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THE POINT OF VIEW OF THE PARTICLE ON THE LAW OF
LARGE NUMBERS FOR RANDOM WALKS IN A MIXING

RANDOM ENVIRONMENT1

BY FIRAS RASSOUL-AGHA

Courant Institute

The point of view of the particle is an approach that has proven very
powerful in the study of many models of random motions in random media.
We provide a new use of this approach to prove the law of large numbers in
the case of one or higher-dimensional, finite range, transient random walks
in mixing random environments. One of the advantages of this method over
what has been used so far is that it is not restricted to i.i.d. environments.

1. Introduction. Originating from the physical sciences, the subject of
random media has gained much interest over the last three decades. One of the
fundamental models in the field is random walks in a random environment. The
main purpose of this work is to prove the law of large numbers for a certain class
of random walks in a mixing random environment. In this model, an environment
is a collection of transition probabilities ω = (πij )i,j∈Zd ∈ [0,1]Zd×Z

d
, with∑

j∈Zd πij = 1. Let us denote by � the space of all such transition probabilities.
The space � is equipped with the canonical product σ -field S, and with the natural
shift (T kω)i,j = ωk+i,k+j for k ∈ Z

d . Here, ωij stands for the (i, j)th coordinate
of ω ∈ �. We will also use ωi = (ωij )j∈Zd . On the space of environments (�,S),
we are given a certain T -invariant probability measure P, with (�,S, (T k)k∈Zd ,P)

ergodic. We will say that the environment is i.i.d. when P is a product measure.
Let us now describe the process. First, the environment ω is chosen from the
distribution P. Once this is done, it remains fixed for all times. The random walk
in environment ω is then the canonical Markov chain (Xn)n≥0 with state space Z

d

and transition probability

P ω
x (X0 = x) = 1,

P ω
x (Xn+1 = j |Xn = i) = πij (ω).

The process P ω
x is called the quenched law. The annealed law is then

Px =
∫

P ω
x dP(ω).

Received May 2002; revised August 2002.
1Supported by NSF Grant DMS-01-0343.
AMS 2000 subject classifications. Primary 60K40; secondary 82D30.
Key words and phrases. Random walks, random environments, point of view of the particle, law

of large numbers, Kalikow’s condition, Dobrushin–Shlosman mixing.

1441



1442 F. RASSOUL-AGHA

Already, one can see one of the difficulties of the model. When the environment ω

is not fixed, that is, under P0, Xn stops being Markovian.
Many questions arise about the different possible limit theorems, such as the

law of large numbers, central limit theorems, large deviation results and so on. In
the one-dimensional nearest-neighbor case, the situation has been well understood
(see, e.g., [16, 19] and the references therein). The reason for this is the possibility
of explicit computations, and the reversibility of the Markov chain. In the higher-
dimensional case, however, the amount of results is significantly less (once again,
see [16, 19] for an overview).

In the present paper, we are interested in the law of large numbers. In the one-
dimensional case, Solomon [15] and Alili [1] proved that the speed of escape of
the particle (velocity at large times) is a constant, P0-a.s., that depends only on
the distribution of the environment. Later, Sznitman and Zerner [18] proved that,
under some technical transience condition on P (the so-called Kalikow condition),
the law of large numbers still holds in the multidimensional situation with i.i.d.
environments. To overcome the non-Markovian character of the walk, they used a
renewal-type argument that appeared to be very specific to i.i.d. environments.
Still, using the same method, Zeitouni [19] proved the law of large numbers,
when i.i.d. environments are replaced by ones that are independent when a gap
of size L is allowed. For more general mixing environments, the method seems to
be too rigid. However, physically relevant models, such as diffusions with random
coefficients, suggest that removing the independent environment hypothesis is
an important step toward a further understanding of random walks in a random
environment. For this, a different approach is required. One approach that has
proven to be very powerful in the study of several other examples of random
motions in random media, such as in [9, 4, 13, 14], is termed the “point of
view of the particle.” In this approach, one considers the process (T Xnω) of the
environment as seen from the particle. This process is now a Markov process,
with initial distribution P. The new inconvenience is that this Markov process
has for its state space the huge set �. To apply the standard ergodic theorem,
Kozlov [11] showed that one needs to find an ergodic measure P∞ that is invariant
for the process (T Xnω) and absolutely continuous relative to P; see also Lemma K
below. This approach works perfectly in the one-dimensional case, since one can
compute P∞ explicitly (see [1]). Moreover, in this case, one does not need the i.i.d.
hypothesis. The hard problem, though, is to find such a measure. In the case of
balanced walks (see [12]), one can prove the existence of such a measure, without
actually computing it. Even though, in the two cases we mentioned above, the
method of the point of view of the particle did solve the problem, it seems to have
so far been of little help in the more general cases of random walks in random
environments.

As one will see in Section 4 below, one cannot always expect to be able to find
an invariant measure P∞ that is absolutely continuous relative to P, in all of �.
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However, when studying walks that are transient in some direction � ∈ R
d \ {0},

one expects the trajectories to stay in some half-plane Hk = {x ∈ Z
d :x · � ≥ k} for

k ≤ 0. In this paper we further develop the approach of the point of view of the
particle, to be able to use it in the investigation of higher-dimensional random
walks in a not necessarily i.i.d. random environment. In Theorem 2, we show
that the conclusion of Kozlov’s lemma still holds if P∞ is absolutely continuous
relative to P, in every half-space Hk , instead of all of Z

d . Then, in Theorem 3,
we show that Kalikow’s condition implies that, after having placed the walker
at the origin, the trajectories do not spend “too much” time inside any half-
plane Hk, collecting therefore little information about the environment in there,
and satisfying the hypotheses of Theorem 2. This implies the law of large numbers
we are aiming for.

We will need the following definition. We say that we have a finite range
environment, or that the walk has finite range M < ∞, when

P(πij = 0 when |i − j | > M) = 1.

Throughout the rest of this work, we will only consider finite range random walks
in a random environment.

Let us now explain the structure of this paper. Section 2 introduces Kalikow’s
condition. There, we give an effective condition that implies Kalikow’s condition,
even when P is not a product measure. By an effective condition, we mean a
condition that can be checked directly on the environment.

In Section 3, we start with a warm-up calculation. We consider the one-
dimensional finite range situation. We do not assume P to be a product measure. In
Theorem 1, we prove the law of large numbers in the one-dimensional nonnearest-
neighbor case, under Kalikow’s condition.

In Section 4, we explain why, in general, one cannot use Kozlov’s lemma in the
multidimensional setup.

In Section 5, we prove Theorem 2, which extends Kozlov’s lemma. We show
that, to have a law of large numbers, it is enough for the invariant measure P∞ to
be absolutely continuous relative to P only in certain “relevant” parts of Z

d .
In Section 6, we introduce the Dobrushin–Shlosman strong mixing condition.
In Section 7, we use Theorem 2 to prove that Kalikow’s condition implies

the law of large numbers for finite range random walks in a mixing random
environment. This is our main theorem (Theorem 3).

2. Kalikow’s condition. Let us start with a definition. We define the drift D

to be

D(ω) = Eω
0 (X1) = ∑

i

iπ0i (ω).(2.1)

When studying the law of large numbers, one could try to examine first the case
when the environment satisfies some condition that guarantees a strong drift in
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some direction � ∈ R
d \ {0}. One such condition was introduced by Kalikow [8]:

inf
U∈U

inf
x∈U

E0(
∑TU

j=0 1(Xj = x)D(T Xj ω) · �)
E0(

∑TU

j=0 1(Xj = x))
= ε > 0,(2.2)

where TU = inf{j ≥ 0 :Xj /∈ U }, and U is ranging over all finite sets that contain 0
and have a path of range M passing through all its points. We will call such sets
M-connected. The expectations involved in the above condition are all finite and
positive (cf. [8], pages 756–757), if one assumes the following ellipticity condition
to hold:

There exists κ(P) ∈ (0,1) such that

P(πi,j > κ when |i − j | ≤ M) = 1.
(2.3)

In some situations, we will assume, instead, the weaker ellipticity condition

P(∀ j s.t. j · � ≥ 0 and |j | = 1 :π0j > 0) = 1.(2.4)

In the rest of this work, we will consider condition (2.3) to be part of
Kalikow’s condition (2.2). Sznitman and Zerner’s [18] law of large numbers was
established under condition (2.2). As a matter of fact, Kalikow’s condition, in
the one-dimensional i.i.d. nearest-neighbor case, is equivalent to the condition
E(ρ) < 1 (cf. [18], pages 1866–1867). According to Solomon [15], this condition
characterizes the situation of walks with a positive speed of escape. This is not
the case in higher dimensions. In fact, Sznitman [17] proved that, in the i.i.d.
case, Kalikow’s condition implies a strictly more general condition (the so-called
T ′ condition), which also implies a law of large numbers with a positive velocity.
One way to motivate Kalikow’s condition is revealed by Proposition 1 in [8],
pages 757–758.

Of course (2.2) is not very practical, since it is not a condition on the
environment. Clearly, if one has a nonnestling environment, that is, if there exists
a δ > 0 such that P(D · � ≥ δ) = 1, then (2.2) holds. In the nestling case, however,
there is a condition that is more concrete than (2.2), that implies it and at the
same time follows from many other interesting conditions on the drift [such as
P(D · � < 0) > 0, but there exists a constant ε > 0, such that P(D · � ≥ −ε) = 1,
and P(D · � < 0) < Cε small enough]. It has already been established in [8],
pages 759–760, and [16], pages 36–37, that, under the hypothesis that the
environment is i.i.d.,

E(D · �+) > κ−1
E(D · �−)(2.5)

implies (2.2). In fact, one can relax the i.i.d. hypothesis as follows. Let ω �x =
(ωy)y �=x , and define Qω�x to be the regular conditional probability, knowing ω �x ,
Qx be the marginal of ωx , and Q�x the marginal of ω �x .
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PROPOSITION 1. Suppose that, Q�0-almost surely, Qω� 0 � Q0, and that there
exist two positive constants A and B , such that for Q0 ⊗ Q�0-almost every
ω = (ω0,ω �0) one has

0 < A ≤ h(ω0,ω �0) = dQω� 0
dQ0

(ω0) ≤ B < ∞.(2.6)

Then the ellipticity condition (2.3), along with

E(D · �+) > κ−1BA−1
E(D · �−),(2.7)

implies Kalikow’s condition (2.2).

PROOF. Fix U ⊂ Z
d , with 0 ∈ U . Define, for ω ∈ �, x, y ∈ Z

d ,

fω(x) = P ω
0

(∃k ∈ [0, TU) :Xk = x
)
,

gω(x, y) = P ω
x+y

(
Xk �= x ∀ k ∈ [0, TU ]).

Note that we have, for x ∈ U ,

P ω
x

(
Xk �= x ∀ k ∈ (0, TU ]) = ∑

|y|≤M

πx,x+y(ω)gω(x, y).

Once x is visited before exiting U , the number of returns to x, up to time TU , is
geometrically distributed with the above failure probability. Therefore, for x ∈ U ,
we have

Eω
0

(
TU∑
j=0

1(Xj = x)

)
= fω(x)∑

|y|≤M gω(x, y)πx,x+y(ω)
,

where the numerator is exactly the probability of visiting x at least once.
Since fω(x) and gω(x, y) are σ(ωz; z �= x)-measurable, one has∫

fω(x)D(T xω) · �∑
|y|≤M gω(x, y)πx,x+y(ω)

dP(ω)

=
∫

dQ�x(ω �x)
∫

fω(x)D(T xω) · �∑
|y|≤M gω(x, y)πx,x+y(ω)

h(ωx,ω �x) dQx(ωx)

≥
∫

dQ�x(ω �x)
∫

fω(x)

max|y|≤M gω(x, y)

× (
AD · �+(T xω) − κ−1BD · �−(T xω)

)
dQx(ωx)

= E
(
AD · �+ − κ−1BD · �−) ∫

fω(x)

max|y|≤M gω(x, y)
dP(ω)

≥ κE
(
AD · �+ − κ−1BD · �−) ∫

fω(x)∑
|y|≤M gω(x, y)πx,x+y(ω)

dP(ω),
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which is Kalikow’s condition with ε = κE(AD · �+ − κ−1BD · �−) > 0. �

Notice that in the i.i.d. case, (2.6) clearly holds with A = B = 1, and
condition (2.7) is the same as (2.5). Condition (2.6) can also be easily checked,
in the case of Gibbs specifications, which we will use in the higher-dimensional
case; see Section 6. In this case, there exists a C1 [same as in (A.2)] such that the
marginal µ0, of the reference measure, satisfies

C−2
1 Q0 ≤ C−1

1 µ0 ≤ Qω� 0 ≤ C1µ0 ≤ C2
1Q0.

Next, we show two implications of Kalikow’s condition (2.2). First, the walk
has a ballistic character, in the following sense.

LEMMA 2. Assume we have a finite range environment for which Kalikow’s
condition (2.2) holds. Let U ⊂ Z

d be an M-connected set containing 0, for which
E0(TU) < ∞. Then E0(XTU

· �) ≥ εE0(TU).

PROOF. For a finite U , Kalikow’s condition implies that

E0

(
TU∑
j=0

1(Xj = x)D(T Xj ω) · �
)

≥ εE0

(
TU∑
j=0

1(Xj = x)

)
.

Summing over all x ∈ U , and using that D(T Xj ω) = Eω
0 (Xj+1 − Xj |Fj ), and

that TU is a stopping time, one has

E0

(
TU −1∑
j=0

(Xj+1 − Xj) · �
)

≥ εE0(TU).

The claim follows. For an infinite U , the lemma follows from the monotone
convergence theorem, by taking increasing limits of finite sets. �

The other consequence of Kalikow’s condition is that, under this condition, the
walk almost surely escapes to infinity in direction �. This was originally proved by
Kalikow [8], and we reprove it here for the sake of completeness. We also prove
that the number of returns to the origin has a finite annealed expectation.

LEMMA 3. Under Kalikow’s condition (2.2), we have

P0

(
lim

n→∞Xn · � = ∞
)

= 1(2.8)

and ∑
j≥0

P0(Xj = 0) < ∞.(2.9)
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PROOF. Let U ⊂ Z
d be a finite M-connected set containing 0. Rewriting (2.2),

multiplying both sides by e−λx·� for λ > 0, and summing over all x ∈ U , one has

E0

(
TU−1∑
j=0

e−λXj ·�D(T Xj ω) · �
)

≥ εE0

(
TU −1∑
j=0

e−λXj ·�
)
.(2.10)

On the other hand, since TU is a stopping time, one can write

TU∑
j=1

Eω
0

(
e−λXj ·�∣∣Fj−1

) = ∑
j≥1

Eω
0

(
1(TU ≥ j)e−λXj ·�∣∣Fj−1

)
.

Hence, we have

E0

(
TU∑
j=1

e−λXj ·�
)

= E0

(
TU∑
j=1

Eω
0

(
e−λXj ·�∣∣Fj−1

))

= E0

(
TU∑
j=1

e−λXj−1·�(1 − λD(T Xj−1ω) · � + O(M2λ2)
))

≤ E0

(
TU −1∑
j=0

e−λXj ·�
)(

1 − λε + O(M2λ2)
)
,

where we have used (2.10) to get the inequality. Taking λ > 0 small enough, and
increasing U to all of Z

d , one has

E0

( ∑
j≥0

e−λXj ·�
)

< ∞(2.11)

and, therefore,

P0

(
lim inf
n→∞ Xn · � < ∞

)
≤ P0

( ∑
j≥0

e−λXj ·� = ∞
)

= 0,

proving (2.8). Using (2.11), one also proves (2.9),

∑
j≥0

P0(Xj = 0) = E0

( ∑
j≥0

1(Xj = 0)

)
≤ E0

( ∑
j≥0

e−λXj

)
< ∞.

�

Next, as a warm-up for the method we will use later in the multidimensional
situation, we examine the simpler case of one-dimensional random walks.
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3. The one-dimensional case. In this section, we will prove the law of large
numbers for one-dimensional finite range random walks in a random environment.
Let us recall a lemma, also valid for d ≥ 2, that was proved by Kozlov [11].

LEMMA K [11]. Assume that the weak ellipticity condition (2.4) holds.
Suppose also that there exists a probability measure P∞ that is invariant for
the process (T Xnω)n≥0, and that is absolutely continuous relative to the ergodic
T -invariant environment P. Then the following hold:

(i) The measures P and P∞ are in fact mutually absolutely continuous.
(ii) The Markov process (T Xnω)n≥0 with initial distribution P∞ is ergodic.

(iii) There can be at most one such P∞.
(iv) The following law of large numbers is satisfied:

P0

(
lim

n→∞
Xn

n
= E

P∞(D)

)
= 1,

where D is the drift defined in (2.1).

One then has the following theorem.

THEOREM 1. Under Kalikow’s condition (2.2), with � = 1, the process
(T Xnω)n≥0 has an invariant measure P∞ that is absolutely continuous relative
to P, and we have a law of large numbers for finite range random walks in the
ergodic T -invariant environment P,

P

(
lim

n→∞
Xn

n
= E

P∞(D)

)
= 1.

PROOF. Define

gij (ω) = ∑
n≥0

P ω
i (Xn = j) = Eω

i (Nj),

where Nj is the number of visits of the random walk to site j . The renewal property
gives, for i �= j ,

gij = Eω
j (Nj)P

ω
i (Vj < ∞) ≤ gjj ,

with Vj = inf{n > 0 :Xn = j}. Moreover, the gjj ’s are all identically distributed in
the annealed setting. Thus, according to (2.9), they are all in L1(�,P). For i ≤ j

define

Gij = 1

j − i + 1

j∑
k=i

gkj ≤ gjj .

Using the diagonal trick, one can extract a subsequence of the Gij ’s that converges
weakly, as i decays to −∞, to a limit µj ∈ L1(�,P), for all j . Then, for any
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fixed j , µj is a limit point for the gij ’s as well. Using the diagonal trick again, one
can find a subsequence of the gij ’s that converges weakly to µj , for all j . We will
keep referring to both subsequences by Gij and gij .

Notice that if k �= j , then∑
i

πij gki = ∑
n≥0

∑
i

πijP
ω
k (Xn = i) = ∑

n≥0

P ω
k (Xn+1 = j) = gkj .

Therefore, for P-a.e. ω,
∑

i πijµi = µj . Also,

gi0 ◦ T = ∑
n≥0

P T ω
i (Xn = 0) = ∑

n≥0

P ω
i+1(Xn = 1) = gi+1,1,

and the same holds for the Gij ’s. Therefore, for P-a.e. ω,

µ0(T ω) = lim
i→−∞ Gi0(T ω) = lim

i→−∞ Gi+1,1(ω) = µ1(ω).

This shows that µ0 dP is an invariant measure for the process (T Xnω)n≥0. Next,
we need to show that µ0 is not trivial. To this end, we recall Lemma 3. According
to this lemma, Kalikow’s condition implies that, for P-a.e. ω, P ω

0 (limn→∞ Xn =
∞) = 1. The finite range character of the walk implies then that for each i < j ,
P-a.s.,

∑j+M−1
k=j gik ≥ 1. Taking the limit in i, we have that, P-a.s.,

∑j+M−1
k=j µk ≥ 1.

Therefore, by the ergodicity of P, E(µ0) ≥ M−1.
Defining P∞ such that

dP∞
dP

= µ0

E(µ0)

gives an invariant probability measure for the process of the environment, as
seen from the particle. This measure is absolutely continuous relative to P, and
Lemma K concludes the proof. �

Now, we move to the multidimensional situation. In the following section, we
will show why it is quite different from the situation above, and why Kozlov’s
lemma (Lemma K) cannot be used.

4. Motivation. Consider the case where d = 2, the environment is i.i.d., and

P
(
π(0,0)(1,0) = 1

) = P
(
π(0,0)(0,1) = 1

) = 0.5.

Once the environment is chosen, the walk is determined, following the assigned
directions. The annealed process is in fact the same as 0.5(n − Sn,n + Sn), with
Sn a one-dimensional simple symmetric random walk. Therefore, one obviously
has the following law of large numbers:

P0

(
lim

n→∞
Xn

n
= (0.5,0.5)

)
= 1.
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Yet, defining Pn to be the measure on the environment as seen from the particle at
time n,

Pn(A) = P0
(
T Xnω ∈ A

)
,

and S−k as the σ -algebra generated by the environment at sites x such that
x · (1,1) ≥ −k, one has the following proposition.

PROPOSITION 4. There exists a probability measure P∞ to which Pn

converges weakly. Moreover, P∞ is mutually singular with P, and there is no
probability measure that is, at the same time, invariant for (T Xnω) and absolutely
continuous relative to P. Furthermore, for k ≤ n, one has Pn|S−k

= Pk |S−k
, and

therefore, P∞|S−k
= Pk |S−k

� P|S−k
.

For a complete proof, see [2], Propositions 1.4. and 1.5. Although the ellipticity
condition is not satisfied, this model is instructive. It shows us that, to prove a
law of large numbers, one need not necessarily look for a P∞ that is absolutely
continuous relative to P on the whole space. Instead, maybe one should try to
prove that P∞ � P in the “relevant” part of the space, that is, all half-spaces
{x :x · (1,1) ≥ −k}, for k ≥ 0. This is still much weaker than absolute continuity
in the whole space. We will address this issue in the following section.

5. On the invariant measure for d ≥ 2. For k ∈ Z, let Sk = σ(ωx :
x · � ≥ k) be the σ -algebra generated by the part of the environment in the
right half-plane Hk = {x :x · � ≥ k}. In this section, we will not assume the
ellipticity condition (2.3) to hold. Instead, we will assume the weaker ellipticity
condition (2.4) we assumed in Lemma K. We modify Lemma K, as suggested by
the example in Section 4, and we have the following theorem.

THEOREM 2. Let P be ergodic, and T -invariant, with finite range M . Assume
that the weak ellipticity condition (2.4) holds, and that

P0

(
lim

n→∞Xn · � = ∞
)

= 1.(5.1)

Suppose also that there exists a probability measure P∞ that is invariant for the
process (T Xnω)n≥0, and that is absolutely continuous relative to P, in every half-
space Hk , with k ≤ 0. Then the following hold:

(i) The measures P and P∞ are in fact mutually absolutely continuous on
every Hk , with k ≤ 0.

(ii) The Markov process (T Xnω)n≥0 with initial distribution P∞ is ergodic.
(iii) There can be at most one such P∞, and if

P̃n(A) = n−1
n∑

m=1

P0
(
T Xmω ∈ A

)
,

then P̃n converges weakly to P∞.
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(iv) The following law of large numbers is satisfied:

P

(
lim

n→∞
Xn

n
= E

P∞(D)

)
= 1.

PROOF. (∀ k ≤ 0 : P∞|Sk
∼ P|Sk

). Fix k ≤ 0, and let Gk = dP∞|Sk
dP|Sk

. Then

0 =
∫
{Gk=0}

Gk dP =
∫

1{Gk=0} dP∞ =
∫ ∑

|e|≤M

π0e1{Gk=0} ◦ T e dP∞

≥
∫ ∑

|e|=1
e·�≥0

π0e1{Gk=0} ◦ T eGk dP =
∫
{Gk=0}

∑
|e|=1
e·�≤0

πe0Gk ◦ T e dP,

where the inequality used the fact that if e · � ≥ 0, then Gk ◦ T e is still
Sk-measurable. Using the weak ellipticity condition (2.4), the above inequality
implies that P-a.s. we have {Gk = 0} ⊂ T e{Gk = 0}, when |e| = 1 and e · � ≥ 0.
Since T is P-preserving, we have {Gk = 0} = T e{Gk = 0}, P-a.s. And since
(T e)|e|=1, e·�≥0 generates the group (T x)x∈Zd , we have that {Gk = 0} is P-a.s. shift-
invariant. But P is ergodic, and thus P(Gk = 0) is 0 or 1. However, E(Gk) = 1,
and therefore P(Gk > 0) = 1, and P∞ and P are mutually absolutely continuous
on Hk , for any k ≤ 0.

Ergodicity of (T Xnω)n≥0 with initial distribution P∞. Consider a bounded
local function f on � that is SK -measurable, for some K ≤ 0. Define g =
E

P∞(f |I), where I is the invariant σ -field for the process (T Xnω)n≥0. Birkhoff’s
ergodic theorem implies that, for P∞-a.e. ω,

P ω
0

(
lim

n→∞n−1
n∑

m=1

f
(
T Xmω

) = g(ω)

)
= 1.(5.2)

Using the fact that P∞ is invariant and that g is harmonic, we have

∑
|e|≤M

∫
π0e(g − g ◦ T e)2 dP∞

=
∫

g2 dP∞ − 2
∫

g
∑

|e|≤M

π0eg ◦ T e dP∞ +
∫ ∑

|e|≤M

π0e(g ◦ T e)2 dP∞

= 0.

Noticing that π0e is S0-measurable we conclude that the above equation, along
with the weak ellipticity condition (2.4), implies that, for |e| = 1 and e · � ≥ 0,

g = g ◦ T e, P∞-a.s.(5.3)
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Moreover, if we define

S =
{
ω :∀y ∈ Z

d, P ω
y

(
inf
m≥0

Xm · � < 0
)

= 1
}
,

then P(S) = 0. This is because otherwise the renewal property for the quenched
walk would imply that P0(Xn · � < 0 i.o.) > 0, and this contradicts (5.1). Hence,
we have that, for P-a.e. ω, there exists a y such that

P ω
y

(
inf
m≥0

Xm · � ≥ 0
)

> 0.

In particular, y · � ≥ 0. The weak ellipticity condition (2.4) implies that, for P-a.e.
choice of ω, the walk starting at 0 will, with positive probability under P ω

0 , reach y

without backtracking below 0. This means that

P ω
0

(
inf
m≥0

Xm · � ≥ 0
)

> 0, P-a.s.

However, the above event is S0-measurable, and therefore we have

P ω
0

(
inf
m≥0

Xm · � ≥ 0
)

> 0, P∞-a.s.

Now define

ḡ(ω) = P ω
0

(
inf
m≥0

Xm · � ≥ 0
)−1

lim sup
n→∞

∫
{infm≥0 Xm·�≥0}

n−1
n∑

m=1

f
(
T Xmω

)
dP ω

0 .

Then, because of (5.2), we know that g = ḡ, P∞-a.s. However, it is clear that
ḡ is SK -measurable. Formula (5.3) then implies that g = g ◦ T e , P-a.s. and the
ergodicity of P implies that g is constant P-a.s., and thus P∞-a.s. This proves
that the invariant σ -field I is trivial, and that concludes the proof of ergodicity
of (T Xnω)n≥0 with initial distribution P∞.

Uniqueness of P∞. Let f be a local bounded SK -measurable function, for
K ≤ 0. Notice that, due to ergodicity, we have P∞-a.s.,

Eω
0

(
lim

n→∞n−1
n∑

m=1

f (T Xmω)

)
= E

P∞(f )

and, therefore, for k ≤ 0, we have P∞-a.s.,

Eω
0

(
lim

n→∞n−1
n∑

m=1

f
(
T Xmω

); inf
m≥0

Xm · � ≥ k

)
= E

P∞(f )P ω
0

(
inf
m≥0

Xm · � ≥ k

)
.
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Both functions above are Sk+K -measurable. Therefore, the same equation
holds P-a.s. Integrating over ω, one has

E
P∞(f ) = lim

k→−∞E0

(
lim

n→∞n−1
n∑

m=1

f
(
T Xmω

); inf
m≥0

Xm · � ≥ k

)

= lim
n→∞n−1

n∑
m=1

E0
(
f (T Xmω)

) = lim
n→∞ E

P̃n(f ),

which uniquely defines P∞ as the weak limit of P̃n.

The law of large numbers. Taking f to be the drift D, we have, for all k ≤ 0,
and P∞-a.e. ω,

P ω
0

(
lim

n→∞n−1
n∑

m=1

D
(
T Xmω

) = E
P∞(D); inf

m≥0
Xm · � ≥ k

)

= P ω
0

(
inf
m≥0

Xm · � ≥ k

)
.

Once again, this is also true P-a.s., and taking k to −∞ we have

P0

(
lim

n→∞n−1
n∑

m=1

D
(
T Xmω

) = E
P∞(D)

)
= 1.(5.4)

For the rest of the proof, we follow the argument in [16], page 10. To this end,
Mn = Xn − X0 − ∑n−1

m=0 D(T Xmω) is a martingale with bounded increments
under P ω

0 . Therefore P ω
0 (limn→∞ n−1Mn = 0) = 1. Combining this with (5.4),

one obtains the desired law of large numbers. �

Next, we will relax the absolute continuity condition to a weaker, but sufficient,
condition. First, we need some definitions. For a measure P∞, and k ≤ 0, define
P

k,�∞ (resp. P
k,⊥∞ ) to be the absolutely continuous (resp. singular) part of P∞|Sk

relative to P|Sk
. For A ∈ Sk and j ≤ k, P

j,�∞ (A) [resp. P
j,⊥∞ (A)] is a monotone

sequence, and there exists a measure P
∞,�∞ (resp. P

∞,⊥∞ ) such that P
∞,�∞ (A) =

infj≤k P
j,�∞ (A) [resp. P

∞,⊥∞ (A) = supj≤k P
j,⊥∞ (A) = P∞(A) − P

∞,�∞ (A)]. Now,
we have the following lemma.

LEMMA 5. If P∞ is invariant for the process (T Xnω)n≥0 and P
∞,�∞ (�) > 0,

then P̂∞ = P
∞,�∞ (�)−1

P
∞,�∞ is a probability measure that is also invariant.

Moreover, P̂∞ is absolutely continuous relative to P, in every half-space Hk , with
k ≤ 0.
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PROOF. One clearly has P
∞,�∞ |Sk

≤ P
k,�∞ � P|Sk

. This proves the absolute

continuity part of the claim of the lemma. To show the invariance of P̂∞, it
is enough to show the invariance of P

∞,�∞ . To this end, denote the transition
probability of the process of the environment viewed from the particle by

π(ω,A) = ∑
|e|≤M

π0e(ω)1A(T eω),

and define the operator �, acting on measures, as

�P(A) =
∫

π(ω,A)dP(ω).

Now, consider A ∈ Sk+M , with P(A) = 0. Since �P � P, we have
�P(A) = 0. Therefore, π(ω,A) = 0, P|Sk

-a.s. and thus P
k,�∞ -a.s. as well.

Hence, �P
k,�∞ (A) = 0. This proves that �P

k,�∞ � P|Sk+M
and, since �P

k,�∞ ≤
�(P∞|Sk

) = P∞|Sk+M
, we have �P

k,�∞ ≤ P
k+M,�∞ . Taking limits, one has

�P
∞,�∞ ≤ P

∞,�∞ .

However, the two measures above give the same mass to �, and therefore are
equal. �

REMARK 6. Given an invariant measure P∞, one can decompose it, relative
to P, into P

�∞ and P
⊥∞. Using the same argument as above, it is easy to see

that P
�∞ is again invariant, and that P

�∞ ≤ P
∞,�∞ . Due to the uniqueness of the

measure in Theorem 2, one sees that if P
�∞ is not trivial, then P

�∞ and P
∞,�∞ are

proportional. Therefore, the latter is absolutely continuous, relative to P, in the
whole space, and thus P

∞,�∞ ≤ P
�∞, and P

�∞ = P
∞,�∞ .

Before we move to the discussion of the law of large numbers, we will
introduce, and recall some facts about the Dobrushin–Shlosman mixing condition
for random fields.

6. The Dobrushin–Shlosman mixing condition. First, we introduce some
notation. For a set V ⊂ Z

d , let us denote by �V the set of possible configurations
ωV = (ωx)x∈V , and by SV the σ -field generated by the environments (ωx)x∈V .
For a probability measure P, we will denote by PV the projection of P onto
(�V ,SV ). For ω ∈ �, denote by P

ω
V the regular conditional probability, knowing

SZd−V , on (�V ,SV ). Furthermore, for � ⊂ V , P
ω
V,� will denote the projection

of P
ω
V onto (��,S�). Also, we will use the notation V c = Z

d − V , ∂rV = {x ∈
Z

d −V : dist(x,V ) ≤ r}, with r ≥ 0, and card (V ) will denote the cardinality of V .
Finally, for ω, ω̄ ∈ �, V,W ⊂ Z

d with V ∩ W = ∅, we will use (ω̄V ,ωW) to
denote ¯̄ωV ∪W such that ¯̄ωV = ω̄V and ¯̄ωW = ωW . We will also need the following
definitions.
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By an r-specification (r ≥ 0) we mean a system of functions Q = {Q·
V (·) :

V ⊂ Z
d, card (V ) < ∞}, such that, for all ω ∈ �, Qω

V is a probability measure
on (�V ,SV ), and, for all A ∈ SV , Q·

V (A) is S∂rV -measurable. Sometimes,
for notational convenience, Q·

V (A) will be thought of as a function on �∂rV .
For � ⊂ V , we will denote by Qω

V,� the projection of Qω
V onto (��,S�).

A specification Q is self-consistent if, for any finite �,V , � ⊂ V ⊂ Z
d , one

has, for Qω
V -a.e. ω̄V , (Qω

V )
ω̄V

� = Q
(ωV c ,ω̄V )
� . We will say that a probability measure

P is consistent with a specification Q if P
ω
V coincides with Qω

V , for every finite
V ⊂ Z

d and P-a.e. ω. Notice that this can only happen when Q is self-consistent.
In this case, Q is uniquely determined by P. The question is, however, whether
Q determines P, and whether it does so uniquely. To this end, Dobrushin and
Shlosman [5] gave a sufficient condition to answer the above questions positively.

THEOREM DS [5]. Let Q be a self-consistent r-specification, and assume the
Dobrushin–Shlosman strong decay property holds; that is, there exist G,g > 0
such that for all � ⊂ V ⊂ Z

d finite, x ∈ ∂rV and ω, ω̄ ∈ �, such that ωy = ω̄y

when y �= x, we have

Var
(
Qω

V,�,Qω̄
V,�

) ≤ Ge−g dist(x,�),(6.1)

where Var(·, ·) is the variational distance Var(µ, ν) = supE∈S(µ(E) − ν(E)).
Then there exists a unique P that is consistent with Q. Moreover, we have, for
all ω ∈ �,

lim
dist(�,V c)→∞ Var(Qω

V,�,P�) = 0.(6.2)

The main example of self-consistent specifications are Gibbs specifications. For
the precise definition of a Gibbs specification with inverse temperature β > 0,
see [5]. Moreover, if the interaction is translation-invariant, and the specification
satisfies (6.1), then the unique field P is also shift-invariant; see [7], Section 5.2.
One should note that the conditions of Theorem DS are satisfied when one
considers Gibbs fields in the high-temperature region, that is, when β is small;
see [6].

We will need the following lemma. The proof depends on another lemma and
will be outlined in the Appendix.

LEMMA 7. Let (Pω
V ) be a Gibbs r-specification satisfying (6.1), and let P

be the unique translation-invariant Gibbs field, consistent with (Pω
V ). Consider

H ⊂ Z
d and � ⊂ Hc with dist(�,H) > r . Then

sup
F∈F

sup
ω

E(F |SH)(ω)

E(F )
≤ exp

(
C

∑
x∈∂r(H

c), y∈∂r(�
c)

e−g dist(x,y)

)
,

where F = {F ≥ 0,S�-measurable, s.t. E(F ) > 0}.
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7. The law of large numbers. We now need to find an invariant measure P∞
that is absolutely continuous relative to P, in each half-plane. The reason for
which such a measure would exist is a strong enough transience condition. We
will consider an environment that either satisfies the Dobrushin–Shlosman mixing
condition (6.1) or is L-dependent in direction �, that is, there exists L > 0, such
that

σ(ωx; x · � ≤ 0) and σ(ωx; x · � ≥ L) are independent.(7.1)

The following is our main theorem.

THEOREM 3. Suppose that P is of finite range, is T -invariant, is ergodic and
satisfies one of the mixing conditions (6.1) or (7.1). Suppose also that the strong
κ-ellipticity condition (2.3) holds, and that Kalikow’s condition (2.2), in direction
� ∈ Sd−1, is satisfied. Then the process (T Xnω)n≥0 admits an invariant probability
measure P̂∞ that is absolutely continuous relative to P, in every half-space Hk

with k ≤ 0, and we have a law of large numbers for the finite range random walk
in environment P, with a nonzero limiting velocity:

P

(
lim

n→∞
Xn

n
= E

P̂∞(D) �= 0
)

= 1.

Moreover, if Pn(A) = P0(T
Xnω ∈ A), that is, Pn is the measure on the environment

as seen from the particle at time n, then N−1 ∑N
n=1 Pn converges weakly to P̂∞.

PROOF. Define the spaces

Wn = {paths w, of range M , length n + 1 and ending at 0}
and the space W of paths w, of range M , ending at 0 and of either finite or infinite
length. Being a closed subspace of ({e ∈ Z

d : |e| ≤ M}∪ {‘Stop’})N, endowed with
the product topology, W is compact. If we now consider the space W∞ ⊂ W of
paths of range M and of infinite length that end at 0, then W∞ is again a compact
space.

Let us now define a sequence of measures Rn on W × � as follows. Clearly,
Rn will be supported on Wn × �, and for w = (x0, x1, x2, . . . , xn = 0) ∈ Wn,
A ∈ S,

Rn({w} × A) = P0
(
(−Xn,X1 − Xn, . . . ,Xn−1 − Xn,0) = w,T Xnω ∈ A

)
.

Notice that Pn is the marginal of Rn, and therefore the disintegration lemma
implies that

Pn(A) =
∫

Pw(A)dQn(w),
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where Qn is the marginal of Rn over Wn. It assigns probability E(πw) to paths w

of length n + 1, and ending at 0. Here,

πw =
n−1∏
i=0

πxi,xi+1 .

In fact, one can compute Pw explicitly. Indeed,

Pn(A) = P0
(
T Xnω ∈ A

) = ∑
x∈Zd

P0(Xn = x,T xω ∈ A) = ∑
x∈Zd

Px(Xn = 0,ω ∈ A)

=
∫
A

∑
x∈Zd

P ω
x (Xn = 0) dP(ω) =

∫
A

∑
w∈Wn

πw(ω)dP(ω).

Using Fubini’s theorem, we have

Pn(A) =
∫

Pw(A)dQn(w) with
dPw

dP
= πw

E(πw)
.

The measure Pw could be thought of as the a posteriori measure on the
environment, after having taken the path w.

Define R̃N = N−1 ∑N
n=1 Rn, with marginals P̃N and Q̃N . Then, since W × �

is compact, one can find a subsequence of the R̃N ’s that converges weakly to a
probability measure R∞ on W × �. In fact, R∞ will be supported on W∞ × �.

Now define P∞,Q∞ to be the marginals of R∞ on � and W∞, respectively.
Notice that∫

P ω
0

(
T X1ω ∈ A

)
dPn =

∫ ∑
|e|≤M

1(T eω ∈ A)π0e(ω)
∑
x∈Zd

P ω
x (Xn = 0) dP

=
∫
A

∑
x∈Zd

∑
|e|≤M

πe0(ω)P ω
x (Xn = e) dP =

∫
A

dPn+1.

This implies that P∞ is an invariant measure for the process (T Xnω)n≥0.
Let Pw be given by the disintegration formula

P∞ =
∫

Pw dQ∞(w).

We would like to show that the conditions of Lemma 5 are in effect. For this,
define, for k ≤ 0 and w ∈ ⋃

n≥1 Wn,

Ak(w) = sup
ω∈�

dPw|Sk

dP|Sk

(ω).

Also, define, for a > 0, the measure

θ̃
a,k
N =

∫
Ak≤a

Pw dQ̃N(w).
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Then, one has that
dθ̃

a,k
N |Sk

dP|Sk
≤ a and, therefore, one can find a further subsequence

of the θ̃
a,k
N ’s that converges to a measure θa,k∞ , with

dθ
a,k∞ |Sk

dP|Sk
≤ a. Moreover, one

clearly has, for each N , θ̃
a,k
N ≤ P̃N . Letting N pass to infinity, one has θa,k∞ |Sk

≤
P∞|Sk

. Thus, using the same notation as in Lemma 5, it follows that

P
k,�∞ (�) ≥ θa,k∞ (�) ≥ lim inf

N→∞ θ̃
a,k
N (�) = lim inf

N→∞ Q̃N(Ak ≤ a).(7.2)

So, according to Lemma 5, to use Theorem 2 for the purpose of proving a law of
large numbers, one needs to show that

inf
k

sup
a

lim inf
N→∞ Q̃N(Ak ≤ a) > 0.(7.3)

Assume now that the mixing condition (6.1) holds. Then, due to Lemma 7, one has
that, for w ∈ Wn,

dPw |Sk

dP|Sk

= E

(
πw

E(πw)

∣∣∣Sk

)
≤ E

(πw∩Hc
k−r

E(πw)

∣∣∣Sk

)

≤ E(πw∩Hc
k−r

)

E(πw)
exp

(
C

∑
x∈∂rH

c
k , y∈w∩Hc

k−r

e−g dist(x,y)

)

≤ κ− card(w∩Hk−r ) exp

(
C̃

∑
y∈w∩Hc

k−r

e−0.5g dist(y,Hk)

)

≤ κ− card(w∩Hk−r ) exp

(
C̃

∑
i≥r

Vk−i (w)e−0.5gi

)
= Zk(w),

where w ∩ Hc
k−r = {xi ∈ Hc

k−r ,0 ≤ i ≤ n}, Vj(w) = card (w ∩ (Hj−1\Hj)), and

πw∩Hc
k−r

=
n∏

i=0, xi∈Hc
k−r

πxi,xi+1 .

Clearly, the left-hand side in (7.3) is bounded from below by

inf
k

sup
a

lim inf
N→∞ Q̃N(Zk ≤ a).

For a path (Xn)n≥0, define Z̃k,n to be

Z̃k,n = Zk(X0 − Xn,X1 − Xn, . . . ,Xn−1 − Xn,0).
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Also, let τs = inf{n ≥ 0 :Xn · � ≥ s}. Then, for any δ ∈ (0,1), one has

Q̃N(Zk ≤ a)

= N−1
N∑

n=1

P0(Z̃k,n ≤ a) ≥ N−1E0

( ∑
1≤j≤δN

1
Z̃k,τj

≤a
1τδN≤N

)

= N−1
∑

1≤j≤δN

P0
(
Z̃k,τj

≤ a
) − N−1

∑
1≤j≤δN

P0
(
Z̃k,τj

≤ a, τδN > N
)

≥ N−1
∑

1≤j≤δN

P0
(
Z̃k,τj

≤ a
) − δP0(τδN > N).

(7.4)

On one hand, we have,

P0(τδN > N) ≤ N−1E0(τδN) ≤ (Nε)−1E0(XτδN
) ≤ δN + M

Nε
,(7.5)

where we have used Lemma 2. On the other hand,

P0
(
Z̃k,τj

≤ a
) ≥ 1 − a−1

1 E0
(
V̂

j
j+k−r,j+M

) − a−1
2

∑
i≥r

E0
(
V̂

j
j+k−i,j+M

)
e−0.5gi,

where a1 = 0.5 Loga/Log(κ−1), a2 = 0.5 Loga/C̃ and

V̂
j
i1i2

= card{n : 0 ≤ n ≤ τj , i1 ≤ Xn · � < i2}.
We had to enlarge the Vj ’s we had before, to take into account the fact that the
position of Xτj

is not known precisely. To estimate the above expectations, notice
that one has, path by path,∑

0≤n≤τj −1, i≤Xn·�<j

(Xn+1 − Xn) · � ≤ (j − i) + M.

Using Kalikow’s condition (2.2), one has

E0
(
V̂

j
i,j+M

) = 1 + E0

( ∑
0≤n≤τj −1, i≤x·�<j

1Xn=x

)

≤ 1 + ε−1E0

( ∑
0≤n≤τj −1, i≤x·�<j

1Xn=xD(T xω) · �
)

= 1 + ε−1E0

( ∑
0≤n≤τj −1, i≤Xn·�<j

(Xn+1 − Xn) · �
)

≤ 1 + ε−1(
(j − i) + M

)
.
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This implies that

P0
(
Z̃k,τj

≤ a
)

≥ 1 − a−1
1

(
1 + ε−1(M + r − k)

) − a−1
2

∑
i≥r

(
1 + ε−1(M + i − k)

)
e−0.5gi.

Combining this with (7.4) and (7.5), and taking δ = 0.5ε, one has

inf
k

sup
a

lim inf
N→∞ Q̃N(Zk ≤ a) ≥ 0.25ε > 0.

Recalling (7.2) and using Lemma 5, one has the existence of the invariant mea-
sure P̂∞ that satisfies the conditions of Theorem 2. The transience condition (5.1)
is implied by Kalikow’s condition (2.2), due to Lemma 3. The law of large num-
bers, along with the weak convergence of the Cesaro mean of Pn to P̂∞, follows
from Theorem 2.

If the environment is L-dependent, instead of mixing, then we have

dPw |Sk

dP|Sk

≤ κ− card(w∩Hk−L),

and the rest of the proof is essentially the same as above.
Once one has a law of large numbers, one can use Lemma 2, with UL = {x ∈

Z
d :x · � ≤ L}, and Fatou’s lemma, to show that T −1

UL
XTUL

· � ≥ LT −1
UL

cannot
converge to 0, proving that the limiting velocity is nonzero. �

REMARK 8. In the course of preparing of this paper, we learnt of [10],
where the authors prove the law of large numbers for L-dependent nonnestling
environments. Their approach is a first step toward the method we use. They,
nevertheless, make use of the regeneration times, introduced in [18]. Apart from
the ellipticity condition, our results include those of [10]. We also learnt of [3],
where the authors use the regeneration times to prove a result very similar to
our Theorem 3. However, they require moment controls on the regeneration
times, which we do not need in our approach. Working with cones instead
of hyperplanes, our method should be able to handle mixing on cones, as
in [3].

APPENDIX

First, we prove a consequence of the Dobrushin–Shlosman mixing prop-
erty (6.1), in the case of Gibbs fields.

LEMMA 9. Let (Pω
V ) be a Gibbs r-specification, corresponding to a

translation-invariant bounded r-interaction U and satisfying (6.1). Then there ex-
ists a constant C such that, for all � ⊂ V ⊂ Z

d finite, with dist(�,V c) > r , and



POINT OF VIEW OF PARTICLE ON LLN FOR RWRE 1461

for all x ∈ V c , we have

sup
σ�,ω,ω̄ : (ωy)y �=x=(ω̄y)y �=x

∣∣∣∣∣
dP

ω
V,�

dP
ω̄
V ,�

(σ�) − 1

∣∣∣∣∣ ≤ C
∑

y∈∂r(�c)

e−g dist(x,y).

PROOF. Fix x ∈ V c, and consider ω, ω̄ ∈ �, such that ωy = ω̄y , for all y �= x.
Also, let σ�, σ̄� ∈ ��. We have then

dP
ω
V,�

dP
ω̄
V ,�

(σ�) = E
P

ω̄
V

(
dP

ω
V

dP
ω̄
V

∣∣∣S�

)
(σ�).

Notice that, for ξV ∈ �V , we have

dP
ω
V

dP
ω̄
V

(ξV ) = exp(−β
∑

A : A∩V �=∅, x∈A UA(ωV c, ξV ))

exp(−β
∑

A : A∩V �=∅, x∈A UA(ω̄V c , ξV ))
.(A.1)

So we see that
dP

ω
V

dP
ω̄
V

is SV r
x

-measurable, where V r
x = {y ∈ V : dist(x, y) ≤ r}.

Therefore,

E
P

ω̄
V

(
dP

ω
V

dP
ω̄
V

∣∣∣S�

)
(σ�) = E

P
η

V −�,V r
x

(
dP

ω
V

dP
ω̄
V

)
,

where η = (ω̄�c , σ�). Moreover, clearly∣∣∣∣∣dP
ω
V

dP
ω̄
V

∣∣∣∣∣ ≤ exp
(
2card({y∈Z

d : ‖y‖≤r})+1β‖U‖) = C1.(A.2)

Then, setting η̄ = (ω̄�c , σ̄�), we have∣∣∣∣∣
dP

ω
V,�

dP
ω̄
V ,�

(σ�) − dP
ω
V,�

dP
ω̄
V ,�

(σ̄�)

∣∣∣∣∣
≤ C1 Var

(
P

η
V −�,V r

x
,P

η̄
V −�,V r

x

)
≤ C1G

∑
y∈∂r(�c)

e−g dist(y,V r
x )

≤ C1Gegr
∑

y∈∂r(�c)

e−g dist(y,x).

(A.3)

The conclusion of the lemma follows from integrating out σ̄�. �

Notice now that if (6.1) is satisfied, one can define P
ω
V , even for an infinite V , as

the limit of P
ω
Vn

, for an increasing sequence of finite volumes Vn. It is easy then to
see that (A.2) still holds, and that, due to the lower semicontinuity of the variational
distance, computation (A.3) goes through for all � ⊂ V ⊂ Z

d . Therefore Lemma 9
still holds for infinite � ⊂ V .
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PROOF OF LEMMA 7. Using V = Hc and applying Lemma 9, we have

E(F |SH)(ω)

E(F |SH)(ω̄)
= E

P
ω
V,�(F )

E
P

ω̄
V,�(F )

≤ ∏
x∈∂rV

(
1 + C

∑
y∈∂r(�c)

e−g dist(x,y)

)

≤ exp

(
C

∑
x∈∂r(Hc), y∈∂r(�c)

e−g dist(x,y)

)
.

Once again, the conclusion follows by averaging over ω̄. �
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