

�s− t� ≤ r−j ⇒ s−min�s;2r−j� + r
−j

2
≤ t−min�t;2r−j−2�:(7.21)

Proof. Since t ≥ r−j, this reduces to

s− t ≤ 3
2
r−j − 2r−j−2;

but the right-hand side is greater than r−j. 2

We consider s ∈ T1, points t1; : : : ; tn in T1 such that �s− t`� ≤ r−j for ` ≤ n
and

`; `′ ≤ n; ` 6= `′ ⇒ �t` − t`′�∞ ≥ r−j−1

and we start the proof of (4.4bis). Since, for i ≤ m, we have �si − t`;i� ≤ r−j,
we have � �si� − �t`;i� � ≤ r−j, so that Lemma 7.8 shows that

ψ′j+2�t`� ≥ ψ′j�s� +
r−j

2
card�i ≤my �si� ≥ 2r−j�:(7.22)

We now consider a parameter K1, to be determined later.

Case 1. We have

card�i ≤my �si� ≥ 2r−j� ≥ log n
K1

:

In that case, we have, by (7.22),

ψ′j+2�t`� ≥ ψ′j�s� +
r−j

2K1
log n:

Moreover, by (7.19), we have Cj+2�t`� ⊂ Cj�s�, so that ψ′′j+2�t`� ≥ ψ′′j�s� by the
definition of ψ′′. Thus

∀ ` ≤ n; ψj+2�t`� ≥ ψj�s� +
r−j

2K1
log n

and (4.4bis) holds as soon as θ�n� ≤ log n/2K1:

Case 2. Case 1 does not occur, so that

cardI ≤ log n
K1

;(7.23)

where I = �i ≤my �si� ≥ 2r−j�:
The purpose of the functional ψ′ was to create this condition. The main

argument starts now.
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Step 1. Consider δ = max`≤N ψ
′′
j+2�t`�, and recall that δ ≤ 1. By com-

pactness, for each ` ≤ n we can find x∗` in Cj+2�t`� with �x∗`� ≤ δ. We set
s` = h�x∗`� ∈ T1. Since r = 8, we note that

` 6= `′ ⇒ �s` − s`′�∞ ≥ r−j−1 − 4r−j−2 = r
−j−1

2
:(7.24)

Step 2. Provided K1 has been chosen appropriately, we show that we can
find a subset L of �1; : : : ; n� such that cardL ≥ √n, and that the following
property holds:

∀ `; `′ ∈ L; ` 6= `′ ⇒ ∃ i ≤m; i /∈ I; �s`;i − s`′;i� ≥
r−j−1

2
:(7.25)

To see this, consider the set

B = ��ti�i≤my ∀ i ∈ I; �ti� ≤ 1�;
which depends on cardI coordinates. By Lemma 7.8, the set s+2r−jB can be
covered by sets Wp = up + 1

5r
−j−1B; p ≤ n1, for

n1 ≤ �1+ 20r�card I:

Thus, by (7.23), we see that n1 ≤
√
n provided K1 is large enough. By the

“pigeon hole” principle, we can find a given set Wp such that cardL ≥ √n,
where L = �` ≤ ny s` ∈ Wp�. Given `; `′ ∈ L, we have �s`;i − s`′;i� ≤ 2

5r
−j−1

whenever i ∈ I. Combining with (7.24), this proves (7.25).
Step 3. We show that

`; `′ ∈ L; ` 6= `′ ⇒ �x∗` − x∗`′�∞ ≥
r−j/2

64
:(7.26)

Given `; `′ as above, we know that, for some i /∈ I,

�s`;i − s`′;i� = �h�x∗`�fi�� − h�x∗`′�fi��� ≥
r−j−1

2
:(7.27)

However, since i 6∈ I, we have �si� ≤ 2r−j, so that

�s`;i�; �s`′;i� ≤ 2r−j + r−j−1 ≤ 4r−j

and �x∗`′�fi��; �x∗`�fi�� ≤ 2r−j/2.
It remains now to note that

�h�a� − h�b�� ≤ �b− a� sup�h′�x�y �x� ≤ max��a�; �b���
≤ 2 max��a�; �b���b− a�;

so that (7.26) implies

�x∗`�fi� − x∗`′�fi�� ≥
r−j/2

8r
= r

−j/2

64
:

Step 4. We fix `0 in L, and we consider

R = max
`∈L
�x∗` − x∗`0

�:
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The points y∗` = x`−x`0
for ` in L belong to the ball centered at 0 of radius R.

Their mutual distances are at least r−j/2/64, as shown in step 3. Thus no ball
of radius r−j/2/129 can cover any two of them. It then follows from Lemma
7.5 that

(
r−j/2

R

)2

log L ≤K�C�S;

so that

R2 ≥ r−j log n
SK�C� :

Thus there exists `1 in L such that

�x∗`1
− x∗`0

�2 = R2 ≥ r−j

SK�C� log n:

We now appeal to (7.3) with x∗ = x∗`1
/δ; y∗ = x∗`0

/δ, to get

∥∥∥∥
x∗`0
+ x∗`1

2

∥∥∥∥ ≤ δ−
r−j log m
δK�C�S ≤ δ−

r−j log m
K�C�S

since δ ≤ 1. Now, we have x∗` ∈ Cj+2�t`� ⊂ Cj�s�, so that, since Cj�s� is convex,
�x∗`0
+ x∗`1

�/2 ∈ Cj�s�, and the definition of ψ′′j shows that

ψ′′j�s� ≤ δ−
1

K�C�
r−j log m

S
;

that is,

δ = max
`≤n

ψ′′j+2�t`� ≥ ψ′′j�s� +
r−j log m
K�C�S :

We now observe that

�s− t� ≤ r−j ⇒ s−min�s;2r−j� ≤ t−min�t;2r−j−2�:

Indeed, if s ≤ 2r−j this is obvious; but if s ≥ 2r−j more is true by Lemma 7.9.
Thus

ψ′j+2�t`� ≥ ψ′j�s�;

so that

max
`≤n

ψj+2�t`� ≥ ψj�s� +
r−j log m
K�C� :

This completes the proof. 2
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8. Convex hull and open problems. Consider a sequence �tk� of points
of `2, with

�tk� ≤
1√

log�k+ 1�
:

We claim that

E sup
k≥1

Xtk
≤K;(8.1)

where, for t in `2, Xt is given by (3.1). To prove (8.1), it suffices to observe
that, for u ≥ 0,

P�Xt ≥ u� ≤ exp
(
− u2

2�t�2
)

and hence

P�Xtk
≥ u� ≤ exp

(
−u

2

2
log�k+ 1�

)
;

so that

P

(
sup
k≥1

Xtk
≥ u

)
≤
∑
k≥1

exp
(
−u

2

2
log�k+ 1�

)

≤ exp
(
−u

2

4
log 2

) ∑
k≥1

exp
(
−u

2

4
log�k+ 1�

)
:

(8.2)

For u ≥ 3, the latter series has a sum less than or equal to K, so that (8.2)
and integration imply (8.1).

If we set

T = conv��tky k ≥ 1��;(8.3)

we have

sup
t∈T

Xt = sup
k≥1

Xtk
;

so that

E sup
t∈T

Xt ≤K:(8.4)

The importance of that result is as follows. There exists a universal constant
K such that, given U ⊂ `2, containing 0, and such that

E sup
t∈U

Xt ≤
1
K
;

we can find a set T of the type (8.3) such that U ⊂ T. This is a simple
consequence of Theorem 5.1 (see [14]).

If we combine (8.4) and Theorem 5.1 we see that γ2�T� ≤ K for all sets T
of the type (8.3). It seems to me that one would gain deeper understanding by
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finding a “geometric” proof of this statement. To find such a proof, one should
(for example) study the following question.

Problem 8.1. Consider a 2-smooth Banach space W. Consider a sequence
�fk�k≥1 in W, with �fk� ≤ 1/

√
log�k+ 1�, and consider the convex hull T of

this sequence. Is it true that γ2�T; � · �� ≤ K�C�; where K�C� depends only
on the constant C in (7.1)?

The hypothesis that the Banach space is 2-smooth is a natural geometric
weakening of the hypothesis that it is a Hilbert space. What is the “correct”
hypothesis is certainly not known. Possibly type 2 suffices.

We observe that we have proved in Section 7 that ε2 log N�T; � · �; ε� ≤
K�C�. It is easily seen that this fact is weaker than the inequality γ2�T;
� · �� ≤ K�C�. This provides some (very weak) support for a positive answer
to Problem 8.1.

We now will give a “geometric” proof that, when fk = ek/
√

log�k+ 1�, where
�ek� is the canonical basis of `2, the convex hull T of the set of vectors fk
satisfies γ2�T� ≤ K. This proof unfortunately relies heavily on the special
position of the vectors ei. It is interesting to point out that, although there is
no convexity involved in the present case, the proof has a lot in common with
the proof of (7.17). This reflects the fact that, rather sadly, we apparently have
essentially only one useful technique.

The proof combines Propositions 4.4 and 4.5. We will take r = 12; β =
1; i = 0; θ�n� =K−1

√
log n for a suitable value of K. We define the function-

als

ψj�t� = inf
{∑
k≥1

αkaky ak ≥ 0;
∥∥∥∥t−

∑
k≥1

akek

∥∥∥∥ ≤ 3r−j
}
;

where, for simplicity, we set αk =
√

log�k+ 1�.
Since

∑
akek =

∑
αkakfk, we see that ψj�t� ≤ 1, and we now turn to the

proof of (4.4bis). Consider s in T and points t1; : : : ; tn in B�s; r−j� such that

∀ p;q ≤ n; p 6= q⇒ d�tp; tq� ≥ r−j−1:

We consider the number

ψ = inf
{∑
k≥1

αkaky ak ≥ 0y
∥∥∥∥s−

∑
k≥1

akek

∥∥∥∥ ≤ 2r−j
}
:

Since

p ≤ n⇒ B�tp;3r−j−2� ⊂ B�s;2r−j�;
we have ψj+2�tp� ≥ ψ.

Consider a parameter A, which will be determined later, and

ε = r
−j

A

√
log n:
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Consider �ak�k≥1 such that

∑
k≥1

αkak < ψ+ ε;
∥∥∥∥s−

∑
k≥1

akek

∥∥∥∥ ≤ 2r−j:

Consider the largest number u ≤ 2 such that
∑
k≥1

min�ak; uαk�2 ≤ r−2j:

Setting bk = min�ak; uαk�, we see that �∑k≥1 bkek� ≤ r−j. Thus, if ck = ak−bk,
we have �s−∑k≥1 ckek� ≤ 3r−j, so that

ψj�s� ≤
∑
k≥1

αkck =
∑
k≥1

αkak −
∑
k≥1

αkbk ≤ ψ+ ε−
∑
k≥1

αkbk:(8.5)

We first explore the main case, that is,
∑
k≥1

b2
k = r−2j:(8.6)

Since bk ≤ uαk, we have

u
∑
k≥1

αkbk ≥ r−2j:(8.7)

Case 1. We have

r−2j

u
≥ 2r−j

A

√
log n:

In this case, we have, by (8.5) and (8.7),

ψj�s� ≤ ψ+ ε−
2r−j

A

√
log n ≤ ψ− r

−j

A

√
log n:

Thus, for all p ≤ n, we have

ψj+2�tp� ≥ ψ ≥ ψj�s� +
r−j

A

√
log n

and thus (4.4bis) is proved provided θ�n� ≤
√

log n/A.

Case 2. We have

r−2j

u
≤ 2r−j

A

√
log n;

so that r−j/u ≤ 2
√

log n/A.
Consider the set L = �k ≥ 1y bk = uαk�. Thus, by (8.6),

u2 ∑
k∈L

α2
k ≤ r−2j:(8.8)
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From (8.8) we see that

∑
k∈L

α2
k ≤

r−2j

u2
≤ 4
A2

log n:(8.9)

For each ` ≤ n, consider a point s` ∈ B�t`;3r−j−2� and set s` =
∑
k≥1 ak; `ek.

We observe that

∑
k∈L
�ak; ` − ak�2 ≤

∥∥∥∥s` −
∑
k≥1

akek

∥∥∥∥
2

≤Kr−2j:

Thus, by Cauchy–Schwarz and (8.9),

∑
k∈L

αk�ak; ` − ak� ≤
( ∑
k∈L

α2
k

)1/2( ∑
k∈L
�ak; ` − ak�2

)1/2

≤ Kr
−j

A

√
log n:

We observe that
∑
k≥1

αkck ≤
∑
k∈L

αkak

since ck ≤ ak; ck = 0 if k ∈ L. Thus, using (8.5), we get

∑
k∈L

αkak; ` ≥
∑
k∈L

αkak −
Kr−j

A

√
log n ≥ ψj�s� −

Kr−j

A

√
log n:(8.10)

We set

B = max
`≤n

∑
k/∈L

αkak; `:(8.11)

Thus, combining with (8.10), we see that

max
`≤n

∑
k≥1

αkak; ` ≥ ψj�s� +B−
Kr−j

A

√
log n:(8.12)

Thus, if we can prove that B ≥ r−j
√

log n/K′, the proof will be finished by
taking A = 2KK′, since the point s` is arbitrary in B�t`;3r−j−2�. To prove
this, we recall by Lemma 7.5 that

log N�T; � · �; ε� ≤ K
ε2
;

so that, by homogeneity,

log N�BT; � · �; ε� ≤ KB
2

ε2
:(8.13)

Consider, for ` ≤ n, the point v` =
∑
k/∈L ak; `ek, so that v` ∈ BT.

We are going to show that (provided A is large enough) we have

KB2

�r−j−1/16�2 ≥ log
√
n;(8.14)
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where K is the constant of (8.13). As explained above, this concludes the proof.
Assume, for contradiction, that (8.14) fails. Then, by (8.13), we can cover BT
by at most

√
n balls of radius less than or equal to r−j−1/16. The “pigeon

hole” principle then implies that we can find a subset M of �1; : : : ; n�, with
cardM ≥ √n and

∀ `; `′ ∈M; �v` − v`′� ≤ r−j−1/8:(8.15)

Now, we observe that

`; `′ ≤ n; ` 6= `′ ⇒ �s` − s`′� ≥ r−j−1 − 6r−j−2 ≥ r−j−1/2:(8.16)

Thus, if we set w` = s` − v`, combining (8.15) and (8.16), we see that

`; `′ ∈M; ` 6= `′ ⇒ �w` −w`′� ≥ r−j−1/4:

The points w` belong to the space H generated by the vectors �eky k ∈ L�.
They belong to the ball B�w;r−j�, where w =∑k∈L akek. Thus, by Lemma 7.7,
we have

cardM ≤
(

1+ 2
r/4

)cardL

≤KcardL:(8.17)

Now, by (8.9), we have cardL ≤ K log n/A2, so that, if A is large enough,
(8.17) contradicts the fact that cardM ≥ √n.

Thus the proof is finished in the case that (8.6) holds. If (8.6) fails, the
definition of u shows that this is because

∑
k≥1 a

2
k ≤ r−2j; thus ψj�s� = 0. It

then suffices to show that, given an arbitrary point s` =
∑
k≥1 ak; `ek, we have

B ≥ r−j
√

log n/K, where B is given by (8.11). This follows from Lemma 7.7
as above. 2

To conclude this section, we would like to mention an open question related
to matching problems and to the transportation cost from the empirical mea-
sure to the uniform measure on �0;1�2 (for notions of transportation cost more
elaborate than the one studied in Section 7). The study of transportation costs
involves classes of functions; these classes are not so easy to describe, so we
will rather consider simpler related classes for which the nature of the diffi-
culty seems the same. Denoting by ψa the function ψa�x� = �x� log�1 + �x��a
for a ≥ 0, consider the class

C�a; b� =
{
f: �0;1�2 → R; �f� ≤ 1;

∫ ∫
ψa

(
∂f

∂x

)
dλ ≤ 1;

∫ ∫
ψb

(
∂f

∂y

)
dλ ≤ 1

}
:

Problem 8.2. Is it true that, for a+ b ≥ 1/2, we have γ2;2�C�a; b�� <∞?

It is proved in [18], Theorem 6.5, that the condition a+ b > 4 suffices; but
the method there cannot yield optimal results. The case a = 0; b = 1/2 would
yield new results on the transportation cost (improving upon Theorem 1.8 of
[18]).
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There is a kind of similarity between Problem 8.2 and the study of the
convex hull of a sequence, in the sense that the weak convexity properties
of the functions ψa apparently make convexity useless (in contrast with the
case of Lipshitz functions of Section 7). The main challenge of Problem 8.2
is, however, that one must apparently take strongly into account not only the
integrability properties of ∂f/∂x and ∂f/∂y, but the fact (which is not used in
[18]) that these are the derivatives of the same function, a strong constraint
that is hard to use.

9. Families of distances. It is an unfortunate fact that, as exemplified
by Lemma 7.2, not all processes of interest satisfy tail conditions as simple
as (1.1). Yet the program of extending Theorem 5.1 has been successful in
two important situations (see [18] and [20]). Rather than reproducing here
the results of these papers, we have chosen to attempt to explain some of the
key ideas needed for this purpose. We will consider only the situation of [20].
Throughout this section we consider a number 1 ≤ α < ∞ and we denote
by �hn�n≥1 a sequence of independent symmetric random variables such that
P��hn� ≥ u� = aα exp�−uα�, where aα is a normalizing constant. Thus, when
α = 2, hn is Gaussian. The second most interesting case is α = 1. For t = �tn�
in `2, we set

Xt =
∑
n≥1

tnhn:(9.1)

The following lemma is a standard exercise ([20], Corollary 2.9). In this lemma,
for t = �tn�n≥1, we set �t�β =

(∑ �tn�β
)1/β, where β is the conjugate exponent

of α. When α = 1; β = ∞; and then �t�∞ = supn≥1 �tn�.

Lemma 9.1. If t ∈ `2, we have the following:

(a) If α ≥ 2, for all u > 0, we have

P��Xt� ≥ u� ≤ 2 exp
(
− 1
K�α� max

(
u2

�t�22
;
uα

�t�αβ

))
:

(b) If α ≤ 2, for all u > 0, we have

P��Xt� ≥ u� ≤ 2 exp
(
− 1
K�α� min

(
u2

�t�22
;
uα

�t�αβ

))
:(9.2)

Here K�α� is a constant depending on α only.

Consider now a subset T of `2, and the problem of finding useful bounds
for supt∈TXt. We discuss only the case α ≤ 2. Certainly we wish to try first
to mimic the arguments of Section 2. It is not clear now how to control the
size of the sets Aj�t� considered there, so let us simply denote by dβ�A� the
diameter of A ⊂ `2 for the distance induced by the norm � · �β.
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In the chaining argument, in order to get a usable bound for
∑

j>i; s∈5j
P��Xs −Xπj−1�s�� ≥ uaj�s��(9.3)

in view of (9.2) we have to take

aj�s� =K�α�
[
d2�Aj−1�s��

√
log

1
wj�s�

+ dβ�Aj−1�s��
(

log
1

wj�s�

)1/α]
;

(9.4)

where wj�s� is the term of (9.3) for u = 1, and to require
∑
wj�s� ≤ 1. Thus,

working now with measures µ on T, what we need is to control both

S2 = sup
t∈T

∑
j>i

d2�Aj−1�s��
√

log
1

µ�Aj�s��

and

Sα = sup
t∈T

∑
j>i

dβ�Aj−1�s��
(

log
1

µ�Aj�s��

)1/α

:

An immediate problem is that, even if we have a sequence of partitions �Aj�
for which we control S2, and one �A ′

j� for which we control Sα, it is unclear
how to construct one that controls both terms simultaneously. The partition
generated by Aj and A ′

j does not work because of the different exponents of
log 1/µ�Aj�s��. One way around the problem is to observe that, for conjugate
exponents p;q, we have ab ≤ ap + bq, so that

dq�Aj−1�s��
(

log
1

µ�Aj�s��

)1/p

≤ rjq/p dq�Aj−1�s��q + r−j log
1

µ�Aj�s��
:

(9.5)

Thus we can try to control the quantity

sup
t∈T

∑
j>i

�rj/p dq�Aj−1�t���q + r−j log
1

µ�Aj�t��
;

when either p = q = 2 or p = α; q = β; α > 1. When p = α = 1; q = ∞,
we rather require that d∞�Aj−1�s�� ≤ 2r−j+1. [It could be more appropriate
in the present setting to require rjd∞�Aj−1�s�� ≤ 1; but the choice above is
consistent with Section 2.]

The first positive result is that such a sequence of partitions can be con-
structed using a majorizing measure condition on T.
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Proposition 9.2. Consider a metric space �T;d�, and α > 1. Consider an
integer i ∈ Z. Then we can find an increasing sequence of partitions �Aj�j≥i
and a probability measure µ on T such that

sup
t∈T

∑
j≥i
rjβ/α d�Aj�t��β + r−j log

1
µ�Aj�t��

≤K�α�γα�T;d�;(9.6)

where d�A� denotes the diameter of A.

The proof of Proposition 9.2 requires a simple, yet nontrivial construction
(in the spirit of Proposition 4.3). See [18].

We pursue the discussion of chaining under condition (9.1). Consider a sub-
set T of `2 and a number i to be determined later on.

First, we use Proposition 9.2 for the distance induced by the norm � · �2;
we obtain a sequence of partitions �Bj�j≥i and a probability measure µ1 on T
such that

sup
t∈T

∑
j≥i
rj d2�Bj�t��2 + r−j log

1
µ1�Bj�t��

≤Kγ2�T�:(9.7)

Using again Proposition 9.2 for the distance induced by the norm � · �β, we
obtain a sequence of partitions �Cj�j≥i and a probability measure µ2 on T such
that

sup
t∈T

∑
j≥i
rjβ/α dβ�Cj�t��β + r−j log

1
µ2�Cj�t��

≤Kγα�T; � · �β�:(9.8)

Consider the sequence �Aj�j≥i of partitions of T such that Aj�t� = Bj�t� ∩
Cj�t�. Consider a probability measure µ on T such that

∀ j ≥ i; ∀ A ∈ Aj; ∀ B ∈ Bj; µ�A ∩B� ≥ 2i−j−1µ1�A�µ2�B�:
A simple computation using (9.6) and (9.7) shows that

sup
t∈T

∑
j≥i
rj d2

2�Aj�t�� + rjβ/α dβ�Aj�t��β + r−j log
1

µ�Aj�t��

≤K�γα�T; � · �β� + γ2�T� + r−i�:
(9.9)

To use the chaining argument, we have to use a sequence of partitions for
which the first partition is T; thus we set Ai−1 = T. Using chaining and (9.2)
and (9.9), we then see by an easy adaptation of the arguments of Section 2
that

E sup
t∈T

Xt ≤K�γα�T; � · �β� + γ2�T� + r−i + ri d2
2�T� + riβ/α dβ�T�β�:(9.10)

Since d2�T� ≤Kγ2�T�; dβ�T� ≤ γα�T; �·�β�, we then see that (since β/α =
β− 1) if we take i such that r−i is of order γ2�T� + γα�T; � · �β�, then we get

E sup
t∈T

Xt ≤K�γ2�T� + γα�T; � · �β��:(9.11)
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The proof of Lemma 7.2 is similar to the proof of (9.11) (but somewhat
harder).

The proof of (9.11) does not really require Proposition 9.2. It is possible to
proceed directly (with essentially the same proof) as is done in [10], Chapter
11. The idea latent in the right-hand side of (9.6), however, becomes very
precious when trying to prove a converse for (9.11), as we will soon explain.

Before that, it is useful to simplify the notation and to set

ϕj�s; t� = r2j�s− t�22 + rjβ�s− t�
β
β;(9.12)

Dj�A� = sup�ϕj�s; t�y s; t ∈ A�;(9.13)

so that controlling the left-hand side of (9.9) requires the control of

sup
t∈T

∑
j≥i
r−j

(
Dj�Aj�t�� + log

1
µ�Aj�t��

)
:(9.14)

A converse to (9.11) is a generalization of Theorem 5.1. To see how to pro-
ceed, let us first investigate how we could expect to extend the crucial inequal-
ity (5.2) which is a key step of the proof of Theorem 5.1. In order to find a lower
bound for E sup`≤nXt`

, where Xt is given by (9.1), under the condition that
the points �t`�`≤n are well separated, it seems reasonable to require that for
two numbers a2; aβ we have

` 6= `′ ⇒ either �t` − t`′�2 ≥ a2 or �t` − t`′�β ≥ aβ:
We can then hope that

E sup
`≤n

Xt`
≥ 1
K�α� min

(
a2

√
log n;aβ�log n�1/α

)
(9.15)

Thus, in order to obtain E sup`≤nXt`
≥ A/K�α�, it seems natural to require

a2 ≥ A
√

log n, aβ ≥ A/�log n�1/α, so that

` 6= `′ ⇒ ϕj�t`; t`′� ≥ r2j A2

log n
+
(

rjA

�log n�1/α
)β

= log n
((

rjA

log n

)2

+
(
rjA

log n

)β)
:

The appearance of the quantity rjA/ log n at two different powers appar-
ently means that it would be wise to consider only the case where this quantity
is of order 1. Thus we see that we are led to conjecture that

` 6= `′ ⇒ ϕj�t`; t`′� ≥ log n⇒ E sup
`≤n

Xt`
≥ 1
K�α�r

−j log n:(9.16)

This is indeed true (see [20]). The most remarkable feature of this state-
ment is that, in contrast with Sudakov minoration (5.2), there is a precise
relationship between the number of points to consider and how well they are
separated.
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This success in extending (5.2) provides motivation to prove a suitable ex-
tension of Theorem 4.2. The setting is as follows. On a space T, we assume
that, for j ∈ Z, we are given a function ϕj�s; t� on T×T. The function ϕj also
depends on a number r. This number is not indicated in the notation, because
it will remain fixed (after having been appropriately chosen). We assume that,
for some number κ independent of r, we have

ϕj�s; t� ≤ κ�ϕj�s; v� + ϕj�v; t��(9.17)

for all s; t; v in T. This is a substitute for the triangle inequality which takes
into account the fact that ϕj resembles a power of a distance rather than a
distance. We assume that, for a certain number δ > 0, we have, for all r and
all s; t in T,

ϕj+1�s; t� ≥ r1+δϕj�s; t�:(9.18)

This condition is obvious in the case (9.12); unfortunately, it does not hold
in many cases of interest, and in those cases many open problems remain, the
most important of which is the Bernoulli conjecture of [21]. We assume, for
simplicity, that r = 2τ, τ ∈ N. We assume that, for each subset S of T, there is
associated a number F�S�. [Our typical choice for F�S� will be E supt∈SXt.]
We assume F�S� ≥ 0, and that, if S ⊂ S′, F�S� ≤ F�S′�. We assume that the
following holds, for certain numbers η; ξ > 0 and all j ≥ i; p ≥ τ − 1:

Assume that for some p ≥ τ− 1 there exists points t1; : : : ; tn in
T, with n = 22p , and assume that

(9.19)

�9:19a� ` 6= `′ ⇒ ϕj�t`; t`′� ≥ 2p;

�9:19b� ∀ `; `′ ≤ n; ϕj−1�t`; t`′� ≤ κ2p−τ+2:

Consider then, for each ` ≤ n, a subset A` of T such that

�9:19c� t ∈ A` ⇒ ϕj�t; t`� ≤ η2p:

Then

�9:19d� F

( ⋃
`≤n

A`

)
≥ ξr−j2p +min

`≤n
F�A`�:

We hope that (9.15) motivates (9.19a) and (9.19d). To understand these
conditions, it might also help to consider the case where T is a metric space
and where ϕj�s; t� = r2jd�s; t�. In that case κ = 2 and (9.19a)–(9.19c) become,
respectively (since r = 2τ),

` 6= `′ ⇒ d�t`; t`′� ≥ r−j2p/2;

d�t`; t`′� ≤ r−j2p/225/2;

A` ⊂ B�t`; r−j
√
η2p/2�:
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When T ⊂ `2; F�S� = E supt∈SXt, it follows from Lemma 5.4 that (9.19d)
holds when η is small enough. We observe that in this case condition (9.19b) is
actually not needed. In [21] the following extension of Theorem 4.2 is proved.
It is a key ingredient of the extensions of Theorem 5.1 considered in [18] and
[20] (although the original arguments of [18] are somewhat more complicated).

Theorem 9.3. If, together with the previous conditions, we assume ηrδ ≥ 4,
we can find an increasing sequence of finite partitions �Aj�j≥i of T and a
probability measure µ such that

∀ t ∈ T;
∑
j≥i
r−j

(
Dj�Aj�t�� + log

1
µ�Aj�t��

)

≤K�κ; ξ��F�T� + r−i�1+Di−1�T���:
The way to use this result is first to determine η small enough such that

(9.19d) holds; then to take r large enough such that ηrδ ≥ 4.

Acknowledgments. The way to introduce majorizing measures used in
Section 2 was shown to me by J. Zinn. I am grateful to T. Gowers and I. Pinelis
for numerous comments.
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