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Dedicated to Georg Neuhaus on his sixtieth birthday

This is a contribution to the theory of sums of independent random
variables at the level of optimal explicit inequalities: we compute the
optimal constants in Hornich’s lower bounds for the mean absolute deviations
of sample means. This is done by reducing the original problem to
the elementary one of determining the minimally concentrated binomial
distributions Bn,p with fixed sample size parameter n.

1. Introduction and results. A classical and important goal of probability
theory is to describe the distributions of sums of independent random variables
via a few simple functionals of their terms. At the levels of limit theorems, rate
of convergence results and asymptotic expansions, this goal has been achieved
remarkably well, with several results apparently having reached their final forms,
often decades ago. See, for example, Petrov (1995). However, at the more difficult
and more useful level of optimal explicit inequalities, almost no final results appear
to be known.

The principal aim of this paper is to provide one simple such result, namely the
sharp version of Hornich’s inequality stated as Theorem 1.1 below. A possibly new
auxiliary result on binomial distributions is given in Lemma 1.4(c).

Results stated in this section are discussed in the form of various remarks in
Section 2 and proved in Section 3.

For n ∈ N ∪ {0}, p ∈ [0,1] and k ∈ {0, . . . , n}, we write

b(n,p; k) :=
(

n

k

)
pk(1 − p)n−k

for the density of the binomial distribution Bn,p. Let �x� denote the integer part of
the real number x and let us put, for n ∈ N,

cn := b

(
n,

�n/2�
n

; �n/2�
)

(1)

= b

(
n − 1,

�n/2�
n

; �n/2�
)
.(2)
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THEOREM 1.1. Let n ∈ N and let X,X1, . . . ,Xn be independent and
identically distributed random variables with existing expectation EX. Then

E

∣∣∣∣∣1

n

n∑
i=1

Xi − EX

∣∣∣∣∣ ≥ cnE|X − EX|.(3)

Equality holds in (3) iff n = 1 or X can be written as aY + b with real numbers
a and b and with a random variable Y satisfying P(Y = 1) = 1 − P(Y = 0) =
�n/2�/n.

REMARK 1.2. The constants cn from (1) are of the order 1/
√

n. More
precisely,

1 ≥ cn

√
n ≥ 1√

2
= 0.7071 . . . ,(4)

lim
n→∞ cn

√
n =

√
2

π
= 0.7978 . . . .(5)

The first few of the cn are given by

c1 = 1, c2 = 1
2 , c3 = 4

9 , c4 = 3
8 , c5 = 216

625 ,

c6 = 5
16 , c7 = 34560

117649, c8 = 35
128 ,

and the following table gives best lower decimal bounds with the stated accu-
racy.

n 1 2 3 4 5 6 7 8 9 10 99 100 ∞
cn 1 0.500 0.444 0.375 0.345 0.312 0.293 0.273 0.260 0.246 0.0799 0.0795 0

cn
√

n 1 0.707 0.769 0.750 0.772 0.765 0.777 0.773 0.780 0.778 0.7959 0.7958 0.7978

COROLLARY 1.3. Under the assumptions of Theorem 1.1, we have

E

∣∣∣∣∣1

n

n∑
i=1

Xi − EX

∣∣∣∣∣ ≥ 1√
2n

E|X − EX|.(6)

Equality holds in (6) iff X is constant almost surely, or n = 2 and X = aY +b with
P(Y = 0) = P(Y = 1) = 1/2.

The proof of inequality (3) given below combines a conditioning argument
method, as described by Bshouty, Hengartner, Rohatgi and Székely [(1993),
Appendix] and attributed to Burgess Davis, with the following properties of
binomial distributions, of which the third one appears to be new.
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LEMMA 1.4 (On binomial distributions). Let n ∈ N.
(a) (The maximal terms). For p ∈ [0,1], we have

k0 ∈ arg max
k∈{0,...,n}

b(n,p; k)

⇐⇒ k0 ∈ {0, . . . , n} and (n + 1)p − 1 ≤ k0 ≤ (n + 1)p.
(7)

(b) (De Moivre’s mean absolute deviation identity). For p ∈ [0,1], we have

n∑
k=0

|k − np|b(n,p; k) = 2np(1 − p) max
k∈{0,...,n−1}b(n − 1,p; k).(8)

(c) (The minimally concentrated binomials with given sample size). We have

min
p∈[0,1] max

k∈{0,...,n}b(n,p; k) = b

(
n,

�(n + 1)/2�
n + 1

; �(n + 1)/2�
)
,(9)

arg min
p∈[0,1]

max
k∈{0,...,n}b(n,p; k) =

{�(n + 1)/2�
n + 1

,
�(n + 1)/2


n + 1

}
.(10)

For the proof of the discussion of equality in Theorem 1.1, we also need the
following simple fact.

LEMMA 1.5 (On equality in the conditional triangle inequality). Let Z be an
integrable random variable on a probability space (�,A,P) and let C ⊂ A be a
sub-σ -algebra. Then we have the implications

|E[Z|C]| = E[|Z||C] a.s.(11)

⇐⇒ Z ≥ 0 a.s. on {E[Z|C] ≥ 0} and Z ≤ 0 a.s. on {E[Z|C] ≤ 0}(12)

�⇒ Z = 0 a.s. on {E[Z|C] = 0}.(13)

2. Remarks.

2.1. Earlier versions of Theorem 1.1. Theorem 1.1 with

c̃n = 1
2b

(
n − 1, 1

2 ; �n/2�) ∼ 1
2cn

in place of cn is due to Hornich (1941). Birnbaum and Zuckerman (1944) give
a more readable presentation. These three authors first consider the problem
under the additional assumption that X is symmetrically distributed. Denoting the
corresponding optimal constants replacing the cn in (3) by cn,sym, they show that

cn,sym = b
(
n − 1, 1

2 ; �n/2�).(14)

Then they apply a simple symmetrization argument to obtain (3) with c̃n in place
of cn.
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While Hornich’s result (14) can obviously be obtained from a specialization
of the proof of Theorem 1.1 given in Section 3, the discussion of equality, not
given by Hornich or Birnbaum and Zuckerman, becomes a bit more complicated.
For even n, we have equality iff X = aY with a ∈ R and P(Y = −1) =
P(Y = 1) = 1/2. This follows from Theorem 1.1, since cn,sym = cn for even n.
For odd n = 2k + 1 ≥ 3, however, we have equality in the analogue of (3) under
symmetry iff X = aY with Y symmetric and P(Y ∈ [1,1 + 1/k]) = 1/2. This can
be shown as in the proof of Theorem 1.1, but using the equivalence (11) ⇔ (12)
rather than the implication (11) ⇒ (13).

Tukey (1946) generalizes the symmetric case differently by showing: For
X1, . . . ,Xn independent but not necessarily identically distributed, we have for
any choice of the medians m(Xi)∣∣∣∣∣1

n

n∑
i=1

(
Xi − m(Xi)

)∣∣∣∣∣ ≥ cn,sym
1

n

n∑
i=1

E|Xi − m(Xi)|.

Bshouty, Hengartner, Rohatgi and Székely (1993) consider the analogue
of (3) without centring. Part of their Theorem 1 can be stated as follows: For
X,X1, . . . ,Xn i.i.d., we have

E

∣∣∣∣∣1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ c∗
nE|X|,

with the optimal constant

c∗
n = 1

n
min

{∑n
k=0 |k − na|b(n,p; k)∑1
k=0 |k − a|b(1,p; k)

:p ∈]0,1[ , a ∈ R

}
.

They further show (page 8) that c∗
3 = 1

3 · 1.3316 and they state (in the abstract) that
c∗

2 = 1
2 , which can be verified. Obviously we must have c∗

n ≤ cn. Indeed c∗
1 = c1

and c∗
2 = c2, but c∗

3 < 4
9 = c3.

2.2. The case n = 2. For n = 2, inequality (3) has been proved in various ways
in the literature, for example, by Cox and Kemperman [(1983), Theorem 2.6, the
case p = 1]. They observe that

|x + y| ≥ 1
2 (|x| + |y| + x sgny + y sgnx) (x, y ∈ R),(15)

with equality iff either y = −x or xy > 0. (Our “xy > 0” here corrects an error in
the cited paper.) Replacing x, y by i.i.d. mean zero random variables and taking
expectations on both sides of (15) easily yields the present Theorem 1.1 for n = 2,
with discussion of equality.

An obvious generalization of (15) to an arbitrary number of reals x1, . . . , xn is∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≥ 1

n

(∑
xi

)(∑
sgnxi

)
= 1

n

(∑
i

|xi| +
∑
i �=j

xi sgnxj

)
,(16)
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with equality throughout iff either
∑

xi = 0 or each xi is positive or each xi is
negative. However, inequality (16) is not good enough to yield Theorem 1.1 for
any n ≥ 3.

2.3. The trivial upper bound. Under the assumptions of Theorem 1.1 we have
from the triangle inequality the corresponding upper bound

E

∣∣∣∣∣1

n

n∑
i=1

Xi − EX

∣∣∣∣∣ ≤ E|X − EX|,(17)

without using either the independence assumption or the fact that the Xi − EXi

have zero means. Using independence, however, it is easy to see that equality
in (17) occurs only in the trivial cases, namely if n = 1 or if X is constant almost
surely. Nevertheless (17) is unimprovable, in the sense that the supremum of the
left-hand side given the right-hand side is the right-hand side, even if we assume
in addition that X is symmetrically distributed. To show this, we may consider
Xi = Yi − Zi with the Yi , Zi being i.i.d. Bernoulli with success probability p.
Then we have E|X| = 2p(1 − p) and it is not difficult to show that, for fixed
n ∈ N, E|∑n

i=1 Xi | = 2np + O(p2). [Ramasubban (1958) gives explicit formulae
for E|∑n

i=1 Xi |.] Scaling the Xi to fix E|X| and letting p tend to zero yields the
claim.

2.4. A “right order upper bound” under minimal conditions. If we suppose
that X,X1,X2, . . . are i.i.d. with existing expectation but with infinite second
moment, then we have

lim
n→∞

√
nE

∣∣∣∣∣1

n

n∑
i=1

Xi − EX

∣∣∣∣∣ = ∞,

by Theorem 2 and Remark 1.3 of Esseen and Janson (1985). This shows that
we cannot get an upper bound of order 1/

√
n for E| 1

n

∑n
i=1 Xi − EX| unless we

assume the finiteness of EX2. Thus a natural analogue of (3) from Theorem 1.1,
yielding an upper bound of the same order in n under the minimal condition of
finiteness of the second moment, appears to be

E

∣∣∣∣∣1

n

n∑
j=1

Xj − EX

∣∣∣∣∣ ≤ Cn

(
E(X − EX)2)1/2

,(18)

with the optimal constants Cn still to be determined. By Lyapunov’s inequality,
we have Cn ≤ 1/

√
n in general. By considering X to be symmetric Bernoulli,

we see that C1 = 1. But already C2 appears to be unknown. By considering
X to be uniformly distributed on an interval, we can see that C2 ≥ 1/

√
3, whereas

X Bernoulli yields at best, namely again in the symmetric case, the weaker
inequality C2 ≥ 1/2.
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The preceding choice of the uniform distribution is motivated by a considera-
tion of the problem under the additional assumption that X is symmetrically dis-
tributed. Denoting the corresponding optimal constants replacing the Cn from (18)
by Cn,sym, we have Cn,sym ≤ Cn, C1,sym = C1 = 1 and C2,sym = 1/

√
3. Here the

last equality follows from a theorem of Plackett (1947) which states in part that, for
X1,X2 i.i.d., we have E|X1 −X2| ≤ (2/

√
3)Var(X1), with nondegenerate equality

occuring for uniform distributions on intervals only. Under the assumption of sym-
metry about zero, we have E|X1 − X2| = E|X1 + X2|, and hence it follows that
C2,sym = 1/

√
3. We refer to Mattner (1992) and Buja, Logan, Reeds and Shepp

(1994) for modern proofs and multivariate generalizations of the result of Plackett
used above. The constants Cn,sym with n ≥ 3 appear to be unknown.

2.5. Other bounds for the mean absolute deviations of sample means. Lower
and upper bounds differing essentially from (3) and (18) have been given by
Klass [(1980), Theorem 7, inequality (1.21)]. At the price of depending on the
distribution of X in a somewhat more complicated way than via absolute moments,
these bounds have the following two virtues: first, they are applicable without
assuming anything beyond the finiteness of E|X|; second, not only are the lower
and upper bounds of the same order for any given distribution of X, but also the
constants involved do not depend on X. See Hall (1981) for extensions of this
result.

Asymptotically more accurate bounds apply when finiteness of higher moments
is assumed. See von Bahr [(1965), Theorem 2, the case ν = 1] for Berry–Esseen
or Edgeworth type results.

2.6. Equality in the conditional Jensen inequality. For discussions of equality
in the conditional Jensen inequality in situations more general than that of
Lemma 1.5, we refer to Kozek and Suchanecki (1980) and to Mussmann
(1988). For example, the present implication (11) ⇒ (13) is a special case of
Corollary 6.2(iii) in Kozek and Suchanecki (1980).

One might be tempted to think that (11) implies some measurability restrictions
on Z, such as {Z ≥ 0} belonging to C up to almost sure equality. To see that this
is not the case, it suffices to consider the example � = {1,2,3,4} with the dis-
crete σ -algebra, P = uniform distribution, Z = (2,0,−2,0) and C = {∅, {1,2},
{3,4},�}. Then E[Z|C] = (1,1,−1,−1) and |E[Z|C]| = (1,1,1,1) = E[|Z||C],
but no Z-measurable sets apart from ∅ and � are in C up to almost sure equality.

3. Proofs. The results stated in Section 1 are proved here in the order 1.4, 1.5,
1.1, 1.2 and 1.3.

PROOF OF LEMMA 1.4. Part (a) is a standard exercise. Part (b) is also well
known; see Diaconis and Zabell (1991).
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Proof of (c). We have to minimize the function f defined by

f (p) := max
k∈{0,...,n}b(n,p; k) (p ∈ [0,1]).

By (7), we have for every k ∈ {0, . . . , n}

f (p) = b(n,p; k)

(
k

n + 1
≤ p ≤ k + 1

n + 1

)
.(19)

As a function of p ∈]0,1[ , logb(n,p; k) is strictly concave, as follows from
∂p logb(n,p; k) = k/p− (n−k)/(1−p) and hence ∂2

p log b(n,p; k) = −(k/p2 +
(n − k)/(1 − p)2) < 0. Hence the minimum of f over any of the intervals
[k/(n + 1), (k + 1)/(n + 1)] can be attained at boundary points only, so that (19)
together with b(n,0; 0) = b(n,1;n) = 1 > f (1/2) yields

arg min
p∈[0,1]

f (p) ⊂
{

1

n + 1
, . . . ,

n

n + 1

}
.

Since ak := ((k + 1)/k)k is strictly increasing in k, we get for k ∈ {1, . . . , n − 1}
f

(
k+1
n+1

)
f

(
k

n+1

) = b
(
n, k+1

n+1 ; k
)

b
(
n, k

n+1 ; k
) =

(
k+1
k

)k
(
n−k+1
n−k

)n−k
= ak

an−k




<

=
>


1 ⇐⇒ k




<

=
>


n − k.

Now (10) and (9) easily follow. �

PROOF OF LEMMA 1.5. Assume (11). Then E[Z|C] = E[|Z||C] a.s. on
C+ := {E[Z|C] ≥ 0} ∈ C. Hence∫

C+
Z dP =

∫
C+

E[Z|C]dP =
∫
C+

E[|Z||C]dP =
∫
C+

|Z|dP.(20)

Using Z ≤ |Z|, this implies Z = |Z| ≥ 0 a.s. on C+. Similarly we get Z =
−|Z| ≤ 0 a.s. on C− := {E[Z|C] ≤ 0}, yielding (12).

Assume (12). We then get (20) in the permuted order 2143, yielding E[Z|C] =
E[|Z||C] a.s. on C+. Similarly we get E[Z|C] = −E[|Z||C] a.s. on C−,
yielding (11).

The implication (12) ⇒ (13) is trivial. �

PROOF OF THEOREM 1.1. The case n = 1 being trivial, we may and do
assume that n ≥ 2. For convenience and without loss of generality, we also assume
that EX = 0 and E|X| > 0, so that in particular P(X > 0) > 0 and P(X < 0) > 0.

For each i ∈ {0, . . . , n}, let Ci denote the σ -algebra generated by the event
{Xi > 0}, and let Yi be a conditional expectation given Ci :

Ci := σ({Xi > 0}),
Yi ∈ E[Xi|Ci].(21)
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Of course, Yi is unique and given by

Yi = (Xi > 0)

P(Xi > 0)

∫
{Xi>0}

Xi dP + (Xi ≤ 0)

P(Xi ≤ 0)

∫
{Xi≤0}

Xi dP,(22)

with (statement) := 1 or 0 according to whether “statement” is true or false. We
deduce that |Yi | ∈ E[|Xi ||Ci], by observing that the modulus of the right-hand
side of (22) can be obtained by replacing the integrand Xi by |Xi | in both cases.
[Alternatively, we could have applied the implication (12) ⇒ (11) to Z = Xi .]
Hence

E|Yi | = E|Xi |.(23)

Let now C denote the σ -algebra generated by all the Ci :

C := σ(C1, . . . ,Cn).

Writing Sn := ∑n
i=1 Xi , we have

E|Sn| = E
[
E[|Sn||C]]

≥ E|E[Sn|C]| [by the conditional triangle inequality](24)

= E

∣∣∣∣∣
n∑

i=1

E[Xi|C]
∣∣∣∣∣

= E

∣∣∣∣∣
n∑

i=1

E[Xi|Ci]
∣∣∣∣∣ [by independence of the Xi]

= E

∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣ [by (21)]

≥ ncnE|Y1| [see below](25)

= ncnE|X| [by (23)],
yielding (3) up to the justification of (25).

To prove (25), we observe that the Yi are i.i.d. two-valued mean zero random
variables, say with values −α < 0 and β > 0. Thus the random variables Zi :=
(Yi + α)/(α + β) are i.i.d. Bernoulli with success probability p := α/(α + β). By
homogeneity, (25) is equivalent to

E

∣∣∣∣∣
n∑

i=1

Zi − np

∣∣∣∣∣ ≥ ncnE|Z1 − p|.(26)
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Now

E

∣∣∣∣∣
n∑

i=1

Zi − np

∣∣∣∣∣ = 2np(1 − p) max
k∈{0,...,n−1}b(n − 1,p; k) [by (8)]

≥ 2np(1 − p) min
p∈[0,1] max

k∈{0,...,n−1}b(n − 1,p; k)(27)

= 2np(1 − p)b

(
n − 1,

�n/2�
n

; �n/2�
)

[by (9)]
= nE|Z1 − p|cn [by (2) and by (8) with n = 1].

This completes the proof of (3). It is easily checked that equality holds under the
stated condition.

Conversely, let us now assume that equality holds in (3). Then we have equality
in (24) and (25). Equality in (25) yields equality in (27). Hence, by (10) with
n − 1 ∈ N in place of n, we have

p ∈ {�n/2�/n, �n/2
/n
}
.(28)

In particular, using n ≥ 2, there is a k ∈ {1, . . . , n − 1} with p = k/n and we have{
n∑

i=1

Yi = 0

}
=

{
n∑

i=1

Zi = np

}
=

{
n∑

i=1

(Xi > 0) = k

}
.(29)

Now equality in (24) yields∣∣∣∣∣E
[

n∑
i=1

Xi

∣
∣
∣C

]∣∣∣∣∣ = E

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
∣
∣
∣C

]
a.s.

which is (11) with Z := ∑n
i=1 Xi and E[Z|C] = ∑n

i=1 Yi . Using (13) and (29), we
deduce that

n∑
i=1

Xi = 0 holds almost surely on

{
n∑

i=1

(Xi > 0) = k

}
.(30)

Hence each Xi is at most two-valued almost surely. To prove this claim, let us
assume the contrary. Then there are three pairwise disjoint Borel sets A,B,C

with P(X ∈ A)P(X ∈ B)P(X ∈ C) > 0. Since EX = 0, we can choose A,B,C

such that additionally either A,B ⊂] − ∞,0] and C ⊂]0,∞[, or A,B ⊂]0,∞[
and C ⊂] − ∞,0]. In either case, using that k ∈ {1, . . . , n − 1}, we may choose
D1, . . . ,Dn−1 ∈ {A,B,C} with

(A ⊂]0,∞[) +
n−1∑
i=1

(Di ⊂]0,∞[) = k,(31)

and then (31) is also true with B in place of A. Let us denote the underlying
probability measure by P and let us write Y �P for the corresponding distribution
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of any random variable Y . For (X1, . . . ,Xn) �P almost every (x1, . . . , xn) ∈
D1 × · · · × Dn−1 × A we have, by (31) and (30),

∑n
i=1 xi = 0. Hence, using

independence, Fubini and the fact that Xn �P(A) > 0, we deduce the following:
For (X1, . . . ,Xn−1) �P almost every (x1, . . . , xn−1) ∈ D1 × · · · × Dn−1 there
is an xn ∈ A with

∑n
i=1 xi = 0. Since this statement is also true with B in

place of A, we get, by combining two null sets: For (X1, . . . ,Xn−1) �P almost
every (x1, . . . , xn−1) ∈ D1 × · · · × Dn−1 there is a y ∈ A and a z ∈ B with
y + ∑n−1

i=1 xi = 0 = z + ∑n−1
i=1 xi . Since (X1, . . . ,Xn−1) �P(D1 × · · · × Dn−1) > 0

and since A and B are disjoint, we have arrived at the desired contradiction.
Hence we must in fact have Xi = Yi almost surely. Together with (28) the final

claim of Theorem 1.1 follows. (Take a < 0 if p = �n/2
/n.) �

PROOF OF REMARK 1.2. The stated values of the cn are easily verified
using (2). Relation (5) follows easily from the local central limit theorem
for binomial distributions Bn,p , if in the formulation of the latter the success
probability p is allowed to vary in a compact subset of ]0,1[.

To prove (4), we show that each of the two sequences (c2k

√
2k :k ∈ N) and

(c2k+1
√

2k + 1 :k ∈ N) is strictly increasing. Relation (4) then follows using (5)
and the values for cn

√
n with n ∈ {1,2,3}.

For k ∈ N we have

c2k = b

(
2k,

1

2
; k

)
=

(
2k

k

)
2−2k

and hence
c2k+2

c2k

= 2k + 1

2k + 2
,

c2k+2
√

2k + 2

c2k

√
2k

= 2k + 1√
2k(2k + 2)

> 1.

Hence the sequence (c2k

√
2k : k ∈ N) is strictly increasing.

Again for k ∈ N we have, using (2),

c2k+1 = b

(
2k,

k

2k + 1
; k

)
=

(
2k

k

)
kk(k + 1)k

(2k + 1)2k

and hence

c2k+3

c2k+1
=

(
k + 1

2

)2k+1
(k + 2)k+1(

k + 3
2

)2k+2
kk

so that

c2k+3

√
2k + 3

c2k+1

√
2k + 1

=
(
1 + 1

2k

)2k+1/2(
1 + 2

k

)k+1

(
1 + 3

2k

)2k+3/2 .(32)

The logarithm of the right-hand side of (32) is

lk :=
(

2k + 1

2

)
log

(
1 + 1

2k

)
+ (k + 1) log

(
1 + 2

k

)
−

(
2k + 3

2

)
log

(
1 + 3

2k

)
.
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Now

lk = kf

(
1

k

)
(k ∈ N)

with

f (x) :=
(

2 + x

2

)
log

(
1 + x

2

)
+ (1 + x) log(1 + 2x)

−
(

2 + 3

2
x

)
log

(
1 + 3

2
x

)
(x ∈ [0,1]).

One can easily check the following three facts: (i) f (0) = f ′(0) = 0, (ii) the second
derivative

f ′′(x) = 3x
4 − 19x2 − 12x3

(2 + x)2(1 + 2x)2(2 + 3x)2

changes sign at exactly one x0 ∈]0,1], from plus to minus, (iii) f (1) > 0. By (i)
and by f ′′ > 0 on ]0, x0[, we have f > 0 on ]0, x0]. By f (x0) > 0, by (iii),
and by f ′′ < 0 on ]x0,1], we have f > 0 on [x0,1] as well. Hence we have
lk > 0 for k ∈ N, so that the left-hand side of (32) is > 1. Hence the sequence
(c2k+1

√
2k + 1 :k ∈ N) is strictly increasing. �

PROOF OF COROLLARY 1.3. Inequality (6) is obvious from (3) and (4). The
discussion of equality follows from the corresponding one in Theorem 1.1, since
the above proof of Remark 1.2 shows that equality in cn

√
n ≥ 1/

√
2 occurs iff

n = 2. �

Acknowledgments. I thank Leonid Bogachev, John Kent, Sergey Utev and
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