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THE ABELIAN SANDPILE MODEL ON AN INFINITE TREE

BY CHRISTIAN MAES, FRANK REDIG AND ELLEN SAADA

K. U. Leuven, T. U. Eindhoven and C.N.R.S., Rouen

We consider the standard Abelian sandpile process on the Bethe lattice.
We show the existence of the thermodynamic limit for the finite volume
stationary measures and the existence of a unique infinite volume Markov
process exhibiting features of self-organized criticality.

1. Introduction. Markov processes for spatially extended systems have been
around for about 30 years now and interacting particle systems have become
a branch of probability theory with an increasing number of connections with
the natural and human sciences. While standard techniques and general results
have been collected in a number of books such as Liggett (1985), Chen (1992)
and Toom (1990) and are capable of treating the infinite volume construction
for stochastic systems with locally interacting components, some of the most
elementary questions for long range and nonlocal dynamics have remained wide
open. We have in mind the class of stochastic interacting systems that during the
last decade have invaded the soft condensed matter literature and are sometimes
placed under the common denominator of self-organizing systems.

Since the appearance of Bak, Tang and Wiesenfeld (1988), the concept of self-
organized criticality (SOC) has excited much interest, and has been applied in
a great variety of domains [see, e.g., Turcotte (1999) for an overview]. From
the mathematical point of view, the situation is, however, quite unsatisfactory.
The models exhibiting SOC are in general very boundary condition dependent
[especially the Bak–Tang–Wiesenfeld (BTW) model in dimension 2], which
suggests that the definition of an infinite volume dynamics poses a serious
problem. Even the existence of a (unique) thermodynamic limit of the finite
volume stationary measure is not clear. From the point of view of interacting
particle systems no standard theorems are at our disposal. The infinite volume
processes we are looking for will be non-Feller and cannot be constructed by
monotonicity arguments as in the case of the one-dimensional BTW model [see
Maes, Redig, Saada and Van Moffaert (2000)] or the long-range exclusion process
[see Liggett (1980)]. On the other hand, to make mathematically exact statements
about SOC, it is necessary to have some kind of infinite volume limit, both for
statics and for dynamics.

In this paper we continue our study of the BTW model for the case of the Bethe
lattice; this is the Abelian sandpile model on an infinite tree. For this system, many
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exact results were obtained in [Dhar and Majumdar (1990)]. In contrast to the
one-dimensional case this system has a nontrivial stationary measure. We show
here that the finite volume stationary measures converge to a unique measure µ
which is not Dirac and exhibits all the properties of a SOC state. We then turn
to the construction of a stationary Markov process starting from this measure µ.
The main difficulty to overcome is the strong nonlocality: adding a grain at some
lattice site x can influence the configuration far from x. In fact the cluster of sites
influenced by adding at some fixed site has to be thought of as a critical percolation
cluster which is almost surely finite but not of integrable size. The process we
construct is intuitively described as follows: at each site x of the Bethe lattice we
have an exponential clock which rings at rate ϕ(x). At the ringing of the clock
we add a grain at x. Depending on the addition rate ϕ(x), we show existence of a
stationary Markov process which corresponds to this description. We also extend
this stationary dynamics to initial configurations which are typical for a measureµ′
that is stochastically below µ.

The paper is organized as follows. In Section 2 we introduce standard results
on finite volume Abelian sandpile models and summarize some specific results of
[Dhar and Majumdar (1990)] for the Bethe lattice which we need for the infinite
volume construction. In Section 3 we present the results on the thermodynamic
limit of the finite volume stationary measures and on the existence of infinite
volume Markovian dynamics. Section 4 is devoted to proofs and contains some
additional remarks.

2. Finite volume Abelian sandpiles. In this section we collect some results
on Abelian sandpiles on finite graphs which we will need later on. Most of these
results are contained in the review paper by Dhar (1999) or in Ivashkevich and
Priezzhev (1998).

2.1. Toppling matrix. Let V denote a finite set of sites. We will always
suppose that V is a nearest neighbor connected subset of Z

d or of Td , the infinite
homogeneous tree of degree d + 1. Starting from Section 3, we specify to the tree.

A matrix � = (�x,y)x,y∈V indexed by the elements of V is called a toppling
matrix if the following hold:

1. for all x, y ∈ V , x �= y, �x,y =�y,x ≤ 0;
2. for all x ∈ V , �x,x ≥ 1;
3. for all x ∈ V ,

∑
y∈V �x,y ≥ 0;

4.
∑
x,y∈V �x,y > 0.

The fourth condition ensures that there are sites (so-called dissipative sites) for
which the inequality in the third condition is strict. This is fundamental for having
a well-defined toppling rule later on.
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Starting from Section 3 of this paper we will choose� to be the lattice Laplacian
with open boundary conditions. More explicitly,

�x,x =
{

2d, if V ⊂ Z
d ,

d + 1, if V ⊂ Td,
(1)

�x,y =−1 if x and y are nearest neighbors.

The dissipative sites then correspond to the boundary sites of V . The results on the
finite volume Abelian sandpile in this section remain valid for a general toppling
matrix �.

2.2. Configurations. A height configuration η is a mapping from V to N =
{1,2, . . .} assigning to each site a natural number η(x) ≥ 1 (“the number of sand
grains” at site x). A configuration η ∈ N

V is called stable if, for all x ∈ V ,
η(x)≤�x,x . Otherwise η is unstable. We denote by�V the set of all stable height
configurations. For η ∈ N

V and V ′ ⊂ V , ηV ′ denotes the restriction of η to V ′.

2.3. Toppling rule. The toppling of a site x corresponding to the toppling
matrix � is the mapping

Tx : NV × V → N
V

defined by

Tx(η)(y)=
{
η(y)−�x,y, if η(x) >�x,x,
η(y), otherwise.

(2)

In words, site x topples if and only if its height is strictly larger than �x,x , by
transferring −�x,y grains to site y �= x and losing �x,x grains. Toppling rules
commute on unstable configurations. This means, for x, z ∈ V and η such that
η(x) >�x,x and η(z) >�z,z,

TxTz(η)= TzTx(η).(3)

For η ∈ N
V , we say that ζ ∈ �V arises from η by toppling if there exists an

n-tuple (x1, . . . , xn) of sites in V such that

ζ =
(
n∏
i=1

Txi

)
(η).(4)

The toppling transformation is the mapping

T : NV →�V

defined by the requirement that T (η) arises from η by toppling. The fact that
stabilization of an unstable configuration is always possible follows from the
existence of dissipative sites (only a finite number of sites have to be toppled a
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finite number of times). Thus only the fact that T is well defined is less trivial: one
has to prove here that for a given unstable configuration every possible stabilization
makes the same sites topple the same number of times. Moreover, by (3) the order
of the Txi in the product (4) is not important. A complete proof can be found in
Meester (2002).

2.4. Addition operators. For η ∈ N
V and x ∈ V , let ηx denote the configura-

tion obtained from η by adding one grain to site x, that is, ηx(y) = η(y) + δx,y .
The addition operator defined by

ax :�V →�V , η �→ axη= T (ηx)(5)

represents the effect of adding a grain to the stable configuration η and letting a
stable configuration arise by toppling. Because T is well defined, the composition
of addition operators is commutative: for all η ∈�V , x, y ∈ V ,

ax(ayη)= ay(axη).
2.5. Finite volume dynamics. Let p denote a nondegenerate probability

measure on V , that is, numbers px , 0< px < 1, with
∑
x∈V px = 1. We define a

discrete time Markov chain {ηn :n≥ 0} on �V by picking a point x ∈ V according
to p at each discrete time step and applying the addition operator ax to the
configuration. This Markov chain has the transition operator

Pf (η)= ∑
x∈V

pxf (axη).(6)

We can equally define a continuous time Markov process {ηt : t ≥ 0} with
infinitesimal generator

Lϕf (η)= ∑
x∈V

ϕ(x)[f (axη)− f (η)],(7)

generating a pure jump process on �V , with addition rate ϕ(x) > 0 at site x.

2.6. Recurrent configurations, stationary measure. We see here that the
Markov chain {ηn,n≥ 0} has only one recurrent class and its stationary measure
is the uniform measure on that class.

Let us call RV the set of recurrent configurations for {ηn :n≥ 0}, that is, those
for which Pη(ηn = η infinitely often) = 1, where Pη denotes the distribution of
{ηn :n≥ 0} starting from η0 = η ∈�V . In the following proposition we list some
properties of RV . For the sake of completeness we include the proof which can
also be found in Meester (2002).

PROPOSITION 2.1. (i) RV contains only one recurrent class.
(ii) The addition operators ax generate an Abelian group G of permutations

of RV .
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(iii) The group G acts transitively on RV . In particular |G| = |RV |.
(iv) |RV | = det�.

PROOF. (i) We write η ↪→ ζ if in the Markov chain ζ can be reached from η

with positive probability. Since sand is added with positive probability on all sites
(px > 0), the maximal configuration ηmax defined by

ηmax(x)=�x,x
can be reached from any other configuration. Hence, if η ∈ RV , then η ↪→ ηmax;
therefore ηmax ∈ RV and ηmax ↪→ η [see, e.g., Chung (1960), page 19].

(ii) Fix η ∈ RV ; then there exist ny ≥ 1 such that∏
y∈V

a
ny
y η= η

and

gx = anx−1
x

∏
y∈V,y �=x

a
ny
y

satisfies (axgx)(η)= (gxax)(η)= η. The set

Rx = {ζ ∈RV : (axgx)(ζ )= ζ }
is closed under the action of ax , contains η, hence also ηmax: it is a recurrent class.
By (i), Rx = RV , axgx is the neutral element e and gx = a−1

x if we restrict ax
to RV .

(iii) Fix ζ ∈ RV and put  ζ :G → RV ;g �→ g(ζ ). As before  ζ (G) is
a recurrent class; hence  ζ (G) = RV . If for g,h ∈ G,  ζ (g) =  ζ (h), then
gh−1(ζ ) = ζ , and by commutativity gh−1(g′ζ ) = g′ζ for any g′ ∈ G. Therefore
gh−1(ξ) = ξ for all ξ ∈ RV ; thus g = h. This proves that  ζ is a bijection from
G to RV .

(iv) Adding �x,x particles at a site x ∈ V makes the site topple, and −�x,y
particles are transferred to y. This gives

a
�x,x
x = ∏

y �=x
a
−�x,y
y .

On RV the ax can be inverted and we obtain the closure relation∏
y∈V

a
�x,y
y = e.(8)

Write

�Z
V = {

�n :n= (ny)y∈V ∈ Z
V
}
,

where

(�n)x =
∑
y∈V

�x,yny.
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Consider

 : ZV →G :n �→ ∏
x∈V

anxx .(9)

The map  is a homomorphism from Z
V onto G, that is,  (n+m)= (n) (m)

and  (ZV )=G. Therefore, G is isomorphic to the quotient Z
V /Ker( ). By (8),

�Z
V is contained in Ker( ). Conversely, let n ∈ Ker( ), and put n= n+ − n−,

where n+x = max{nx,0}, n−x = max{−nx,0}. Since  (n) = e, adding to a
recurrent η ∈ RV according to n+ has the same effect as adding according to n−.
Therefore, there exist k+, k− ∈ (Z+)V , ζ ∈RV such that

η+ n+ −�k+ = ζ = η+ n− −�k−
and we conclude n ∈�Z

V . This shows that G is isomorphic to Z
V /�Z

V and the
latter group has cardinality det�. �

As a consequence of the group property of G, the unique stationary measure is
uniform on RV .

COROLLARY 2.1. (i) The measure

µV = ∑
η∈RV

1

|RV |δη(10)

is invariant under the action of ax , x ∈ V (δη is the Dirac measure on
configuration η).

(ii) On L2(µV ) the adjoint of ax is

a∗x = a−1
x .(11)

REMARK. This shows that µV is invariant under the Markov processes
generated by (6) and (7).

2.7. Allowed configurations. Given a configuration η ∈ �V , we say that its
restriction ηW to a nonempty subsetW ⊂ V is a forbidden subconfiguration if, for
all x ∈W ,

η(x)≤ ∑
y∈W,y �=x

(−�x,y).

A configuration η ∈ �V is called allowed if it does not contain a forbidden
subconfiguration. We denote by AV the set of all allowed configurations.

PROPOSITION 2.2.

AV =RV .
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It is easy to see that toppling or adding cannot create a forbidden subconfigu-
ration, which immediately implies AV ⊃ RV . For a proof that AV = RV using
spanning trees see Ivashkevich and Priezzhev (1998); a direct proof can be found
in Meester (2002). For a generalization to nonsymmetric toppling matrices, see
Speer (1993).

The property of having a forbidden subconfiguration in W ⊂ V only depends
on the heights at sites x ∈ W . Therefore η ∈ RV implies ηW ∈ RW . This
“consistency” property enables us to define allowed configurations on infinite sets.

2.8. Expected toppling numbers. For x, y ∈ V and η ∈ �V , let nV (x, y, η)
denote the number of topplings at site y ∈ V by adding a grain at x ∈ V , that is,
the number of times we have to apply the operator Ty to stabilize ηx . Define

GV (x, y)=
∫
µV (dη) nV (x, y, η).(12)

Writing down balance between inflow and outflow at site y, one obtains [cf. Dhar
(1990)] ∑

z∈V
�x,zGV (z, y)= δx,y,

which yields

GV (x, y)= (�)−1
x,y .

In the limit V ↑ S (where S is Z
d or the infinite tree),GV converges to the Green’s

function of the simple random walk on S.

2.9. Some specific results for the tree. When Vn is a binary tree of n genera-
tions, many explicit results have been obtained in Dhar and Majumdar (1990). We
summarize here the results we need for the construction in infinite volume.

1. When adding a grain on a particular site 0 ∈ Vn of height 3, the set of toppled
sites is the connected cluster C3(0, η) of sites including 0 having height 3. This
cluster is distributed as a random animal (i.e., its distribution only depends on
its cardinality, not on its form). Moreover,

lim
n↑∞µVn

(|C3(0, η)| = k)�Ck−3/2(13)

as k goes to infinity. The notation � means that if we multiply the left-hand
side of (13) by k3/2, then the limit k→∞ is some strictly positive constant C.

2. When adding a grain on site x, the expected number of topplings at site y
satisfies

lim
n↑∞

∫
µVn(dη) nVn(x, y, η)=G(x,y),(14)
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whereG(x,y) is the Green’s function of the simple random walk on the infinite
tree, that is,

G(0, x)=C2−|x|,(15)

and |x| is the “generation number” of x in the tree.
3. The correlations in the finite volume measures µVk can be estimated in terms of

the eigenvalues of a product of transfer matrices. This formalism is explained
in detail in Dhar and Majumdar (1990), Section 5. Let f,g be two local
functions whose dependence sets (see below a precise definition) are separated
by n generations. To estimate the truncated correlation function

µVk(f ;g)=
∫
fg dµVk −

∫
f dµVk

∫
g dµVk,(16)

consider the product of matrices

Mk
n =

n∏
i=1

(
1 + γ k,ni 1 + γ k,ni

1 2 + γ k,ni

)
,(17)

where γ k,ni ∈ [0,1]. The meaning of γ k,ni is explained in Dhar and Majumdar

(1990), but we will only use the fact 0 ≤ γ k,ni ≤ 1 in Lemma 4.1 below. Let
λn,km (resp. λn,kM ) denote the smallest (resp. largest) eigenvalue ofMk

n . Then

µVk(f ;g)≤ C(f,g)
λn,km

λ
n,k
M

.(18)

For sites i far from the boundary of Vk , that is, for fixed i and n, in the limit
k→∞, γ k,ni tends to 1, and the correlations between local functions in the limit
Vk → S are then governed by the maximal and minimal eigenvalues of Mn =(

2 2
1 3

)n
. We shall need the estimate of a local function with a function living

on the boundary of Vk ; therefore we have to use the full expression (17), (18).

3. Main results.

3.1. Notation, definitions. From now on, S denotes the infinite rootless binary
tree, V ⊂ S a finite subset of S; �V is the set of stable configurations in V , that is,
�V = {η :V → {1,2,3}}, and the set of all infinite volume stable configurations
is �= {1,2,3}S . The set � is endowed with the product topology, making it into
a compact metric space. For η ∈ �, ηV is its restriction to V , and for η, ζ ∈ �,
ηV ζV c denotes the configuration whose restriction to V (resp. V c) coincides with
ηV (resp. ζV c ). As in the previous section, RV ⊂�V is the set of all allowed (or
recurrent) configurations in V , and we define

R = {η ∈� :∀V ⊂ S finite, ηV ∈RV }.(19)
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A function f :�→ R is local if there is a finite V ⊂ S such that ηV = ζV implies
f (η) = f (ζ ). The minimal (in the sense of set ordering) such V is called the
dependence set of f and is denoted by Df . A local function can be seen as a
function on �V for all V ⊃Df , and every function on �V can be seen as a local
function on �. The set L of all local functions is uniformly dense in the set C(�)
of all continuous functions on �.

Througout the paper, we use the following notion of limit by inclusion for a
function f on the finite subsets of the tree with values in a metric space (K,d):

DEFINITION 3.1. Let S = {V ⊂ S, V finite} and f : S → (K,d). Then

lim
V↑S f (V )= κ

if, for all ε > 0, there exists V0 ∈ S such that, for all V ⊃ V0, d(f (V ), κ) < ε.

DEFINITION 3.2. A collection of probability measures νV on�V is a Cauchy
net if, for any local f and for any ε > 0, there exists V0 ⊃Df such that, for any
V,V ′ ⊃ V0, ∣∣∣∣

∫
f (η)νV (dη)−

∫
f (η)νV ′(dη)

∣∣∣∣≤ ε.
A Cauchy net converges to a probability measure ν in the following sense: the

mapping

 :L → R, f �→ (f )= lim
V↑S

∫
f dνV

defines a continuous linear functional on L [hence on C(�)] which satisfies
 (f ) ≥ 0 for f ≥ 0 and  (1) = 1. Thus by the Riesz representation theorem
there exists a unique probability measure on� such that (f )= ∫

f dν. We write
νV → ν and call this ν the infinite volume limit of νV .

We will also often consider an enumeration of the tree S, {x0, x1, . . . , xn, . . .},
and put

Tn = {x0, . . . , xn}.(20)

3.2. Thermodynamic limit of stationary measures.

THEOREM 3.1. The set R defined in (19) is a perfect set; that is, the following
hold:

(i) R is compact.
(ii) The interior of R is empty.

(iii) For all η ∈R there exists a sequence ηn �= η, ηn ∈ R, converging to η.
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For η ∈�, x ∈ S we denote by C3(x, η) the nearest neighbor connected cluster
of sites containing the site x and having height 3.

THEOREM 3.2. The finite volume stationary measures µV defined in (10)
form a Cauchy net. Their infinite volume limit µ satisfies the following:

(i) µ(R)= 1;
(ii) µ is invariant under tree automorphisms and mixing;

(iii) µ(η : |C3(0, η)|<∞)= 1;
(iv)

∫ |C3(0, η)|µ(dη)=∞.

REMARK. Theorem 3.2(iii) above remains true for the set C1(0, η), the
nearest neighbor connected cluster of sites containing the origin and having
height 1, and probably also for C2(0, η) but this we have not been able to prove.

3.3. Infinite volume dynamics. The finite volume addition operators ax,V
[cf. (5)] can be extended to � via

ax,V :�→�, η �→ ax,V η= (ax,V ηV )V ηV c .(21)

PROPOSITION 3.1. (i) There exists a measurable subset �′ of R with
µ(�′)= 1 on which the limit

lim
V↑S ax,V η = axη(22)

exists, and axη ∈�′. More precisely, �′ is the subset of configurations for which
all the clusters C3(x, η) are finite.

(ii) The measure µ of Theorem 3.2 is invariant under the action of ax .
(iii) For every η ∈�′, ax(ayη)= ay(axη), for all x, y ∈ S.

We now construct a Markov process on µ-typical infinite volume configurations
which can be described intuitively as follows. Let ϕ :S → (0,∞); this function
will be the addition rate function. To each site x ∈ S we associate a Poisson
processNt,xϕ (for different sites these Poisson processes are mutually independent)
with rate ϕ(x). At the event times of Nt,xϕ we “add a grain” at x; that is, we apply
the addition operator ax to the configuration. ThenLϕV introduced in (7) generates a
pure jump Markov process on�. Indeed, this operator is well defined and bounded
on any Lp(µ) space by Proposition 3.1, which implies the following.

PROPOSITION 3.2. L
ϕ
V is the Lp(µ) generator of the stationary Markov

process defined by

exp(tLϕV )f =
∫ (∏

x∈V
a
Nt,xϕ
x f

)
dP,

where P denotes the joint distribution of the independent Poisson processes Nt,xϕ ,
and f ∈ Lp(µ).
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The following condition on the addition rate ϕ is crucial in our construction.
Remember |x| is the generation number of x:

SUMMABILITY CONDITION.∑
x∈S
ϕ(x)2−|x| <∞.(23)

In view of (15) the summability condition ensures that the number of topplings
at any site x ∈ S remains finite almost surely in any finite interval of time when
grains are added at intensity ϕ.

THEOREM 3.3. If ϕ satisfies condition (23), then we have the following:

(i) The semigroups SϕV (t) = exp(tLϕV ) converge strongly in L1(µ) to a
semigroup Sϕ(t).

(ii) Sϕ(t) is the L1(µ) semigroup of a stationary Markov process {ηt : t ≥ 0}
on �.

(iii) For any f ∈L,

lim
t↓0

Sϕ(t)f − f
t

=Lϕf =∑
x∈S
ϕ(x)[axf − f ],

where the limit is taken in L1(µ).

REMARKS. (i) In Proposition 4.1, we show that Sϕ(t) is a strongly continu-
ous function of ϕ.

(ii) In Proposition 4.2, we show that condition (23) is in some sense optimal.

THEOREM 3.4. The process {ηt : t ≥ 0} of Theorem 3.3 admits a cadlag
version (right-continuous with left limits).

The intuitive description of the process {ηt : t ≥ 0} is actually correct under
condition (23); that is, the process has a representation in terms of Poisson
processes:

THEOREM 3.5. If ϕ satisfies condition (23), for µ×P almost every (η,ω) the
limit

lim
V↑S

∏
x∈V

a
Nt,xϕ (ω)
x η= ηt

exists. The process {ηt : t ≥ 0} is a version of the process of Theorem 3.3; that is,
its L1(µ) semigroup coincides with Sϕ(t).
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Finally, we can slightly generalize Theorem 3.5 to define the dynamics starting
from a measure stochastically below µ. For η, ζ ∈ �, η ≤ ζ , if for all x ∈ S,
η(x) ≤ ζ(x). A function f :�→ R is monotone if η ≤ ζ implies f (η) ≤ f (ζ ).
Two probability measures µ and ν satisfy µ ≤ ν if, for all monotone functions,∫
f dµ≤ ∫

f dν.

THEOREM 3.6. Let µ′ ≤ µ. If ϕ satisfies condition (23), for µ′ × P almost
every (η,ω) the limit

lim
V↑S

∏
x∈V

a
Nt,xϕ (ω)
x η= ηt

exists. The process {ηt : t ≥ 0} is Markovian with η0 distributed according to µ′.

REMARK. The last theorem implies that η ≡ 1 can be taken as initial
configuration.

4. Proofs. This section is devoted to the proofs of the results described above.
Some of them will be put in a slightly more general framework so that they can
be applied to other cases (where S is not a binary tree or where we have other
addition operators ax ) as soon as the existence of a thermodynamic limit of the
finite volume stationary measures is guaranteed. The essential cause of difficulty is
the nonlocality of the addition operators. The essential simplification is the Abelian
property.

4.1. Thermodynamic limit of stationary measures.

PROOF OF THEOREM 3.1. (i), (ii) To see that R has empty interior, no-
tice that if η ∈ R, there do not exist x, y ∈ S nearest neighbors such that
η(x)= η(y)= 1 (that way, η{x,y} would be a forbidden subconfiguration). Finally
R is closed as an intersection of closed sets.

(iii) Let ηmax be the maximal configuration, ηmax(x)= 3 for all x ∈ S. If ηV ∈
RV , then ηV (ηmax)V c ∈ R. Therefore any η ∈ R containing an infinite number of
sites x for which η(x) �= 3 has property (iii) of Theorem 3.1. If η ∈ R contains
only a finite number of sites having height 1 or 2, then we choose a sequence
4 = {xn :n ∈ N} ⊂ {x ∈ S :η(x)= 3 and η(y)= 3 for any neighbor of x} such that
two elements of 4 are never nearest neighbors, and |xn| is strictly increasing in n.
We then define ηn(x)= η(x) for x ∈ S \ {xk ∈4 : 0 ≤ k ≤ n} and ηn(xk)= 2 for
xk ∈4, k ≥ n+ 1. These ηn belong to R since they do not contain any forbidden
subconfiguration, and ηn→ η. �

PROOF OF THEOREM 3.2. We use Tn introduced in (20), but with the xi such
that n≤m implies that the generation numbers satisfy |xn| ≤ |xm|. Then we have

|xn| � log2 n.(24)
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To prove that the probability measures µV form a Cauchy net, it is sufficient to
show that for any local function f :�→ R we have

∑
n

∣∣∣∣
∫
f dµTn − f dµTn+1

∣∣∣∣<∞.(25)

We do it for f (η)= η(x0) by giving an upper bound of the difference
∫
f dµTn −∫

f dµTn+1 by a truncated correlation function [cf. (16)]. Then we estimate the
latter by the transfer matrix method (cf. Section 2.9, item 3). We abbreviate in
what follows µn = µTn , Rn =RTn .

LEMMA 4.1.∣∣µn+1[η(x0)] −µn[η(x0)]
∣∣≤ 3µn+1

[
η(x0); I (η(xn+1)= 3

)]
.

PROOF. Every η ∈ Rn can be extended to an element of Rn+1 by putting
η(xn+1) = 3: indeed, adding a site with height 3 cannot create a forbidden
subconfiguration. Moreover

{ηTn :η ∈Rn+1, η(xn+1)= 3} =Rn;
thus

µn+1[η(xn+1)= 3] = |Rn|
|Rn+1| .

Since, for any n, |Rn+1| ≤ 3|Rn|, we have

µn+1[η(xn+1)= 3] ≥ 1
3 ,(26)

µn(η(x0))=
∑
η∈Rn

1

|Rn|η(x0)

= ∑
η∈Rn+1

1

|Rn+1|η(x0)I
(
η(xn+1)= 3

) |Rn+1|
|Rn|

= ∑
η∈Rn+1

1

|Rn+1|η(x0)I
(
η(xn+1)= 3

) 1

µn+1[η(xn+1)= 3] .

Therefore ∣∣µn+1(η(x0))−µn(η(x0))
∣∣≤ µn+1[η(x0); I (η(xn+1)= 3)]

µn+1[η(xn+1)= 3] .

The lemma follows now from (26). �

Recalling Section 2.9, item 3, we have

µn[η(x0); I (η(xn)= 3)] ≤ Cλ
|xn|,|xn|
m

λ
|xn|,|xn|
M

.(27)
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LEMMA 4.2.
+∞∑
n=1

λ
|xn|,|xn|
m

λ
|xn|,|xn|
M

<+∞.

PROOF. We abbreviate λ(n)m = λ|xn|,|xn|m , λ
(n)
M = λ|xn|,|xn|M , M(n)=M |xn||xn| , γi =

γ
|xn|,|xn|
i . In terms of the trace and the determinant ofM(n) we have

λ
(n)
M = 1

2

(
Tr(M(n))+

√
[Tr(M(n))]2 − 4 det(M(n))

)

λ(n)m = 1
2

(
Tr(M(n))−

√
[Tr(M(n))]2 − 4 det(M(n))

)
.

Therefore,

lim
n↑∞

(
λ
(n)
m

λ
(n)
M

)( [Tr(M(n))]2
det(M(n))

)
= 1.

To prove the lemma we show that [cf. (24)](
det(M(n))

[Tr(M(n))]2
)
≤
(

4

9

)|xn|
.(28)

Use

det(M(n))=
|xn|∏
i=1

(1 + γi)2

and

Tr(M(n)) ≥ Tr

( |xn|∏
i=1

(
1 + γi 0

0 2 + γi
))

=
|xn|∏
i=1

(1 + γi)+
|xn|∏
i=1

(2 + γi),

to estimate [for 1 ≤ i ≤ |xn|, 2(2 + γi)≥ 3(1 + γi)]
(

det(M(n))

[Tr(M(n))]2
)
≤
(

1 + 2
|xn|∏
i=1

[
2 + γi
1 + γi

]
+

|xn|∏
i=1

[
2 + γi
1 + γi

]2)−1

≤
(

1 + 2 ·
(

3

2

)|xn|
+
(

3

2

)2|xn|)−1

≤
(

4

9

)|xn|
. �
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REMARK. Lemmas 4.1 and 4.2 extend to a general local function f with
dependence setDf ⊂ Tn containingN0 generations. To obtain Lemma 4.1, replace

η(x0) by f (η) in its proof. For Lemma 4.2, we have to replaceM |xn||xn| byM |xn|−N0|xn| ,
and in the computation |xn| by |xn|−N0. SinceN0 is finite, the convergence in (25)
is unaffected.

Note that by the same proof we obtain that for any two local functions f,g
whose dependence sets Df and Dg are separated by a distance of n generations
we have

µ(f ;g)≤ C(f,g)( 4
9

)n
.(29)

So far we have proved the fact that the uniform measures on Rn converge to a
unique measure µ. Clearly, µ concentrates on R because for any given V0 ⊂ S,
and V ⊃ V0, the restriction ηV0 is an element of RV0 with µV -probability 1.

To prove point (ii), let π :S → S be a tree automorphism; that is, π is bi-
jective and x and y are neighbors if and only if π(x) and π(y) are neighbors.
π acts on configurations η ∈ � via π(η)(x) = η(π−1(x)). First note that RV =
π−1(Rπ(V )). Indeed, if for W ⊂ V , ηW is a forbidden subconfiguration, then
π(η)π(V ) is a forbidden subconfiguration of π(η) and vice-versa. This implies that
for the finite volume measures the equality µV ◦ π = µπ(V ) holds. Since µV is a
Cauchy net, the same holds for µπ(V ); hence we conclude

µ= lim
V
µV = lim

V
µπ(V ) = lim

V
µV ◦ π =µ ◦ π.

The mixing property follows from (29).
Points (iii) and (iv) of the theorem follow from the equality

lim
k→∞ k

−3/2µ
(|C3(0, η)| = k)= c > 0,

which in turn follows from (13), the convergence of µn to µ and the fact that, for
any k fixed, the indicator I (|C3(0, η)| = k) is a local function. �

4.2. Infinite volume toppling operators.

DEFINITION 4.1. Given the finite volume addition operators ax,V [defined in
(21)] acting on �, we call a configuration η ∈ � normal if for every x ∈ S there
exists a minimal finite set Vx(η)⊂ S such that, for all V ′ ⊃ V ⊃ Vx(η),

ax,V ′η = ax,V η.

In other words, for a normal η, outside Vx(η), no sites are affected by adding
a grain at x. In our case, when a particle is added at some site x ∈ S, the
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cluster of toppled sites coincides with the cluster C3(x, η) of sites having height 3
including x; thus

Vx(η)= C3(x, η) ∪ ∂eC3(x, η),(30)

where ∂e denotes the exterior boundary. Notice that for a normal configuration η,
by definition,

ax(η)= lim
V↑S ax,V (η)= ax,Vx(η)(η).(31)

PROOF OF PROPOSITION 3.1. (i) We show that there is a full measure set�′
of normal configurations. From (13) and Theorem 3.2,∫

I
(|C3(x, η)| = n)dµ�Cn−3/2.

Therefore µ concentrates on the set �′ of configurations for which all the clusters
C3(x, η) are finite, hence for which η is normal. Since I (|C3(x, η)| = n) is
measurable, �′ is measurable. Moreover this set �′ is closed under the action
of the addition operators ay , since [cf. (30)]

C3(x, ayη)⊂ Vx(η)∪ Vy(η).(32)

(ii) Choose ε > 0; pick a local function f ; fix Vn ↑ S and n0 such that n≥ n0
implies

µ{η ∈� :Vx(η) �⊂ Vn} ≤ ε

4‖f ‖∞ + 1
.(33)

This n0 exists since µ concentrates on normal configurations. We estimate∣∣∣∣
∫
f (axη) dµ− f (η) dµ

∣∣∣∣
≤
∣∣∣∣
∫
f (ax,Vnη) dµ−

∫
f (η) dµ

∣∣∣∣+ 2‖f ‖∞µ{η ∈� :Vx(η) /∈ Vn}

≤ lim
m

∣∣∣∣
∫
f (ax,Vnη) dµVm −

∫
f (η) dµVm

∣∣∣∣+ ε

2

≤ ε

2
+ 2‖f ‖∞ lim

m
µVm

(
ax,Vn(η) �= ax,Vm(η)

)
= ε

2
+ 2‖f ‖∞

(
1 − lim

m
µVm

(
Vx(η)⊂ Vn))

= ε

2
+ 2‖f ‖∞(1 −µ(Vx(η)⊂ Vn))≤ ε.

In the last step we used that the indicator I (Vx(η)⊂ Vn) is a local function.
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(iii) Let η ∈�′, x, y ∈ S be two different sites and let V ⊃ Vx(η) ∪ Vx(axη) ∪
Vx(ayη). Since ax,V and ay,V commute, we have

ax(ayη)= ax(ay,V η)= ax,V (ay,V η)
= ay,V (ax,V η)= ay,V (axη)= ay(axη). �

4.3. Infinite volume semigroup. We now turn to the proofs of Theorems 3.3
and 3.4.

DEFINITION 4.2. We define the cluster of η ∈� at x ∈ S as

C(x, η)= {y ∈ S :ayη(x) �= η(x)}(34)

and put

Gµ(x, y)=
∫
I
(
y ∈ C(x, η)

)
dµ(η).(35)

Finally, for ϕ :S→[0,∞), write

‖f ‖ϕ =
∑
x∈S
ϕ(x)

∫
µ(dη)|f (axη)− f (η)|,

Bϕ = {f :�→ R :f bounded, ‖f ‖ϕ <∞}.
REMARK. In our case y ∈ C(x, η) if y = x or if η(y) = 3 and there exists a

nearest neighbor path from y to a neighbor of x along sites having height 3. The
estimate forGµ(x, y) in Lemma 4.4 below is not dependent on the fact that we are
on the tree.

LEMMA 4.3. If∑
x∈S
ϕ(x)Gµ(y, x) <∞ for all y ∈ S,(36)

then all local functions are in Bϕ .

PROOF. Let f be a local function with dependence set Df . Then f (axη) �=
f (η) if for y ∈Df , axη(y) �= η(y), that is, x ∈ C(y, η),

‖f ‖ϕ =
∑
x∈S
ϕ(x)

∫
|axf − f |dµ

=
∫ ∑
x∈⋃y∈Df C(y,η)

ϕ(x)|axf − f |dµ

≤ 2‖f ‖∞
∑
x∈S
ϕ(x)

∫
I

(
x ∈ ⋃

y∈Df
C(y, η)

)
dµ

≤ 2‖f ‖∞
∑
y∈Df

∑
x∈S
Gµ(y, x)ϕ(x) <∞. �
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The next lemma provides a link betweenGµ and the Green’s function for simple
random walk on S, that is, between conditions (36) and (23).

LEMMA 4.4.

Gµ(x, y)≤
∑
z∼x
G(y, z)= δx,y + 3G(x,y),

where z∼ x means that z and x are neighbors.

PROOF. We have to estimate the probability that axη(y) �= η(y). If by adding
a grain at x we influence y, this can only be achieved by the toppling of one of the
nearest neighbor sites of y. Since µ concentrates on normal configurations,

µ
(
axη(y) �= η(y))= lim

V↑S µ
(
axη(y) �= η(y),Vx(η)∪ Vy(η)⊂ V )

= lim
V↑S lim

W↑S µW
(
ax,V η(y) �= η(y),Vx(η)∪ Vy(η)⊂ V )

= lim
V↑S lim

W↑S µW
(
ax,Wη(y) �= η(y),Vx(η)∪ Vy(η)⊂ V )

≤ lim
W↑S µW

(
ax,Wη(y) �= η(y))(37)

≤ lim
W↑S µW

(∃ z ∈W,z∼ y,nW (z, y, η)≥ 1
)

≤ lim
W↑S

∑
z∼y

∫
dµW(η)nW(z, y, η)

=∑
z∼y
G(z, y),

where we used (12), (14), (30) and (32). �

The following lemma completes the proof of Theorem 3.3 and shows that Bϕ is
a natural core for the domain of the generator of the infinite volume semigroup.

LEMMA 4.5. (i) For f ∈Bϕ the net

S
ϕ
V (t)f = exp(tLϕV )f = exp

(
t
∑
x∈V

ϕ(x)(ax − I )
)
f(38)

converges in L1(µ) (as V ↑ S) to a function Sϕ(t)f ∈ L1(µ). f �→ Sϕ(t)f defines
a semigroup on Bϕ which is a contraction in both L1(µ) and Bϕ norms.

(ii) Under condition (36), the semigroup Sϕ(t) corresponds to a unique Markov
process on �.
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PROOF. We denote by ‖f ‖ the L1(µ)-norm of f , and we abbreviate SV (t)=
S
ϕ
V (t), S(t)= Sϕ(t), LV =LϕV .

(i) First note that SV (t) is well defined on L1(µ) by Proposition 3.2. By the
Abelian property [Proposition 3.1(iii)] we can write, for V ⊂ V ′ ⊂ S,

‖SV (t)f − SV ′(t)f ‖ = ∥∥(SV ′\V (t)− I )SV (t)f ∥∥.
By Proposition 3.2, SV (t) is the semigroup of a stationary Markov process and
hence a contraction on L1(µ). Therefore∥∥SV (t)(SV ′\V (t)− I )f ∥∥

≤ ∥∥(SV ′\V (t)− I )f ∥∥
=
∥∥∥∥
∫ t

0
LV ′\V SV ′\V (s)f ds

∥∥∥∥(39)

≤
∫ t

0
‖LV ′\V f ‖ds

≤ t ∑
x∈V ′\V

ϕ(x)

∫
|(ax − I )f |dµ→ 0 as V,V ′ ↑ S,

where the last step follows from f ∈ Bϕ . Hence SV (t)f → S(t)f in L1(µ). We
show that S(t)f ∈Bϕ :

∑
x∈S
ϕ(x)

∫
|S(t)f (axη)− S(t)f (η)|µ(dη)

≤∑
x∈S
ϕ(x)

∫
S(t)|axf − f |dµ

=
∫ ∑
x∈S
ϕ(x)|axf − f |dµ= ‖f ‖ϕ.

Thus S(t) is also a contraction for the ‖ · ‖ϕ-norm. We finish with the semigroup
property:

S(t)S(s)f = lim
V↑S SV (t)[S(s)f ]

= lim
V↑S lim

W↑S SV (t)SW (s)f

and

S(t + s)f = lim
V↑S SV (t)SV (s)f.
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Then, since SV (t) is a contraction in L1(µ),

‖SV (t)SW (s)f − SV (t)SV (s)f ‖ ≤ ‖SW(s)f − SV (s)f ‖.(40)

By (39), the right-hand side of (40) goes to zero as V,W ↑ S.
(ii) If condition (36) is met, then Bϕ contains all local functions by Lemma 4.3.

Therefore, by contractivity the semigroup S(t) on Bϕ uniquely extends to
a semigroup of contractions on L1(µ). Since, by Proposition 3.2, SV (t) is
a Markov semigroup, so is S(t), that is, S(t)1 = 1, S(t)f ≥ 0 if f ≥ 0.
Hence, by Kolmogorov’s theorem there is a unique Markov process with semi-
group S(t). �

REMARK. When ϕ ≡ 1, condition (36) is equivalent to

∑
x∈S

∫
µ(dη)I

(
x ∈ C(y, η)

)= ∫
|C(y, η)|µ(dη) <+∞;

that is, the clusters must be integrable under µ. For models which exhibit “self-
organized criticality,” C(y, η) is usually a “finite but critical percolation cluster,”
implying that

∫ |C(y, η)|dµ = ∞ [cf. Theorem 3.2(iv), because C(y, η) ⊃
∂eC3(y, η)]. Therefore this formalism breaks down for addition rate ϕ ≡ 1.

The following lemma proves Theorem 3.4.

LEMMA 4.6. Under condition (36), the process {ηt : t ≥ 0} of Theorem 3.3 is
almost surely right-continuous, that is,

Pµ

[
lim
t↓0
d(ηt , η0)≥ ε

]
= 0,(41)

where Pµ is its path-space measure, and the distance d is defined below [in (44)].

PROOF. Pick a function  :S→ (0,1) such that∑
x∈S
 (x)= 1(42)

and ∑
x,y∈S

ϕ(x)Gµ(x, y) (y) <∞.(43)

The distance

d(η, ζ )=∑
x∈S

|η(x)− ζ(x)| (x)(44)
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generates the product topology. Denote by Eµ the expectation w.r.t. Pµ. For
fy(η)= η(y),

fy(ηt )− fy(η0)=
∫ t

0
Lϕfy(ηs) ds +My

t ,

where My
t is a centered martingale with quadratic variation

Eµ

[
(M

y
t )

2]= Eµ

[∫ t

0

(
Lϕf 2

y (ηs)− 2fy(ηs)L
ϕfy(ηs)

)
ds

]
.(45)

Using stationarity of ηs and∫
dµ|Lϕg| ≤ 2‖g‖∞

∑
x∈S

∑
y∈Dg

ϕ(x)Gµ(y, x),

for a local bounded function on �, we obtain from (45)

Eµ

[
(M

y
t )

2]≤ Ct∑
x∈S
ϕ(x)Gµ(y, x).

Now we can estimate

Pµ

[
∃ s ≤ t :∑

y∈S
|ηs(y)− η0(y)| (y)≥ ε

]

≤ Pµ

[∫ t

0
ds
∑
y∈S

|Lϕfy(ηs)| (y)≥ ε

2

]

+ Pµ

[
sup

0≤s≤t

∣∣∣∣∣
∑
y∈S
My
s  (y)

∣∣∣∣∣≥ ε

2

]

≤
(

12t

ε

) ∑
x,y∈S

ϕ(x)Gµ(y, x) (y)+
(

2

ε

)2

Eµ

∣∣∣∣∣
∑
y∈S
M
y
t  (y)

∣∣∣∣∣
2

≤
(

12t

ε

) ∑
x,y∈S

ϕ(x)Gµ(y, x) (y)+
(

2

ε

)2

Eµ

[∑
y∈S
(M

y
t )

2 (y)

]

≤ tCε
∑
x,y∈S

ϕ(x)Gµ(y, x) (y).

Here we used Markov’s and Doob’s inequalities in the second step and the
Cauchy–Schwarz inequality combined with (42) in the third step. The result (41)
follows. �
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4.4. Poisson representation. In this section we prove Theorems 3.5 and 3.6.
Intuitively it is clear from the Abelian property that the process for which we
showed existence in the previous subsection can be represented as

∏
x∈S axN

t,x
ϕ η,

where Nt,xϕ are independent Poisson processes of intensity ϕ(x).
We take Tn as in (20). We say that the product

∏
x∈S a

nx
x η exists if for every

y ∈ S there exists Ny such that, for all m,n≥Ny ,∣∣∣∣∣
[ ∏
x∈Tn

anxx η

]
(y)−

[ ∏
x∈Tm

anxx η

]
(y)

∣∣∣∣∣= 0.

This is equivalent to the convergence of the sequence
∏
x∈Tn a

nx
x η in the product

topology.

LEMMA 4.7. Under condition (36), the product

∏
x∈S
a
Nt,xϕ
x η= η̃t

exists for µ-almost every realization of Nt,xϕ and almost every η. The process
{η̃t : t ≥ 0} is a version of the Markov process of Lemma 4.5.

PROOF. Choose a realization of Nt,xϕ such that
∑
x∈S
Nt,xϕ Gµ(x, y) <∞(46)

for every y. This happens with probability 1 by condition (36). Define, for η ∈�′,

ηTn(t)=
∏
x∈Tn

a
Nt,xϕ
x η.(47)

Under µ, ηTn(t) is stationary in n and t . We have

µ
[∣∣(ηTn(t))(y)− (

ηTn+1(t)
)
(y)

∣∣≥ 1
]

≤
∫ ∣∣∣[axn+1

N
t,xn+1
ϕ ηTn(t)

]
(y)− (ηTn(t))(y)

∣∣∣µ(dη)
=
∫ ∣∣∣[axn+1

N
t,xn+1
ϕ η

]
(y)− η(y)

∣∣∣µ(dη)

≤
∫ N

t,xn+1
ϕ∑
j=1

∣∣[ajxn+1
η
]
(y)− [

aj−1
xn+1

η
]
(y)

∣∣µ(dη)
≤ 6Nt,xn+1

ϕ Gµ(xn+1, y).
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In the second and last steps we used the invariance of µ under ax . By the Borel–
Cantelli lemma, (46) implies that, for almost every realization of Nt,xϕ ,

µ
[∃n0 :∀n≥ n0

(
ηTn(t)

)
(y)= (

ηTn0
(t)
)
(y)

]= 1.

This proves µ-a.s. convergence of the product. To see that η̃t is a version
of the Markov process with semigroup Sϕ(t), combine Proposition 3.2 with
Theorem 3.3(i) to get, for any local function f ,∫

dµ

∣∣∣∣
∫
dPf (η̃t )− Sϕ(t) f

∣∣∣∣= 0.

In the preceding argument we used a particular enumeration of the countable set S.
But changing it gives again a process with semigroup Sϕ(t). Therefore the limiting
process will not depend (up to sets of measure zero) on the chosen enumeration
of S. �

PROOF OF THEOREM 3.6. For η ∈ �′ and y ∈ S we have the relation
[remember (47)]

ηV (t)(y)= η(y)+ I (y ∈ V )
∑
x∈V

Nt,xϕ −�ntV (y),(48)

where ntV (x), an integer valued random variable, is the number of topplings at
site x in the time interval [0, t], when sand is added in V . For Tn defined in (20)
we will first prove that ntTn increases µ×P almost surely to an L1(µ×P) random
variable nt , interpreted as the number of topplings in [0, t] when we add grains
according to Nt,xϕ . By the Abelian property the sequence ntTk (0) is increasing in k.
The following estimate is similar to (37):

(µ× P)
(∣∣ntTk (0)− ntTk+1

(0)
∣∣≥ ε)

= (µ× P)
(
ntxk+1

(0)≥ ε)

≤ 1

ε

∫
ntxk+1

(0)µ(dη)× P(dω)

(49)

≤ 1

ε
lim
V↑S

∫
ntxk+1

(0)I
(
Vxk+1(η)∪ V0(η)⊂ V )µ(dη)× P(dω)

≤ 1

ε
lim
W↑S

∫
ntW (xk+1,0, η)µW(dη)× P(dω)

≤ 1

ε
tϕ(xk+1)G(0, xk+1).

In the fourth line, ntW (xk+1,0, η) denotes the number of topplings up to time t
at site 0 ∈ W by adding grains at site xk+1 ∈ W . By the Borel–Cantelli
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lemma, condition (23) implies the a.s. convergence of ntTk (0), and analogously
of every ntTk (x). Pick (η,ω) such that ntTk (η,ω) converges, that is, such that
supk n

t
Tk
(η,ω)= nt (η,ω) is finite [indeed, ntTk (η,ω) is an integer]. If η′ ≤ η, then

ntTk (η
′,ω) ≤ ntTk (η,ω) because we can obtain η from η′ by adding sand at sites

x ∈ S for which η′(x) < η(x) thereby increasing the number of topplings. We thus
conclude that the convergence of ntTk (η,ω) implies the convergence of ntTk (η

′,ω)
for all η′ ≤ η.

Now let µ′ ≤ µ in the FKG sense. There is a coupling P12 of µ′ × P and µ×P

such that

P12
((
(η1,ω1), (η2,ω2)

)
:ω1 = ω2, η1 ≤ η2

)= 1;
that is, we use the same Poisson events and couple µ′ and µ according to the
optimal coupling [see Strassen (1965)]. Then

(µ′ × P)
(
ntTk (η,ω)→ nt(η,ω)

)
= P12

(
ntTk (η1,ω1)→ nt (η1,ω1)

)
= P12

(
ntTk (η1,ω1)→ nt (η1,ω1),

ntTk (η2,ω2)→ nt (η2,ω2),ω1 = ω2, η1 ≤ η2
)

≥ P12
(
ntTk (η2,ω2)→ nt(η2,ω2)

)
= (
µ× P

)(
ntTk (η,ω)→ nt(η,ω)

)= 1.

This shows the µ′ × P-almost sure convergence of ntTk ; hence by (48) the product∏
x∈S a

Nt,xϕ (ω)
x η′ converges µ′ × P almost surely. �

As a further result we show that the semigroup Sϕ(t) is continuous as a function
of the addition rate ϕ. We define

:1 =
{
ϕ :S→ [0,∞) :‖ϕ‖ =∑

x∈S
ϕ(x)G(0, x) <∞

}
.

It is a complete metric space (as a closed subset of a Banach space) with the
following property: If ϕn ∈ :1, ϕn ↑ ϕ (pointwise) and ϕ ∈ :1, then ϕn→ ϕ in :1.

PROPOSITION 4.1. The semigroup Sϕ(t) of Theorem 3.3 is a strongly
continuous function of ϕ; that is, if ϕn → ϕ in :1, then, for any local function f ,
Sϕn(t)f → Sϕ(t)f .



ABELIAN SANDPILE MODEL 2105

PROOF. Let ntϕ = limk→∞ ntTk be the number of topplings in [0, t] from sand
addition at rate ϕ. In the proof of Theorem 3.5 we have shown that this random
variable is µ×P almost surely well defined and, after taking limits in (48), satisfies

ηt = η0 +Ntϕ −�ntϕ,(50)

where Ntϕ = limV↑S
∑
x∈V Nt,xϕ . Note that if ψ1 ≤ ψ2, the Poisson processes Ntψ1

and Ntψ2
can be coupled in such a way that, for all x ∈ S, Nt,xψ1

≤Nt,xψ2
, and hence,

by the Abelian property, ntψ1
(x)≤ ntψ2

(x). Consider a coupling of the four Poisson
processesNtϕ , Ntϕ∧ϕn , N

t
ϕ∨ϕn and Ntϕn under which the inequalitiesX1(t)≥X2(t),

X2(t) ≤ X3(t), X3(t) ≥ X4(t) are satisfied with probability 1. Let P̃ denote the
law of the marginal (X1,X4). We have, by a reasoning similar to (49),∫

dµ
(
Ẽ
∣∣ntϕn(0)− ntϕ(0)∣∣)

≤
∫
dµ

(
Ẽ
(
ntϕn(0)− ntϕn∧ϕ(0)

)+ Ẽ
(
ntϕ∨ϕn(0)− ntϕ∧ϕn(0)

)
(51)

+ Ẽ
(
ntϕ∨ϕn(0)− ntϕ(0)

))
≤ t∑

x∈S
|ϕn(x)− ϕ(x)|G(0, x),

which tends to zero for ϕn → ϕ in :1. Now take a local function f , and write
D̃f =Df ∪ ∂eDf ,

∣∣Sϕn(t)(f )− Sϕ(t)(f )∣∣≤ P̃
(
ntϕn(x) �= ntϕ(x) for some x ∈ D̃f )

≤ ∑
x∈D̃f

Ẽ
∣∣ntϕ(x)− ntϕn(x)∣∣.

Combining this with (51) concludes the proof. �

One might ask whether we can go beyond condition (23), which essentially
guarantees that the expected number of topplings stays finite in the addition
process. In the following proposition we show that it is impossible to keep
integrable toppling numbers and “rate 1” addition. The relation (52) should be
regarded as the infinitesimal version of (50), where α(x) replaces the rate ϕ(x).
We then show that ϕ has to depend on x.

PROPOSITION 4.2. Let α :S → {0,1} be a stationary and ergodic random
field distributed according to ν. Denote its density by

∫
α(0)ν(dη) = ρ. Suppose

there exists a measurable transformation T : {0,1}S ×�→� which satisfies the
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following conditions:

(i) The measure µ of Theorem 3.2 is invariant under T (α, ·) for any α.
(ii)

T (α,η)(x)= η(x)+ α(x)−�n(α,η, x),(52)

with n(α,η, ·) ∈L1(µ) for ν almost every α.

Then, ρ = 0.

PROOF. Taking expectation over µ in (52) gives

� (α,x)= α(x),(53)

where  (α,x) = ∫
n(α,η, x)µ(dη). By stationarity of µ and ν,  (α,x) is a

stationary random field. Let (xt : t ≥ 0) denote a continuous time simple random
walk on S, starting at 0. From (53),

E (α,xt )= (α,0)+E

∫ t
0
α(xs) ds.

Divide this last line by t and let t ↑ +∞. As ν is ergodic (making the last term
equal to ρ) and as the process  (α,xt ) is stationary, we conclude that ρ = 0. �
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