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Consider a sequence of i.i.d. random variables, where each variable
is refreshed (i.e., replaced by an independent variable with the same law)
independently, according to a Poisson clock. At any fixed time t , the resulting
sequence has the same law as at time 0, but there can be exceptional random
times at which certain almost sure properties of the time 0 sequence are
violated. We prove that there are no such exceptional times for the law of large
numbers and the law of the iterated logarithm, so these laws are dynamically
stable. However, there are times at which run lengths are exceptionally long,
that is, run tests are dynamically sensitive. We obtain a multifractal analysis
of exceptional times for run lengths and for prediction. In particular, starting
from an i.i.d. sequence of unbiased random bits, the random set of times t

where α log2(n) bits among the first n bits can be predicted from their
predecessors, has Hausdorff dimension 1 −α a.s. Finally, we consider simple
random walk in the lattice Zd , and prove that transience is dynamically stable
for d ≥ 5, and dynamically sensitive for d = 3,4. Moreover, for d = 3,4, the
nonempty random set of exceptional times t where the walk is recurrent has
Hausdorff dimension (4 − d)/2 a.s.

1. Introduction. Let {Xn}n≥1 be a sequence of i.i.d. random variables with
state space S and common law ν (except in Section 5, S will be always be a
subset of the real numbers). The strong law of large numbers (SLLN), the law of
the iterated logarithm (LIL), Pólya’s theorem on recurrence of random walks, and
other classical results in probability theory concern almost-sure (a.s.) properties
of such sequences {Xn}. Our aim in this paper is to look at these properties from
a dynamical perspective, and understand which of them are stable (respectively,
sensitive) when the underlying sequence undergoes equilibrium dynamics. For
each n ∈ N, let {Xn(t)}t≥0 be an independent process which at rate 1, replaces
its current value by an independent sample from ν. More formally, given an array
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of i.i.d. variables {X(j)
n : j, n ∈ N} with law ν, and an independent Poisson process

{ψ(j)
n }j≥0 of rate 1 for each n, define

Xn(t) := X(j)
n for ψ(j−1)

n ≤ t < ψ(j)
n ,

where ψ
(0)
n = 0 for every n. Thus for different values of n, the processes

{Xn(t)}t≥0 are independent. The distribution of X(t) := {Xn(t)}n∈N is µ := νN

for every t ≥ 0. Hence, any Borel event A ⊆ SN with µ(A) = 1, satisfies, for all
t ≥ 0,

P
(
X(t) ∈ A

) = 1(1)

(here P is the probability measure on the underlying probability space on which
the dynamical process is defined). By Fubini’s theorem, we immediately obtain

P
(
X(t) ∈ A for Lebesgue-a.e. t

) = 1.(2)

Given an event A for which (1) holds, a natural question is whether (2) can be
strengthened to

P
(
X(t) ∈ A for all t

) = 1.(3)

In other words,

which almost sure properties of an i.i.d. sequence hold at all times
under the above equilibrium dynamics?

We classify almost sure properties of {Xn} [events A with µ(A) = 1] as
(dynamically) stable or sensitive according to whether or not (3) holds. Note that
A is dynamically stable if and only if its complement SN \ A is a polar set for the
stationary Markov process {X(t) : t ≥ 0}. We shall see below that the strong law of
large numbers and the law of the iterated logarithm are dynamically stable, while
other properties, involving run tests, prediction, and transience of random walks,
are dynamically sensitive.

This type of problem was considered in [11] in the percolation context, where
each Xn represents the status (open or closed, having probabilities p and 1 −p) of
an edge in an infinite graph G = (V,E), and AG is the event that all open clusters
are finite. Examples are given in [11] of graphs where AG is stable for all p ≤ pc,
and others where it is sensitive at the critical value p = pc .

Here we shall consider the analogous problems for events A that are more
central to classical probability theory. We begin with the strong law of large
numbers (SLLN). Define Sn(t) := ∑n

k=1 Xk(t).

PROPOSITION 1.1 (Dynamical SLLN). Assume that the law ν has a finite
mean m. Then

P
(

lim
n→∞

Sn(t)

n
= m for all t

)
= 1.(4)



DYNAMICAL SENSITIVITY 3

As noted by T. Kurtz, this proposition follows from [20], Theorem 8.1, but we
provide a direct proof in Section 2. As shown in that section, the convergence
in (4) is uniform in t ∈ [0,1]. This will be used in the proof of the dynamical LIL.

Now assume that ν has mean 0 and variance σ 2 < ∞. The classical Hartman–
Wintner law of the iterated logarithm (LIL) states that

P
(

lim sup
n→∞

Sn(0)

σ
√

2n log log n
= 1

)
= 1(5)

(see, e.g., [7], page 437).

THEOREM 1.2 (Dynamical LIL). Assume that the variance of ν is σ 2 < ∞
and that the mean m is 0. Then

P
(

lim sup
n→∞

Sn(t)

σ
√

2n log log n
= 1 for all t

)
= 1.

This is analogous to the fact that quasi-every Brownian path satisfies the LIL
(see [9]). Theorem 1.2 is proved in Section 2, where we also remark on its relation
to a theorem of Kuelbs [17].

Other natural properties turn out to be sensitive. In Section 3, we consider run
tests. Let ν = pδ1 + (1 − p)δ0. Define

Rn := sup{j : Xk = 1 for n ≤ k ≤ n + j − 1},
that is, Rn is the length of the run of 1’s in X starting at bit n.

THEOREM 1.3 (Erdős and Révész [8]). Let {an}∞n=0 be a sequence with an ≥ 1
for all n. Then

P (Rn ≥ an i.o.) =


0, if

∞∑
n=1

pan < ∞,

1, if
∞∑

n=1

pan = ∞.

Next, we state the dynamical counterpart of 1.3, where Rn(t) is defined
analogously to Rn.

THEOREM 1.4. Let {an}∞n=0 be a sequence with an ≥ 1 for all n. Then

P
(∃ t ≥ 0 such that {Rn(t) ≥ an i.o.}) =


0, if

∞∑
n=1

anp
an < ∞,

1, if
∞∑

n=1

anp
an = ∞.
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In particular, if the sequence {an} satisfies
∑∞

n=0 pan < ∞ and
∑∞

n=0 an ×
pan = ∞, then the event {Rn(t) < an for all but finitely many n} holds for
Lebesgue-a.e. t , but fails for an exceptional set of times. An example of such
a sequence may be obtained by taking

an = max
{
1, log1/p(n) + r log1/p

(
log1/p(n)

)}
(6)

for any r ∈ (1,2].
When an almost sure property is dynamically sensitive, the set of exceptional

times where it fails is a.s. a nonempty set of Lebesgue measure 0, so it is natural
to ask what is its Hausdorff dimension, and which deterministic sets it intersects
with positive probability. For run tests with {an} of the form (6), we answer these
questions in Theorem 1.5 below. In that theorem, we calculate the Hausdorff
dimension of the set of times t for which Rn(t) ≥ an i.o., and determine which
fixed sets intersect this random exceptional set a.s. This yields a multifractal
decomposition of [0,1]. Analogous results for dynamical percolation on certain
trees appear in [11] and [22]. We write dimH for Hausdorff dimension and dimP

for packing dimension; see, for example, Mattila [19] for definitions.

THEOREM 1.5. Denote �p(x) = log(x)/ log(1/p). For r ∈ (1,2], consider
the random set of times

W(r) = {
t ∈ [0,1] : Rn(t) ≥ �p(n) + r�p

(
�p(n)

)
i.o.

}
.

Then dimH(W(r)) = 2 − r and dimP (W(r)) = 1 for all 1 < r ≤ 2, with
probability 1. Furthermore, for any (deterministic) closed set E ⊆ [0,1] and any
r ∈ (1,2], we have

P
(
W(r) ∩ E 
= ∅

) =
{

0, if dimP (E) < r − 1,

1, if dimP (E) > r − 1.

In Section 4 we address prediction of random bits and algorithmic randomness.
For these questions, we assume that ν = δ1/2 + δ0/2. A function g : {0,1}N →
{0,1,∗}N is called a predictor if (g(ξ))n depends on ξ only via (ξ1, . . . , ξn−1)

for each n. The idea is that a predictor is used to predict bits. Specifically,
(g(ξ))n = i ∈ {0,1} if based on (ξ1, . . . , ξn−1), g predicts that the nth bit has the
value i, while (g(ξ))n = ∗ if based on (ξ1, . . . , ξn−1), the function g does not
predict the nth bit at all.

DEFINITION 1.6. Given an increasing mapping r : N → N, we say that the
predictor g has inverse rate r if for all ξ ∈ {0,1}N and all n ≥ 1,

r(n)∑
k=1

1{g(ξ ))k 
=∗} ≥ n.

In words, we require that, regardless of the input sequence, at least n bits are
predicted by time r(n).
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DEFINITION 1.7. We say that a predictor is correct on the input ξ if (g(ξ))n ∈
{∗, ξn}, for all n, that is, if all predictions made are correct.

The next two theorems determine almost exactly the maximal prediction rate
attainable at an exceptional random time t .

THEOREM 1.8. For any ε > 0, there exists a predictor g with inverse rate
�2(n+1)(1+ε) such that P(∃ t ≥ 0 such that g is correct on the input X(t)) > 0.

THEOREM 1.9. Let g be a predictor with inverse rate r(n) that satisfies
r(n) = O(2n). Then P(∃ t ≥ 0 such that g is correct on the input X(t)) = 0.

In Section 4 we prove these theorems and establish a multifractal version,
which, loosely speaking, states that the set of times t , where an inverse rate of 2n/α

is attainable by a correct predictor, has Hausdorff dimension 1 − α (provided that
0 < α < 1).

In Section 5 we study sensitivity of recurrence and transience of random walks.
Note that if ν = δ1/2 + δ−1/2, the random variables {Sn(t)}n∈N , for fixed t , form
a simple symmetric random walk on Z. Stability of the LIL immediately yields
the same for recurrence. Indeed, Sn(t) only makes steps of size 1 (as n grows) and
stability of the LIL implies that for all t , the process {Sn(t)}∞n=1 takes both positive
and negative values i.o. Hence,

COROLLARY 1.10. If ν = δ1/2 + δ−1/2, then

P
(∀ t : Sn(t) = 0 i.o.

) = 1.(7)

We will prove in Section 5 the following generalization of Corollary 1.10.

THEOREM 1.11. Let ν be concentrated on Z, having finite support and
mean 0. Then

P
(∀ t : Sn(t) = 0 i.o.

) = 1.

Next, if {Xn}n≥1 is a sequence of i.i.d. random vectors in Zd with common
law ν, it induces a dynamic process {Xn(t)}n≥1, and we define Sn(t) =∑n

k=1 Xk(t). We will see in Section 5 that the property of being transient for simple
random walk on Zd is stable for d ≥ 5 but sensitive for d = 3,4. This is analogous
to the fact that quasi-every Brownian motion path in Rd is transient for d ≥ 5, but
not for d = 3,4 (see [9], [16]).

Let e1, . . . , ed denote the unit vectors in the d coordinate directions in Zd .
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THEOREM 1.12. Fix d ≥ 1 and let ν(±ej ) = 1/2d for each j ∈ {1, . . . , d}.
Then if d ≤ 4, we have

P
(∃ t : Sn(t) = 0 i.o.

) = 1(8)

while for d ≥ 5, we have

P
(∃ t : Sn(t) = 0 i.o.

) = 0.

This result is trivial for d = 1,2. In Section 5, we will prove Theorem 1.12 and,
more generally, characterize exactly those symmetric random walks on Abelian
groups for which transience is stable.

The next result describes the Hausdorff dimension of the set of times at which
simple random walk is recurrent. This result will also be generalized to certain
symmetric random walks on Abelian groups.

THEOREM 1.13. The Hausdorff dimension of the set of times at which simple
random walk is recurrent is 0 in 4 dimensions and 1/2 in 3 dimensions.

REMARK 1.14. Focusing on the first n bits, our dynamics produces a random
number N(n) of distinct finite sequences {Xj(t)}nj=1 as t ranges over [0,1]. It is
easy to see that (with probability 1) C1n < N(n) < C2n for all large n, where
C1 and C2 are positive constants. For some purposes (e.g., Theorem 1.4 on runs,
Theorem 1.8 on prediction and Theorem 1.12 on transience), these sequences
behave like n independently chosen random strings of n bits. However, the high
correlations between these N(n) strings are manifested in Theorems 1.2 and 1.11.
These theorems should be contrasted with the fact that among n1/2+ε random
strings of ±1’s of length n, there is (with high probability) a string with all partial
sums positive. Moreover, the stable recurrence exhibited in Theorem 1.11 indicates
that the N(n) strings obtained in our dynamical model by time 1 are more clustered
than trajectories of a tree-indexed random walk: in [4], Theorem 1.1, it is shown
that for a spherically symmetric tree with approximately n1/2+ε vertices at level n

for large n, the corresponding tree-indexed simple random walk on Z has, with
positive probability, a ray with a trajectory that remains positive forever.

2. Two classical limit theorems. We begin this section with a strengthened
version of Proposition 1.1.

PROPOSITION 2.1 (Uniform dynamical SLLN). Assume that m is finite. Then
a.s., for every ε > 0, there exists an N = N(ε) < ∞ such that∣∣∣∣Sn(t)

n
− m

∣∣∣∣ < ε for all t ∈ [0,1] and all n ≥ N.
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PROOF. It clearly suffices to show that for every ε > 0, there is a.s. an N with
the desired property. Fix ε > 0, and choose δ > 0 so that

|m|(1 − e−δ) + 2δ + E
(|X1(0)|)δ < ε.

Let Nk be the number of updates of the variable Xk during [0, δ] and denote
by {X(�)

k }�≥1 the successive values at these updates. Let Yk = Xk(0)I{Nk=0} and

Mk = max1≤�≤Nk
|X(�)

k |I{Nk≥1}. Then

E(Yk) = E
(
Xk(0)

)
e−δ

and

E(Mk) ≤ E

( ∞∑
�=1

|X(�)
k |I{Nk≥�}

)
= E

(|Xk(0)|)E(Nk) = E
(|X1(0)|)δ.

Since |Xk(t) − Yk| ≤ Mk for all t ∈ [0, δ], we get

sup
t∈[0,δ]

1

n

n∑
k=1

|Xk(t) − Yk| ≤ 1

n

n∑
k=1

Mk.

Hence

sup
t∈[0,δ]

∣∣∣∣∣1n
n∑

k=1

Xk(t) − m

∣∣∣∣∣ ≤ |m − E(Y1)| +
∣∣∣∣∣1n

n∑
k=1

Yk − E(Y1)

∣∣∣∣∣+ 1

n

n∑
k=1

Mk.

By the usual SLLN, we may choose N in such a way that | 1
n

∑n
k=1 Yk −E[Y1]| < δ

and 1
n

∑n
k=1 Mk < δ + E(|X1(0)|)δ for all n ≥ N . We then have that for n ≥ N ,

sup
t∈[0,δ]

∣∣∣∣∣1n
n∑

k=1

Xk(t) − m

∣∣∣∣∣ ≤ |m|(1 − e−δ) + δ + δ + E
(|X1(0)|)δ < ε.

Cover [0,1] by finitely many intervals of length δ, and obtain that there is an N

such that for n ≥ N ,

sup
t∈[0,1]

∣∣∣∣∣1n
n∑

k=1

Xk(t) − m

∣∣∣∣∣ < ε. �

To prove the dynamical LIL, we first establish the following lemma, which
contains the key step of the proof. Suppose that the assumptions in Theorem 1.2
are in force, and let bn := σ

√
2n log logn.

LEMMA 2.2. Let ε ∈ (0,1). Then

lim
N→∞ P

[
∃ t ∈

[
0,

ε2

20

]
, n ≥ N : |Sn(t) − Sn(0)| > εbn

]
= 0.
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PROOF. Let

AN,L :=
{
∃ t ∈

[
0,

ε2

20

]
, n ∈ [N,L] : |Sn(t) − Sn(0)| > εbn

}
.

It suffices to show that limN→∞ supL P(AN,L) = 0.
We introduce the following sequence of events.

BN :=
{
∃ t ∈

[
0,

ε2

20

]
, n ≥ N :

n∑
k=1

X2
k(t) ≥ 2σ 2n

}
,

CN :=
{
∃ n ≥ N :

∣∣∣∣Sn

(
ε2

20

)
− Sn(0)

∣∣∣∣ > ε

3
bn

}
,

DN :=
{
∃ n ≥ N :

∣∣∣∣Sn

(
ε2

20

)∣∣∣∣ > (
1 + ε

3

)
bn

}
.

We first claim that these three events have probabilities which go to 0 as N

goes to ∞. For BN , this follows from Proposition 2.1 applied to the random
variables {X2

k} which have mean σ 2. For CN , we observe that the distribution of
Xk(ε

2/20) − Xk(0) is(
1 − exp

{
− ε2

20

})
ν ∗ ν′ + exp

{
− ε2

20

}
δ0

where ν′(A) := ν(−A) for Borel sets A, and ∗ denotes convolution. This
distribution clearly has mean 0 and variance (1 − e−ε2/20)2σ 2 which is at most
ε2σ 2/10. The fact that limN→∞ P(CN) = 0 now follows from the usual LIL
applied to the sequence {Xk(ε

2/20) − Xk(0)}k≥1. Finally, limN→∞ P(DN) = 0
also follows immediately from the usual LIL.

Since

P(AN,L) ≤ P(BN) + P(CN) + P(DN) + P
(
AN,L ∩ (BN)c ∩ (CN)c ∩ (DN)c

)
,

we need to show that limN→∞ supL≥N P(AN,L ∩ (BN)c ∩ (CN)c ∩ (DN)c) = 0.
Let Ft denote the σ -algebra generated by the process up until time t . We first

observe the elementary identities

E[Xk(t + δ)|Ft ] = Xk(t)e
−δ + E

(
Xk(0)

)
(1 − e−δ) = Xk(t)e

−δ

and

E[X2
k (t + δ)|Ft ] = X2

k(t)e
−δ + σ 2(1 − e−δ).

Hence

Var[Xk(t + δ)|Ft ] = X2
k(t)(e

−δ − e−2δ) + σ 2(1 − e−δ) ≤ δ[X2
k (t) + σ 2],
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from which it follows that

Var[Sn(t + δ)|Ft ] ≤ δ

[
n∑

k=1

X2
k(t) + nσ 2

]
.

On the event AN,L, define t∗ by

t∗ := inf
{
t ∈

[
0,

ε2

20

]
: |Sn(t) − Sn(0)| > εbn for some n ∈ [N,L]

}
and n∗ by

n∗ := inf
{
n ∈ [N,L] : |Sn(t∗) − Sn(0)| > εbn

}
.

On (AN,L)c, take t∗ to be ε2/20 and n∗ to be L. Let

B∗
N :=

{
n∗∑

k=1

X2
k(t∗) ≥ 2σ 2n∗

}

and note this is a subevent of BN .
Observe that on the event AN,L,

|Sn∗(t∗) − Sn∗(0)| > εbn∗ .(9)

Let Y := Sn∗(ε
2/20) − e−(ε2/20−t∗)Sn∗(t∗). Then, by the strong Markov property,

E[Y |Ft∗] = 0 and Var[Y |Ft∗ ] ≤ ε2

20

[
n∗∑

k=1

X2
k(t∗) + σ 2n∗

]

and observe that on the event (B∗
N)c, the latter is at most 3ε2σ 2n∗/20.

We will now show that Y is large on the event AN,L ∩ (CN)c ∩ (DN)c. We first
note that on this event, we have that∣∣∣∣Sn∗

(
ε2

20

)
− Sn∗(0)

∣∣∣∣ ≤ ε

3
bn∗(10)

and ∣∣∣∣Sn∗

(
ε2

20

)∣∣∣∣≤ (
1 + ε

3

)
bn∗ .(11)

By (11), we have ∣∣∣∣e(ε2/20)−t∗Sn∗

(
ε2

20

)
− Sn∗

(
ε2

20

)∣∣∣∣∣ ≤ ε2

10
bn∗

and with (10), we get∣∣∣∣e(ε2/20)−t∗Sn∗

(
ε2

20

)
− Sn∗(0)

∣∣∣∣ ≤ ε

2
bn∗ .
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Together with (9), we obtain the fact that∣∣∣∣e(ε2/20)−t∗Sn∗

(
ε2

20

)
− Sn∗(t∗)

∣∣∣∣> ε

2
bn∗

which implies

|Y | > ε

4
bn∗ .

We then have that

P
(
AN,L ∩ (BN)c ∩ (CN)c ∩ (DN)c

) ≤ P
({

|Y | > ε

4
bn∗

}
∩ (B∗

N)c
)

= E
[
P
[
|Y | > ε

4
bn∗

∣∣∣Ft∗

]
I(B∗

N)c

]
.

By Chebyshev’s inequality, the latter is at most 48n∗σ 2/20(bn∗)
2 which goes to 0

as N goes to ∞ uniformly in L. �

PROOF OF THEOREM 1.2. Let

Bε :=
{
∃ t ∈

[
0,

ε2

20

]
: Sn(t) ≥ (1 + ε)bn i.o.

}
and

Aε :=
{
∃ t ∈

[
0,

ε2

20

]
: Sn(t) ≤ (1 − ε)bn for all sufficiently large n

}
.

It suffices to show that for any ε > 0, P(Bε) and P(Aε) are 0. Now, for all N ,

Bε ⊆
{
∃ t ∈

[
0,

ε2

20

]
: |Sn(t) − Sn(0)| ≥ ε

2
bn for some n ≥ N

}

∪
{
Sn(0) ≥

(
1 + ε

2

)
bn for some n ≥ N

}
.

Lemma 2.2 implies that the probability of the first event goes to 0 with N and the
usual LIL implies that the probability of the second event goes to 0 with N .

Next, let

Aε
N :=

{
∃ t ∈

[
0,

ε2

20

]
: Sn(t) ≤ (1 − ε)bn for all n ≥ N

}
and note that Aε =⋃

N Aε
N . We next have that

Aε
N ⊆

{
∃ t ∈

[
0,

ε2

20

]
: |Sn(t) − Sn(0)| ≥ ε

2
bn for some n ≥ N

}

∪
{
Sn(0) ≤

(
1 − ε

2

)
bn for all n ≥ N

}
.
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Lemma 2.2 implies that the probability of the first event goes to 0 with N and the
usual LIL implies that the probability of the second event is 0. Since the events
Aε

N are increasing with N , we obtain P(Aε) = 0. �

Lemma 2.2 also yields a dynamical version of Strassen’s invariance principle
(see [7], page 348), in the same way that it led to the dynamical LIL. This will be
needed in our proof of Theorem 1.11.

COROLLARY 2.3 (Dynamical Strassen invariance). Assume that m = 0 and
σ 2 < ∞. Let f : [0,1] → R be such that f (0) = 0 and

∫ 1
0 |f ′(x)|2 dx ≤ 1. Let

Zn(t)(·) be the function from [0,1] to R which takes the value Sj (t)/bn at
x = j/n for j = 0, . . . , n and is defined for other x ∈ [0,1] by linear interpolation.
Then, with probability 1, for all t , there exists nj (t) → ∞ such that Znj (t)(t)(·)
approaches f uniformly.

REMARK 2.4. As noted by the Editor, Theorem 1.2 and Corollary 2.3 can
also be derived from the general LIL of Kuelbs ([17], Theorem 4.2), for D[0,1]
valued random variables. To invoke that theorem, one must check that condition
(1.15) there is satisfied in the setting of Theorem 1.2. In fact, Lemma 2.2 above
implies that condition (1.15)(ii) in [17] holds in that setting. Thus it appears some
version of this key lemma is needed with either approach.

3. Run tests. In this section, we prove Theorems 1.4 and 1.5. For the proof
of Theorem 1.4, it is convenient to define an auxiliary random variable τ , which
is exponentially distributed with mean 1, and independent of {Xn(t)}n∈N,t≥0. The
idea is that considering the process up until the random time τ allows the exact
calculation in Lemma 3.1 below. For a fixed sequence a = {an}∞n=1 and n ∈ N,
define the random variable

Ua
n =

∫ τ

0
1{Rn(t)≥an} dt.

In words, Ua
n is the amount of time, up to time τ , that Rn(t) ≥ an.

LEMMA 3.1. For any a = {an}∞n=1, and any n ∈ N, we have E[Ua
n ] = pan and

E[Ua
n |Ua

n > 0] = 1−pan+1

(an+1)(1−p)
. Hence

P(Ua
n > 0) = E[Ua

n ]
E[Ua

n |Ua
n > 0] = pan(an + 1)(1 − p)

1 − pan+1 .

PROOF. This is a relatively easy computation left to the reader, or see [11],
Lemma 5.2. �
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PROOF OF THEOREM 1.4. Lemma 3.1 gives

∞∑
n=1

P(Ua
n > 0) =

∞∑
n=1

pan(an + 1)(1 − p)

1 − pan+1


< ∞, if

∞∑
n=1

anp
an < ∞,

= ∞, if
∞∑

n=1

anp
an = ∞.

(12)

Hence, if
∑∞

n=1 anp
an < ∞, we get

P
(∃ t ∈ [0, τ ] : {Rn(t) ≥ an i.o.}) ≤ P(Ua

n > 0 i.o.) = 0

by Borel–Cantelli, and it follows easily that P(∃ t ≥ 0 : {Rn(t) ≥ an i.o.}) = 0.
Now assume that

∑∞
n=1 anp

an = ∞. Define the event

Cn = {∃ t ∈ [0,1] :Rn(t) ≥ an

}
,

and note that

P(Ua
n > 0) = P

(∃ t ∈ [0, τ ] :Rn(t) ≥ an

)
≤

∞∑
k=0

e−kP
(∃ t ∈ [k, k + 1] :Rn(t) ≥ an

)

=
∞∑

k=0

e−kP(Cn) = P(Cn)

1 − e−1

so that by (12) we have
∞∑

n=1

P(Cn) ≥ (1 − e−1)

∞∑
n=1

P(Ua
n > 0) = ∞.(13)

Now consider the event

An = {
Xn−1(t) = 0 for all t ∈ [0,1]}.

Note that P(An) = (1 − p)e−p and that An and Cn are independent for each n.
Hence ∑

n

P(An ∩ Cn) = ∞.

Next, it is clear that the events {An ∩ Cn}n are negatively correlated since for
m 
= n, An ∩ Cn and Am ∩ Cm are either disjoint or independent. It follows from
the Kochen–Stone Theorem (see [7], page 55) that P(An ∩ Cn i.o.) = 1 and so

P
(∃ infinitely many n ∈ N such that {∃ t ∈ [0,1] with Rn(t) ≥ an}) = 1.(14)

Clearly, (14) implies that for any rationals q, q ′ with q < q ′,

P
(∃ infinitely many n ∈ N such that {∃ t ∈ (q, q ′) with Rn(t) ≥ an}) = 1.(15)
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A time t ∈ [0,1] for which {Rn(t) ≥ an i.o.} can now be found (with probability 1)
by an easy application of the Baire Category Theorem: Let

Vk = ∪n≥k

{
t ∈ (0,1) : Rn(t) ≥ an

}o
where Ao denotes the interior of A. It follows from the above that each Vk is dense
and open a.s. Hence, by the Baire Category Theorem, we have that

⋂
k≥1 Vk is a.s.

dense, completing the proof. �

Our next task will be to prove Theorem 1.5. To this end, we need some notation,
and a series of lemmas (Lemmas 3.2, 3.3 and 3.4 below). Let p ∈ (0,1) be
fixed. Theorem 1.5 will follow by sandwiching W(r) between two discrete lim sup
random fractals in the sense of [14], Section 3, and [6], Section 3, that the reader
needs to be familiar with in order to follow the proof. Throughout the rest of this
section, we will often write x for �x when an integer is clearly intended.

We will now introduce a collection of so-called lim sup random fractals
{A(r)}1<r≤2 and {A(r)}1<r≤2. Let Dk be the collection of binary subintervals
of [0,1] of the form [a/2k, (a + 1)/2k] with a an integer. Let J

(r)
m := [p−(m−1)

(m− 1)−r , p−mm−r −m− 1]. For I ∈ Dk, let Z
(r)
k (I ) be the indicator function of{∃ m ∈ [2k,2k+1] and n ∈ J (r)

m :Rn(t) ≥ m ∀ t ∈ I
}
,(16)

and let Z
(r)

k (I ) be the indicator function of{∃ m ∈ [2k,2k+1] and n ≤ p−mm−r :Rn(t) ≥ m for some t ∈ I
}
.(17)

Next, let

A(r) := lim sup
k

⋃
{I∈Dk :Z(r)

k (I )=1}
I o

and

A(r) := lim sup
k

⋃
{I∈Dk :Z(r)

k (I )=1}
I o

where I o denotes the interior of I .
The following three lemmas will do all the work necessary to apply the lim sup

random fractal theory developed in [14] and in [6].

LEMMA 3.2. Let p ∈ (0,1), r ∈ (1,2]. Let

W
(r)
k :=

2k+1∑
m=2k

∑
n∈J

(r)
m

I{Rn(t)≥m ∀ t∈[0, 1
2k ]}
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and

U
(r)
k :=

2k+1∑
m=2k

p−mm−r∑
n=1

I{Rn(t)≥m for some t∈[0, 1
2k ]}.

Then there exists a constant C1 = C1(r,p) such that for any k, the ratio between

any of Z
(r)
k ([0, 1

2k ]), Z
(r)

k ([0, 1
2k ]), E[W(r)

k ], E[U(r)
k ] and 2k(1−r) is at most C1.

NOTATION. We write φ � ψ (or equivalently, ψ � φ), if φ ≤ Cψ for some
constant C > 0, which may depend on p and r . We will write {ak} � {bk} if
supk{max(ak/bk, bk/ak)} < ∞.

PROOF OF LEMMA 3.2. For any k, every set of at most 2k+1 locations has
the property that during a time interval of length 1/2k, with probability at least
e−2 none of the variables at these locations will flip. From this, it is easy to see

that E(Z
(r)
k ([0, 1

2k ])), E(Z
(r)
k ([0, 1

2k ])), E(W
(r)
k ) and E(U

(r)
k ) all change by at most

a multiplicative constant if all the events in question are modified by replacing
“Rn(t) ≥ m ∀ t ∈ I” or “Rn(t) ≥ m for some t ∈ I” by “Rn(0) ≥ m” in (16)
and (17). For the rest of this proof, we will work with these modified events, which

we denote by Ẑ
k

(r), Ẑ
k
(r), Ŵ

k
(r) and Û

k
(r).

First, note that

E
[
Û

k
(r)
]
=

2k+1∑
m=2k

p−mm−r∑
n=1

pm �
∫ 2k+1

2k

1

xr
dx � 2k(1−r).

It is also easy to see from the above that E[Û
k
(r)] � 2k(1−r). Since

E
[
Ẑ

k

(r)

([
0,

1

2k

])]
≤ E

[
Ẑ

k
(r)

([
0,

1

2k

])]
and

E
[
Ŵ

k
(r)
]
≤ E

[
Û

k
(r)
]
,

we need only show that E[ Ẑ
k

(r)([0, 1
2k ])] � E[Û

k
(r)]. The reader can easily check

that E[Ŵ
k
(r)] � E[Û

k
(r)], and so we need to show that E[ Ẑ

k

(r)([0, 1
2k ])] � E[Ŵ

k
(r)].

We first show that

E
[(

Ŵ
k
(r)
)2
]
� E

[
Ŵ

k
(r)
]
.(18)

Since E[Ŵ
k
(r)] ≤ 1 for large k [because we have already seen it is � 2k(1−r)], all

we need to do to prove (18), is to show that Var[Ŵ
k
(r)] � E[Ŵ

k
(r)].
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Note now that if m1,m2 ∈ [2k,2k+1] with m1 
= m2 and n1 ∈ Jm1 and n2 ∈ Jm2 ,
then {Rn1 ≥ m1} and {Rn2 ≥ m2} are independent. Hence

Var
[
Ŵ

k
(r)
]
=

2k+1∑
m=2k

∑
n1,n2∈J

(r)
m

Cov[I{Rn1 (0)≥m}, I{Rn2(0)≥m}].

Note that

Cov[I{Rn1 (0)≥m}, I{Rn2(0)≥m}] ≤ pmp|n1−n2|

since the covariance is 0 if |n1 − n2| ≥ m and is at most E[I{Rn1(0)≥m}I{Rn2(0)≥m}]
otherwise. It follows that for any m ∈ [2k,2k+1] and any n1 ∈ J

(r)
m ,∑

n2∈J
(r)
m

Cov[I{Rn1(0)≥m}, I{Rn2(0)≥m}] � pm

and from this it follows that Var[Ŵ
k
(r)] � E[Ŵ

k
(r)]. From (18) and the Cauchy–

Schwarz inequality, we obtain

E
(
Ẑ

k

(r)

([
0,

1

2k

]))
= P

(
Ŵ

k
(r) > 0

)
≥ E[Ŵ

k
(r)]2

E[(Ŵ
k
(r))2]

� E
[
Ŵ

k
(r)
]
. �

LEMMA 3.3. Let I = [ a
2k ,

a+1
2k ] and J = [ b

2k ,
b+1
2k ] where b = a + 1 + j with

0 ≤ j ≤ 2k . Let W
(r)
k (I ),W

(r)
k (J ) be defined as W

(r)
k in Lemma 3.2 but with

[0,1/2k] replaced by I and J respectively. Then for any p ∈ (0,1) and r ∈ (1,2],
there exist constants C2 = C2(r,p) C3 = C3(r,p) such that

�r(I, J ) := Cov[W(r)
k (I ),W

(r)
k (J )] ≤ C2e

−C3j E[W(r)
k (I )].

PROOF. For m1,m2 ∈ [2k,2k+1] with m1 
= m2 and n1 ∈ Jm1 and n2 ∈ Jm2 ,
the events {Rn1(t) ≥ m1 ∀ t ∈ I } and {Rn2(t) ≥ m2 ∀ t ∈ J } are independent. Hence

�r(I, J ) =
2k+1∑
m=2k

∑
n1,n2∈J

(r)
m

Cov[I{Rn1(t)≥m ∀ t∈I }, I{Rn2(t)≥m ∀ t∈J }].(19)

Next,

Cov[I{Rn1(t)≥m ∀ t∈I }, I{Rn2(t)≥m ∀ t∈J }]

≤ P
(
Rn1

(
a + 1

2k

)
≥ m,Rn2

(
b

2k

)
≥ m

)
= p2|n1−n2|(pe−j/2k + p2(1 − e−j/2k

)
)m−|n1−n2|

= (
pe−j/2k + p2(1 − e−j/2k

)
)m( 1

e−j/2k
/p + (1 − e−j/2k

)

)|n1−n2|
.
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Now, p < 1 implies that

inf
0≤j≤2k

e−j/2k

p
+ (1 − e−j/2k

) > 1.

Summing over n2, and comparing to a geometric series, we deduce that

�r(I, J ) �
2k+1∑
m=2k

∑
n1∈J

(r)
m

pm
[
e−j/2k + p(1 − e−j/2k

)
]m

.(20)

Next, it is an elementary calculus exercise to check that for p ∈ (0,1), there exists
C3 > 0 such that

e−x + p(1 − e−x) ≤ e−C3x for x ∈ [0,1].
Hence

�r(I, J ) �
2k+1∑
m=2k

∑
n1∈J

(r)
m

pme−C3jm/2k

� e−C3j
2k+1∑
m=2k

∑
n1∈J

(r)
m

pm

� e−C3j E
[
W

(r)
k (I )

]
.

Here, the last inequality uses the observation at the beginning of the proof of
Lemma 3.2, that the probabilities of W

(r)
k and Ŵ

k
(r) are of the same order of

magnitude. �

LEMMA 3.4. There exists a constant L such that if

f (k) := max
I∈Dk

∣∣J ∈ Dk : E
[
Z

(r)
k (I )Z

(r)
k (J )

]≥ LE
[
Z

(r)
k (I )

]
E
[
Z

(r)
k (J )

]∣∣,
then

lim sup
k→∞

log2 f (k)

k
= 0.

PROOF. Let L := (C1C2 + 1)C2
1 where C1 and C2 come from Lemmas 3.2

and 3.3. If E[Z(r)
k (I )Z

(r)
k (J )] ≥ LE[Z(r)

k (I )]E[Z(r)
k (J )], then by Lemma 3.2

E
[
W

(r)
k (I )W

(r)
k (J )

] ≥ LC−2
1 E

[
W

(r)
k (I )

]
E
[
W

(r)
k (J )

]
which implies that

Cov
[
W

(r)
k (I )W

(r)
k (J )

]≥ (LC−2
1 − 1)E

[
W

(r)
k (I )

]
E
[
W

(r)
k (J )

]
.
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Lemma 3.3 now implies that

C2e
−C3j ≥ (LC−2

1 − 1)E
[
W

(r)
k (J )

] ≥ (LC−2
1 − 1)C−1

1 2k(1−r)

where j/2k is the distance between I and J . By definition of L, we get e−C3j ≥
2k(1−r) or j ≤ (r − 1)k log(2)/C3. This implies the conclusion of the lemma. �

PROOF OF THEOREM 1.5. Note that Lemma 3.2 implies that

lim
k→∞

log2(E[Z(r)
k (I )])

k
= 1 − r = lim

k→∞
log2(E[Z(r)

k (I )])
k

.(21)

This, together with [14], Theorem 3.1, implies that if E is any closed set in [0,1]
with dimP (E) < r − 1, then P(A(r) ∩ E 
= ∅) = 0. Also, [14], Corollary 3.3,
implies that dimH(A(r)) ≤ 2 − r . We next show that if E is any closed set in [0,1]
with packing dimension dimP (E) > r − 1, then

P
(
A(r) ∩ E 
= ∅

) = 1.(22)

To this end, we will apply [6], Theorem 3.1. Condition I in that theorem holds with
γ = r − 1, by (21). Condition II holds since it is easy to check that the random
variables {Z(r)

k (I )} are quasi-localized as defined in that paper; in fact the Fi ’s as
defined there are trivial σ -algebras. Condition III follows from Lemma 3.4 above.
Hence, [6], Theorem 3.1, implies (22). Furthermore, [6], Corollary 3.2, implies
that dimH(A(r)) = 2 − r a.s., and by the remark following that same corollary, we
have dimP (A(r)) = 1 a.s.

Finally, an easy computation shows that

W(r) ⊆ ⋂
r ′<r

A(r ′) and
⋃
r ′>r

A(r ′) ⊆ W(r).

The results proved for A(r) and A(r) now immediately imply the statements about
W(r) in the theorem. �

4. Prediction and von Mises–Church randomness. We begin this section
with a proof of Theorem 1.8. The proof is based on parity tests. Define

B(m,n)(t) =
(

n∑
k=m

Xk(t)

)
mod 2.

The crucial lemma is as follows.

LEMMA 4.1. Let {mk}k≥1 be a sequence of positive integers which is lacunary
in the sense that infk mk+1/mk > 1. Let a0 = 0 and ai+1 = ai + mi+1 for i ≥ 0.
Then

P
(∃ t ∈ [0,1] : {B(an−1+1,an)(t) = 0 for all n ∈ N

})
> 0
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if and only if

∞∑
�=1

2�

m�

< ∞.

PROOF. Let τ be an independent exponential time and as usual, it suffices to
show that

P
(∃ t ∈ [0, τ ] : {B(an−1+1,an)(t) = 0 for all n ∈ N

})
> 0

if and only if

∞∑
�=1

2�

m�

< ∞.

For n ≥ 1, let Un(t) := {B(ak−1+1,ak)(t) = 0 ∀ k ∈ {1, . . . , n}} and Zn :=∫ τ
0 1{Un(t)} dt . It is easy to see that E[Zn] = (1/2)n. We will now compute

E[Zn |Zn > 0]. It is easy to check that for t > s,

P
(
Un(t)|Un(s)

) =
n∏

k=1

(
1

2
+ e−mk(t−s)

2

)
.

Using the strong Markov property for the stopping time inf{t ≥ 0 : Un(t) occurs}
and the memoryless property of the exponential distribution, we obtain

E[Zn|Zn > 0] =
∫ ∞

0
P
(
Un(t)|Un(0)

)
e−t dt

=
∫ ∞

0

n∏
k=1

(
1

2
+ e−mkt

2

)
e−t dt

= 1

2n

∫ ∞
0

n∏
k=1

(1 + e−mkt )e−t dt

= 1

2n

∫ ∞
0

∑
S⊆{1,...,n}

e−(
∑

k∈S mk)t e−t dt

= 1

2n

∑
S⊆{1,...,n}

1

1 +∑
k∈S mk

≤ 1

2n

∑
S⊆{1,...,n}

1

1 + mS

= 1

2n

(
1 +

n∑
k=1

2k−1

1 + mk

)
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where mS := max{mi : i ∈ S} with the usual convention m∅ := 0. The last equality
is seen by separating out the case S = ∅ and grouping the other sets S according
to their maximal element. Note, importantly, that by the lacunary assumption,
the inequality can be reversed up to a uniform multiplicative constant. Since
P(Zn > 0) = E[Zn]/E[Zn |Zn > 0], it follows that

lim inf
n→∞ P(Zn > 0) =


0, if

∞∑
�=1

2�

m�

= ∞,

L > 0, if
∞∑

�=1

2�

m�

< ∞.

Note that the events {Zn > 0} are decreasing, so that if
∑∞

�=1
2�

m�
= ∞, then

P
(∃ t ∈ [0, τ ] :

{
B(an−1+1,an)(t) = 0 for all n ∈ N

}) ≤ P(∩n{Zn > 0}) = 0.

Conversely, if
∑∞

�=1
2�

m�
< ∞, then P(∩n{Zn > 0}) > 0. From here, a compactness

argument together with [11], Lemma 3.2, allows us to conclude that

P
(∃ t ∈ [0, τ ] :

{
B(an−1+1,an)(t) = 0 for all n ∈ N

})
> 0,

completing the proof. �

PROOF OF THEOREM 1.8. Let mk := �2k(1+ε), a0 = 0 and ai+1 = ai +mi+1

for i ≥ 0 as in Lemma 4.1. Define g : {0,1}N → {∗,0,1}N by setting

(
g(ξ)

)
n =


(

n−1∑
k=ai−1+1

ξk

)
mod 2, if n = ai for some i ∈ N, and

∗, otherwise.

A simple computation shows that this g has inverse rate 2(n+1)(1+ε). By
Lemma 4.1, P(∃ t ∈ [0,1] : {B(an−1+1,an)(t) = 0 for all n ∈ N}) > 0. However,
one may simply observe that if B(an−1+1,an)(t) = 0 for all n ∈ N, then it follows
immediately from the definition of g that g is correct on the input X(t). This
completes the proof. �

Before giving the proof of Theorem 1.9, we prove a slightly weaker version,
which has a more elementary proof in the sense that it does not appeal to a general
result from Markov process theory.

THEOREM 4.2. Let g be a predictor with inverse rate r(n) such that
r(n) = o(2n). Then P(∃ t ≥ 0 such that g is correct on the input X(t)) = 0.
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PROOF. Let g be a fixed predictor with the given rate assumption. Let An

be the event that for some t ∈ [0,1], the first n bits of X(t) which are predicted
by g are predicted correctly. Let Vn be the number of different sequences of the
first r(n) bits that arise during the time interval [0,1]. Clearly, Vn ≤ 1 + Yn where
Yn has a Poisson distribution with mean r(n). Note that given a single sequence
of r(n) random unbiased bits, the first n bits which are predicted by g are predicted
correctly with probability 2−n. It follows that

P(An) ≤
∞∑

k=1

P(Vn = k)k2−n ≤ 1 + r(n)

2n

which goes to 0 as n → ∞. �

PROOF OF THEOREM 1.9. Let C be such that r(n) ≤ C2n for all n. Fix n ≥ 1,
i ∈ {1, . . . , n}, and a predictor g with the given rate assumption. Let Ai

n be the
event that for some t ∈ [(i −1)/n, i/n], the first n bits of X(t) which are predicted
by g are predicted correctly. Next, let Tn := ∑n

i=1 1{Ai
n}. A similar computation

to the proof of Theorem 4.2 shows that E[Tn] ≤ r(n)(1/2)n + n(1/2)n and hence
lim infn E[Tn] ≤ C. Letting T denote the cardinality of the set{

t ∈ [0,1] such that g is correct on the input X(t)
}
,

we easily have that T ≤ lim infn→∞ Tn and so E[T ] ≤ C by Fatou’s lemma. Hence
T < ∞ a.s. From that, it follows using general Markov process theory (see [22],
Lemma 2.3) that T = 0 a.s., as desired. �

Let Hβ denote β-dimensional Hausdorff measure and recall that dimH(S)

denotes the Hausdorff dimension of the set S. We say that a closed set A has
positive β-capacity if there exists a probability measure ρ on A such that∫

A

∫
A

|t − s|−β dρ(t) dρ(s) < ∞.

Recall Frostman’s theorem (see [13]) which says that for any closed set A ⊆ Rn,
dimH(A) = sup{β : A has positive β-capacity}. Our next result is a multi-fractal
result for prediction.

THEOREM 4.3. Given a predictor g, let

Tg := {
t ∈ [0,1] :g predicts X(t) correctly

}
.

Given α ∈ (0,1), let gα be the predictor which is defined as in Lemma 4.1 with
mk = 2k/α . If A is a closed set which has positive α-capacity, then P(Tgα ∩ A 
=
∅) > 0. If Hα(A) = 0, then P(Tg ∩ A 
= ∅) = 0 for any predictor g which has
inverse rate 2n/α. Furthermore, dimH(Tgα ) = 1 − α.
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REMARK 4.4. By Frostman’s Theorem, we have that the above is stronger
than the statements that dimH (A) > α implies P(Tgα ∩ A 
= ∅) > 0, and that
dimH(A) < α implies P(Tgα ∩ A 
= ∅) = 0.

REMARK 4.5. Theorem 4.3 above comes close to, but does not succeed in,
obtaining a sufficient and necessary condition for which sets A satisfy P(Tgα ∩A 
=
∅) > 0. The gap here is the usual gap between zero Hausdorff measure and positive
capacity when studying the hitting probabilities of random sets.

PROOF OF THEOREM 4.3. If A has positive α-capacity, choose a probability
measure ρ on A such that

∫
A

∫
A |t − s|−αdρ(t)dρ(s) < ∞. For n ≥ 1, let Un(t)

be as in Lemma 4.1 and Zn := ∫ 1
0 1{Un(t)}dρ(t). Then E[Zn] = (1/2)n and the

same computation as in Lemma 4.1 yields

E[Z2
n] = 1

4n

(
1 + ∑

∅
=S⊆{1,...,n}

∫ 1

0

∫ 1

0
e−(

∑
k∈S mk)|t−s| dρ(t) dρ(s)

)
.

Replacing
∑

k∈S mk by mS := max{mi : i ∈ S} and proceeding as in Lemma 4.1,
the latter is at most

1

4n

∫ 1

0

∫ 1

0

(
1 +

n∑
k=1

2k−1e−mk |t−s|
)

dρ(t) dρ(s).

We claim that for any t ≥ 0 and any n,
n∑

k=1

2k−1e−mkt ≤ Ct−α(23)

where C := ∫∞
0 uα−1e−udu. Once established, (23) immediately implies that

E[Z2
n] ≤ 1

4n

[
1 + C

∫
A

∫
A

|t − s|−α

]
dρ(t) dρ(s).

By the Cauchy–Schwarz inequality, we have that P(Zn > 0) ≥ E[Zn]2/E[Z2
n],

which is larger than some constant C′ > 0 for all n. Then P(Tgα ∩ A 
= ∅) > 0
follows exactly as in Lemma 4.1 and Theorem 1.8.

To prove (23), it is elementary to check that for any k ≥ 1,∫ 2k/α

2(k−1)/α
xα−1e−tx dx ≥ 2k−1e−mkt

and hence that
n∑

k=1

2k−1e−mkt ≤
∫ ∞

0
xα−1e−tx dx

which by a change of variables is (
∫∞

0 uα−1e−u du)t−α , and (23) is established.
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We now assume that Hα(A) = 0 and g is any predictor which has inverse
rate 2n/α. Let δ > 0 be arbitrary. Choose intervals {Ii}i∈J such that A ⊆ ∪i∈J Ii

and
∑

i∈J |Ii |α < δ. We claim that

P
(∃ t ∈ Ii such that g is correct on the input X(t)

) ≤ 4|Ii |α.(24)

Once this claim is established, it follows that

P
(∃ t ∈ A such that g is correct on the input X(t)

) ≤ 4
∑
i∈J

|Ii |α < 4δ.

As δ > 0 is arbitrary, we may then conclude that

P
(∃ t ∈ A such that g is correct on the input X(t)

) = 0.

It only remains to prove (24). Consider the first 1/|Ii| bits. (1/|Ii| need of course
not be an integer but we leave this easy correction to the reader.) The number
of different sequences within the first 1/|Ii| bits that we see during the time
interval Ii has distribution which is δ1 ∗ Poisson(1), where ∗ denotes convolution.
The number of bits predicted with the first 1/|Ii | bits is at least −α log2 |Ii| − 1
and the probability that gα predicts this many of the first bits correctly in a random
sequence is at most 2|Ii|α . Hence, as in the proof of Theorem 4.2, (24) follows.

Finally, as mentioned in the above remark, the first part of the theorem says that
P(Tgα ∩ A 
= ∅) > 0 if dimH(A) > α and P(Tgα ∩ A 
= ∅) = 0 if dimH(A) < α.
It follows from a standard codimension argument originally due to the works
of Taylor and Hawkes (see [14], Lemma 3.4, and [21], Proposition 2.1) that
dimH(Tgα ) = 1 − α as desired. �

Next, we discuss notions of “algorithmic randomness” that is, criteria for
an individual sequence ξ ∈ {0,1}N to be a “typical” sample from the measure
m := ∏

i (δ1/2 + δ0/2). (See Kolmogorov and Uspenskii [15] and Li and Vitányi
[18].)

Today, the most widely used notion of algorithmic randomness is Martin-Löf
randomness, which can be described informally as follows. Let {Aα}α∈I be the
collection of Borel sets in {0,1}N that:

(i) have m-measure 0, and
(ii) are computable in the sense of the Church–Turing thesis (see [15] or [18]

for details).

Let A = ⋃
α∈I Aα . Since there are only countably many sets satisfying (ii), we

infer that m(A) = 0. A sequence ξ ∈ {0,1}N is said to be Martin-Löf random if
ξ /∈ A.

The existence of any sensitive computable a.s. property of Bernoulli sequences
implies that Martin-Löf randomness is a sensitive. Such properties can easily be
extracted from, for example, Theorem 1.4 or 1.8. (Alternatively, sensitivity of
Martin-Löf randomness follows immediately from Corollary 4.6 below.)
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We shall show that even the less restrictive (and older) notion of von Mises–
Church randomness is sensitive. This notion of randomness is defined as follows.
First, a function g : {0,1}N → {s, d}N is a selector if (g(ξ))n depends on ξ only
via (ξ1, . . . , ξn−1) for each n. The idea is that a selector is used to choose which
bits we will use in forming a subsequence. Specifically, (g(ξ))n = s if based on
(ξ1, . . . , ξn−1), the selector g selects to use the nth bit, while (g(ξ))n = d if based
on (ξ1, . . . , ξn−1), the selector g does not use the nth bit (“s” for select and “d”
for decline). A sequence ξ ∈ {0,1}N is said to be von Mises–Church random if for
all computable selectors g : {0,1}N → {s, d}N such that

∑∞
k=1 1{(g(ξ ))k=s} = ∞, we

have

lim
n→∞

∑n
k=1 1{(g(ξ ))k=s}ξk∑n
k=1 1{(g(ξ ))k=s}

= 1/2.

In other words, ξ is von Mises–Church random if the limiting fraction of 1’s is
1/2 along all infinite subsequences obtained algorithmically without peeking at
{ξn, ξn+1, . . .} when deciding whether ξn should be included in the subsequence.
Since there are only countably many algorithms,

m(ξ : ξ is von Mises–Church random) = 1.

COROLLARY 4.6. Von Mises–Church randomness is dynamically sensitive,
that is,

P
(∃ t ≥ 0 : X(t) is not von Mises–Church random

) = 1.(25)

PROOF. As in the proof of Theorem 1.8, let ε > 0 be arbitrary, let mk :=
�2k(1+ε), a0 = 0 and ai+1 = ai + mi+1 for i ≥ 0. Define g : {0,1}N → {s, d}N by
setting

(g(ξ))n =


s, if n = ai for some i ∈ N, and

(
n−1∑

k=ai−1+1

ξk

)
mod 2 = 1,

d, otherwise.

Define the event

A = {∃ infinitely many i ∈ N such that {Xai
(t) = 1 for all t ∈ [0,1]}},

and note that P(A) = 1 by the second Borel–Cantelli lemma. Also define the event

B = {∃ t ∈ [0,1] : {Ban−1,an(t) = 0 for all n ∈ N}}.
By Lemma 4.1, we have that P(B) > 0, so that

P(A ∩ B) > 0.

On the event B , we have, for the times t such that {Ban−1+1,an(t) = 0 for all
n ∈ N}, that Xn(t) = 1 for all n such that (g(X(t)))n = s. On the event A ∩B , for
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such t , we, furthermore, have that (g(X(t)))n = s for infinitely many n. However,
then

lim
n→∞

∑n
k=1 1{(g(X(t)))k=s}Xk(t)∑n

k=1 1{(g(X(t)))k=s}
= 1(26)

so that von Mises–Church randomness fails at time t . Hence,

P
(∃ t ∈ [0,1] such that X(t) is not von Mises–Church random

)
> 0

and (25) follows by Kolmogorov’s zero-one law. �

5. Recurrence and transience of random walks. In this section, we prove
Theorems 1.11, 1.12 and 1.13. First, we will let Px denote the probabilities when
the (nondynamical) random walk {Sn} begins at location x, while P as before
denotes the probability measure on the underlying probability space on which
the dynamical process is defined. We need the following lemma, which is proved
in [23], page 382.

LEMMA 5.1. Let {Sn} be an irreducible one-dimensional integer-valued
random walk with steps which have mean 0 and have support in {−S, . . . , S}.
Then there exists a constant C′ such that

Px(Sk 
= 0 for k = 1,2, . . . , n) ≤ C′n−1/2

for all x ∈ {−S, . . . , S} and n ≥ 1.

We continue with three more lemmas needed to prove Theorem 1.11. As in
Section 3, we run our process up until a random time τ which has an exponential
distribution with mean 1. Theorem 1.11 will follow if we can show that for all
u ∈ N,

P
(∀ t ∈ [0, τ ] : Sn(t) = 0 for some n ≥ u

) = 1.(27)

We now fix such a u.
For n ≥ 20, let In

1 = [n/20, n/10], In
2 = [2n/10,3n/10], In

3 = [4n/10,5n/10],
In

4 = [6n/10,7n/10], and In
5 = [8n/10,9n/10] (where if these fractions are not

integers, we use the greatest integer function instead). Assume that n is sufficiently
large so that �n/20 ≥ u. Let En be the event that{{Sk}k≥0 takes both strictly positive and negative values

in each of In
1 , I n

2 , I n
3 , I n

4 and In
5
}

and Fn be the event that{{Sk}k≥0 does not return to 0 in [u,n]}.
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LEMMA 5.2. For all n such that �n/20 ≥ u, we have that

P (En ∩ Fn) ≤ C5n−5/2

where C := √
10C′ and C′ comes from Lemma 5.1.

PROOF. For i = 1,2,3,4 and 5, let f n
i be the smallest element in In

i and let

cn
i := inf

{
� ∈ In

i \{f n
i } : S�−1S� < 0

}
,

where we take cn
i to be ∞ if S�−1S� ≥ 0 for all � ∈ In

i \{f n
i }.

For i = 1,2,3,4 and 5, let An
i := {cn

i < ∞, Sk 
= 0 for k ∈ {cn
i + 1, . . . , cn

i +
n/10}}. Then

P (En ∩ Fn) ≤ P

( 5⋂
i=1

An
i

)
.

By the strong Markov property and Lemma 5.1, for all i ∈ {1,2,3,4,5},

P

(
An

i

∣∣∣ i−1⋂
j=1

An
j

)
≤ Cn−1/2

and the statement of the lemma follows. �

LEMMA 5.3. For all n such that �n/20 ≥ u,

P
(∃ t ∈ [0, τ ] : X(t) ∈ En ∩ Fn

) ≤ C5e2n−3/2

where C comes from Lemma 5.2.

PROOF. Let Zn := ∫ τ
0 1{X(t)∈En∩Fn} dt . Fubini’s theorem and Lemma 5.2

imply that E[Zn] ≤ C5n−5/2. We also have

E[Zn] = P(Zn > 0)E[Zn|Zn > 0].
If we can show that

E[Zn|Zn > 0] ≥ 1

e2n
,(28)

then we will obtain, as desired,

P(Zn > 0) ≤ C5e2n−3/2.

To show equation (28), let σ := inf{t ≥ 0 : X(t) ∈ En ∩Fn occurs}. Note that on
the event {Zn > 0}, necessarily σ ∈ [0, τ ]. By the strong Markov property and the
memoryless property of τ , the probability that for all k = 1,2, . . . , n, the variable
Xk(t) is not refreshed during [σ,σ + 1/n] and τ > σ + 1/n is exactly e−(n+1)/n

and on this event, Zn ≥ 1/n. Hence

P[Zn ≥ 1/n|Zn > 0] ≥ e−2,

which immediately gives equation (28). �
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LEMMA 5.4.

P
(∀ t : X(t) ∈ En i.o.

) = 1.

PROOF. Denote the five intervals (1/20,1/10), (2/10,3/10), (4/10,5/10),

(6/10,7/10) and (8/10,9/10) by I1, . . . , I5. For each such i, choose ai, bi ∈ Ii

with ai 
= bi . Choose ten numbers f (a1), . . . , f (a5) and f (b1), . . . , f (b5) such
that f (ai)f (bi) < 0 for each i and such that the polygonal function f

with f (0) = 0 and the above values at a1, . . . , a5 and b1, . . . , b5, satisfies∫ 1
0 |f ′(x)|2 dx ≤ 1. The lemma now follows from Corollary 2.3. �

PROOF OF THEOREM 1.11. Lemma 5.3 and the Borel–Cantelli lemma imply
that if Bn := {∃ t ∈ [0, τ ] : X(t) ∈ En ∩ Fn}, then

P(Bn i.o.) = 0.

This together with Lemma 5.4 and the fact that Fn+1 ⊆ Fn yields

P
(∀ t ∈ [0, τ ] : X(t) ∈ Fn for only finitely many n

) = 1,

which implies (27), and the theorem follows. �

We now turn to our generalization of Theorem 1.12. Let G be a discrete Abelian
group with identity element 0 and let ν be a probability measure on G which
is symmetric in the sense that ν(g) = ν(−g) for all g ∈ G. Define the process
{Xn(t)}t≥0 as at the end of the introduction and again let Sn(t) := ∑n

k=1 Xk(t),
noting that for fixed t , this is simply a usual random walk on G with step size
distribution given by ν which we will denote by {Sn}. Our general result (which
clearly includes Theorem 1.12) is the following. Let pn := P (Sn = 0).

THEOREM 5.5. Consider a symmetric random walk {Sn} on an Abelian group
with identity 0 as above. Then

P
(∃ t : Sn(t) = 0 for infinitely many values of n

)

=


0, if

∞∑
n=0

npn < ∞,

1, if
∞∑

n=0

npn = ∞.

(29)

Again, the proof will use a series of lemmas. Since both sides of (29) trivially
hold if {Sn} is itself a recurrent random walk, we can assume that the random
walk {Sn} is transient. The arguments simplify slightly if, as usual, we run our
process up until a random time τ which has an exponential distribution with
mean 1. Therefore, we now let Zn := ∫ τ

0 1{Sn(t)=0} dt .
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LEMMA 5.6. For any k ≥ 1 and any x ∈ G, Px(Sk = 0) ≤ max{pk−1,pk},
where p−1 is taken to be 0.

PROOF. For even k, the fact that Px(Sk = 0) ≤ pk is standard (see page 139
in [2]). For k = 2m + 1,

Px(S2m+1 = 0) = ∑
w∈G

Px(S2m = w)Pw(S1 = 0)

≤ p2m

∑
w∈G

P0(S1 = w) = p2m. �

LEMMA 5.7. For k,m ≥ 0,∫ ∞
0

P
(
Sk(0) = 0, Sk+m(t) = 0

)
e−t dt ≤ 2

pk

k + 1

k+1∑
j=0

pj+m−1.(30)

PROOF. By conditioning on the number of the variables {X1, . . . ,Xk} which
update their value by time t (which has a binomial distribution with parameters k

and 1 − e−t ), the left-hand side of (30) equals∫ ∞
0

k∑
j=0

(
k

j

)
(1−e−t )j (e−t )k−j

∑
x∈G

P0(Sk−j = x)Px(Sj = 0)Px(Sj+m = 0)e−t dt

which equals
k∑

j=0

∑
x∈G

P0(Sk−j = x)Px(Sj = 0)Px(Sj+m = 0)

×
∫ ∞

0

(
k

j

)
(1 − e−t )j (e−t )k−j e−t dt.

The integral can be easily checked by induction to be 1/(k + 1) for any
j ∈ {0, . . . , k}. Alternatively, this can be seen by noting that this integral is
the probability that Uk+1 is the (j + 1)st smallest of U1,U2, . . . ,Uk+1 where
U1,U2, . . . ,Uk+1 are k independent mean 1 exponential random variables. Next,
by applying Lemma 5.6 to the term Px(Sj+m = 0), one bounds∑

x∈G

P0(Sk−j = x)Px(Sj = 0)Px(Sj+m = 0)

by (pj+m−1 + pj+m)pk . Putting this together, the lemma follows. �

LEMMA 5.8. (a) P(Zn > 0) ≤ e2npn for all n ≥ 1.

(b) P(Zn > 0) ≥ (n+1)pn

2
∑n

j=0 pj
for all n ≥ 1.

In particular, if {Sn} is transient, then there exists a constant C such that
npn/C ≤ P(Zn > 0) ≤ Cnpn for all n ≥ 1.
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PROOF. Clearly for n ≥ 1,

P(Zn > 0) = E[Zn]
E[Zn|Zn > 0] .(31)

Next, trivially, E[Zn] = pn by Fubini’s theorem. We next show that for n ≥ 1,

E[Zn|Zn > 0] ≥ 1

e2n
,(32)

from which (a) will follow. To show this, let σ := inf{t ≥ 0 : Sn(t) = 0}. Note that
conditioned on the event {Zn > 0}, σ ∈ [0, τ ). By the strong Markov property and
the memoryless property of τ , we have

P
[
τ > σ + 1/n,Xk(t) does not change its value during

(33)

t ∈ [σ,σ + 1/n] for any k ∈ {1, . . . , n} ∣∣Zn > 0
]=

(
1

e

)1/n 1

e
.

If the event in (33) occurs, then Zn ≥ 1/n. Hence

P[Zn ≥ 1/n|Zn > 0] ≥ 1/e2,

which immediately yields (32).
We go on to prove (b). By (31) and the fact that E[Zn] = pn, it suffices to show

that

E[Zn|Zn > 0] ≤ 2

n + 1

n∑
j=0

pj .

By stopping the first time t at which the process is such that Sn(t) = 0, we get
(again using the strong Markov property and the memoryless property of τ ) that

E[Zn|Zn > 0] =
∫ ∞

0
P
(
Sn(t) = 0|Sn(0) = 0

)
e−t dt

and hence, by Lemma 5.7, is at most 2
∑n

j=0 pj/(n + 1), as desired. �

PROOF OF THEOREM 5.5 IN THE CASE WHERE THE SUM IN (29)
CONVERGES. Assume that

∑∞
n=0 npn < ∞. This assumption together with

Lemma 5.8(a) then implies that
∑∞

n=0 P(Zn > 0) < ∞ and hence by Borel–
Cantelli, there are no times t ∈ [0, τ ] such that Sn(t) = 0 for infinitely many values
of n. It easily follows that

P
(∃ t : Sn(t) = 0 for infinitely many values of n

) = 0,

as desired. �
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The other case
∑∞

n=0 npn = ∞ is more difficult. Let Zn be as above and let
Wn :=∑n

k=0 kZk . Note that
∑∞

n=0 npn = ∞ is equivalent to limn→∞ E[Wn] = ∞.
A key step is to establish the following lemma.

LEMMA 5.9. There exists a constant C such that E[W 2
n ] ≤ CE[Wn]2 for all n.

PROOF. Since the process {Sn(t)} is reversible,

E[ZkZk+m] = E
∫ τ

0

∫ τ

0
1{Sk(s)=0}1{Sk+m(t)=0} dt ds

(34)

= 2
∫ ∞

0

∫ ∞
s

P[Sk(s) = 0, Sk+m(t) = 0]e−t dt ds.

Replacing t by t + s and noting that P[Sk(s) = 0, Sk+m(s + t) = 0] is independent
of s, it follows that the above is equal to 2

∫∞
0 P(Sk(0) = 0, Sk+m(t) = 0)e−t dt

which, by Lemma 5.7, is at most 4pk

∑k+1
j=0 pj+m−1/(k + 1).

It follows that

E[W 2
n ] ≤ 2

n∑
k=0

n∑
m=0

k(k + m)E[ZkZk+m]
(35)

≤ 8
n∑

k=0

n∑
m=0

k(k + m)
pk

k + 1

k+1∑
j=0

pj+m−1.

On the other hand, we have that

E[Wn]2 =
n∑

k=0

n∑
m=0

kmpkpm.(36)

One then checks by inspection that there exists a constant C, independent of n,
such that for r, s ≥ 1, the coefficient of prps in (35) is at most C times the
coefficient of prps in (36), the coefficient of p0ps for s = 0,1,2 in (35) is at
most C, and in addition that for s ≥ 3, the coefficient of p0ps in (35) is at most
C times the coefficient of p2ps−2 in (35). From these facts, the statement of the
lemma then easily follows. �

PROOF OF THEOREM 5.5 IN THE CASE WHERE THE SUM IN (29) DIVERGES.
A one-sided Chebyshev inequality (see [11], Lemma 5.4) implies that for all n,

P
(
Wn >

E[Wn]
2

)
≥ 1

1 + 4C

where C comes from Lemma 5.9. By Fatou’s lemma, it follows, using the fact that
limn→∞ E[Wn] = ∞, that

P
[

lim
n→∞Wn = ∞

]
≥ 1

1 + 4C
.
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Hence

P

( ∞∑
k=0

1{Zk>0} = ∞
)

≥ 1

1 + 4C
.

If

A :=
{ ∞∑

k=0

1{Zk>0} = ∞
}

and

B :=
{ ∞∑

k=0

1{∫ 1
0 1{Sk(t)=0} dt>0} = ∞

}
,

then the argument right above (13) shows that P(A) ≤ P(B)/(1 − e−1). It follows
that P(B) > 0 and hence by the Hewitt–Savage zero-one law (see [7], page 174)
applied to the sequence {Xn(t) : t ∈ [0,1]}n∈N, we have P(B) = 1.

We now show how P(B) = 1 implies the existence of times t for which
Sn(t) = 0 for infinitely many values of n. Let

Vk = ⋃
n≥k

{
t ∈ (0,1) : Sn(t) = 0

}o
where Ao again denotes the interior of A. It follows from the above that each Vk is
dense and open a.s. Hence, by the Baire Category Theorem,

⋂
k≥1 Vk is a.s. dense,

completing the proof. �

In the remainder of this section, we will compute the Hausdorff dimension of
the set of return times for certain random walks on Abelian groups (Theorem 5.10).
This result immediately implies Theorem 1.13.

THEOREM 5.10. Let {Sn} be a symmetric random walk on an Abelian group
with identity 0. Assume that P (Sn = 0) � 1/nβ+1 for even n. If β ∈ (0,1], then

dimH

({t : Sn(t) = 0 i.o.}) = 1 − β.

REMARK 5.11. It was proved in [12] that for any symmetric finitely supported
random walk on a group, the return probabilities either decay faster than any
power, or satisfy a power law as above.

PROOF OF THEOREM 5.10. Let R := {t ∈ [0,1] : Sn(t) = 0 i.o. }. We first
show that dimH(R) ≤ 1 − β . To do this, let α > 1 − β and we will show that
Hα(R) = 0. For n = 1,2, . . . and i = 1,2, . . . , n, let In

i := [(i − 1)/n, i/n]. Next,
letting

Un
i := {

Sn(t) = 0 for some t ∈ In
i

}
,
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we have that P(Un
i ) ≤ 2pn since the number of sequences of {Xk(t)}1≤k≤n that we

see during a time interval of length 1/n has distribution δ1 ∗ Poisson(1) which has
mean 2. It follows that

E

[∑
n,i

I{Un
i }n−α

]
≤ 2

∞∑
n=0

n1−αpn < ∞

since α > 1 − β . Hence a.s.
∑

n,i I{Un
i }n−α < ∞. This easily implies that that

Hα(R) = 0, as desired.
We next show that dimH(R) ≥ 1 −β . By the codimension argument mentioned

earlier (see [21]), it suffices to show that if A ⊆ [0,1] is closed with dimH(A) > β ,
then

P(R ∩ A 
= ∅) > 0.

Given such a set A, by Frostman’s theorem, there exists a probability measure ρ

on A such that ∫
A

∫
A

|t − s|−β dρ(t) dρ(s) < ∞.

Let

Zk =
∫ 1

0

2k+1∑
n=2k+1

I{Sn(t)=0} dρ(t).

It is immediate that E[Zk] � 1/2kβ . We now estimate E[Z2
k ]. Proposition 5.12

below with L = 2k easily implies that

E[Z2
k ] ≤ C

22kβ

∫
A

∫
A

|t − s|−β dρ(t) dρ(s)

for some C < ∞. It follows by Cauchy–Schwarz that

P(Zk > 0) ≥ (E[Zk])2

E[Z2
k ]

≥ C∗ > 0.

By Fatou’s lemma,

P

(∑
k

I{Zk>0} = ∞
)

≥ C∗.

From here, one proceeds as in Theorem 5.5 to complete the proof. �

PROPOSITION 5.12. There exists a constant C such that for any L and
t ∈ [0,1],

�(L, t) :=
2L∑

n=L+1

L∑
m=0

P
[
Sn(0) = 0, Sn+m(t) = 0

]≤ C(L2t)−β .(37)

Before proving this we isolate the following easy lemma.
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LEMMA 5.13. For any β ∈ (0,1], there exists a constant C1, such that for any
L ≥ 1 and any θ ∈ (0,1], if Y has binomial distribution with parameters L and θ ,
then

E[Y−β ∧ 1] ≤ C1(Lθ)−β .

PROOF. Break the expectation over the set A = {Y ≤ Lθ/2} and its comple-
ment. By Chebyshev’s inequality,

P(A) ≤ 4 Var(Y )

E[Y ]2 ≤ 4

E[Y ] = 4

Lθ
.

Hence, the expectation of Y−β ∧ 1 over A is at most 4/(Lθ) ≤ 4(Lθ)−β . On Ac,
we have Y−β ≤ 2β(Lθ)−β pointwise. �

PROOF OF PROPOSITION 5.12. Throughout this proof, Ci will denote
arbitrary positive constants. Note that pj ≤ C2j

−β−1 for all j . Let

θ := 1 − e−t so that θ ≥ t (1 − e−1) for t ∈ [0,1].(38)

The number of variables among X1(·), . . . ,Xn(·) that are updated during the time
interval [0, t] is a Binomial variable Yn,θ with parameters n and θ . Thus from (37),

�(L, t) =
2L∑

n=L+1

L∑
m=0

n∑
j=0

P(Yn,θ = j)pnpj+m(39)

≤
2L∑

n=L+1

pn

L∑
m=0

n∑
j=0

P(Yn,θ = j)

[
C2

(j + m)β+1 ∧ 1
]
.(40)

Since Yn,θ stochastically dominates YL,θ for n ≥ L, and (j +m)−β−1 is decreasing
in j , we have that for any m ∈ [0,L],

n∑
j=0

P(Yn,θ = j)

[
C2

(j + m)β+1
∧ 1

]
≤

L∑
j=0

P(YL,θ = j)

[
C2

(j + m)β+1
∧ 1

]
.

Hence

�(L, t) ≤ C2L

Lβ+1

L∑
j=0

P(YL,θ = j)

L∑
m=0

[
C2

(j + m)β+1 ∧ 1
]
.

Now
∑L

m=0[ C2
(j+m)β+1 ∧ 1] ≤ C3(j

−β) ∧ 1, whence

�(L, t) ≤ C4

Lβ

L∑
j=0

P(YL,θ = j)(j−β ∧ 1) ≤ C5(L
2θ)−β,

by Lemma 5.13. The inequality in (38) completes the proof. �
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6. Concluding remarks and open problems.

1. The dynamical sensitivity and stability discussed here parallel, to some extent,
the notions of noise sensitivity and stability studied in [3]. For instance,
dynamical stability of the law of large numbers corresponds to noise stability
of the majority function in [3], while dynamical sensitivity of run tests
in Section 3, corresponds to the noise sensitivity of the Boolean function
determining whether the length of the longest run in a finite binary sequence
exceeds its median. It remains a challenge to establish more formal connections
between dynamical sensitivity and noise sensitivity.

2. In this paper, we considered equilibrium dynamics with one-dimensional time.
It is possible to extend the dynamics to multi-dimensional time, for instance
along the lines suggested in [5] and in [10].

3. We conjecture that recurrence of simple random walk in Z2 is sensitive. One
motivation for this conjecture is the result of Adelman, Burdzy and Pemantle [1]
who showed that projecting spatial Brownian motion to certain (random) planes
can yield a transient process.

4. Is there a precise relationship between almost sure properties of sequences
which are dynamically stable for simple random walk, and properties of paths
which hold quasi-everywhere in Wiener space (cf. [16] and Theorem 1.12
here)?
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