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There has been substantial interest in the indices 0 F b
Y F b

X F b F
2, defined by Blumenthal and Getoor, determined by a general Levy´
process in Rd. Pruitt defined an index g which determines the covering

dimension and Taylor showed that an index g
X
, first considered by

Hendricks, determines the packing dimension for the trajectory. In the

present paper we prove that

b
XF g F min b , d ,Ž .

2

and give examples to show that the whole range is attainable. However,
Ž X .we cannot completely determine the set of values of g , g , b which can be

attained as indices of some Levy process.´

1. Introduction. Let X be a Levy process taking values in Rd. The´t

question of interest here is the nature of the random trajectory of the process.

w xBlumenthal and Getoor 1 introduced an upper index b and two lower

indices b Y
and b X

and obtained certain properties of the sample paths of Xt

in terms of these indices. They also showed that

0 F b Y F b X F b F 2.

w xPruitt 8 showed that the Hausdorff dimension of the trajectory is g a.s.

where

1ya < <1.1 g s sup a G 0: lim sup a P X F a dt - ` ,Ž . H t½ 5
0aª0

w x Ž w x.while Taylor 15 showed that the packing dimension defined in 12 of the

trajectory is g X
a.s. where

1X ya < <1.2 g s sup a G 0: lim inf a P X F a dt - ` .Ž . H t½ 5
aª0 0

X w xThe index g was first considered by Hendricks 4 .

More precise information than just these fractal indices is already known

for special processes. We will not refer here to the well-known results about

Hausdorff measure functions, but we will refer to the newer results for
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w x w xf-packing measures given in: 15 for Brownian motion for d G 3; 6 for
w x w xplanar Brownian motion; 14 for strictly stable processes; 12 for asymmet-

w xric Cauchy processes and the graph of any stable process; and 2 for

arbitrary subordinators.

Our object in the present paper is to obtain more information about the

possible values of the indices g and g X
. We will show that given any pair d1

and d satisfying 0 F d F d F 2, we can define a Levy process whose´2 1 2

trajectory has Hausdorff dimension d and packing dimension d . In Section1 2

4 we will show that g X
is related to the index b by

b
X

1.3 F g F min b , d ,Ž . Ž .
2

Ž .and give examples in Section 5 which show that the entire range in 1.3 is

attainable. We have not solved the more difficult problem concerning the
Ž X . 3exact set of possible values of g , g , b in R . Looking at the three indices

simultaneously may introduce new restrictions.

Ž .Let S a be the first passage time out of the ball of radius a for X andt

Ž .T a, 1 the sojourn time in the ball of radius a up to time 1. That is,

1
< < < <1.4 S a s inf t ) 0: X ) a , T a, 1 s 1 X F a dt .� 4 � 4Ž . Ž . Ž . Ht t

0

We will show in Section 3 that if T and T are independent copies of T, then1 2

Xyalim inf a T a, 1 q T a, 1 s 0 a.s. if a - g ,Ž . Ž .1 2
aª0

Xyalim a T a, 1 q T a, 1 s ` a.s. if a ) g .Ž . Ž .1 2
aª0

One would expect the simpler version of these statements to be true where
ya Ž .we simply look at the lim inf of a T a, 1 . This will lead us below to the

statement of a conjecture and an open problem concerning the connection

between the lower growth conditions satisfied by a process and the sum of

two independent copies of that process.

We will start with some preliminaries. We follow the customary practice of

letting c, k denote finite positive constants whose value is unimportant and

may change from line to line.

2. Preliminaries. The definition and properties of Hausdorff measure
w xare well known; see, for example, Rogers 13 . The packing measure was

w xdefined more recently in 15 , so we recall two versions of it. The measure
w x w xfunctions f under consideration map 0, 1 ª 0, 1 , are increasing, continu-

Ž .ous with f 0 s 0 and satisfy a regularity condition: there is a constant c ) 0

such that
1f 2 x F cf x , 0 F x F .Ž . Ž . 2

For any collection CC of bounded subsets of Rd, let

f CC s f Diam E ,Ž . Ž .Ý
EgCC

5 5 � 4CC s sup diam E : E g CC .
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d Ž .For a fixed subset E of R , CC denotes the family of balls B x of radiusE r

r ) 0 and center x g E, and GUU the family of semidyadic cubes whoseE

central cubes intersect E. To make this precise, C g GUU has a projection onE

the ith axis

yny1 yny1proj C k 2 , k q 2 2 ,Ž .i i i

with k g Z, and there is an x g E such that the complement of C is ati
yny2 Ž . yny2distance 2 from the unique dyadic cube of side 2 which contains x.

We define

5 5f y P E s lim sup f RR : RR - « , disjoint RR ; CC ,� 4Ž . Ž . E
«ª0

UU 5 5 UUf y P E s lim sup f RR : RR - « , disjoint RR ; G .� 4Ž . Ž . E
«ª0

These two functions are defined on all subsets of Rd. Their properties are
w xexplored in 12 , but we note here that they are premeasures and there are

positive finite constants c , c such that, for all E ; Rd,1 2

c f y PUU E F f y P E F c f y PUU E .Ž . Ž . Ž .1 2

The final step is to generate outer measures

f y p E s inf S f y P E : E ; D E ,� 4Ž . Ž .i i i

f y pUU E s inf S f y PUU E : E ; D E .� 4Ž . Ž .i i i

We call f y p the f-packing measure and use f y pUU as a computational

aid, since both measures have the same class of sets having finite positive

measure. Both measures are Borel regular and have good topological proper-
w xties. The following density theorem, proved in 15 , is a key tool.

THEOREM 1. Suppose m is a finite Borel measure on Rd and f is a

measure function as described above. Then there is a constant l ) 0 such

that, for all E ; Rd,

5 5lm E inf L x F f y p E F m sup L x ,Ž . Ž . Ž . Ž .
xgE xgE

where

f 2rŽ .
L x s lim sup .Ž .

m B xŽ .Ž .rª0 r

In the present paper, we are interested only in the fractal indices deter-
Ž . amined by the Hausdorff and packing measure for the functions f s s s ,

a ) 0. For any set E ; Rd, define

dim E s inf a ) 0: sa y m E s 0 ,� 4Ž .

Dim E s inf a ) 0: sa y p E s 0 ,� 4Ž .

called the Hausdorff and packing dimensions of E. Since

f y m E F f y p E for all E,Ž . Ž .
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we clearly have

0 F dim E F Dim E F d ,

and, given a , b satisfying 0 F a F b F d, it is not difficult to construct a

deterministic set E ; Rd for which dim E s a , Dim E s b.

A Levy process is one with stationary independent increments, taking´
values in Rd, and characteristic function

E exp i u , X s exp ytc u ,� 4� 4Ž . Ž .t

where

i u , xŽ .
iŽu , x .c u s i b , u q 1 y e q n dx ,Ž . Ž . Ž .H 2ž /< <1 q x

with b g Rd and n a Borel measure on Rd satisfying

< < 2x
n dx - `.Ž .H 2< <1 q x

It is also customary to include a Gaussian part, but since its behavior is well

known we will omit this component in order to simplify the formulas. We will

assume that X s 0, and that we are dealing with a version which has0

almost all sample functions right continuous and having left limits.

We define, for x ) 0,

< < y2 < < 2� 42.1 G x s n y : y ) x , K x s x y n dy ,Ž . Ž . Ž . Ž .H
< <y Fx

2< <y y y
y12.2 M x s x b q n dy y n dy ,Ž . Ž . Ž . Ž .H H2 2< < < << < < <1 q y 1 q yy Fx y )x

2.3 Q x s G x q K x , h x s Q x q M x .Ž . Ž . Ž . Ž . Ž . Ž . Ž .

The function h is fairly well behaved; in particular, for C ) 1,

1 h CaŽ .
2.4 F F 2.Ž . 2 h a2C Ž .

< <Furthermore, if we let M s sup X , then there exists C ) 0 such thatt 0 F sF t t

C
� 4 � 42.5 P M G a F Cth a , P M F a F .Ž . Ž .t t 2

th aŽ .Ž .

Ž Ž . w x .See 3.2 and the remark on page 951 of 10 . These tail estimates for Mt

Ž .lead immediately to similar estimates for the first passage time S a , and one
Ž w x.easily obtains see Theorem 1 in 10

y1
ES a f h a f E S a n 1� 4 � 4Ž . Ž . Ž .

2.6Ž .
y1

f E S a n h a , 0 - a F 1.� 4Ž . Ž .� 4
ŽThe symbol f here means that the ratio of the two sides is bounded above

.and below by finite, positive constants.
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w xWe now recall the definitions given by Blumenthal and Getoor 1 of the

indices that will be relevant here:

2.7 b s inf a ) 0: r aG r ª 0 as r ª 0 ,� 4Ž . Ž .

1 y exp yRe c xŽ .
aydX < <2.8 b s sup a ) 0: x dx - ` .Ž . H½ 5Re c xŽ .

When d s 1 and the process is increasing, that is, a subordinator, it is

customary to use the Laplace transform instead of the characteristic function:

E exp yuX s exp ytg u ,Ž . Ž .Ž .t

where

`
yu x2.9 g u s 1 y e n dx .Ž . Ž . Ž . Ž .H

0

For a subordinator, it is clear that

2.10 b s inf a ) 0: uya g u ª ` as u ª ` .� 4Ž . Ž .

For subordinators, Blumenthal and Getoor considered, in addition to b X
, the

lower index

2.11 s s sup a ) 0: uya g u ª ` as u ª ` .� 4Ž . Ž .

We recall that for any subordinator

0 F b X F s F b F 1.

X Ž . Ž .The indices g , g defined in 1.1 and 1.2 which give the Hausdorff and
w xpacking dimensions, respectively, of X 0, 1 satisfy the inequalities

0 F b X n d F g F g X F b n d.

In case X is a subordinator g s s , while if X is a symmetric process

g s b X n d.

Žw x .Hawkes and Pruitt 3 , Theorem 3.1 obtain a uniform upper bound for the
Ž .Hausdorff dimension of X E in the following form.

THEOREM 2. Let X be a Levy process with upper index b. Then´t

P dim X E F b dim E for all E ; Rq s 1.� 4Ž .

For the purpose of constructing examples, we note the following theorem
w xwhich is a corollary of more precise results in Perkins and Taylor 7 .

THEOREM 3. If Y is any strictly stable process of index a in Rd, a F d,t

then, with probability 1,

dim Y E s a dim EŽ .
and

Dim Y E s a Dim E,Ž .

uniformly for all Borel E.
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The first result of this type was obtained for planar Brownian motion by
w xKaufman 5 .

3. Implications of the packing dimension result. In order to explore

its meaning and to state two natural problems, we will repeat the proof that
w x X

Dim X 0, 1 s g a.s. It is relatively easy given the preliminary results that
Ž . Ž .have been mentioned. Let T a, 1 denote the sojourn time in the ball B 0 upa

w Ž .xto time t s 1 see 1.4 . Then

1
< <ET a, 1 s P X F a dt .� 4Ž . H t

0

As usual, we consider the occupation time measure for the trajectory given by

< <m A s t g 0, 1 : X g A ,� 4Ž . Ž .v t

< <where ? denotes the Lebesgue measure. Note that, for 0 - t - 1,

1 tq1
m B X s 1 X ds F 1 X dsŽ . Ž . Ž .Ž . H Hv a t B Ž X . s B Ž X . sa t a t

0 ty1

0 1
s 1 X ds q 1 X dsŽ . Ž .H HB Ž X . tqs B Ž X . tqsa t a t

y1 0

3.1Ž .

s T a q T a ,Ž . Ž .1 2

say. By the stationary and independent increment properties of Levy pro-´
Ž . Ž .cesses, T a and T a are independent and both have the same distribution1 2

Ž .as T a, 1 . Thus

Em B X F 2 ET a, 1 .Ž . Ž .Ž .v a t

X w Ž .x X ya Ž .By the definition of g see 1.2 , if 0 - a - g , lim inf a ET a, 1 s 0, so

that by Fatou’s lemma

lim inf ayam B X s 0 a.s.Ž .Ž .v a t

To this point, t has been fixed, but now Fubini gives

yat g 0, 1 : lim inf a m B X s 0 a.s. s 1.� 4Ž . Ž .Ž .v a t

a Ž w x.Next, an application of Theorem 1 gives s y p X 0, 1 s q` a.s. Allow-

ing a to increase to g X
through a countable set then shows that

w x X
3.2 Dim X 0, 1 G g a.s.Ž .

In the other direction, we start with g X
- d - a . Then

ayd ET a, 1 ª q`Ž .

as a ª 0. Semidyadic cubes of side 2yk cover Rd 2 d times. Using Lemma 5.1
w x w xof 11 , if N is the number of such cubes hit by X 0, 1 , thenk

3.3 EN s o 2 kd as k ª `.Ž . Ž .k
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w xEven if we do not require the cubes to have a point of X 0, 1 in their central

area and if we also forget the requirement that they be disjoint, packing by

cubes of side at most 2ym leads to the estimate

` `
UUa yk a yk Žayd .w xEs y P X 0, 1 F C 2 EN F 2 ª 0 as m ª `;Ž . Ý Ýk

ksm ksm

Ž . a UU Ž w x.we have used 3.3 at the last step. Hence s y P X 0, 1 s 0 a.s., which in
a Ž w x.turn implies that s y P X 0, 1 s 0 a.s. by the comparison mentioned

above. Allowing a to decrease to g X
through a countable set then gives

w x X
Dim X 0, 1 F g a.s.

Ž .With 3.2 , this completes the proof of the packing dimension result.
X Ž .The definition of g involves the lower growth rate of ET a, 1 as a ª 1.

We can deduce, from what we have done, an almost sure local growth rate for
Ž .T a, 1 , as follows.

Ž . Ž .THEOREM 4. If X is a Levy process, T a, 1 and T a, 1 are independent´t 1 2

Ž . Ž .copies of T a, 1 , the corresponding sojourn time process defined by 1.4 , and
X Ž .g is the index defined in 1.2 , then, with probability 1:

Ž . X ya Ž Ž . Ž ..i for a - g , lim inf a T a, 1 q T a, 1 s 0;1 2

Ž . X ya Ž Ž . Ž ..ii for a ) g , a T a, 1 q T a, 1 ª `.1 2

Ž .PROOF. i follows from Fatou’s lemma as in the proof of the first part of
Ž . X

the packing dimension result above. If ii fails and g - d - a , then with
yd Ž Ž . Ž ..positive probability lim inf a T a, 1 q T a, 1 s 0. By using the estimate1 2

Ž .in 3.1 and Fubini, we see that

ydt g 0, 1 : P lim inf a m B X s 0 ) 0 ) 0.Ž . Ž .� 4� 4Ž .v a t

d Ž w x.By Theorem 1, it would then follow that s y p X 0, 1 s q` with positive

probability, contradicting the above packing dimension result. I

COROLLARY. For any Levy process,´

g X s inf a G 0: aya T a, 1 q T a, 1 ª ` as a ª 0 a.s. .� 4Ž . Ž .Ž .1 2

PROBLEM A. It is true that

g X s inf a G 0: aya T a, 1 ª ` as a ª 0 a.s. ?� 4Ž .

We believe this has to be true and even state a much stronger conjecture.

CONJECTURE. If f is a monotone function such that

T a, 1Ž .
lim inf F C a.s.

f aaª0 Ž .
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and h is a monotone function such that

sy1 h s ds - `,Ž .H
q0

then

h a T a, 1 q T a, 1Ž . Ž . Ž .Ž .1 2
lim inf s 0 a.s.

f aaª0 Ž .

Existing results about particular processes show that the lower growth
Ž . Ž . Ž .rate of T a, 1 q T a, 1 may differ from that of T a, 1 by a factor of1 2

< <Ž < <.1r2log a log log a , but no examples are known where the ratio is as great as
< <1q«
log a .

Ž .PROBLEM B. For a monotone stochastic process Z a , what conditions are

sufficient to ensure that d s d , where1 2

d s inf a G 0: aya Z a ª ` as a ª 0 a.s. ,� 4Ž .1

d s inf a G 0: aya Z a q Z a ª ` as a ª 0 a.s.� 4Ž . Ž .Ž .2 1 2

and Z , Z are independent copies of Z?1 2

We note that a solution to Problem B could provide an affirmative answer

to Problem A.

4. Inequalities relating g
X

and b. We start with some lemmas that

give information about the growth of the functions G, K and M defined in
Ž . Ž . w x2.1 and 2.2 . Similar results were obtained in 9 for Q, but these were

easier since Q is continuous. The function M is more complicated, and G and

K depend only on the Levy measure of the complements of balls centered at´
the origin. Recall the definitions:

< < y2 < < 2� 4G x s n y : y ) x , K x s x y n dy ,Ž . Ž . Ž .H
< <y Fx

2< <y y y
y1M x s x b q n dy y n dy ,Ž . Ž . Ž .H H2 2< < < << < < <1 q y 1 q yy Fx y )x

Q x s G x q K x , h x s Q x q M x .Ž . Ž . Ž . Ž . Ž . Ž .

LEMMA 4.1. For 0 - x - y,

< < y1 2 2yM y y xM x F min y G x y G y , x y K y y x K x .Ž . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž .
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< < < < < < < <PROOF. Applying the inequality u y v F u y v yields

2< <z z z
< <yM y y xM x F n dz q n dzŽ . Ž . Ž . Ž .H H2 2< < < <1 q z 1 q zE E

< <s zn dz F z n dz ,Ž . Ž .H H
E E

� < < 4where E s z: x - z F y . The first inequality is now clear, and the second
< < y1 < < 2follows on replacing the integrand z by x z . I

LEMMA 4.2. If either

K x G xŽ . Ž .
lim s 0 or lim s 0,

M x M xxª0 xª0Ž . Ž .

Ž .then xM x is slowly varying at 0.

PROOF. Letting y s Cx in Lemma 4.1 yields

CxM Cx G x xM x K CxŽ . Ž . Ž . Ž .
y 1 F C , 1 y F C .

xM x M x CxM Cx M CxŽ . Ž . Ž . Ž .

Letting x ª 0 completes the proof. I

Ž . y1Ž . Ž .LEMMA 4.3. If 0 - a - 1 and G z - a 1 y a M z for x - z - y,
a Ž Ž . Ž .. w x Ž .then z G z q M z is decreasing on x, y . If 1 - a - 2 and K z -

Ž .y1Ž . Ž . a Ž Ž . Ž ..2 y a a y 1 M z for x - z - y, then z K z q M z is increasing on
w xx, y .

Ž . y1Ž . Ž . Ž .REMARK. The stronger result that if G z F a 1 y a M z on x, y ,
a Ž Ž . Ž .. w xthen z G z q M z is nonincreasing on x, y follows by a perturbation

w xargument. This is comparable to the results for Q in 9 .

PROOF. First note that G, K, M are all right continuous and have left

limits. Letting x p y in Lemma 4.1, we have

< y < y yM y y M y F min G y y G y , K y y K y ;Ž . Ž . Ž . Ž . Ž . Ž .Ž .

the two terms on the right are equal. Thus, at any discontinuity G q M can

only jump down while K q M can only jump up. Now, let

a w xu s sup v G x : z G z q M z is decreasing on x , v .� 4Ž . Ž .Ž .
a Ž Ž . Ž .. w xWe will show u G y. First z G z q M z decreases on x, u if u ) x since

this function can only jump down. Next, if u - j, since G and M are right

continuous, you may choose v ) u such that

G w 1 y aŽ .
j s sup - .

M w aŽ .uFwFv
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Then, for u F w - z F v, we have, by Lemma 4.1,

zM z q zG z F wM w q zG w ,Ž . Ž . Ž . Ž .

so that, for 0 - a - 1,

4.1 z a M z q G z F wz ay1M w q z aG w .Ž . Ž . Ž . Ž . Ž .Ž .

The derivative with respect to z of the function on the right is

ay1 y1z a y 1 wz M w q a G w - 0,Ž . Ž . Ž .

provided that

a G wŽ .
y14.2 wz ) .Ž .

1 y a M wŽ . Ž .

Ž .Ž .y1Thus, if we also require z - 1 y a aj u, we have

y1y1 y1wz G ux ) 1 y a aj ,Ž .
Ž . Ž .so that 4.2 holds. Then, by 4.1 ,

z a M z q G z - w a M w q G w ,Ž . Ž . Ž . Ž .Ž . Ž .
a Ž Ž . Ž .. w Ž .Ž .y1 xso that z M z q G z is decreasing on x, v n 1 y a aj u which

w xstrictly contains x, u . This is impossible so we must have u G y. The other

statement in the lemma is proved in the same way. I

Now we are ready to prove the inequalities for g X
.

THEOREM 5. For any Levy process in Rd, we have´

b
Xg n F g F b n d ,

2
X Ž . Ž .where g , g are defined in 1.1 and 1.2 and b is the upper index of

Ž .Blumenthal and Getoor defined in 2.7 .

PROOF. The inequality g F g X
is immediate from the definitions. Since

b F 2, we only need to prove g X F d when d s 1. If not, choose a ª 0 so thatk
y1 Ž . w xa ET a , 1 ª 0, and partition y1, 1 into intervals of length a . Let T bek k k j

the time spent in the jth interval before time 1. By starting over when we hit
Ž .this interval we see that ET F ET a , 1 . Thusj k

ET 1, 1 F 2 ay1 q 1 ET a , 1 ª 0,Ž . Ž .Ž .k k

Ž .so ET 1, 1 s 0, a contradiction. It remains to prove the inequalities involv-

ing b. We will use the definition

b s inf a G 0: lim aah a s 0 .Ž .½ 5
aª0

Ž . w x ŽThis is equivalent to 2.7 }see page 954 of 10 . If there is a Brownian
. Ž . w x Žcomponent, b s 2. By using the inequalities 3.2 of 10 see Theorem 1 of

w x .10 for a similar argument , it is easy to see that

y1
ES a f h a f E S a n 1 .Ž . Ž . Ž .Ž . Ž .
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Ž Ž . . Ž . X wThen the inequality E S a n 1 F ET a, 1 leads to g F b. If there is a
Ž Ž . . 2 X xBrownian component, then E S a n 1 f a , so g F 2 s b. The final in-

equality br2 F g X
requires more work, and we must consider three cases. If

b s 0, there is nothing to prove.

b - 1. First note that there exists r - 1 such that

a rM a F a rh a ª 0.Ž . Ž .

Ž .Thus aM a is not slowly varying, and so

G xŽ .
lim sup ) 0

M xŽ .xª0

Ž .by Lemma 4.2. Choose a g 0, b . Then there exists a ª 0 such thatk

aah a G 1.Ž .k k

y1Ž . Ž . Ž .Now choose h - a 1 y a and h - lim sup G x rM x and define

b s sup x - a : G x G hM x .� 4Ž . Ž .k k

Ž . Ž . Ž . Ž .Then b ) 0 and b ª 0. If M a ) K a , then since G x - hM x fork k k k

b - x - a we have, by Lemma 4.3,k k

aah a 1Ž .k ka ab G b q M b G a G a q M a ) G .Ž . Ž . Ž . Ž .Ž . Ž .k k k k k k
2 2

Then, since G q M can only jump down, we can find c F b such thatk k

1a ac h c G c G c q M c G ,Ž . Ž . Ž .Ž .k k k k k 4

Ž . Ž .and G c G hM c . Letting d s c in this case or d s a in the casek k k k k k

Ž . Ž .M a F K a we havek k

1a4.3 d h d G and Q d G h n 1 M d ,Ž . Ž . Ž . Ž . Ž .k k k k4

and d ª 0.k

The rest of the proof will also be used in case b ) 1. If

K xŽ .
lim s 0,

G xxª0 Ž .

w x ar2 Ž . Žthen by Lemma 2.4 of 7 we have a Q a p for a F a . This lemma was0

proved for distribution functions instead of Levy measures, but the proof´
. Ž .applies in either case. Then, by 4.3 ,

dya r2 F 4dar2h d F Cdar2Q d F Caar2Q aŽ . Ž . Ž .k k k k k 0 0

for large k, a contradiction. Thus we may choose c so that

K x 2cŽ .
4.4 0 - c - lim sup and - a ,Ž .

G x 1 q cŽ .xª0

and define

e s inf x G d : K x G cG x .� 4Ž . Ž .k k
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Ž . Ž . l Ž .Note that e ª 0. Since K x - cG x for d - x - e we have x Q x p onk k k

w x w x Ž .y1 a Ž .d , e by Lemma 2.4 of 9 , where l s 2c 1 q c - a . Thus x Q x pk k

Ž .also, so, by 4.3 ,

4.5 eaQ e G daQ d G Cdah d G C .Ž . Ž . Ž . Ž .k k k k k k 1

Ž . Ž .Since K and G are right continuous, K e G cG e so thatk k

4.6 1 q cy1 K e G Q e .Ž . Ž . Ž . Ž .k k

w x Ž . Ž .Finally, by page 955 of 10 , 4.6 and 4.5

C 2C1 t
< <ET e , 1 s P x F e F dt s� 4Ž . H Hk t k 1r2 1r2

0 0 tK e K e� 4 � 4Ž . Ž .k k

C2 a r2F F C e .3 k1r2
Q e� 4Ž .k

X Ž .Thus g G ar2, which is sufficient since a is arbitrary in 0, b .

b ) 1. First, there exists r ) 1 such

4.7 lim sup a rh a s `.Ž . Ž .
aª0

Ž . Ž .If K x rM x ª 0, then

x K x q M x ; xM x and is slowly varyingŽ . Ž . Ž .Ž .

Ž . Ž . Ž . Ž .by Lemma 4.2. Then, by 4.7 , h x ; G x as x ª 0. Take a g 1, b and
a Ž .find a ª 0, so that a h a G 1. Sincek k k

Q a G G a ; h a G M a ,Ž . Ž . Ž . Ž .k k k k

1Ž .in this case we have 4.3 with d s a and h n 1 replaced by . It remains tok k 2

consider the case when

K xŽ .
lim sup ) 0.

M xŽ .xª0

In this case choose

K xŽ .
h - lim sup

M xŽ .

Ž .Ž .y1and h - a y 1 2 y a , and define

b s inf x G a : K x G hM x .� 4Ž . Ž .k k

Ž . Ž .Note that b ª 0. Since K x - hM x for a - x - b we have, usingk k k

Ž . Ž .Lemma 4.3, if G a F M a , thenk k

aah a 1Ž .k ka a ab h b G b K b q M b G a K a q M a G G .Ž . Ž . Ž . Ž . Ž .Ž . Ž .k k k k k k k k
2 2

Ž . Ž .In this case we take d s b , while if G a ) M a we take d s a , andk k k k k k

Ž .we see that 4.3 holds in either case. The proof is complete in this case as in

the final paragraph of the case b - 1.
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b s 1. In this case, we use subordination to reduce it to the case when

b - 1. Let Y s X where U is a stable subordinator of index s - 1. Thent U tt

Ž . Ž . XŽ .we have b Y s s ? b X s s - 1, so that g Y G sr2 by the above argu-
Žw x. Žw x.ment. But Y 0, 1 ; X 0, U , so that, with probability 1,1

s
X Xw x w xg X s Dim X 0, U G Dim Y 0, 1 s g Y G .Ž . Ž .1

2
X 1Ž .Since s is arbitrary, we must have g X G . I2

5. Examples. We give a variety of examples which show that the bounds

in Theorem 5 are sharp. We start with a subordinator since these are easy to
X wwork with. We must have g s s and g s b for any subordinator. See

w x w xTheorems 1 and 3 of 8 and page 954 of 10 , along with the observation that
Ž . Ž . xS a n 1 s T a, 1 for a subordinator. Then b and s are relatively easy to

compute.

EXAMPLE 1. Given any g , g X
with 0 s g F g X F 1, there is a corresponding

w xsubordinator. Take b g 0, 1 , let

x s exp yk k , p s xyb ,Ž .k k k

wand consider the Levy measure which assigns mass p to the point x . If´ k k
y1 Ž Žky1.r2 . xb s 1, use p s x exp yk . Since Ýx p - `, this is permissible. Byk k k k

Ž . X
2.7 , it is clear that b is the upper index, and so g s b. Noting that, if

0 - b - 1 and k is large,

` ky1 `

g u s 1 y exp yux p F p q ux p F 2 p q ux pŽ . Ž . Ž .Ž .Ý Ý Ýj j j j j ky1 k k

js1 js1 jsk

Ž .y1rafor all u, we see that if a ) 0 and u s x , thenk ky1

1yb 1y1raya 1ybu g u F 2 x q 2 x x ª 0.Ž . Ž . Ž .k k ky1 ky1 k

If b s 1, then x p is different, but the argument works in the same way. Ifk k

b s 0, then the sum of the first k y 1 p’s is k y 1, but this still will approach

0 when multiplied by uya . Thus we havek

lim inf uya g u s 0Ž .
uª`

for all a ) 0 and so g s s s 0.

To obtain a subordinator with indices 0 - g - g X F 1, it is sufficient to add

a continuous part to the Levy measure, with density xygy1. This will not´
change the upper index g X

but will increase the lower index to s s g .

EXAMPLE 2. Given 0 - g F g X
- 1 and br2 - g X

- b n 1, there is a corre-

sponding symmetric process in R. With x as above, we use a Levy measure´k
yj < <yay1

that has mass x at "x and, in addition, has a density x on thek k

entire real line. The parameters are to satisfy

0 - j - 2 and 0 - a - j n 1.
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Ž .Then it is clear from 2.7 that b s j , and one may show that g s a quite

easily but computing g X
is more difficult. To do this, we will use the form of

the characteristic function of X given byt

E exp iuX s cytc Žu. ,Ž .t

where

c u s 1 y cos ux n dx ,Ž . Ž . Ž .H

Ž . aand n is the Levy measure. In this case, we see that c u G cu so that the´
characteristic function of X is integrable for all t. This means that X has at t

Ž .density p t, x , and we can use the inversion theorem for it in the following

computation of the expected sojourn time:

a1 1
< <ET a, 1 s P X F a s p t , x dx dt� 4Ž . Ž .H H Ht

0 0 ya

a1y1 ytc Žu.s 2p e cos ux du dx dtŽ . H H H
0 ya

sin ua 1
y1 yc Žu.s p 1 y e du.Ž .H

u c uŽ .

Ž .y1 Ž .y1To obtain estimates, we first consider c . If x - u - x , then c isk kq1

comparable to c q c q c where1 2 3

yj 2yja 2< <c u s u , c u s x 1 y cos ux , c u s u x .Ž . Ž . Ž . Ž . Ž . Ž .1 2 k k 3 kq1

Ž .2The last term comes from using the approximation 1 y cos ux f ux forj j

j G k q 1. The terms like c , but with j - k, are dominated by c . Then c is2 1

comparable to the maximum of these three terms. We obtain

y1 yjra
c u f c u q c u , x - u - x ,Ž . Ž . Ž . Ž . Ž .1 2 k k

Ž . Ž .yjra y 2yj r 2ya
c u f c u , x - u - x ,Ž . Ž . Ž . Ž .1 k kq1

Ž . Ž . y1y 2yj r 2ya
c u f c u , x - u - x .Ž . Ž . Ž . Ž .3 kq1 kq1

On the first of these intervals, both terms play a role due to the periodicity of

c . We may now use these estimates to obtain good estimates of the expected2

< <sojourn time. One replaces sin ua by ua for ua F 1, and uses the fact that c
is large when u is large. The main contribution comes from

du1ra
a .H

c uŽ .0

w Ž .y1 Ž .yj raTo consider the intervals x - u - x , one must break them upk k

Ž Ž . .into smaller intervals of the form 2p lrx , 2p l q 1 rx , and then subdividek k

xthese further to reflect which of c , c is larger. For the range of u when1 2

< <ua ) 1, one bounds the sin term by 1 and shows that even the integral of the

absolute value is smaller than the term above. However, in some cases the
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two terms are the same order of magnitude so that some care is required. We

omit the details. To describe the result, let

a s x j ra , b s x Ž4y4aqja .rŽ2ya .2

, c s x Ž2yj .rŽ2ya . .k k k k k k

Then

aa , c - a F a ,¡ kq1 k

a r2 j r2~a x , a - a F b ,ET a, 1 fŽ . k k k

yŽ2yj .Ž1ya .rŽ2ya .¢ax , b - a F c .k k k

This gives g s a , as mentioned above, while

2a q 2j y 2a 2 y 2ja q ja 2

Xg s ;
4 y 4a q ja

this power is achieved at a s b . g X
is an increasing function of bothk

parameters. To obtain the first class of examples, fix a s g , and let j vary
Ž . X Ž .over a , 2 . Then g varies over the interval a , 1 . For the other class of

Ž . X
examples, we fix j s b, and let a vary over the interval 0, j n 1 . Then g

Ž .varies over the interval br2, b n 1 .

By an easy modification of this example, we can achieve g X s br2 at the

cost of having g s 0: it is sufficient to omit the component of the Levy´
< <yay1 X

measure with density x . We remark that g s br2 is also achieved by

Brownian motion on R; in that case

b
X

1 s g s g s .
2

EXAMPLE 3. To obtain values of g or g X
larger than 1, we must use

examples in R2. To obtain 1 - g s g X F b, we use a process with stable

components, that is, we run independent stable processes of indices 1 k a F2

w xa , a ) 1, on the coordinate axes. Then by Lemma 5.1 of 11 ,1 1

1
Xb s a and g s g s 1 q a 1 y .1 2 ž /a1

Ž x X
Letting a vary over 0, a gives the desired range of g .2 1

EXAMPLE 4. To obtain 0 F g - g X
when g X G 1, we use planar Brownian

motion subordinated by the subordinator of Example 1. Let B be planars

Brownian motion and consider B with X as in the first example withX tt

indices gr2 and g Xr2. By Theorem 3,

g
w x w xg B s dim B 0, 1 s 2 dim X 0, 1 s 2 s g ,Ž .Ž . Ž .X X t ž /t t 2

with a similar argument for g X
using packing dimension.
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