
The Annals of Probability
1996, Vol. 24, No. 1, 196]205

ON THE EXISTENCE OF UNIVERSAL FUNCTIONAL

SOLUTIONS TO CLASSICAL SDE’S
1

BY OLAV KALLENBERG

Auburn University

Assume that weak existence and pathwise uniqueness hold for solu-
Ž . Ž .tions to the equation dX s s t, X dB q b t, X dt starting at fixedt t

points. Then there exists a Borel measurable function F, such that any
Ž . Ž .solution X, B satisfies X s F X , B a.s. This strengthens a fundamen-0

tal result of Yamada and Watanabe, where F may depend on the initial

distribution m.

1. Introduction and main results. Throughout the paper we shall
Ž .consider a general stochastic differential equation SDE of the form

1 dX i s s i t , X dB j q b i t , X dt ,Ž . Ž . Ž .t j t

Ž i. Ž i.where s s s and b s b are predictable processes of suitable dimension,j

Ž d .defined on the canonical space C R , R equipped with the raw inducedq

Ž . Ž .filtration. By a solution to 1 is meant a pair X, B of processes on some

probability space with filtration FF, such that B is an FF-Brownian motion in
r Ž .R while X is a continuous FF-adapted process satisfying 1 . In order for the

Ž .integrals in 1 to make sense, the process X must fulfill the integrability

condition

t
2 a s, X q b s, X ds - ` a.s., t G 0,Ž . Ž . Ž .Ž .H

0

i j i j T 5 5where a s s s or a s ss , while ? is any norm in the space of d = dk k

matrices.

By weak existence with initial distribution m we shall mean the existence
Ž . Ž .on a suitable filtered probability space of a solution X, B , such that X0

Ž .has distribution m. In contrast, strong existence means that 1 can be solved

on any given probability space with a complete filtration FF, an associated

Brownian motion B and an FF -measurable random variable j with distribu-0

tion m, in such a way that X s j a.s. The corresponding notions of unique-0

ness are those of uniqueness in law, meaning that the distribution of X

depends only on m, and of pathwise uniqueness, which means that if X and Y

are two solutions with X s Y a.s. and initial distribution m, defined on the0 0
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same filtered probability space with a common Brownian motion B, then X

and Y are indistinguishable.

Ž .In a remarkable classical paper, Yamada and Watanabe 1971 proved the

following fundamental result. Assume that weak existence and pathwise

uniqueness hold for solutions with a fixed initial distribution m. Then strong

existence and uniqueness in law hold for the same initial distribution. Fur-
d Ž r .thermore, there exists a Borel measurable function F : R = C R , R ªm q

Ž d . Ž .C R , R , such that any solution X, B with initial distribution m satisfiesq

Ž .X s F X , B a.s.m 0

Now assume in addition that weak existence and pathwise uniqueness

hold for solutions starting at arbitrary fixed points x, that is, for all initial
Ž . Ž .distributions d , and write F w s F x, w . A simple conditioning argu-x x d x

ment then yields

3 m x g R
d : F x , B s F B a.s. s 1,Ž . Ž . Ž .� 4m x

as noted already by Yamada and Watanabe. Unfortunately, one cannot
Ž . Ž .conclude without product measurability that X s F X , B s F B a.s. Inm 0 X 0

Ž .order to obtain the desired universal representation X s F X , B a.s., it is0

Ž .necessary first to construct a measurable modification of the process F wx

on the canonical path space. Our primary aim is to strengthen the

Yamada]Watanabe theorem by showing that such a universal representation

function F does exist.

THEOREM 1. Assume that weak existence and pathwise uniqueness hold

for solutions starting at arbitrary fixed points. Then strong existence and

uniqueness in law hold for every initial distribution. Furthermore, there

exists a Borel measurable and universally predictable function
d Ž r . Ž d . Ž .F: R = C R , R ª C R , R such that any solution X, B satisfies X sq q

Ž .F X , B a.s.0

To explain the predictability assertion, let GG denote the induced filtration
d Ž r . mon the canonical space R = C R , R , write GG for the completion of GGq

r r Ž r .with respect to m = W , where W is Wiener measure on C R , R , andq
mform GG s F GG for t G 0. Then F is GG-predictable.t m t

Our proof extends immediately to the case when weak existence and

pathwise uniqueness are only assumed for solutions starting at fixed points

in some Borel set D ; R
d. Still we get a functional representation X s

Ž .F X , B a.s., but only for solutions X with X g D a.s. A similar remark0 0

applies to the subsequent propositions.

wŽ .CAUTION. In the original statement of Yamada and Watanabe 1971 ,
xCorollary 3 , the authors actually claim the existence of a universally mea-

Ž . Ž . Ž .surable function F, such that any solution X, B to 1 satisfies X s F X , B0

a.s. However, the argument provided is insufficient to prove the claim, and a
wŽ . xcorrected version appears in Ikeda and Watanabe 1989 , Theorem IV.1.1 .
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Even there the functional solution is written in universal form as X s
Ž .F X , B a.s., but then the authors define the ‘‘function’’ F to be equal to F0 m

whenever X has distribution m.0

For the proof of Theorem 1, we shall need the measurability part of the

following proposition, which is only a modest extension of a result by Stroock
wŽ . xand Varadhan 1979 , Exercise 6.7.4 . A weaker version with a different

wŽ . xproof appears in Yamada and Watanabe 1971 , Corollary 2 . The last

assertion, also essentially due to Stroock and Varadhan, follows easily by the

same proof and is added here because of its independent interest.

PROPOSITION 1. Assume that weak existence and uniqueness in law hold

for solutions starting at arbitrary fixed points. Then the two properties remain

valid for arbitrary initial distributions. Moreover, the corresponding distribu-
d Ž d .tions P form a kernel from R to C R , R , and in the diffusion case theyx q

further satisfy the strong Markov property.

In particular, it is interesting to note from the last two results that weak

existence, in the stated combination with pathwise uniqueness or uniqueness

in law, extends from degenerate to arbitrary initial distributions. For the two

uniqueness properties, the extension can be established directly by a simple
wŽ .conditioning argument, as pointed out in Ikeda and Watanabe 1989 , Re-

xmarks IV.1.2 and IV.1.4 . For the weak existence property alone, the situation

may be less obvious and worth recording.

PROPOSITION 2. Assume that weak existence holds for solutions starting at

arbitrary fixed points. Then weak existence holds for any initial distribution.

The last two results may be rephrased in terms of the corresponding local

martingale problem, which will play an important role in our proofs. Here we

define

t
f `M s f X y f X y A f X ds, t G 0, f g C ,Ž . Ž . Ž .Ht t 0 s K

0

where C` denotes the class of infinitely differentiable functions f : R
d

ª RK

with bounded support, while the operators A are defined bys

1 Y Xi j i `A f x s a s, x f x q b s, x f x , s G 0, f g C .Ž . Ž . Ž . Ž . Ž .s i j s i s K2

Recall that a process X or its distribution P is said to solve the local
Ž . f `martingale problem for a, b , if M is a local martingale for every f g C .K

By a fundamental result of Stroock and Varadhan, a measure P has the
Ž . Ž .stated property iff there exists a solution X, B to 1 such that X has

distribution P.

The area of this paper is of course very classical, and the basic definitions

and results may be found in many textbooks on stochastic calculus. Inexperi-

enced readers may find the detailed discussion in Rogers and Williams
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wŽ . x1987 , Sections V.8]10, 16]17 and 19]21 particularly helpful. Note inci-
Ž .dentally that, in their terminology, Theorem 1 states that equation 1 is

Ž .exact iff it has a unique up to measurable modifications strong solution
Ž .which may eliminate the need for a dual terminology .

Ž .A referee kindly called attention to a paper by Kaneko and Nakao 1988 ,

where a Borel measurable strong solution is obtained for pathwise unique

SDE’s of Markovian type with continuous coefficients of linear growth. This

result was obtained as a by-product of their main result that the associated

Euler]Maruyama scheme converges a.s. for some subsequence independent

of the initial values.

2. Some technical lemmas. We begin with some elementary properties
Ž . Ž .of kernels. By a probability kernel between two measurable spaces S, SS

Ž . w x Ž .and T, TT is meant a mapping m: S = TT ª 0, ` , such that m s, B is
Ž .SS-measurable in s g S for fixed B g TT and a probability measure in B g TT

for fixed s g S. Alternatively, m may be regarded as a measurable map from
Ž . w Ž .x Ž .S to MM T or PP T , the space of probability measures m on T, endowed

with the s-field induced by the functions m ¬ mB, B g TT.

Ž . Ž . Ž .LEMMA 1. Fix three measurable spaces S, SS , T, TT and U, UU , and let

m be a probability kernel from S to T. Then:

Ž . Ž .i For any n g PP U , the mapping s ¬ m m n is a probability kernels

from S to T = U.

Ž .ii For any measurable function f : S = T ª U, the mapping
Ž Ž ..y1s ¬ m ( f s, ? is a probability kernel from S to U.s

Ž . Ž .PROOF. i Note that m m n A is SS-measurable when A s B = C withs

B g TT and C g UU, and extend by a monotone class argument.

Ž . � Ž . 4ii For any D g UU we need to show that m t g T ; f s, t g D is SS-mea-s

surable. Equivalently we may prove for any set A g SS m TT with sections
� Ž . 4A s t g T ; s, t g A that the function s ¬ m A is SS-measurable. Agains s s

this is obvious for product sets A s B = C with B g SS and C g TT, and it

follows in general by a monotone class argument. I

For the next result, say that a measure on a metric space is degenerate if

its support contains at most one point.

Ž .LEMMA 2. Let m be a kernel from a measurable space S, SS to a separa-

ble metric space T, and let D denote the set of all s g S, such that the measure

m is degenerate. Then D g SS .s

�Ž .PROOF. Fix a countable topological base B , B , . . . in T, define J s i, j ;1 2

4B l B s B and note thati j

D s s g S : m B m B s 0 . IŽ . Ž .Ý s i s j½ 5
Ž .i , j gJ
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We proceed with a kernel version of the existence theorem for regular

conditional distributions.

Ž .LEMMA 3. Fix a measurable space S, SS and two Polish spaces T and U

with Borel s-fields TT and UU, and let m be a probability kernel from S to

T = U. Then the Radon]Nikodym densities

m s, dt = BŽ .
n s, t , B s , s g S, t g T , B g UU ,Ž .

m s, dt = UŽ .

have versions which form a probability kernel from S = T to U.

PROOF. For each B g UU we may use Doob’s martingale approach to
wŽ .Radon]Nikodym densities, as described in Dellacherie and Meyer 1980 ,

xTheorem V.58 , to produce a product-measurable version of the function
Ž . Ž .s, t ¬ n s, t, B . Then proceed as in the usual construction of regular

Ž .conditional distributions, noting that in each step the exceptional s, t -set A
�lies in SS m TT and satisfies m A s 0 for all s g S, where A s t g T ;s s s

Ž . 4s, t g A . I

To motivate the next result, consider some random elements j , j , . . . and1 2

j in a complete metric space S, such that j ª j . Then j is the a.s. limit ofn P

Ž .a subsequence and hence a.s. of the form j s F j , j , . . . for some measur-1 2

able function F: S`
ª S. However, the subsequence and then also F will

Ž .depend on the distribution m of j , and for varying m the representationn

Ž .becomes instead j s F m, j , j , . . . a.s. This shows that, whenever a ran-1 2

dom object is constructed by successive approximations in probability, we are
Ž .forced to consider approximating sequences of the form j s F m, X . In thisn n

setting, the measurability of the representing functions extends to the limit.

Ž .LEMMA 4. Fix a measurable space S, a complete metric space T, r and a
Ž .sequence of measurable functions F ,F , . . . : PP S = S ª T. Then there exists1 2

Ž .a measurable function F: PP S = S ª T, such that whenever X is a random
Ž .element in S with distribution m for which F m, X converges in probability,n

Ž .the limit equals F m, X a.s.

Ž `.PROOF. For any k g N and m g PP T we define

ykn m s inf n g N; sup r t , t n 1 m dt F 2Ž . Ž . Ž .Hk m n½ 5
mGn

Ž .and we note that the functions n are measurable. If j is a randomk n

Ž .sequence in T with distribution m satisfying j ª j , then n m - ` for alln P k

k and we have

E r j , j n 1 F 2yk - `.� 4Ž .Ý Ýn Ž m . n Ž m .k kq1

k k

Ž .Hence the sum on the left is a.s. finite, so the sequence j is a.s.n Ž m .k

Ž .Cauchy, and therefore j ª j a.s. Thus j s G m, j , j , . . . a.s., wheren Ž m . 1 2k
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Ž . Ž .G m, t , t , . . . s lim t whenever the n m are finite and such that the1 2 k n Ž m . kk

Ž .limit exists, while otherwise G m, t , t , . . . s t for some fixed t g T.1 2 0 0

To see that G is measurable, let L denote the set of convergent sequences
Ž . ` Ž . Ž . ct s t g T , define l t s lim t on L and put l t s t on L . Sincen n n 0

Ž . Ž . Ž .G m, t s l( t on the set where the n m are finite and the sequencen Ž m . kk

Ž .t is measurable on the same set, it remains to show that l is measur-n Ž m .k

able. Then note that L is a measurable subset of T`, since t g L is equivalent
Ž . Ž . Ž .to the Cauchy convergence of t . Furthermore f t ª f ( l t on L for anyn n

continuous function f : T ª R, so f ( l is measurable, and by a simple

approximation it follows that 1 ( l is measurable for any open set G ; T,G

which implies the desired measurability of l.

Now consider a random element X in S with distribution m and let
Ž . Ž .j s F m, X , n g N, for some measurable functions F : PP S = S ª T. Ifn n n

Ž .j ª j , the previous argument yields j s G n , j , j , . . . a.s., where nn P 1 2

Ž .denotes the distribution of the sequence j . Thus it remains to show that nn

Ž .is a measurable function of m. However, this is clear from Lemma 1 ii ,
Ž . Ž .applied to the kernel K m, B s mB from PP S to S and the function

Ž . Ž . `f s F : PP S = S ª T . In

The last result will now be applied to stochastic integrals with respect to
Ž i.solution processes X. Write L X for the class of predictable processes Y

that are locally integrable with respect to X i, and denote the corresponding

stochastic integral processes by Y ? X i. Integrals with respect to Lebesgue

measure l will be written as Y ? l.

Ž d . Ž d .LEMMA 5. Fix any predictable function f : C R , R ª C R , R . Thenq q

there exists some measurable function

4 F : PP C R , R
d = C R , R

d
ª C R , R ,Ž . Ž .Ž . Ž .Ž .q q q

such that whenever X is a process with distribution m that solves the local
Ž . iŽ . Ž i.martingale problem for a, b and satisfies f X g L X for all i, we have

iŽ . i Ž .f X ? X s F m, X a.s.

Ž .PROOF. Recall that X is a semimartingale with drift component b X ? l
w i j x i jŽ . wand covariation processes X , X s a X ? l cf. Rogers and Williams

Ž . x iŽ . Ž i.1987 , Section V.20 . Hence f X g L X for all i, iff the processes
Ž i.2 i iŽ . i iŽ .f a X and f b X are a.s. Lebesgue integrable, and in that case

iŽ . i iŽ . if X ? X ª f X ? X in the sense of uniform convergence on boundedn P

intervals, whenever a.s.

2i i i i i i i5 f y f a X ? l ª 0, f y f b X ? l ª 0.Ž . Ž . Ž .Ž . Ž .n n

iŽ . i Ž .Assuming that f X ? X s F m, X a.s. for some measurable functions Fn n n

Ž . iŽ . ias in 4 , we may then conclude by Lemma 4 that the limit f X ? X has a

representation of the same kind. This argument will now be applied in three

steps.
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Ž . Ž . � < Ž . < 4 Ž .First we define f x s f x 1 f x F n . Then 5 holds by dominatedn
iŽ . i iŽ . i iŽ . i Ž .convergence, so f X ? X ª f X ? X . Thus if f X ? X s F m, X a.s.n P n n

for some measurable functions F , we get a similar representation for then
iŽ . iprocess f X ? X , which reduces the discussion to the case of bounded f.

Next we may introduce the moving averages

t
df t , x s n f s, x ds, t G 0, n g N, x g C R , R ,Ž . Ž . Ž .Hn q

y1Ž .tyn q

which are clearly continuous and adapted, hence predictable. By Lebesgue’s

differentiation theorem we have

l s G 0; f s, x ¢ f s, x s 0, x g C R , R
d ,� 4Ž . Ž . Ž .n q

Ž . iŽ . i iŽ . iso 5 holds by dominated convergence, and again f X ? X ª f X ? X .n P

By the previous argument, this reduces the discussion to the case of bounded

and continuous f.

We may finally reduce to the case of simple predictable integrands, by
Ž . Ž ynw n x .taking f s, x s f 2 2 s , x and using dominated convergence and Lemman

4 as before. However, for simple predictable f , the values of the process
iŽ . i iŽ .Ž i i.f X ? X are finite sums of products f s, X X y X , so in this case wet s

iŽ . i Ž .have trivially a representation f X ? X s F X for some measurable func-
Ž d . Ž .tion F: C R , R ª C R , R . Iq q

The previous result will now be applied to the construction of a weak
Ž .solution to 1 from a solution to the associated local martingale problem.

LEMMA 6. There exists a measurable function

F : PP C R , R
d = C R , R

dqr
ª C R , R

r ,Ž .Ž . Ž .Ž .q q q

such that whenever X is a process with distribution m that solves the local
Ž .martingale problem for a, b while Y is an independent Brownian motion in

r Ž . r
R , the process B s F m, X, Y is another Brownian motion in R , such that

Ž . Ž .the pair X, B with induced filtration solves 1 .

PROOF. We may follow the usual construction of B, as described in, for
wŽ . xexample, Rogers and Williams 1987 , Theorem V.20 . This involves, as the

only nonelementary step, a stochastic integration with respect to the continu-
Ž .ous semimartingale X, Y , where the integrand is a predictable function of

Ž .X obtained by some elementary matrix algebra. Now even X, Y is a solution

to a local martingale problem, so Lemma 5 yields the desired functional

representation. I

3. Proofs of main results.

Ž Ž d ..PROOF OF PROPOSITION 1. Write PP s PP C R , R , let PP denote theq M

Ž .class of measures P g PP that solve the local martingale problem for a, b
� d4with a degenerate initial distribution and note that PP s P ; x g R .M x
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wŽ .Following the argument outlined in Stroock and Varadhan 1979 , Exercise
x6.7.4 , we need to show that PP is a Borel subset of PP, since the assertedM

measurability will then follow by Kuratowski’s theorem, the fact that any

measurable bijection between Borel subsets of Polish spaces has a measur-
w Ž . xable inverse cf. Parthasarathy 1967 , Section I.3 .

To this aim, we note that the class C` in the formulation of the localK

martingale problem may be replaced by a countable subclass CC, consisting of

suitably truncated versions of the coordinate functions x i and their products

x i x j. In fact, in the proof of the fundamental equivalence between weak
Ž .solutions to 1 and solutions to the associated local martingale problem, one

f wneeds to consider the processes M only for such functions f cf. Rogers and
Ž . xWilliams 1987 , Theorem V.20 .

Ž d .Now introduce the canonical process X in C R , R and let D denote theq

class of measures P g PP such that P ( Xy1 is degenerate. Further let I0

consist of all measures P g PP, such that X satisfies the integrability condi-
Ž . f � < f < 4tion 2 . Finally put t s inf t; M G n and let L denote the class ofn t

f , n f Ž f .measures P g PP, such that the processes M s M ?n t y are martin-n

gales under P for arbitrary f g CC and n g N. Then PP s D l I l L and itM

suffices to show that D, I and L are measurable.

For D the measurability is clear by Lemma 2. Even I is measurable, since
Ž .the integrals on the left of 2 are measurable by Fubini’s theorem. Finally L

is measurable, since the relation P g L is equivalent to countably many
w f , n f , n xconditions of the form E M y M ; A s 0, with f g CC, n g N, s - t int s

Q and A g FF .q s

To prove the strong Markov property in the diffusion case, it is enough to
w < xshow for each x and any bounded stopping time t that P u g ? FF g L a.s.x t t

However, this is equivalent to countably many relations of the form

f , n f , n <E M y M 1 (u FF s 0 a.s.,Ž .x t s A t t

each of which follows by Doob’s optional sampling theorem from the local

martingale property of M f under P . Ix

PROOF OF THEOREM 1. By the Yamada]Watanabe theorem there is

uniqueness in law for solutions starting at fixed points, and by Proposition 1
d Ž d .the corresponding distributions P form a kernel from R to C R , R . Letx q

G denote the function in Lemma 6, and note that if X is a process with

distribution P while Y is an independent Brownian motion in R
r, thenx

Ž . r Ž .B s G P , X, Y is another Brownian motion in R , such that the pair X, Bx

Ž . Ž .solves 1 . Writing Q for the distribution of X, B , we may conclude fromx

Ž . Ž . dLemma 1, i and ii , that the mapping x ¬ Q is a kernel from R tox

Ž dqr .C R , R .q

Ž .Now change the notation and write X, B for the canonical process on
Ž dqr . Ž .C R , R . By the Yamada]Watanabe theorem we have X s F B a.s. Q ,q x x

so

< dw x6 Q X g ? B s d a.s., x g R .Ž . x F ŽB .x



O. KALLENBERG204

w < xBy Lemma 3 the conditional distributions Q X g ? B g dw have versionsx
d Ž r . Ž d .n which form a probability kernel from R = C R , R to C R , R , andx, w q q

Ž .6 shows that n is a.s. degenerate for each x. Since the set of degeneratex, w

measures is measurable by Lemma 2, we may modify n such that nx, w

becomes degenerate for all x and w, and hence of the form

7 n s d , x g R
d , w g C R , R

r ,Ž . Ž .x , w F Ž x , w . q

d Ž r . Ž d .for some function F: R = C R , R ª C R , R . The kernel property of nq q

Ž . Ž .implies that F is product measurable, while a comparison of 6 and 7 yields
Ž . Ž .F x, B s F B a.s. for each x.x

Now fix an arbitrary probability measure m on R
d, and conclude from

Ž .Proposition 1 and its proof that P s HP m dx solves the local martingalem x

Ž .problem for a, b with initial distribution m. Hence there exists a solution
Ž . Ž . Ž .X, B to 1 , such that X has distribution m. Since 1 remains valid under0

conditioning on X , the pathwise uniqueness in the degenerate case implies0

w Ž . < x Ž .P X s F X , B X s 1 a.s., and we get X s F X , B a.s. In particular,0 0 0

pathwise uniqueness holds for arbitrary initial distributions m.

Ž .We return to the canonical setting and write j , B for the identity
d Ž r . rmapping on the space R = C R , R with probability measure m m W andq

induced completed filtration GG
m. By the Yamada]Watanabe theorem there

m Ž . Ž .exists a GG -adapted solution X s F j , B to 1 with X s j a.s., and by them 0

Ž . mprevious discussion we have even X s F j , B a.s. Hence F is adapted to GG ,

and since m is arbitrary, the adaptedness extends to the universal completion
m

GG s F GG , t G 0. The asserted GG-predictability now follows since F hast m t

continuous paths. I

PROOF OF PROPOSITION 2. Define PP and PP as before, and recall from theM

proof of Proposition 1 that PP is a Borel subset of the Polish space PP, henceM

Ž .Borel isomorphic to a Borel set in R . Letting w P denote the starting pointq

associated with a measure P g PP , it is further seen that w is continuousM

and hence a measurable map from PP to R
d. Since R

d is separable, it followsM

�Ž Ž .. 4by a simple approximation that the graph G s P, w P ; P g PP is a BorelM

subset of PP = R
d.

Now fix a probability measure m on R
d. By the section theorem in

wŽ . Ž .xDellacherie and Meyer 1975 , III.44 b , there exists a measurable mapping
m d Ž m . dx ¬ P from R to PP , such that P , x g G for x g R a.e. m. Thex M x

m Ž .measures P clearly solve the local martingale problem for a, b , while thex
m Ž .corresponding initial distributions equal d a.e. m. Thus P s HP m dx hasx m x

initial distribution m, and from the proof of Proposition 1 we note that even
Ž . Ž .P solves the local martingale problem for a, b . Thus 1 has a weak solutionm

with initial distribution m. I
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