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THE CUT-OFF PHENOMENON FOR
RANDOM REFLECTIONS!
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University of California, Berkeley

For many random walks on “sufficiently large” finite groups the
so-called cut-off phenomenon occurs: roughly stated, there exists a number
k,, depending on the size of the group, such that %k, steps are necessary
and sufficient for the random walk to closely approximate uniformity. As a
first example on a continuous group, Rosenthal recently proved the occur-
rence of this cut-off phenomenon for a specific random walk on SO(N).
Here we present and [for the case of O(NN)] prove results for random walks
on O(N), U(N) and Sp(N), where the one-step distribution is a suitable
probability measure concentrated on reflections. In all three cases the
cut-off phenomenon occurs at k, = +N log N.

1. Introduction and statement of results. The purpose of this paper
is to give a precise estimate on the speed of convergence to stationarity (i.e.,
the normalized Haar measure ) with respect to total variation distance
Il -lltv for a specific random walk (“random reflections”) on the orthogonal
group O(N) (Theorems 1.1 and 1.2). Our results show that, in the large N
limit, these random walks exhibit the so-called cut-off phenomenon (see
Remark 1.3).

By “random reflections” on O(N) we mean the random walk whose step
distribution u is the uniform probability measure concentrated on the set %
of reflections [the elements of O(N) that leave exactly one hyperplane point-
wise fixed]. Note that the set % is a conjugacy class; hence u is the unique
conjugate-invariant probability measure on .%.

The main problem is to estimate || u, — &|lrv in (&, N). Here u, denotes
the distribution of the walk at time % (i.e., the k-fold convolution power of w).
Note that in the case of random reflections, there is a parity problem. At odd
times, the probability measures uq, ug,... are concentrated on O(N)~, the
connected component of O(IN) of orthogonal matrices of determinant —1.
Similarly, at even times, w,, tqy,... are concentrated on the identity compo-
nent SO(NV). Hence we separate the cases k2 even and %k odd and define 9,
and 9_ by

d9, = 2150y, dO
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and
dy_= 214y, d?.

Our main results follow.

THEOREM 1.1. Let u be the probability measure on O(N) defined above.
For any integer N > 16 and any positive real number ¢ > ¢, (where c, is some
universal positive constant), we have the following: if k = 1N log N + cN is
an even integer, then:

(a) lp — O, llry < 10.6e7¢72,
(b) H/J“k+1 -3 |lrv < 10.6e7¢/9.
THEOREM 1.2. Let u be the probability measure on O(N) defined above.

For any integer N > 2 and any positive real number ¢, we have the following:
if k = 2N log N — cN is an even integer, then:

4 log N

(a) ”,U«k - 19+”TV >1+ 16.4e *¢ — 463w,
4 log N

(b) Iy = O-llay = 1 = 16.4e7* — 4637

Note that both statement (b) in Theorem 1.1 and statement (b) in Theorem
1.2 follow immediately from the corresponding bounds [statements (a)] for
Il u, — 9, llrv. Indeed, |l u, — 20 |lpv is weakly decreasing in k2 and equal to
1+ 1y, — 3., for & even, and 1 + || u, — I9_[lrv, for £ odd; hence

lprr = Ollov < llpy = Oplley <My — O_llav.

Our Fourier methods for proving the upper and lower bounds for || u, — 9, ll1v
rely on previous work by Diaconis, Rosenthal and others. To prove Theorem
1.1(a), we follow closely the outline of a proof for a similar estimate found
in [9].

REMARK 1.3. Together, Theorems 1.1 and 1.2 show that random reflec-
tions exhibit the cut-off phenomenon: for large N, the total variation distance
decreases abruptly from 1 to 0 as % increases. In particular, there is a critic-
al number %k (N) [here ko (N) = 1N log N1 such that, for all &> 0,
limy, I Mo (N Y1 +8) — P, llty = 0 and limy _, |l Bk (N1 — ) — P, llpy = 1 (simi-
larly for ¢_). For background on the cut-off phenomenon see, for example, [1].
To our knowledge, the only previous results in the compact Lie group case are
due to Rosenthal [9].

REMARK 1.4. Clearly, any reflection A can be written as

A =1, — 2xx' forsomex e SN,

where I, denotes the identity matrix of dimension N and SV~! denotes the
unit sphere in R". The product of two reflections (I — 2xx*)(I — 2yy?) is a
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rotation by twice the angle 6 between x and y, in the two-dimensional
subspace of RY spanned by x and y. It follows that du, = d(u*p) =
C,.(dd® ® cy(sin 6/2)V~2 d6), where C denotes the conjugation map C: O(N) X
SO(2) —» SO(N), C(A, R,) = Adiag(R,,1,...,1) A’ [and R, denotes the ele-

ment (Z;’jz ;sisnoa € S0O(2).] Considering only even times %, we can view the

random reflections problem also as a type of “random rotations” (with step
distribution u,) on SO(N) (for which our analysis shows that a cut-off occurs
at 2N log N). We will take this route in proving our results.

Rosenthal [9] analyzed the random rotations problem on SO(N) whose
step distribution u’ is uniform measure on the set of (two-dimensional)
rotations by a fixed but arbitrary angle 6,. He shows that, in the special case
of 8, = m, a cut-off occurs at ;N log N.

ReEMARK 1.5. The speed of convergence in L, can depend rather sensi-
tively on w: consider, instead of u,, the step distribution u defined by
dp = C,(d9® (1/(27))d0); W, is not even in L, for &k < O(N?) steps. The
proof, which uses Heckman’s multiplicity theory, can be found in [7] (Exam-
ple 1 in Section 4). On the other hand, the proof of Theorem 1.1(a) will show
that the L,-norm of w, is already close to 1 for 2 = tN log N + ¢cN and
¢ > c.

REMARK 1.6. The study of our random walk on O(N) was motivated by an
application in cryptography. To encrypt speech over telephone lines, one
method calls for random 256 X 256 orthogonal matrices. In this connection,
Sloane and Eaton have suggested random reflections as an algorithm for
generating “almost” uniformly distributed random orthogonal matrices (see
[11]). As the results of this paper show, this algorithm is not the fastest
known: Since multiplying an N X N matrix by a reflection takes on the of
order N2 operations (multiplication and addition), the algorithm by which
(loosely put) we choose an orthogonal matrix with probability 3 from u, and
with probability 3 from w,,, (where & = N log N) requires on the of order
N3 log N operations to produce close to uniformly distributed random orthog-
onal matrices. On the other hand, the so-called subgroup algorithm (the best
known algorithm) requires of order N operations to produce (exactly) uni-
formly distributed random orthogonal matrices (for a survey of available
methods, see [5]).

Random complex and quaternionic reflections. There are natural ana-
logues of random orthogonal reflections in the unitary group U(N) and the
symplectic group Sp(n). The precise statements and proofs of our results for
these groups will be published in a subsequent paper [8].

Random complex reflections. As a natural analogue to random orthogonal
reflections, we choose the random walk on the unitary group U(NN) whose
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step distribution v is concentrated on the set of complex reflections (the
union of conjugacy classes {A diag(ei’,1,...,1)A*: A € U(N), 6 € [0,27)})
and defined by dv = C,(ddyy, ® cy(sin §/2)"~ ' d6). Here C is the map C:
U(N) x [0,27) — U(N), C(A, 6) = Adiag(e’’, 1,...,1)A* and 9y, denotes
Haar measure on U(N). (Compare with Remark 1.4.) The result is as follows:

Random complex reflections exhibit the cut-off
phenomenon with threshold %2, = 2N log N.

REMARK 1.7. As pointed out in Remark 1.5, a “relatively small” change in
step distribution can influence the speed of convergence significantly. Con-
sider v defined by dv = C, (d¥yy, ® (1/(27)) d); v, is not even in L, for
k < O(N?) steps (see [7], Example 2(a) in Section 4).

In joint (unpublished) work with Rosenthal, we have linked the cases of v
and v through the finite sequence of measures {v*}, .o, y_1 With dv® =
C.(dVyn, ® cy ,(sin 6/2) d6). It turns out that »{ is not in L, for & <
(N%2 - N + 1)/2(a + 1)) steps.

Random quaternionic reflections. We further extend the notion of “ran-
dom reflections” to the quaternionic case. First, we define a probability
measure (call it y) on Sp(1).

For any h € Sp(1) the eigenvalues are exp(+i¢,), for some ¢, € [0,27)
[we identify Sp(1) with SU(2)]. We define y to be the probability measure
with density proportional to (sin ¢, /2)?"~ 2 with respect to Haar measure on
Sp(1).

We consider the random walk on Sp(n) whose step distribution 7 is
concentrated on the set of quaternionic reflections (the union of conjugacy
classes {Adiag(h,1,...,1)A*: A € Sp(1), h € Sp(n)}) and defined by dn =
C . (d¥s,,, ® dy). The result is as follows:

Random quaternionic reflections exhibit the cut-
off phenomenon with threshold %, = 3n log n.

See [7], Example 4 in Section 4, for the discussion of a different random
walk on Sp(n) with rather “slow” (if any) convergence in L,.

Organization. This paper is organized as follows. In Section 2 we present
basics on random walks and Fourier analysis used throughout. The necessary
background on the representation theory of compact connected Lie groups
and on the computation of the required Fourier coefficients is presented in
Section 3. We prove Theorem 1.1(a) in Section 4 and Theorem 1.2(a) in
Section 5.

2. Random walks and Fourier analysis. A random walk on a group G
is determined by its one-step probability distribution u. The random walk
starts at the identity and takes steps according to the measure u. Thus at
time ¢ = 0 the distribution of the walk is the measure concentrated at the
identity: at time ¢ = 1 it is u and at time ¢ = & the distribution is w,, the
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k-fold convolution whuik --- %u of w:
My, = WKLy g
Our interest is the speed of convergence to stationarity (Haar measure)
with respect to total variation distance (and L,-distance) for the random
walks under consideration. We recall the definition of total variation distance.

DEeFINITION 2.1. Let w and 9 be two Borel probability measures on a
topological space M and let (M) be the Borel sigma field of M. The total
variation distance is defined by

lu— Oy = sup 1u(S) — B(S)| = 2u— 9(M);
SeB(M)
notice that || w — ¥|lrv is always between 0 and 1.
If u has density f with respect to ¥, then

I = dlly =3[ 1f = 1do.

We now present some basic facts concerning Fourier transforms and the
upper bound lemma of Diaconis and Shahshahani [3, 4]. For background on
representation theory see, for example, [2, 6, 12]. Let G be a compact Lie
group; pg, P1, P, --- are its irreducible unitary representations and
Xo> X1> X2, - - - are the corresponding characters.

DEFINITION 2.2. Let v be a finite measure of G.

(a) The Fourier transform of » at p; is defined by

7(p) = [ pi(2)dv(g).
G
(b) The Fourier coefficient of v at p; is defined by

P(x) = trace 7(p) = [ x(g) dv(g).

Fourier transforms convert convolution to multiplication:

vixv?(p) = vi(p)v3( p;).

If v is conjugate-invariant, that is, if »(gSg~!) = v(S), for all measurable
sets S € G and for all g € G, a simplification occurs: »( p;) commutes with
p,(g), for all g € G. By Schur’s lemma, for each irreducible representation p,,
i=0,1,2,..., there exists a scalar r; such that »(p;,) = r;I. Clearly, r, =
(?(x;))/d;, where d; denotes the dimension of the irreducible representation
p;. Furthermore,

k

(x:) I

D ) = rk[ =
Vk(pl) r d

and

(1) e (Xi) =dirik=di(V( Xi)) .
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THEOREM 2.3. A finite positive measure v on a compact Lie group G is
uniquely determined by its Fourier transform (¢(p,), i =0,1,2,...).

This is a consequence of the Peter—-Weyl theorem ([2], Chapter III).

COROLLARY 2.4. If a finite positive measure v on a compact Lie group G is
conjugate-invariant, it is uniquely determined by its Fourier coefficients (0( x,),
i=0,1,2,...).

For a given irreducible representation p, of G, let

(b(i:)’ jak:1’2a""ds’

J

denote the entry functions, that is, p,(g) = (¢{;’(g)). The Schur orthogonality
relations assert that, with respect to the usual inner product in L,(G), the
functions ¢’ are orthogonal to each other and of norm d;'/?. That is

fG¢}£) ' m dd = 8st 8jl 8kmds_1’

where ¥ is normalized Haar measure on G and the bar denotes complex
conjugation. It follows that the irreducible characters x,, x1, X3,..- form an
orthonormal set of functions in the Hilbert space L,(G):

X, dd =8, ..
fGXl X] ij
The following version of the upper bound lemma can be found in [9].

LEMMA 2.5 (Upper bound lemma). Let G be a compact Lie group, let 3 be
its normalized Haar measure and let v be a conjugate-invariant probability
measure on G. Set [, = p( x;). Then

Iy — Sty < i( PMIA 1).

i=0

3. Irreducible representations and characters of SO(N). As men-
tioned in Remark 1.4, we will prove our upper and lower bound results
(Theorems 1.1 and 1.2) by viewing our random reflections problem on O(N)
as a random walk on SO(N) with step distribution w,. To apply Fourier
methods, we must compute the Fourier coefficients f,( ;) for all irreducible
representations p, of SO(N).

In the following we cite, without proofs, basic facts from the classical
(Cartan—-Weyl) representation theory of compact connected Lie groups. For
more details and proofs, see [2, 6, 12]. We limit the background presented
here to those features of the theory necessary for the computation of the
Fourier coefficients and the dimensions of the representations.

A compact connected Lie group G possesses countably many nonisomor-
phic irreducible representations. They are all finite dimensional. For each G,
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there exists a one-to-one correspondence between the integral lattice points
in a certain region C* of Euclidean space R" (the fundamental Weyl cham-
ber) and the irreducibles of the group. Given an irreducible p of G, the
corresponding lattice point w in C* is the highest weight of this representa-
tion. The sum of the highest weight o and a fixed vector ¢ (half the sum of
the positive roots) serves as an index for the irreducible representation p. For
example, for the group SO(N) with N =2n + 1 odd, the integer lattice
points in the fundamental Weyl chamber C*, that is, the collection of highest
weights, is the set of weakly increasing nonnegative integers

{0eENJ:0< 0, <wy < <}
and half the sum of the positive roots is the fixed vector
1 3 2n — 1
“lzz T

We can therefore index the irreducibles of SO(N) with N odd by n-tuples A
of strictly increasing half integers (odd multiples of 3). For N = 2n even, the
collection of highest weights is the set

b

(0€Z": o] < wy < -+ < w,},
whereas half the sum of the positive roots is in this case the fixed vector
y=1(0,1,2,...,n - 1).

The irreducibles of SO(N) with N even can therefore be indexed by n-tuples
A of integers with |A] < A, < -+ <A,
Let R v denote the two-dimensional rotation matrix

ki

cos ¢ —sin ¢
R,=1..
sin ¢  cos ¢

let R;' , € 8S0(2n + 1) denote the block diagonal matrix
= diag(R,,...,R, ,1)

02 n’

and let Ry € SO(2n) denote the block diagonal matrix

R} = diag(R,,,..., R, ).
The subgroups {RZ{1 . ¢, €[0,27w), 1 <i<n} of SO2n + 1) and

ol @ € [0,27), 1 < i < n} of SO(2n) are maximal tori of SO(2n + 1)
and SO(2n), respectively. Each element in SO(N) is conjugate to an element
in the maximal torus. Since characters are class functions, it suffices to have
a formula for the restriction of each irreducible character to the maximal

torus.

.....

77777 ¢

The Weyl character formula for SO(N).
(@) N=2n + 1. The irreducible representations of SO(N) can be in-
dexed by n-tuples of half integers (i.e., odd multiples of 3) A = (A, Ag,..., A,)



CUT-OFF PHENOMENON FOR RANDOM REFLECTIONS 81

with 2 < A; <A, < === < A,. The value of the irreducible character x, at an
element in the maximal torus is

_ Loes, Ko, - s sgn(0) (I ) exp(iX 1 6540 9))
Hlsr<35n2iSin(%(¢s t (IDr))HlernziSin(%(Pr) .

Here S, denotes the symmetric group, sgn(o) denotes the sign of the
permutation o and X, _.; indicates summation over all choices of &; =
+1,...,¢e, = 1.

(b) N =2n. The irreducible representations of SO(N) can be indexed by
n-tuples of integers A = (A, Ay, ..., A,) with [A| < Ay < -+ < A,. The value
of the irreducible character x, at an element in the maximal torus is

n

Yoes Yo _y188n( o )exp(iX7_ &M, (j,®;)
ngr<s§n2i sin(%(gos + (pr))
Here X* indicates summation over those choices of ¢, = +1,..., ¢, = +1 for
which I];e; = 1.
The dimension d, of an irreducible representation p, is given by Weyl’s
dimension formula:

(3) X)\(Rzl ,,,,, %.,) =

(a, A)
4 d, = lim RM1 =
( ) A 1§Di.—>0 X)\( P1seees ‘Pn) «ER* <a, (!j>
<i<n

[similarly for SO(2n)]. Here R* denotes the set of positive roots and (-, )
denotes the usual Euclidean inner product. In the case of SO(2n + 1), R* =
{ej +e;:1<i<j<n}Ul{e: 1<i<n}, where e; denotes the jth standard
basis element of R". In the case of SO(2n), R*{ej +e;:1<i<j<n) The
following proposition is an immediate consequence of the Weyl dimension
formula.

ProprosITION 3.1.  Let d, denote the dimension of the irreducible represen-
tation p, of SO(N) corresponding to the index A = (Ay, Ay, ..., A,). Then for
N=2n+1,n>1,

n

271
(®) = 113!---(2n—1)!(n)‘i) (8=

and for N =2n, n > 2,

i=1

21
- A2 — A%).
012! (2n — 2)! 1Sr1:[sgn( o)

(6) d,

The main goal of this section is to compute the Fourier coefficients fi,( x,)
= [sov) Xa(8) dpy(g), for each index A. Recall (see Remark 1.4) that w, is
the probability measure concentrated on the set of two-dimensional rotations
[ie., the union of conjugacy classes {AR)/(  ,A" A€S0@2n +1), o€
[0,27)}, similarly for SO(2r)] induced from Haar measure on SO(N) and the
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probability measure with density proportional to (sin ¢/2)Y~2 on [0, 27). Our
first step is to compute the character value for each irreducible character at a
two-dimensional rotation by the fixed angle ¢. We then integrate this func-
tion of ¢ against the measure on [0,27). For brevity, we will from now on
write x,(¢) instead of x,(R%g . o) or x,(RZ, o).

..........

LEmMA 3.2. (a) For N = 2n + 1 odd and any index A,
sin(;¢) N-2
2V~ 3(gin @/2)N 2 Y

ki

(1 6(e) = L (-1

(b) For N = 2n even and any index A,

exp(id; ) N-2
2V-3(gin @/2)N %

(8) x(e)= L (-1

Here dfj* % denotes the dimension of the irreducible of SO(N — 2) correspond-
ing to the index (Ay,..., A;,..., A,) (and the hat symbol means deletion).

Proor. (a) N =2n + 1. Use (2) and set ¢, = ¢. Eventually we will take
the limit ¢, — 0, for 2 < r < n. We can rewrite the numerator in (2) as

Y (=1)" exp(id;0) — exp(—iX;e)]
j=1

b

X X X sgn(cr)(ﬁas)exp(irizerAa(r>¢r

g,=+10€S, 4

2<s<n
where, for bfevity, we have written S,_; for the set of maps from {2,..., n}
onto {1,...,,... n}. We can view such a map o as a permutation of {2,..., n}
under the order preserving identification of {2,...,n} with {1,...,J,...,n},

and sgn(o) denotes the sign of this permutation. Furthermore, we can
rewrite the denominator in (2) as

. ¢ e
2isin— [] 2i s1n(—(gos + go))
2 2<s<n 2
1 @
x T1 2i sin(—(% + @k)) [T 2isin—.
2<k<l<n 2 2<k<n 2
Taking the quotient of these two expressions and letting ¢, — 0,for2 < r < n,
yields (7).
(b) N =2n. Use (3) and again set ¢; = ¢. Using the same notational
convention as above, we can rewrite the numerator in (3) as

n i . 2
Y (-1 Texp(ire) ¥ L sgn(a)exp(zzar%@,).
Jj=1 g=+10€S,_; r=29
2<r<n
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Similarly, the denominator in (3) can be written as
D- 1 2isin(3(¢, + ¢)),
2<s<n
where
D= TJI 2isin(3(e +¢p)).

2<k<l<n

Note that the second summation in the numerator can be rewritten as

y ( y ) = Y oy Y
e=+1‘o0€S, g=+1 g=+1
2<r<n 2<r<n 2<r<n
with ©* denoting summation over all even numbers of sign changes and X
denoting summation over all odd numbers of sign changes. Clearly,

e=+1,2<r<n

. N-2
lim - =d; °.
=0 D ’
2<r<n
Also,
i Zsr:il,Zsrsn Zsr:il,2sr§n 0
m = V.
®—0 D

2<r<n

This follows from the fact that

1. Zer:il,Zsrsn Zar:il,Zern
m
n T .
2<p,—>0 DII_,2isin o,
<r<n

is the dimension of the irreducible representation of the symplectic group
Sp(n — 1) corresponding to the index (A;,...,A;,...,,) (and as such is a
positive integer). It follows that

% .
. Zsr=i1,25rsn +Zsr=tl,2srsn N-2
lim =2d; “.
¢.—0 D J

2<r<n

Altogether, this yields (8). O

NoTAaTION. From now on, we will write a!!, for ala — 2)(a — 4):-- 2 or
ala — 2)(a — 4) -+ 1, depending on whether a is even or odd, respectively.

ProPOSITION 3.3. (a) For N = 2n + 1 odd and any index A,

(2n—1)” 1_[1<r<s<n(/\§_)€)
9 {i = — — )
(9) A(X) = ST (@n — 22 T17_ A,
and for N = 2n even and any index A,
0, for M with A, # 0,
10 7 = n— 1!
(10)  fs(x) ( ) [T (2-2A2), forAwith A, = 0.

1131 (2n — 3)! a<i<scn
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PrOOF. We must compute

R 21 . @ N-2
MZ(XA):CNJ;) XA(‘p)(Sln_) de

2
with
(N-2)I!' 1
mz, for N =2n + 1 odd,
VYTV (N-21 1
mz, for N = 2n even.

(a) N =2n + 1. Note that [f7sin A;o d¢ = 2/);, for all half integers A;.
From this and the dimension formula (5), applied to d}W 2 we get

R Cn n 11
= -1 — TT A [ A2 =A%),
Az 20) 113!---(2n—3)!2"j§1( ) A,-(lgm )1( P )
i1#J r,s#j

We rewrite the sum in this expression as

n .
£ I ) T o2,
j=1 1<i<n 1<r<s<n

1#] r,s#j

[T A
which, by a familiar formula for the Vandermonde determinant, is equal to

LI (A2 - A2).

n
ni=1)\i 1<r<s<n

Simplifying constants yields (9).
(b) N = 2n. Clearly, [¢7exp(i)A;¢)de = 0, for A; # 0, and 2, for A; = 0
(recall that the A; are nonnegative integers). It follows that in this case

A T N-2
fa( X)) = CNdel

(N —-2)!! 1 T (2 -2
- (N— 3)” o12!-.- (2n - 4)‘2n—1 2$r<ssn( ° r).

Simplifying constants yields (10). O

4. Proof of Theorem 1.1. Here we follow the outline of the proof of
Theorem 2.2 in [9].

The case N = 2n + 1 odd. Let

ﬂz( X).)

d,
By Lemma 2.5 and (1) it suffices to show that for any integer n > 8 and any
positive real number ¢ > ¢,, where ¢, is some universal positive constant,

Y (r)"d2 —1 < 451e /43,
A

ry =
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for £ = nlog n + cn. Recall that the sum is over all n-tuples A of strictly
increasing positive half integers. From (5) and (9) we get

(2n — 111>
rn=|—-——=].
2712 A
The following proposition is the crux of the proof of Theorem 1.1.

PRrOPOSITION 4.1. For n > 8 and all indices A with A, < 8n,

by+byt+ - +b

n

(r)"*d, < (15e/?)
Here b, =\, — (i — 3),1<i <n.
PrOOF. We need the following two easy lemmas.

LEMMA 4.2 [9]. Let d(T) ==d, with A =(%,3,...,(2n — 8)/2,T). Then

d(T+1) 1 2n — 2
W=(1+T)(l+ﬁ)g3

1 2n
+—.
T-n+3

2
LEMMA 4.3. Let r(T) = \/r, with A = (3,3,...,(2n — 8)/2,T). Then
1

r(T+1) 1
nT)  T+1 Se"p(_T+ 1)'

We now split the proof of Proposition 4.1 into two parts. In Part A we
analyze

AT+ )r(T+ 1"
- AT

and in Part B we prove the full statement.
Part A. From the above lemmas we have

AT+ )r(T+1)" 2n -
T AT S3(“T—n+%) p(

1 + .
T+1(n ogn + cn)

We now set b* =T + 1 — (n — %) and analyze

2n nlogn + cn
p<31+ b—j)exp[—Tb:
1 2 b¥logn —cn
S3;+Eexp[—n+b: }

in three cases.
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Case (a) 1 < b} < n/logn < n. Then

n —cn

p< 9exp[ ] =9/ee/? < 15e~¢/2

provided ¢ > 1.
Case (b) n/logn < b¥ < 0.5n. Then

1 2log n 0.5nlogn —cn
p<3l— + )exp exp[ }
n n n 1.5n
log n
<9 B 05g-c/15 (since 1 < log n, for n > 3)
log n

— —-c/1.5 -c/15
9—=e < Te ,

for n > 8 [since f(x) = log x/x*% is strictly decreasing for x > 8].

Case (¢) 0.5n < b} < 8n. Write ¢ for b} /n. Then 0.5 < ¢t < 8 and

3 1 2 tnlogn —cn 3 1 2
pSn( t)exp (1+¢)n n( ¢

C
t/(1+¢) _
n ex
p( 1+ t)

2 c c c
_ 2, -1/a+0 - -1/9 _ - _ -
3(1+ t)n exp( 1+t)sl5n exp( 9)s15exp( 9).
By (a), (b) and (c), p < 15e ¢/® for n > 8, k = nlog n + cn.

Part B. To prove the full statement of Proposition 4.1, proceed as follows.
Start with the index A° = (3,2,...,(2n — 1)/2), corresponding to the trivial
representation, for which d,0 = r,0 = 1, and, step by step, increase the last
number in this n-tuple by 1 until the desired A, from the given index
A= (A4, Ay, ..., A,) is reached. Clearly,

(r0)*?d; < (15e/)"",

where b, = A, — (n — Hand A :=(},2,...,(2n — 3)/2, A,). Then repeat this
procedure for the (n — 1)st number in A until the desired A, , is reached
and so on.

It is not hard to see that in each such unit increment we pick up a factor
less than or equal to 15e¢ ¢/°. Indeed, with the notation

r(Ty) =yry, d(T))=d,,
13  2-3

here b = (=, —,..., /S VD W
where 2 2 2 i i+1 n
we have
1 r(T, +1) 1 1 1 1
A — — < —
(11) r(T)) T +1 T, +1+ (n—1)

13
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and
d(T,+1) T, +1 f[ T,+1 - A\ 2 (T, + 1+ A
d(Tl) B Ti s=1 Crz - /\s s=1 Ti + )\5
no (A2 = (T, + 1)°
x I1 2( 2)
s=it1 A =T,
1 ViU To+ 1= A, \ i (T, + 14 A,
(12) |1+
Ti s=1 Ti - /\s s=1 Ti + As
1 20 — 2
=14+ —|[1+ —3
Ti Ti—L+§
1 2n
<|1+ —||1+ ;
T, T, —i+

Using (11) and (12) and setting b} == T, + 1 — (i — 1), the proof from Part A
goes through with b7 replaced by bf, for l<i<n.
This concludes the proof of Propos1t10n 4.1. O

Writing @ for (15e¢/9)2, we now have

7n+— b, by
Z (dA) (rA) < Z Z Z Qb1+bz+...+bn.
A A, <8n b,=0 b, ;=0 520

Provided we take c¢ larger than some universal constant c¢,, the right-hand
side of this inequality is less than or equal to

<1+2Q
fel
(see [9], page 415). From this we get

Y (d)X(r) —1<2Q =450 /45,

A A, <8n

We still need to find an upper bound of similar form for the tail sum

Y (d)i(rn)"

A A, >8n

From now on we will denote the m-tuple (A,..., A,) of strictly increasing
positive half integers by A™), for 1 < m < n. Accordingly, we will use

T T (=)

dim) =
MU B (2m = 1)1 s i ciesem
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and

(2m — )!\°
r)\(m) = 2mn;n:1)\i ’

for 1 < m < n. Note that d,» = d, and r,m = r,. The following lemma com-
pletes the proof of Theorem 1.1.

LEMMA 4.4. We have
(13) )y (d)\<"”)2(m(m>)k <1+ 451le /45,

A0m)

forl<m <nandk =nlogn + cn with ¢ = c,.
Proor. We use induction on m. For m = 1,
1
d/\(l)=2)\1, I")‘(l)= F,
1

for A, =(2i — 1)/2,i=1,2,3,... . Therefore,

* 1
do)(rn)t = -
%( Al >) ( Al )) igl (2i _ 1)2k—2
> 1 > 1
=1+ —— 5 <1+ oh_9
i:zz (2i _ 1)2k—2 j§3 J2k 2
E |
<1+ dx
/; 2k —2
1 1

+——
2k — 3 22k737

which can easily be seen to be less than 1 + 451e ¢/*5 for n > 3.
Notice that in order to prove (13) for m > 1, we need only show that

Z (dA<m))2(rA(,n>)k < 6_8/45‘
AN, >80
Indeed,
L (d/\("‘))z(’",\w)k <1+ 450e—¢/45
A, <8n

follows from the first part of our proof:

Proposition 4.1 still holds if we replace d, by d,» and r, by r,m, because
—with the obvious notation carried over from the first part—the statements
of Lemmas 4.2 and 4.3 become

d"(T + 1)
d™(T)

2n
T—-m+3

2m

<3 —_—s
T—-m+3

1+ <31+
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and

W—(;)D = p(_Til)‘

The analysis in Part A goes through with b replaced by b =T + 1 —
(m — 3), and similarly in Part B with &}, for 1 <i < m.
From the definitions of d, and r,m we also see that

d)\(m) < —)\?nmild/\(mfl) < A?nmild)\(mfl)

- (2m -1)!

and

2
2m — 1 m?
ro=|——7——| rNnm-ny < —5Im-1
A A A
24, A2 ’

m

for2 <m <n.
We now have

y (dA<m>)2(m<m))kS[ y (E)ZkAfnm-ﬂ Y (g ) (e )"

AUV, >8n Ap>8n A Am=1)

By our induction hypothesis,

Z (d)‘(mfl))Q(T‘)‘(m—l))k <1+ 4519—0/45.

A\m—1)

Since ¢ > ¢, the value 1 + 451 e °/*5 is smaller than some constant, say, 2.
Then

m 2k
Y (de)(ne)' =2 X (/\_) An®

A AL >8n Apy>8n
ot [T L g
=zn g, 1 x2k-dAnt2 x.
Since 2k —4n + 2 >2nlogn —4n+ 2> 2 for n > 8§,
- 1 1 1 —2k+4n—-1
9 2k dx = 2 2k - —
" /8 e YT | 2
1 —2k+4n-1
<2n2k(8n - —)
2
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and

Y (dw)(rem)”

A ./\m>8n
] —2k+4n-1
)

< 2n2k(8n - =
2

1
= exp[logZ +2klogn — (2k — 4n + l)log(Sn - E)}

1
= 4n — 1)|1 + log|8 — —
exp[( n )[ogn og( 2n)]
2n
Considering that 2.07 < log(8 — 1/2n) < 2.08, for n > 8, we get
Y (dyw)’(rym)” <exp[—0.14 nlogn + 8.32n — 4cn — log n — 1]

AN >8n

1
—(2nlog n + 2¢cn) -log(S - —) + logZ}.

< e ¢/45,

Since —0.14 nlogn + 8.32n —4cn —logn — 1 < —c/4.5 clearly holds for
n=8cx=cy O

Thus we have completed the proof of Theorem 1.1 for the case N = 2n + 1
odd.

The case N = 2n even. Most steps from the proof for the case N = 2n + 1
carry over directly to this case. In fact, the overall outline of the proof is the
same; we only need to make a few minor alterations. From (6) and (10) we get

_((m—1)1)2

T,

for A with A, = 0; otherwise r, = 0. We then must prove that for all n > 8
and ¢ > ¢,

Y (r)"(d)" — 1< 4ble /45,
A A =0

Recall that A,,..., A, are integers with 1 < A, < A3 < -+ < A,. The index
A =1(0,1,2,...,n — 1) corresponds to the trivial representation of SO(N)
and we get, of course, ro = d,0 = 1. Lemmas 4.2 and 4.3 have the following
analogues:

LEMMA 4.2'. Let d(T) == d, with A =(0,1,2,...,n — 2,T). Then

d(T +1) ) 1 1 2n — 3 0 2n
i +?) ( +m)$

1+ —|.
d(T) T—n+2
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LEMMA 4.3 Let r(T) = /r, with A =(0,1,2,...,n — 2,T). Then
r(T+1) 1 1
_ . )

= —_ < —
(T) T+1 - %P T+
With b =T +1-(n—-1Dand b} =T, +1 - ( — Dfor1l <i < n,Parts
A and B of the above proof clearly go through to yield the following analogue
of Proposition 4.1:

PropPOSITION 4.1'.  For all indices A and A, = 0 and A, < 8n,

by+by+ - +b,

(r)"?d, < (15e</?)
Hereb, = A\, —(i—1D,1<i<n.

We therefore have, as in the case N odd,

Y (d)%(r)" — 1 <450e /45,
A A =0
A, <8n

—-c/4.5

As for the upper bound for the tail sum by e , we again prove by

induction on m that

Z (dA<m))2(rA(m>)k <1+ 451 670/4'5 forl<m < n,

Am™:r =0
where
2m71
d my = AZ _ )\2
4 G 2m = 2)1 a0 )
and
(m— 1)1
r/\(m) = 1_[?1:2)” .
For the basis of the induction (m = 1) we have d,,y = 1 and r,0) = 1, so that
Y (d)(ne)' =1
AD:a=0
Also,
d)\(m < m/\?nmizd)\(m—l) < /\?nm72 : dA(nz—l),
m-—1 2 m2
Tym) = A Iym-1 < Er,\(mfl),

for 2 <m < n.
The rest is completely analogous to the case N odd. We omit the details. O
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5. Proof of Theorem 1.2. Recall that

I = O llv = sup [ (S) — 9. (S)I.
S eBSON)

We will construct a suitable test set S to prove our lower bound result.
Briefly, under Haar measure 9., x;, the character of the natural representa-
tion, is with high probability close to 0 (in fact, x; is almost distributed as a
standard normal random variable for large N). On the other hand, we show
that, under w, with & = N log N — cN, with high probability x, is still
large (close to N). For a suitable positive value B, our test set S can then be
chosen to be S = {g € SO(N): —N < x,(g) < B}. The idea of this proof is not
new. It has been developed by Diaconis and has been applied since then by
various authors [3, 9, 10].

By the orthonormality relations for the irreducible characters of a compact
Lie group, we have

Ey (x1) =0,
E,L(Xf) =1 andhence Var, (x;) =1.
The N-dimensional natural representation p; has highest weight y =

(0,...,0,1) and corresponds to the index A =(3,...,n — 3, n + 1), for N =
2n + 1,and A =(0,1,...,n — 2, n), for N = 2n. Thus Proposition 3.3 yields

N—2)2

B, (x) =N~

and by (1), we have

N -2\
B, (x) =N~
for both N even and N odd. We also need a similar expression for Varﬂk( X1)
=E,(x{) — [E,(x))*. Note that x{ is the character of the tensor product
representation p; ® p;. In order to be able to use (1) for the computation of
E,( x%), we first need to decompose p; ® p, into its irreducible subrepresen-
tations. We need the following two lemmas (see, e.g., [2], Chapter VI).

LeEmMA 5.1.  Let x, denote the character of the irreducible representation
corresponding to highest weight A. Then

Xy)(w = Xy+w + En’y/\/v?

14

where the sum is over v < vy + w with respect to the usual ordering of weights
and the coefficients n, are all in N,,.

LEMMA 5.2. Let x, denote the character of the irreducible representation
corresponding to highest weight y. Let o be a simple root. If {y, a) and
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(w, a) are both not zero, where {vy, a) = Yi_1v;a;, then y+ o — «a is a
highest weight,

X’}/Xw = X'y+w + ij;w,a + Others,

and X, ,_, occurs with multiplicity 1.

Lemma 5.1 tells us that p; ® p; contains exactly one copy of the irre-
ducible representation of highest weight vy + y =(0,0,...,0,2). This irre-
ducible representation of SO(N), call it p,, corresponds to the index A =
s .on=%n+3, for N=2n+1, and A=(0,1,2,...,n — 2,n + 1),
for N = 2n, and is of dimension d, = (N(N + 1))/2 — 1 (use Proposition
3.1). Using Proposition 3.3, we compute

N(N
Bu(xs) = [% - 1}(

2
_N+2)'

Next, note that the simple root « = (0,...,0, —1,1) (for N even and N odd)
clearly fulfills the conditions of Lemma 5.2. It follows that p; ® p; contains
exactly one copy of the irreducible representation of SO(N) of highest weight
A=(0,...,0,1,1). We call this representation p,. It corresponds to the index
A=@G,...,n—2%,n—3,n+3), for N=2n + 1 odd, and to the index A =
0,1,...,n=3,n—1,n), for N=2N even, and is of dimension d, =
(N(N — 1))/2. Using Proposition 3.3 we compute
N(N -1) ) 4\2
2 N/~

Finally, from the fact that E, (x{) = 1 and by the orthonormality of the
irreducible characters, we see that p; ® p, contains exactly one copy of the
trivial representation p,.

We have established the decomposition

EM( Xs) =

p1 ® p1=po © py © p3

into irreducibles, and hence

Xt =1+ x2+ xs-
Therefore,

Ep,k( Xlz) =1+ E;Lk( X2) + E;Lk( X3)'

Altogether, we get for Var, (x,),

2

N

Var, (x;) =1+
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PROPOSITION 5.3. For N > 8 and even integer k = tN log N — cN, where
c>0:

(@ E,(x,) = 0.7¢*.
(b) Var, (x,) <1+ (17/3)e*“(log N/N°/?).

Proor. (a) Recall E, (x,) = N(1 - 2/N)*. With k£ = 1N log N — cN we
have

N(1-2/N)' =N@1 - 2/N)V?"e N1 —2/N)" N
2 )N/210gN

>N|[1- —
>( =

eZC’

for N> 2,since0 <1 —x <e™®, for x < 1. However,

ool1 2 2 22 23 2 2 1
Og(_ﬁ)__ﬁ_z—m_W_ =N N\1-g/N

and so

9 \N/2log N
M- 5]

2 1
N =Nexp(log(1——)-§NlogN)

N
> N"/(N-2)

The function f(x) =x"1/*"2? js an increasing function for, say, x > 8.
Therefore, N~'/N=? > 0.7 for N > 8 and E, (x,) > 0.7¢*".

(b) We have
N2-N 4\*
Var,(x) =1+ | —5— (1 - N)

N2+ N ) 4 \* Ne(1 2 \ 2k
+—_ — — [R—
1= wrs) - )
4_ k 22k
1+ N2[[1- -1- =
= N( N+2) ( N)l
N ) 4 \* . 4\*
e SR

because (1 — 4/N)* < (1 — 4/(N + 2)*.
Furthermore, (1 — 2/N)? > 1 — 4/N and therefore

o = (v V- i) - (-2 ]
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The term [(1 — 4/(N + 2)* — (1 — 4/N)*] can be bounded from above by
the use of the mean value theorem:

(1_N4 Z)k_(l_%)k

n
4 k1 4 4
Sk(l_N+2) (1_N+2)_(1_ﬁ”
4 \*N+2 8
=k(1_N+2)N—2N(N+2)
1 4k 8
SENIOgNeXp(_N+2)(N—2)N
N N 1
= 4log NN 2N/(N”)exp(4cN+Q)N_2 N

IA

16 1
—log NN 2N/(N+2exp(4c) N

3
16 log N
< ?exp(élc) W ,

for N > 8. [The function f(x) = exp(—2x/(x + 2)) is decreasing. Therefore
exp(— 2N /(N +2)) < exp(— 8/5),for N > 8, and exp(— 2(N /(N +2))log N) =
N 2N/(N+2) <« N=8/5 for N > 8.]
Altogether, we have
, Ny 1 17 , log N
Var”k(,\/l) <1+ |N°+ E ?e logNW <1+ ?e W,

and Proposition 5.3 is proved. O

We can now complete the proof of Theorem 1.2. By Chebyshev’s inequality,
Py (x, > 0.35e*") < 8.2e™*¢

and

1+ (17/3)e*((log N) /N*/?) log N
2¢ —4c
P, (x; < 0.35¢%) < (0.35)%%" <82e7% + 46.3—

SO
Iy = O llry = Ly (S) = 9, (S) =| Py, (x; < 0.35e%) — P, (x; < 0.35¢%)

=|1 =P, (x, > 0.35¢*) — P, (x; < 0.35¢)

log N
>1—16.4e % — 463W O
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