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MAXIMA OF PARTIAL SUMS INDEXED BY GEOMETRICAL
STRUCTURES

BY TIEFENG JIANG

University of Minnesota

The maxima of partial sums indexed by squares and rectangles over
lattice points and random cubes are studied in this paper. For some of these
problems, the dimension (d = 1,d =2 and d > 3) significantly affects the
limit behavior of the maxima. However, for other problems, the maxima
behave almost the same as their one-dimensional counterparts. The tools for
proving these results are large deviations, the Chen—Stein method, number
theory and inequalities of empirical processes.

1. Introduction. Motivated by comparisons of protein structures with three
dimensional foldings (see [14] and [18] for further details), we study maxima of
partial sums of i.i.d. random variables with indices on d-dimensional lattices points
(d = 2) as well as positive random numbers generated by the uniform distribution
over the three-dimensional cube.

Before stating our main results, let us recall a result for the one-dimensional
case.

In our context, the random variable X is typically assumed to satisfy the
following condition:

X is nonlattice, E(X) <0, P(X >0) > 0and

(1.D
Eexp(tX) <oo forallr e R.

Under condition (1.1), there is a unique constant # > 0 so that
(1.2) Eexp(0X)=1.

The following lemma was probably first proved by Spitzer (E4 on page 217
of [22]). See also (5.13) in [11].

LEMMA A.1. Let {X, X,;;n > 1} be a sequence of i.i.d. random variables
with X satisfying (1.1). Set Sy = Y *_, X;, k> 1. Then

K := lim eetP<maxSk > t) =C/0,
k>1

t——+400
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where
oo Aexp(=2532, L(E[exp(0Sk); Sk <01+ P(Sk > 0))}
B E[X exp(6X)]

and A = exp{)_;2 P(Sx > 0)/k}. The above expression for C follows from i.i.d.
fluctuation sum identities ([11, Chapter 12]).

Lemma A.1 is important for i.i.d. partial sums. Iglehart [13] used this result in
the continuous i.i.d. case in the course of characterizing the asymptotic maximal
waiting time among the first n customers in a standard GI/G/1 queue. One such
result is as follows:

THEOREM A.1. Let {X,X,;n > 1}, Sy and K be as in Lemma A.1. Set
So =0. Then

logn _Ke—tx
Pl max (§;—35;) =< +x)—e asn— oo
O<i<j<n 0

forany x e R.

For more information on oscillation phenomena for partial sums of i.i.d. random
variables see [5, 17, 19] and the references therein.

In this paper, we study counterparts of Theorem A.l1 for two or higher
dimensional cases. Due to the complexity of higher dimensional spaces, a discrete
version and a continuous version are studied separately.

Now we state our results for the first part.

Denote the set of all positive integers by N and d-fold Cartesian product of N
by N4, namely, N9 = {I = (i1, i2,...,iq); ix €N, k=1,2,...,d}. For any
n > 1, define the set of all subcubes and that of rectangles in {1,2,...,n}¢ by
O, and R,, respectively. Precisely, for any A € @, and A’ € R,,, there exist
Uide_,, {y¢_, e N and m € N such that

A={G1, ... ig)eNY 1< jy<ix<jx+m<n, k=1,2,...,d}
and
A ={G1,....ig)eN 1< jp<ix<h<n, k=1,2,...,d).
Assuming that {X, Xj; I € Nd} are i.i.d. random variables, let SA =) ;- A X7,

W, = max Spo and U, = max Sa.
AeO, AER,

We focus mainly on these two statistics in the first part of the paper. Strong laws
and limiting distributions of them are derived.
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For the random variable X mentioned in (1.1), the corresponding log of the
moment generating function and its conjugate which is also called the rate function
are

Ax (1) =log E exp(tX), A% (x) :=supf{tx — Ax(1)}.
teR
When there is no confusion, we may for the sake of convenience, write A(t)
for Ax(t) and A*(x) for A%(x), respectively. To understand the limiting
distributions of W, and U,, we need the following local properties of partial
sums corresponding to that of Lemma A.1 in one-dimensional case. Recall Sy =
Y X, X;, k=1, are the partial sums of a sequence of i.i.d. random variables

THEOREM 1. Suppose condition (1.1) holds. For z > 0, let y(z) = (z/
AN ON'V? and §(z) = Y 2° exp{—B(i + 2)*}, where B =2A'(0)?/ A" (0). Then

& 1 [ A
lim Ve P<max Sp2 > Z) = — &
=00 5(y(z))  \k=l 0\ 2 A" (0)

Although we assume X is nonlattice in all of our results here and later, the lattice
cases can be treated similarly. We omit them in this paper.
When d > 3, we have the following result.

THEOREM 2. Suppose condition (1.1) holds. Let G,(z) = exp(—ndA*(z/
n?)), where n := [(z/A’(@))l/d] (recall [x] is the biggest integer no larger than x).
Then for any integer d > 3,

_ _ 1/ A
i VA6 @+ G @) P (s = 2) = 5y 2

Why are the results ford =1, d =2 and d > 3 so different? For ease of discussion,
assume that X is bounded. Compared to a given large number z, Sy is very small
both when k is small (because X is bounded) and when k is large (because of
the negative mean). Let I'y be the set of integers k which essentially contribute to
maxg>1 Sd.

By a computation given later in this paper, we know that I'; is the set of integers
in (z — 4/zlogz, z+ «/zlog z). The size of T'y is therefore roughly equal to

Jl1ogz
(z+zlog2)/? — (z — y/zlog2) /! =~ Zl/zi—gl/d'

Obviously, d = 2 is the critical value in which the size of I'; is roughly /logz in
contrast to 4/zlogz when d = 1. When d > 3, I'; consists of at most some fixed
set of integers. The real calculation shows that the size of I'; in this case is at most
two.
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Now we turn to another case of local properties of partial sums. Let {X, X; ;;
i > 1, j>1} bei.i.d. random variables and S, , = Zf’zl 27‘21 Xij-

THEOREM 3. Let U =max,>1 4>1Sp 4. Suppose condition (1.1) holds, then

lim eez(logz)_lP(U >z7)=
z—> 400

1
0/A(0)

For the one-dimensional case, the proof of Lemma A.1 depends on classical
fluctuation theory. The proofs of the above theorems are totally irrelevant to that.
The following are strong laws for W, and U,,.

THEOREM 4. Suppose condition (1.1) holds, then for any d > 2,

Wi —> % a.s.,

O Jim, o

.. . U, d
(i1) nll)ngologn — g a.s.

The following are limit laws of W, and U,. As usual, log,n = log(logn),
logz n =log(log, n).

THEOREM 5. Suppose that d = 2 and condition (1.1) holds. Let t, =
logé(y (2logn/0)), where the functions §(-) and y (-) are as in Theorem 1. Define
log, n =log(logn). Then

im P(w, < {21 L = Kie™™
nl)ngo n<g ogn—i ogon+t+i,p+x)=e

forall x e R, where K| = 2_1\/A/(9)/(n0A”(9)).

THEOREM 6. Suppose d > 3 and condition (1.1) holds. Let k, = inf{k €
N; (logk)/2 + ak? > logn}, where o = OA'(0)/d, and r, = exp{dlogn —
d(logk,)/2 — kY9N’ (0)}. Then

Ox

P(W, < A @)k 4 x) —e Ko™ 0,
where Ky = (027 A7(0)) L.

It is easy to see that r, of Theorem 6 does not converge. Also P (W, <
A (Q)kff +x) does not converge, but Theorem 6 gives a first order of approximation
for the probability.
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THEOREM 7. Suppose condition (1.1) holds, for d =2, we have that

P(Un < 2logn 102311

where K3 =1/0/A'(0).

+ x) 5 ¢~ Kae™ Vx eR,

From Theorem 4, we know that both U, and W, have the same scale. But
evidently, U,, > W,,. Theorem 5 tells us, loosely speaking, that W,, ~ (2logn —
(1/2)log, n)/6 when d = 2. The above theorem says roughly that U, ~ (2logn +
logy n)/0 when d = 2. The difference between them is obvious.

The analogue of Theorem 7 for the high-dimensional case is not derived in this
paper because a related number theoretic problem is unsolved. In fact, one of the
key steps in proving Theorem 7 is to show that

(1.3) Z q(k)e_(k_y)z/y ~a,/ylogy as y — +00
kel

for some constant « > 0, where g (k) =#{(r,s) € NZ?; rs =k} and I, is an interval
depends on y. To solve the analogue of Theorem 7 for the high-dimensional case,
a calculation similar to (1.3) must be done. See Remark 5.6 for further details.

The above results can also be thought as natural extensions of the classical
Erdos—Rényi law (see [10]) and its followups such as [5] to a higher dimensional
setting.

In the second part of this paper, results in the “continuous” setting are obtained.
They are actually motivated by a procedure given by Karlin and Zhu [15], which
studied clusters of charged residues in protein structures. To focus on mathematics,
we omit any details of biology throughout this paper.

Assume that {Y, ¥;; i > 1} is a sequence of i.i.d. random variables with uniform
distribution on [0, 11*. For any x = (xy, x2, x3) € R?, ||lx|| = max{|x1], |x2], |x3]}
is the maximum norm. A ball centered at x and with radius » under this norm is
denoted as B(x, r). We denote by F the set of all subcubes inside of [0, 173 such
that their six faces are parallel to those of [0, 1]3. Specifically,

(1.4) F ={B(x,r)C[0,11% x €[0, 1], 0 <r < 1/2}.

Let {X, X,,; n > 1} be a sequence of i.i.d. random variables. For any B C [0, 173,
define S, (B) =_"_, X;I{Y; € B}. We consider the following two statistics:

(1.5) W, =max S,(B) and U, =maxS,(B),
BeB Be¥F
where B8 :={B=B(Y;,r)C[0,11% 1<i<n, 0<r <1/2}.

THEOREM 8. Suppose condition (1.1) holds, then
W, 1 .U, 1
im =— a.s. and lim =— a.s.
n—ologn 6 n—ologn 6
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THEOREM 9. Suppose condition (1.1) holds, then

~ 1 —0x
lim P(W,, < %—kx) — ke

n—oo

for any x € R, where K is a constant as in Lemma A.1.

The method of proof of this result is a combination of the classical fluctuation
theory in the one-dimensional case and the “diffuse” property of high dimensional
spaces. We may think of Theorem 9 as one of the results of scan statistics see [20]
and [21] and the literature therein.

One application of our results is the following change point problem. Suppose
we have independent observation on two dimensional lattice points:

-14 -33 -18 -28 -02 -23 -3.0
-24 -31 —-12 =25 =23 =27 —-1.6
-06 —-1.1 -03 —41 -09 —-15 —-05
-28 -19 -30 -0.7 =28 —-12 -—-15
-12 -14 =26 12 14 13 =07
-18 -19 =25 16 13 14 —42
-15 -16 -11 -15 -0.1 -29 -—-1.2

Fi1G.1.1.

One immediately notices that there is some zone where the data are significantly
different from those in the other parts. [The above data are actually sampled from
the distribution N (—2, 1), and the data in the area enclosed by the fifth and sixth
rows and the fourth and sixth columns are later changed manually to the current
ones.] This is a typical setting in change point problems. The goal is to detect
whether there is a zone from which the data are different from the data in other
zones. Siegmund and Yakir in [21] studied this problem recently by using the
likelihood ratio test. Our Theorems 5, 6 and 7 provide another way to study such
a problem in which data are assumed from a population with negative mean and
essential positive part. So far we do not know which method is more efficient.

Finally, let us give the outline of this paper. We will prove results on maxima on
squares, rectangles and random cubes in Sections 2, 3 and 4, respectively. We give
some concluding remarks in the last section.

2. Proofs of Theorems 1, 2,4, 5 and 6.

2.1. Notation and some auxiliary lemmas. Throughout this paper, we use the
following notation:

N: The set of all positive integers.

R := (—00, +00).
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[a]: The integer part of a.

|A| or #A: the cardinality of a set A.

I4 or I(A) or 14 or 1(A) are the same function of x ;=1 if x € A, =0
otherwise.

anp ~ by :a, /b, - 1 asn— oo.

a, = O(b,): limsup,,_, . |a,/b,| < oc.

a, = o(by): lim,  a, /b, =0.

a Vv b:=max{a, b} and a A b := min{a, b}.

EAf(“;‘l, &, ..., &,): suppose &1, &2, . . ., &, are random variables. For f(x1, x2,
..., Xp), a real-valued function on R", denote by E A f1,86,....&,) the condi-
tional expectation E(f (&1, &2, ...,&,)|8B), where B is the o-algebra generated
by {&.k ¢ A} if A C {1,2,...,n} or by {&,...,&,} \ A if A is a subset of
{€x, 1 <k < n}. The same interpretation applies to P4 too.

Before proving the main theorems, we collect some tools which will be
frequently used in this and later sections. Some of those tools are quoted directly
from the literature. They will be denoted by Lemmas A.2 and A.3, etc. as in the
introduction. We use the numbering such as Lemmas 2.1 and 3.2 to denote those
results which need proofs.

The following inequality provides us with bounds for tails of sums of
independent and bounded random variables; see Exercise 14 on page 111 in [4]
or page 193 in [16].

LEMMA A.2 (Bernstein’s inequality). Let {X;; 1 <i < n} be a sequence
of independent random variables with EX; =0, EXl-2 = aiZ and | X;| < 1. Denote

2 _\yn 2
sy =2 1i_10;.Then

2
P(Sn>x)§exp{—m}, x> 0.
n

LEMMA 2.1. Let {Xy;a € A} be a collection of i.i.d. random variables,
where A is a finite set. Suppose that A, A1, B and By are subsets of A satisfying
|A| = |A1|, |B| = |Bi| and |A N B| < |A; N By|. Let ®(x) be a measurable
function on R. If |A| = |B| or ® is monotone, then

ED(S4)P(Sp) < ED(Sa)P(SB)),
where Sc =, cc X for any set C.
PROOF. We distinguish two cases.

(1) Suppose |A| = | B|. As mentioned earlier, EAY):=E(Y|Xy, 0 € A\ A) for
any random variable Y. Take a subset D C A N Bj for which |D| =|A1 N By| —



MAXIMA OF PARTIAL SUMS 1861
|A N B|. Then from the invariance property of the joint distribution of {X; o € A},
it follows that
ECI)(SAI)CI)(SBI) — EA]QB] (EA]\BI CI)(SAI))Z — E(A]ﬂB])\DED(EAl\Bl CI)(SAI))Z

> E(AmBl)\D(E(Al\Bl)UDq)(SAl))2 _ EAﬂB(EA\BcD(SA))Z
=E®(SA)P(Sp)

where the only “>" appearing in the above argument is by virtue of the Cauchy—
Schwarz inequality.

(ii) Suppose that ® is monotone. As above, take a subset D C A1 N Bj so that
|[D|=|A; N Bi| —|AN B|. It follows that

Eq)(SAl)CD(SBI) — EA[ﬂB] {EAI\BIq)(SAl)EBl\AI(I)(SBI)}
= EANBO\D EDIpANBI (5, YEBN\AI D (Sp,))
> EANBO\D{ pANBIUD g (g, y EBINADUD g (g )
=E®(S4)P(Sp)

where we use the easy fact that Ef(Y)g(Y) > Ef(Y)Eg(Y) for any two
increasing functions f, g and a random variable Y in the only inequality appearing
above. [

The following Poisson approximation theorem is a straightforward application
of Theorem 1 in [1], which is a special case of the Chen—Stein method. The lemma
is used quite often in analyzing maxima of random variables.

LEMMA 2.2. Let Q2 be a finite set and A be a collection of some subsets
of Q. Suppose that {Xy, a € Q} is a collection of random variables. Write
Sa=YgeaXaand A =3 pc4 P(Sa >t) for a fixedt € R. Then

< (L ALY(By + by + b3),

P(maxSA < t) —e*
A€A

where

bi=Y Y PSa>nP(Sp>1),

A€ B:BNA£D

by=Y Y P(Sa>t Sg>1),

A€ B:BNA#D

by= Y E|P(Sa>tlo{Sp;:BNA=0}) — P(Ss>1)
A€A

’

where o{Sp; BN A = &} is the o -algebra generated by the collection of random
variables {Sp; B N A = @}. In particular, if {Xy, o € Q} is a set of independent
random variables, then by = 0.
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PROOF. LetYs =1(S4 > 1), and B4 be the set of all B such that BN A # @.
Then the result follows from Theorem 1in [1]. O

The next lemma, whose proof may be found in Remark (a) below Theorem 3.7.4
in [8], collects useful properties of A(z) and A*(x). Their definitions are given in
the introduction.

LEMMA A.3. Suppose Eexp(tX) < oo forallt € R and X is nondegenerate.
Then:

(i) A”(t)>O0forallt €R.
(i) A*(x) is infinitely differentiable in the interior of the convex hull of the
support of X.
(iii) If condition (1.1) holds, then A*(A'(0)) =0A'(0), (A*) (A'(0)) =0 and
(AM" (N (0)) =1/A"(0), where 0 is as in (1.2).

LEMMA 2.3.  Suppose condition (1.1) holds. Let D+ = {x € R; A*(x) < oo}.
Then I (x) := A*(x)/x is strictly decreasing on (0, A'(0)] and strictly increasing
on [A'(6), +00) N Dpx.

PROOF. Obviously, the condition (1.1) implies that [0, +00) C {A(?); t € R}.
Moreover, A(t) is a strictly convex function. Thus, for any x; > x; > A’(0) such
that A*(x;) < oo, i =1, 2, thereexistt, > t; > @ suchthatx; = A'(t;), i =1,2. It
follows from ¢; > 0 that A(z;) > 0. Itis easy to see that A*(A'(7)) =t A'(r) — A(2).
Consequently,

A o A@) A AT()

2.1 =1 — <t < :
X1 X1 X2 X2

If 0 < x1 < x2 < A’(9), then there exist 0 < ] < t, < 6 such that x; = A’(t;) and
A(t;) <0, i =1,2. By using the same argument as (2.1), we have A*(x;)/x| >
A*(xp)/xp. O

Let {X, X,,; n > 1} be a sequence of i.i.d. random variables with mean . Recall
that S, = Y7, X; are partial sums. We always assume that X is nondegenerate.
The following proposition, which is slightly stronger than the usual Bahadur—Rao
theorem (see [2]), provides us with uniform estimates of tail probabilities. It is a
pivotal tool in our proofs.

PROPOSITION 2.1. Suppose X is nonlattice and A(t) < oo forallt € R. Then

sup [C,(MP(Sy>nA' () —1|—-0 asn— oo

a<n=<b

for any two constants b > a > 0, where C,,(n) = n+/2nnA"(n AN )
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PROOF. Obviously, A*(A'(n)) = sup‘t|<a+b{tA/(n) — A(t)} for any n €

[a, b]. Since X is nonlattice, the random variable Z := !X JEé' X is also nonlattice.
Denote the characteristic function of Z by ¢z (s). Then ¢z(s) = E etHinX JEé! X
and |¢,(s)| < 1 for any s # 0. By continuity, we have that

Eet+inX
sup |———| <1
si<lsi<s, | Ee'X
[t|<a+b

for any constants §; > 0, j =1, 2. It follows from Theorem 3.3 and Remark 3.6
in [3] that P(S, > nA'(,)) ~ C,(,)~" as n — oo for any {n,;n > 1} C [a, b],
which implies our desired result. [J

A consequence of the above proposition follows. It will be used as a tool for
finding accurate estimates.

COROLLARY 2.1. Suppose the condition in Proposition 2.1 holds. Then, for
any given § > 0,

sup sup [Cu(x, P (S, =nA' () +x)—1|—=0  asn— oo,
a<n=b |x|<s/nlogn

where Cp,(x,n) = Cn(n) exp{nx + (x2/2A"(n)n)}, and C,(n) is as in Proposi-
tion 2.1.

PROOF. For any |x| < §4/nlogn, a <n < b and sufficiently large n, there
always exists an unique 7, y for which A’(n, ) = A’(n) + x/n. This is because
x/n — 0and A’(-) is strictly increasing. By the same reason, there exist a; and b
satisfying a1 < a < b < bjand {n,.x; |x| < és/nlogn} C (aj, b1) for n large
enough. Therefore

Ch(x, )P (S, =nA' (1) +x) = Cp(x, )P (Sp > nA (n.x))

Cn(x,n)
= ﬁ[cn(nn,x)(})(sn = nA/(nn,x)))]-
n\Uln,x
By Proposition 2.1, it remains to show that
C ’
2.2) Gt
C, (nn,x)

uniformly in x and n. By Taylor’s expansion and Lemma A.3,

Cox,m) /A"

Ca(nx)  Mnxv/ A" (M)
where &, is between A’(n7) and A'(n) + n~'x. Obviously, we have that |(x3/6n?)
x (AP (&) < n~2(logn)*? sup, < <p, IN*P(x)]. On the other hand, let

x3 #y(3)
(2.3) exp[—@(A) (é‘n)},
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h =inf, (4, 5,1 A" (). Then h € (0, 00) and by the mean value theorem 8+/logn /n >
A" () — A (Nn.x)| = h|n —nn x|. Apply the mean value theorem again to the func-
tion x4/ A’ (x) to obtain from (2.3)

Cn(x’ 7]) 8 10 n
‘ —1‘<7 sup |(n«/A”(n))/| £ )

Cn(Mn,x) ~ (lat| + [b1Dh a1 <n<b; n
Therefore, (2.2) is true. [

The following easy fact is called Chernoft’s bound (see, e.g., page 31 in [8]). It
is weaker than Proposition 2.1, but it is a simple and nonasymptotic bound.

LEMMA A.4 (Chernoff’s bound). Foranyx > EX,
P(S,/n > x) <exp(—nA*(x)) Vn>1.

The following lemma is frequently applied when proving theorems on maxima
of partial sums via the Chen—Stein method.

LEMMA 2.4. Suppose A, B and C are disjoint sets of indices. Let { X, Xy; o €
A U B U C} be i.id. random variables with X satisfying condition (1.1) and
w:= EX. For any subset D C AU B U C, we use the notation Sp :=)_,cp Xa-
Then,

P(Saup =z, Spuc = z) < 2e7037ME < pe0imat

where { =sup, _y o{A*(x) AO|x]} >0, my =|A|V [C|and m, =AU C|/2.

PROOF. Assume, without loss of generality, |A| > |C|. Then
P(SauB =z, Spuc = z) < P(Sa = x|A)P(Spuc = z) + P(Sp = z — x|AJ)

for any x > p. By the Chernoff’s bound, P(S4 > x|A|) <exp(—|A|A*(x)). Also,
by using that Eexp(fX) = 1 and the Markov’s inequality, we have P(Spuc >
7) <e % and P(Sp >z — x|A|) <exp(—60z — 0|x||A|). Therefore,

P(Saus > z, Spuc > 7) < 2exp{—0z — |A|(A"(x) AO]x])}.

The lemma follows by choosing the smallest bound over x € (i, 0). [

LEMMA 2.5. Assume X satisfies condition (1.1). Let d € N be a constant and
Sn =>_1_| Xi. Then there exist constants r > 1 and to > 0 such that

Z P(Sga>2)+ Z P (S > 7) = 0(e™10%) as z — 0o.

kzrzl/d k<r-izl/d
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PROOF. Let r; = (3A’(0)/2)'/4. Recall the definition of I (x) in Lemma 2.3.
It follows that A =: infy>34/9),2 1 (x) > 6. Then by the Chernoff’s bound and
Lemma 2.3,
Y PSuzas Y e MMNEHD < rll i oo
k<ry'zl/d k<ry'zl/d
as z — 0o, where A1 = (6 4+ 1) /2. On the other hand, for any ¢ > 0

_de* 0 e_CdA*(O)Z —A
Yo PSuz< Y e O < gy =oe™)

k>czl/d k>czl/d I—e

for any given ¢ > r, = (A1/A*(0))"/?. Take r = max{ry, r» + 1} to conclude the
proof. [

LEMMA 2.6. Suppose condition (1.1) holds. For any two positive functions
a(z) and b(z) such that (a(z) + b(z))/zl/d — 0, and two positive numbers r, s
such that s < co < r, where co = (A (0)) V9, we have that

—-2/d
VSN PS> )= 0(e @) asz - oo,
kel';

where T, = {k € N; sz'/? <k < coz'/? —b(2) or coz"/? + a(z) <k <rz'/*} and
c(z) =a(z) Ab(z), z>0.

PROOF. Let F; =k eN; coz/? +a(z) <k < rzl/d}. Then, by Proposi-
tion 2.1 and Lemma 2.3,

Y PSuz)=CY —= exp{ ()]

kel kel“/

where h(2) = (coz'/? + a(z))?. Here the constant C, which depends on A(:)
and d, may vary from line to line. Write A = z/h(z) — A’(9). By Taylor
expansion A = —dc,, a(z)z_l/d + 0(a(z)?z72/4). By the Taylor expansion again
and Lemma A.3,

A*(zh(x)7") =60A'(0) + A6 + %AZ(A”(G) +o())= % + O(a(z)’z~H9).

Therefore, h(z)A*(z/h(z)) =0z + O(a(z)lzl—l/d)‘ Hence,
g2V N P (S 2 2) = 0 (e @),
kel

By the same arguments, the above estimate is also true if I', and a(z) are replaced
I'; \ I'} and b(z), respectively. This completes the proof. [J
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2.2. Proofs. Recall N is the set of all positive integers. N? is the d-fold
Cartesian product. Capital letters such as I, J, L, etc. will be used to denote
points in N4, The notation (i1, i2,...,0q) =1 < J = (j1, j2, ..., ja) means that
ip<jiforalll=1,2,...,d, and I < J when all inequalities are strict. Also, as
convention, I +J = (i1 + ji,i2 + j2,...,lqa + jg) and m = (m,m, ..., m) eN?.
Let A=A(l,J)={LeN, I<L<J}, Ra={A=A(,J); 1<I<J<n).
We now turn to the proofs of Theorems 1, 2, 4, 5 and 6. To prove Theorem 4, we
need the following two lemmas.

LEMMA 2.7. Define gq(k) = #{(i1, . ..,iq) € N iyiy---ig =k}. Then

3" qa(k) < m(log(em))* ™

k=1
form>2andd>?2.

PROOF. We prove the lemma by induction. When d = 2, it is easy to see that

Zqzm—z[ ]

i=1

Note that
¥ Lot
k=p+1k_ p ik

for any two positive integers p < g. Thus

2.4 Zqz(l) <m Z <mlog(em)

i=1
for all m > 2. So the lemma is true for d = 2. Observe that

m [m/i]

qum =YY qa-1(k).

i=1 k=1

Suppose the lemma is true for d =1 > 2. Then it is easy to check that

S it () = f[”i/f]q,<k)<z[ ](loge[’?])l_1

k=1 i=1 k=1
= 1
m(log(em)) Z

i=1

<m( log(em))l,

~- I

where the last inequality is from (2.4). The proof is complete. [
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LEMMA 2.8. Suppose that condition (1.1) holds. For any given & > 0, there
exists ¢ > 0 such that c < A'(0) < 1/c and
Y @u®PSi=2)=0(" )
ké(cz,z/c)

as 7 — +o00.

PROOF. First, by Chebyshev’s inequality and Lemmas 2.3 and 2.7, for any
c < A'(0), we have

Y g P(Sp=2) < <max e_kA*(Z/k)> > qa(k) < cz(dlogez)? eI 1/0z
k<cz
k<cz k<cz
=0(e™ %)
for sufficiently large ¢ > 0. By Lemma 2.7, we have that g4 (k) < k(4logk)?~! <
N OK/2 for all k large enough. It follows that for given ¢ > 0,

kv o ¢ OGO
Y quP(Sk=2)< Y. qatk)e e SO

k>z/c k>z/c
The result follows by choosing ¢ appropriately. [

PROOF OF THEOREM 1. Leta(z) =n4/logz, n>1land A, ={keN; |k —
v (2)| <a(z)}. Then by Lemmas 2.5 and 2.6, we know that

V2"t Y P(Se = 2) = 0(z'/27).

keAS

Therefore, to prove this theorem, we just need to prove the following two
asymptotic formulas:

0z —1 ~ l ﬂ
(2.5) ﬁe 3(y(2) k;q P(S2=2) o\ 2 A(0)

(2.6) \/ZeezP<kmE€14)§ Sz > z) ~ Jze% Z P(S;2 > 2).

keA;

By Corollary 2.1,

_AY 2\2
P(S > 2)~ M}

1
—F—¢€X —QZ -
0y 27k2A"(0) p{ 2A"(0)k>
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uniformly for all k € A,. Note that for these k’s we also have that 1/k>
1/c3z + 0(a(2)/2%?), 1/Vk* = 1/,/c}z + 0(a(2)/2) and (z — A'(O)K?)? =
0(z~'2a(z)?). Thus, it follows that

VzeS Y P(S2 = 2)

keA;

2.7)
A

A(0) \ (z — AN (0)k?)? a(z)?
6 ZnA”(G) Z { <2A”(0)> Z }+0< Z )

By the definition of y(z), we have that
— A0V k 2
(z (0)k7) :A/(Q)z( +y(2))
z

(k—y @)

2
=4N O)(k — y(2))” + 0((logz)*/?/z)
uniformly for all k € A,. Therefore

Z exp{ . < A (6) )(Z — A’(Q)kz)Z} N Z By @) L 0(@)‘
2A7(0)

keA; < keA; <

Obviously, 3 x>a(s) e PP <2 > k>a(z) e Pa@k — 0(2_5”2), which together with
the above equality and (2.8), yields (2.5).

Now, we prove (2.6).

For any (i, j) € A, :={(i, j) € szcoﬁ —a(z) <i < j <co/z+a(z)}, set
Ci.j = (j*—i%)|pl/2. Then, min; jea, Ci j ~ colptl/z as z — oo. By Lemma 2.4
there exists a constant C > 0, so that
(2.8) P(S2>2,82>2) <Cz " exp{—0z — €' /logz}

uniformly for all i, j € A,. Therefore, by the inclusion-exclusion formula,

97( Z P(S2>2)— (mix Sz > Z))

keA;

fﬁeez Z P(SiZ ZZ,SJ'Z ZZ)

@i, ))eA;
_ O(e—C«/logz/Z)‘

Then, (2.6) follows. [

LEMMA 2.9. Suppose condition (1.1) holds. Let g(t) = tA*(z/t), t > O.
Recall n = [(z/N©O)4], d >3, and Gi(z) = exp(—g(k?)), k > 1, as in
Theorem 2. We have that:
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(1) liminf,_ 69“_&172/11((;” (z) + G+1(2)) > 0 for some constant C > 0.

(ii) liminf., 4 0o 279 (g((n — 1)) — g(n9)) > 0 and liminf,_, 400z~ T2/4
x (g((n+2)%) — g((n + 1)%)) > 0.
PROOF. (i) It is easy to check that
d d?
(2.9) % =A@/ = /DAY /. = O _ @@,

Let m be n or n + 1 so that |m — (z/A/(G))l/d| > 1/2. By Taylor’s expansion and
Lemma A.3,

d 1 *\// / d < / 2

gm®)y=0z+ E(A ) (A'(0) + o(1))m i A@©)) .

Then (i) follows from that (x¢ — y¢)/(x — y) > dy*~! for any x > y > 0.

(ii) We only need to prove the first liminf inequality. The second one is
proved similarly. By (2.9), Taylor’s expansion and Lemma A.3, g(m9) = 0z +
(Cx/z)(m® —z/AN'(0))*(1 + o(1)) for some constant Cx > 0 and m =n — 1, n.
Note that (m?¢ — z/A'(0))*(1/z) = O(z'~?/4) form =n — 1, n. Thus

2

§(n= 1)~ gy = %K(n -~ A/Z(9)> B ("d_ A/Z(9)>2} +oG ),

Consequently, the desired result follows by using the formula that a*> — b* =
(@a+b)a—b)andn? <z/A'®) <+ 14 O

PROOF OF THEOREM 2. By Lemma 2.5, there exists r > 0 and fy > 6 such
that

(2.10) ‘P(max Spa > z) - P( max Sga > z)‘ < etz
k>1 r=lzl/d<g<pz1/d
By Chernoff’s bound and (iii) of Lemma A.3, there is a constant Cx such that

‘P( max Sga > z) — P(max{S,d, S 11y} = 2)

r=lgl/d<g<pz1/d

(2.11) < ( > + > )e—g(kd)
/d

rlzld<g<n—1 n+2<k<rz!
d d
< Cle/d(e—g((n—l) ) 4 e8((nt+2) ))_

By the same arguments as are used to obtain (2.8), we have that P(S,« > z,
Sm+1)d = 2) = O(exp(—0z — Cz'~1/4)) for some C > 0. Therefore

P(Spa = 2) + P(Sguy1ya = 2) — P(max{S,a, S, 11y¢} = 2)
(2.12)
_ O(E—GZ—CZI_I/d)‘
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Also, by Proposition 2.1, P(S,.a > z) ~ 0~ /A @) 2n A"@) 272G n(2), m =
n,n + 1. Collecting (2.10), (2.11) and (2.12), we obtain from Lemma 2.9 that

~ 1/ AN@O)
Va(Gu(@) + Gu1(2) ' P (Tg‘f‘ Skt = Z) N 5\/%

PROOF OF THEOREM 4. To prove (i) and (ii) at the same time, it suffices to
prove the following two inequalities:
d Wy

U
(2.13) lim sup T <— a.s., liminf
n—oc logn — 6 n—>o0 logn

d
> — a.s.
0

We first prove the lim sup inequality in (2.13).
Given n > 0, set z, = (1 + n)d(logn) /0. Choose ¢ in Lemma 2.8 small enough

-1 .
so that n%e™¢" » < n~2. Note that the number of rectangles with the same upper-
left corner and area k is at most g4 (k). By Lemma 2.8, there exists ¢ > 0 so that

P,z DEE ) < St Y Pz

— 52
6 n CankEZn/C

(logn>2>

1 d _QZn J—
ssnlen Y i =0( 5

czn=<k=<zy/c

where we use E exp(6 X) = 1 in the second inequality and Lemma 2.7 in the only
equality above. Put [, = [n%/7?]. Then the above inequality implies that

2
(2.14) p(U, . %) _ 0<(10gn) )
" 0 )

The Borel-Cantelli Lemma implies that limsup,, U;, /logl, < (1 4+ 1n)d /0 a.s. for
any n > 0. Observe that U, is increasing in n, and /,11/l, — 1. The limsup
inequality in (2.13) then follows.

Now, we turn to the proof of the liminf inequality in (2.13). Set k, =
[(c1dlogn)'/¥] and m, = [n/k,]¢, where ¢; = (OA'(0))~'. Let {Y;; 1 <i <m,)
be i.i.d. random variables with the same law as that of S;4. We break the cube
{1,2,...,n}% into m, many disjoint subcubes. Then, the partial sums of X;’s over
these disjoint subcubes are i.i.d. Therefore, for any given n € (0, 1),

1 —n)dl 1—n)dl
0 1<i<m, 0
< exp(—my P(Syg = 1))
where t, = (1 — n)dlogn /6. For any n < 1/2, we find § > 0 such that A’(§) =
(1 —n/2)A'(0). Note that t,,/kff — (1 —n)A’(#). Then, by Proposition 2.1,
Skd

C((S) _de* A (S
P(Sa>t,)>P >A’5)~7 n AT (A (8)
(B = 1) = <k;‘f = A0 «/logne
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Now A*(x) is strictly increasing on [0, A’(0)], ,hence A*(A'(8)) < A*(A'(9)) =
6 A’(0), which implies that mnP(Skg > t,) > n" for some n’ =n(8) > 0and all n
large enough. Combining all the above inequalities, we obtain

P(Wn < (1— nédlogn) - e_”n,

for all n large enough. It follows from the Borel-Cantelli Lemma that

n

liminf
n—o00 logn

n a.s.
jtl 0
f0r any n > 0 Small enough. Then the lim inf inequality in (2.13) iS prOVed. ]

PROOF OF THEOREM 5. Let a, = 2h(log,n)'/2,h > 1, and fo = (6A'(9)/
2)~Y2, Denote by E, the set of all subsquares in {1,2,..., n}2 with side
lengths between fp/logn — a, and fo./logn + a,. More precisely, E, = {A €
On; IWTAT = foi/Togn| < ay}. Define

W, = ineag(n Sa and z, = %(210gn - %logzn —i—tn) + x.
Throughout the paper, when we do computations with W, or its counterparts, we
always view it as two iterated maxima. The first maximum is that of Sa over all
subcubes A with fixed upper-left corner, and then the second maximum is the
maximum of the former ones over all n? corners. Based on this observation, by
Lemmas 2.5 and 2.6,

(2.15) P(Wy > zy) — P(W,, > z,) = e % O((logn) 7).
Now we use Lemma 2.2 to get the asymptotic distribution. First we need a lemma,
as follows.

LEMMA 2.10. 8((t + O(logt)'/?)/8(t'/?) = 1 as t — oc.

PROOF. Just note that §(¢) is a positive, continuous and periodic func-
tion with a period 1. Also, inf;er () > 0. Obviously, (¢ + O(logt))l/2 =
12 4 O((log 1)t~1/2). Then the conclusion follows from the uniform continuity
of §(r). U

Let us continue the proof of Theorem 5. Let 2, = {k € N; |k — fp/logn| <
an}. By (2.5) and Lemma 2.10, we have that

hi= Y P(Sazz)= Y (n—k+1*P(Sp > z,)

A€E, ke,
2.16)  =n* Y P(S2=z,) +o(l)
ke,

~ n2g, 126708 (y (1)) (1/6)y A (6) 2 A(6) ~ Ko™,
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where K| = (1/2)/A’(0)/760A”(0). By Lemma 2.2, to complete the proof, we
just need to show that the corresponding b; and b, in the lemma go to zero.
Actually, for any particular A € E,,, the number of squares which intersect A is
at most 8|Ala,. Moreover, P(S;2 > z,) = e_exO(n_za/log n) by using the fact
Eexp(0X) = 1. Consequently,

by <n” - 8|Alay|Q> max P(Sp>2,)P(S;2 > 2,) = O(n *(logn)’).
(i,))e(Qn)?

O (n2(logn)?)
Similarly,

by, < O(n%( 2 P(SA. > 7n. Sas > 20).
) < (n(ogn))AHéAzr’rl&afAzeEn (Sa, > zn, SA, > 2n)

For any two A, Ay € E,, Ay # A,, their symmetric difference, that is,
(A1\A2) U (Ax\Ay) is at least fp/logn — a, (this is the key observation in
handling such type of high-dimensional problems in this paper). By Lemma 2.4,
P(SA, = 20, Say = 20) < n—? exp(—(fo/2)+/logn) for all n large enough. Thus,
by = O((logn)* exp(—(fo/2)+/Togn)). O

PROOF OF THEOREM 6. Obviously, k,, depends on n, is either [((logn)/
o)) or [((log n)/a)l/d] + 1. Define E,, as the set of all subcubesin {1,2, ..., n}d
with side length &, thatis, £, = {A € Oy; A4 = k,}. Also,

W, = max Sa.
A€eE,

Let z, := A/(G)kff + x. By Lemma 2.9 and a proof similar to those of (2.10)

and (2.11) [replacing max{S$,, S(n+1)d} in (2.11) by Skg], we have that
P(Wy>20) = P(Wy >2,) >0

as n — 0o. Hence, to prove our theorem, it is enough to show that

(2.17) P(W, < A (0)k? 4 x) — exp(—Karye %) — 0.

Note that

=y P(Spa>z) = —ky+ D?P(Spa = z0).
A€eE,

But, by Corollary 2.1,

d
P(Sid = z) ——logky, — k;‘f@A/(@)} = Koryn %"

e—Gx
~ exp{
02 A (0) 2
Now we prove the theorem by Lemma 2.2, that is, the Chen—Stein method. It is
easy to check

by < n? 2ky)* P(Sya > 2)> = O(logn/n?).
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For any two different overlapping subcubes with side lengths k;,, their symmetric
difference is at least 2k?~!. By Lemma 2.4,

by <n?(2k)?  max  P(Sa; > zn, Say > 2n)
A1, A€E,, A1F#A)

= O((nky)? exp|—0 A Ok — ckd=1))

for some constant { > 0. By definition, 9A’(9)kff > dlogn — (d/2)logk,. It
follows that,

by = O((logn)?/?)e=toem' ™1,

Therefore, (2.17) follows. [

3. Proofs of Theorems 3 and 7. For any constant «, denote E, = {(p,q) €
N2 |pg — A (0)"'z| < av/zlogz } and

1
U, = max S
Pq-
¢ (p.q)€E;

The definition of §,, is given before the statement of Theorem 3 in the
Introduction.

LEMMA 3.1. Suppose condition (1.1) holds. Then
PU>2z2—PWU >2)=0(1/2), z—>00

for large .

PROOF. Recall ¢(k) = #{(r,s) € N2, rs = k}. Obviously, q(k) < Vk.
Therefore

PU>2)-PWU!>2)< Y, P(Sp=20< Y. VkP(Si>2),
(P ¢E; k¢,

where Q, = {k e N; |k — A'(0)"'z| < ay/zlogz} and S = Y7, X1 By
comparing 3, ¢ /nP (S, > z) with similar expressions in Lemmas 2.5 and 2.6
(d = 1), we see that the only difference between them is that \/n appears in the

former term. But this term does not dominate the sum. So by checking the proofs
of Lemmas 2.5 and 2.6 (d = 1), we have that

C
Y VPGS =)< —+
Za

n¢2;

1
Z

for some constant C > 0. [
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LEMMA 3.2.  Suppose condition (1.1) holds. Recall E, = {(p, q) € N*; | pq —
A ()7 'z| < a/zlogz }. Then for any o > 0,
1

li 92(log 7)~! P(S ——
im0z ™ DL P(Spa 20 =g

(p.q)€E;

PROOF. We write z = A'(0)pg + A (0)(z/A'(0) — pq). Then by Corol-
lary 2.1, we have

G.1)  P(S,, > )~Lex __Ney ( ‘< )2
‘ P N @pg T\ 2pgh@)\A@) 1

uniformly for all p,q € E,. For simplicity, set y = z/A’(0). Then E, =
{(p.q) €eN?%; |pg —y| <ay/zlogz }. Thus,

0,21 A"(0)/A' @) (logz) " Y P(Spg=2)
(p.9)€E;

1 - (pq — y)*
~ E exp(—K7>
Jzlogz (& y

7q)€EZ

(k y)?
flogzk;;q(k)wp( S )

where K = A'(0)2/2A"(0) and Q. = {k € N; |k — y| < ay/zlogz}. To complete
the proof, we need to show that

1 Pl y>2) 3
> gk — = .
Vzlogz oo d )exp( y KA'(0)

(3.2)

Givenany y € (0,1),let A=y./y/logy and
Ai=lkeN; y+iA<k<y+(+1A}, i=—i,,—i,+1,...,i,

where i, = [a\/z1ogz/A]l ~ay ~'W/A(0)logy. Since maxieq, ¢ (k) = 0(J/2),

> awexp( K g _yy)z)

ke,

3.3)
2
Z Zq(k)exp( & y) )+0<ﬁ>.

i=—i; keA;

Now we estimate the part } ;4. in (3.3). Note that for any k € A;,

e KE=0?/y _ (=KGA)?/y _ (=KD /Y (86 _ 1y,
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where ¢r(y) := K(k —y+iA)k —y—iA)/y. It is easy to check that p; :=
maxgea; |9k (y)| < K(2|l| + I)Az/y < Cy for some constant C depending on X
and « only. Therefore, since |¢* — 1] < |x|e*! for any x € R, we have that

34 3 qe KEDY = (14 phye KDY §™ g i),
keA; keA;

where p] := e#*(") — 1. By Theorem 320 on page 264 of [12]

Zq(i) =nlogn +cn+ O(/n),

i=1

where ¢ here is a universal positive constant. Therefore, for any m =m, ~ n,

(3.5) > qk)=m—m)logn+ (c+ 1)(n —m) + O(/n).

i=m+1

Asa consequence,

[y+(@G+1)A]
(3.6) Yoqlbh= ) ql)=yJylogy+O0W/y).
keA; [y+iAl+1

By (3.3), (3.4) and (3.6), we obtain

Z q(k)e—k(k—)’)z/)’

1
3.7
S ﬁlogzkegz VA (6)1

Z( + ofye~K(v)*/logy

where p! = p’ + O(1/logz) < Cy. Because of the monotonicity of e on
(0, 4+00), it is not difficult to see that

14 & IE(‘y)z/log o K2 T
(3.8) — ) Y Y — / e Mdt=_|= Yy € (0, 00).
Jory 2 —oo £

It follows that
i;—1

(3.9) lim su o K(iy)?/logy <Cy.
y—>+o§ A/ 10g Z pie Y
Thus, combining (3.7), (3.8) and (3.9), we obtain that
. 5 po
lim sup (kye K&k=y7/y _ | <C
)’—>+oo flogz k§7q KA/(Q) 4

for arbitrary given y > 0. Let y | O, then (3.2) follows. [
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LEMMA 3.3. Suppose condition (1.1) holds. Given any a > 0 and any
function p, > 0, let

E2={(p.q) eN* |pg — N(©) 'zl <ay/zlogz, pAg = p.}

and E, be the same as in Lemma 3.2. Then

log p; )

Plogz)™t Y P(Sp,qZZ)=O<\/@

(P.q)€E\E?
PROOF. Set ,3;: = z/AN(0) £ ay/zlogz. Then by Corollary 2.1, we know

that P(S,, > z) < Coz~ /%%, where Cy is a constant depending on 6. Set
B, =1{q €N; B < pq < B} Then

Pz
D> PGpgz=2 Y, P(Spgz0) < 2Cpz 1 2e™% Yoy

(p.q)E€ENE? 1<p<p., p=lqeB;,
POCENE (r4)<E. !
1/2 -6 |
<Coz \PeT(BF—B) Y —
p=1P
= 0(/Togze %% log p.). U

PROOF OF THEOREM 3. Combining Lemmas 3.1, 3.2 and 3.3 we have that
for any € > 0O there is « > 0 such that

(3.10) limsupe?*(logz) " (P(U > 2) — P(U? > 2)) <=,

—> 00

where U2 = max, ,egs Sp,q and E? is as in Lemma 3.3 with p, = exp(e/Iog2).
We claim that )

(3.11) Zl_i)rgoeez(logz)_l(P(Uf >2)— Y PSpg=> z)) -0  Va>0.
(p.q)€E?

If the claim is true, then by Lemmas 3.2, 3.3 and (3.10),

limsup |P(U > z) —

7—> 00

1
W\f%

for any & > 0. Therefore the theorem follows by letting ¢ | 0. Now we prove the
claim. Observe that

P<max5Srzz>Z > P(Sr>z)— > P(Sr, >z, 8r, > 2).
Fek; TeE? Ty, T2eE] T1#T
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To prove the claim (3.11), it suffices to show that

(3.12) ¢ (logz)™! > P(Sr,>2,85r,>2)—>0
[y, T2eE T#£0,

as 7 — +o00. By the definition of E 5, the size of the symmetric difference of any I';
and I'p, that is, |[I']AT',| is at least exp(e+/logz). Thus, by Lemma 2.4, there is
¢ > 0 such that

(3.13) P(Sr, >z, 5r, ZZ)EZGXp(—Qz—;‘egVIOgZ>,
as z is sufficiently large. Therefore

> PGS, 22, Sm, 2 2) <2 EPexp(—0z — 8eVER),
[, TeE I #£,

where £, = {(p,q) € N2 lpg — A7) < a+/zlogz } is as before. By (3.5),
we have that

Ed< Y q@)=0(Vzllog2)?),
B <i<p:

where 8. and ﬁj are as in the proof of Lemma 3.3. It follows that

Z P(Sr,>z,8m,>2) = O(z(log 2)? exp(—GZ — §efVloez ) ),
I, 12eE [#0,

which implies (3.12). O

PROOF OF THEOREM 7. Denote z, = (2logn + logyn)/6 + x. Take p, =
(02220 in the definition of E 25 in Lemma 3.3. Of course E?n is a subsequence
of Ef Let ﬁ,ll be the set of all the rectangles in {1,2,...,11}2 whose length

and width, say, p, g, satisfy (p,q) € EZ5”. Accordingly, W,,} = maxpc g1 Sa. By
Lemmas 3.1, 3.2 and 3.3, there is & > 0 such that

(3.14) P log)™ Y P(Spq=2)=0((logz) "
(p.q)N?\ES

for large z, where EZ5 is as in Lemma 3.3 corresponding to p, = exp((logz)!/4).
As before, we view R,, as the union of rectangles with fixed upper-left corners for
all such possible corners. It follows by (3.14) that

Y P(Sazz)=0(n’e " (logzn)**) = O(log,m)™'"%).
AeR\R}

Thus, to complete the proof, we just need to prove that

(3.15) PW)!>z,) — 1 — e Kse™™,
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First, it is easy to see that

(n—L)> > P(Spq=>zn)
(p.q)€E;,
(3.16)

< Y PSazz)<n® Y. P(Spq =),
AE:‘R}l (PJI)GEZn

where L, := max{p V ¢q; (p,q) € EZ5H}. Obviously, L, < AN@©O) lz, +
/7y logz, = O(logn). By Lemmas 3.2 and 3.3,
2

—0z _

n-e nlogzn e
(3.17) n2 E : P(S ) >z )N ~ .
(p.q)€E-, pa= VAN 6/ A(0)

Thus, (3.16) and (3.17) imply that A, := > rcq1 P(Sa > 2,) — e~ %16 /N7(0)
as n — o0. "

Now we use the Chen—Stein method to complete the proof.

For any A € R], define Ax = {A’ € R); A’N A # ). It is easy to see that
|AAl = O((logn)log,n). By Lemma 2.2, to prove (3.15), we need to verify that
by and b; in the lemma go to zero. Recall P(Sp > z,) < e~ forall A € 32,11
Then

Ox

1 1
by <n®|Ax| max P (Sp >z,)%= 0(%)_
AeAp

n2
By (3.13),
P(Sa >z, Spv>z0) = O(n_2(10g2 n)~! exp(—;e(1°g2")1/4))

for some ¢ > 0 uniformly for all A, A’ € CR}L Since Iﬂél = O(n*(logn) log, n),
it follows that

by <|R)||Aa| max P(Sa>2zn, Sar>2n)
AN eR]

n

= 0((logn)*(log, m)* exp(—ze&m'")). -

4. Proofs of Theorems 8 and 9. We first prove an inequality on empirical
processes which will be used later. We review some basic definitions and facts
about empirical processes. Let S be a set and § a class of subsets of S. Define
A%(s1,....5,) =#HGN{s1,...,s,); Geg)forany {s1,...,s,} CS.Also, let

m%(n) =maX{Ag(s1,...,sn); s; €8,i=1,2,...,n)

and
V(4) = inf{n :m%(n) < 2"}
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Of course, by convention, V (§) = o0 if m%(n) =2" forall n > 1. Dudley [9]
calls § a Vapnik—éervonenkis (VC for short) class of sets if V() < oo. The
quantity V($) is called the exponent of the VC class §. A result on VC class
given by Vapnik—Cervonenkis is the following inequality from [23]:

“.1) mémn) <n’®  vn>2.

LEMMA 4.1. Let L4 = {]'[;’Zl[ai,b,-] C [0, l]d; 0<a, <b;<1,i=1,2,
...,d} be a VC class for any d > 1. Then, ¥, as in (1.4) and as a subset of L3,
is a VC class with some exponent v3. Therefore, for any (y1,...,y,) € R" and
n>2, #H(y,y2,....,.y) NF; FeF}<n".

PROOF. We just need to prove the first part of the lemma. We show it by
induction. Obviously, £ is a VC class with exponent 3.

Suppose the lemma is true for any 1,2,...,d — 1. We now prove that /L is
also a VC class. Define vy = V(Ly), k > 1. For any ng :=2dvy—1 + 1 distinctive
points yi, ..., yu,, let ]_[fizl[ai, b;] be the smallest rectangular solid to contain
those ng points. If there is a point, say yi, in the interior of Hf’zl[ai, b;], then
no rectangular solid can contain {yy, ..., y,,} without y;. If there is no such
point, then {y, ..., y,,} must be in the following 2d sets: {a1} X [az, ba] X - -+ X
laa, bal, {b1} x [az,b2] X -+ x [ag, bal, ..., a1, b1] x - -+ X [ag—1,ba—1] X {aq}
and [ay, b1] X -+ X [ag—1,ba—1] X {bg}. Then, there is such a set, say, {a;} x
[az, by] x -+ X [ag, bgq], containing at least vg_; + 1 points of {yi,..., yn,}.
By assumption, {a;} x [a2, b3] X --- X [ag, bg] is a VC class with exponent no
more than vz_1, so no (n — 1)-dimensional rectangular solid can separate these
vi—1 + 1 points. This implies that mLd(ng) < 2", Actually, it is easily seen that
vy <2¢@d+ 1. O

Suppose that {Y, Y;; i > 1} is a sequence of i.i.d. random variables with the
uniform distribution on [0, 1]3. For any C > 0, define
Fo1={B(x,e) e F, x€(0,1)%, 0<e<C(ogn/n)'/?}.
LEMMA 4.2. For any class of subsets C, define I'ec = #{{Y1,..., Y} N F;

F € C}. Then there is a constant v > 0 such that for any C > 0, there is a constant
D > 0 for which

P#T%,, = Dn(logn)’) = O(n ™).
PROOF. Letr, = (logn/n)l/3 and §; = {B(Y;,Cr,) N F; F € ¥} fori =

1,2,...,n. Since ¥ is a VC class with exponent no greater than v = v3, so is
$i. By (4.1),

n v
4.2) #lg, < {ZIB(Yl,Cr,,)(Yi)} .

i=1
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Therefore, for ¢t > 0,

n
P@#Ig, , >1) <nP#Tg, >t/n) < nP(Z Ipy,.cr(Yi) > (z/n)l/v>.

i=1

Substituting DVn(logn)* for ¢ in the above inequality, we have that

n
(43) P#Tg,, > D’n(logn)’) < nP(ZIB(yl,Crn)(Yi) > Dlogn — 1).
i=2

By Lemma A.2, for any D > 20C?,

n
P(ZIB(YI,Cr,,)(Yi) > Dlogn — 1) < e KDlogn
i=2

for large n, where K is a constant depending only on C. The above inequality and
(4.3) yield the desired inequality by choosing D sufficiently large. [

Let {X, X;; i > 1} be a sequence of i.i.d. X-valued random variables with
law P, where X is a metric space. Let P, be the empirical law of {X,,}, that is,

1 n
Py=—Y 6x,.
3

We assume that #¢, a class of subsets of X, is a VC class with exponent v. Let
{H, C #; n > 1} be a sequence of subclasses of sets and #,, be countable for
eachn > 1. Set w, :=infyc g, P(V) and
|Pp(V) — P(V)]
f(P,) = sup z .
vest, VP(V)(1 = P(V))/n

The classical exponential inequality (see, e.g., page 16 of [16]) is

n

“4.4) P sup
Ved

P.(V)—P(V)| > e) < 8nle /32,
1

i=
It is not sharp enough in our later proofs because we need to take {P(V), V € #}
into account. The following inequality provides us with a result for this case.

LEMMA 4.3.  Suppose supy g P(V) <1 — ¢ for some 5o € (0, 1), then

11nv+! Sot2 2, \ !
P(f(P)>t,)< ——— - ”(1 n ) }
VD2 0) = 20, P { 2 T i,

for any positive t, satisfying n > /,Lnt,% + 2.
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PROOF. Let {g;; i > 1} be a sequence of i.i.d. Bernoulli sequence. By the
argument of (11) on page 15 of [16],

>0 &l (X)) Iy
45 P(f(P)) > 1,) <4P n
*3) (f(F) 2 1) = (52% N DI 4)

for all n > 1, where Iy (-) is the indicator function of V. By Hoeffding’s inequality
(see, e.g., page 91 of [16]), P(|>7L &l > x) < 26xp(—x2/2m) for all x > 0. It
follows that

noo.. , 2
(46) P€< |Zi:1811V(X1)| >t—n>§26xp{—%(})(v)>}
JPWVY(A—=P(V)/n 4 32 \ P,(V)
Set A, ={f(P,) <2t,}. Note that by (4.1), #{{X1,..., X,}NV; V € #,} <n?
for n > 2. It follows from (4.5) and (4.6) that

< >0 &l (X))

P(f(Py) >1ty) < 4nVEX sup P°?

tn )
JPOOA—PWVy/n Z)IAn +4P(A})

Ve,
4.7)
Sot2 2t, \ !
§8nvexp{— "<1+ ) }+4P(f(Pn)>2fn)
32 Ny,

for n > 2. Repeat (4.7) to obtain

k Is 2 / -1
4 8ot 2t
P(f(Pn)Ztn)SE:Sn“'4lexp{— 0"(1+ n ) }
(4.8) = 32 i

+ AP (F(Py) > 28 ,).

Note that f(P,) < {n/(u,(1 — 8o))}'/% for all n > 1. Let ko = [logy(n/
(/,Lnt,%(l — 80))]. Then 2kotls > f(Py,). Consequently, the probability in the
right-hand side of (4.8) is zero. Since xz/(l + xy) is increasing in x € (0, 00)
for any y > 0 and Zfio 4! < 4kot1/3 by (4.8),

P(f(Py)>1,) < L1n"*] { oty (1 + 2 )_1}
W= =0 02, P 32 it

for all n such that » > 2 and ky > 0. The fact that n > /,Lnt,% implies that
ko>0. U

Before proving Theorem 8, we need the following lemma.

LEMMA 4.4. Suppose condition (1.1) holds. Let ¥ and ¥, 1 be same as in
Lemmas 4.1 and 4.2, respectively. Then, there exists C > 0 such that

P S,(B)>0)=0m>.
(yumax :8)=0) =007
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PROOF. Set A, ={}_7_, Ip(Y;) > Tnr3} for any B = B(x,r) € . Since by
Lemma 4.1, # is a VC class with exponent v3,

P( max S, (B) zO) §n”3EY{ max  PX(S,(B) >0)(Ia, + IAC)}.
BEF\Fp | BEF\Fy 1 "

For each B(x,r) € ¥ \ .1, Tnr3 > 7nr3 ~17C3 logn as n — oo. It follows that

PX(S,(B) 2 0)Ix, < max P(S,>0) <e 4CA Ologn
nz4C3logn

for large n. The last inequality is from Chernoff’s bound. Therefore

(4.9) n”3EY{ max PX(Sn(B)zO)IAn}§n“3_4C3A*(O)§1/n2
BE?\“;:'H.I

if C > ((v3 +2)/(4A*(0)))!/3. On the other hand, note

EY{ max PX(S,,(B)EO)IA;}EEY{ max IA2}+EY{ max IAﬁ},

BeF\Fp.1 BeF, BeF, 3
where
Foor=|B(x,e) e F,x e (0,17, e €[1/3,1/2)}

and
Fnz={B(x,e)e F,x (0,1, & elr, 1/3]}.

Apparently, A5, C {|(1/n) X" 15(Y;) — Vol(B)| > r3}. Therefore,

n
>
=5)

where the last inequality follows from (4.4) because ¥, is a VC class with
exponent no larger than v3. Finally, by Lemma 4.3,

¢ [(1/n) Y7, Ig(Y;) — Vol(B)| nr,?)
P Al < P
<39 ) B (383? JPBT—PB)H/n |8

> 15(Y;) — nVol(B)

EY{ max IAﬁ}fP( sup
i=1

BeF, o BG?},’Z

(4.10)

_ 15
< 8nv3e n/2 ,

< ClnSe—c1C3 logn

for sufficiently large n and some universal constant c; (there is no problem in
applying Lemma 4.3 because the above “sup” equals that over all subcubes in
F,.3 with rational radius almost surely). The above inequality together with (4.9)
and (4.10) yields the desired result by choosing a large C. U
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PROOF OF THEOREM §. We only need to prove that
1 W, _ 1
as. and liminf —— > —
n—>oo logn ~ 0

“4.11) lim sup
n—o00 IOg n

v

< - a.s.
0

By Lernma 44, Choose C SO that
P max Sn B) > 0 = 0 n .
<B€3 \J n,1 ( ) ) ( )

Therefore, by the Borel-Cantelli lemma, to prove the limsup inequality in (4.11),
it is enough to show that

maxges, S, (B) - 1

4.12) lim sup <-.
n—00 log n 0

For any ¢ > 0, let ¢ =2 4 2¢~!. Define

V, = max max S (B), n=12,....
nd<k=<(n+1)4 BeF,,
By Lemma 4.2, choose D such that E; := (#'# , > Dk(logk)%} has proba-
bility O(k=2). 1t is easy to check that #{(S1(B), S2(B), ..., Sm(B)); B € 4} =
#{S;, (B); B € 4} forany VC class §. This is because the set {Y1, Y2, ..., Y} N B
determines sets {Y1, Y2, ..., Yx}NB,k=1,2,...,m — 1 for any B and m. There-
fore, since ¥% .1 is decreasing,

Xn

P(Vy > (1+¢&)(log(n + 1)7)/6 )

< EY{PX< max max  Si(B) > xn>13c } + 0 )
BeF,q | nd<k<(n+1)4 n

< 2Dq6nq(logn)6P( max  Sg > xn) +0n™ ) =00,
1<k<(n+1)4
where we use the submatingale inequality and the fact E exp(0X) = 1 in the last
inequality. By the same arguments as in (2.14), we obtain (4.12).
Now we turn to prove the liminf inequality of (4.11). For any integer p (which
will be chosen specifically later), let s, , = (logn?/8n?0 A’ ONY/3 and

(n+1)?
L,= |J B(®¥i.2s,,) and

4.13) i=nP+1
Jo={1<j<nP; Yj€lsnp 1 —snp’\ Ln}

Note that L, may not be necessarily a subset of [0, 1]> although with a large
probability it is. Evidently,

(4.14) max Sk(B)} = max Sy» (B;),

inf {
n?<k<(n+1)? | BEB je€Jn
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where B := B(Y}, s, p). Define

N, = max{k; d different iy, ..., ix € J, suchthat inf ||¥; —Y; | > 2sn,p}'
I<s<t<k )

It is not difficult to check that N, < 8 s _3 =0A () p_l(np /logn) determin-

istically. We claim that the reverse is almost true in the sense that there exists a

constant C’ > 0 so that

C'n?
(4.15) P(N,, < ) =0(n?)
logn

for large p. Indeed, list all subcubes ]_[ _1[GBki + sy, p, Gki + 2)s,,p], 0 =<
ki < [Bsu,p)~ -1, i=1273, as A1, Ay, ..., Ay,. It is easy to check
that infyeq,, VEA; d(x,y) > 2s,,, as. for all pairs i ;éj Obviously, m, =
2C'nP(logn)~! + O(1) for some constant C’ > 0. Pick all those A; such that
Y ¢ A; foralll =n? 4+ 1,...,(n+ 1)”, and list them again as A1 Az, .. Al
Then [, > m, — ((n + 1)? — n”) = 2C'n?(logn)~ L omP™). So, by Cheby—
shev’s inequality,

Iy l
C'nP
ZI (atleastone of {¥;, 1 < j <nP}e A;) <

Py logn

(4.16)
I

<
I, —C'nP(logn)~
for p > 160 A’(0). Thus claim (4.15) follows.

For any given ¢ € (0, 1/4), set b, = (1 — ¢)logn? /6. Then, by symmetry and
(4.15),

“(1—s5 )" =0@"?)

Nll

P (max 8,08 < b, ) = Y TT PX (108 < bu) (V) € 5001 = 50,
JE€JIn f__

Nn
exp{ Z PX(Sur(Bj) > by) (Y} €[5y ps 1 — $up1°)

C'nP
X I(Nn >
lo

) + 0 (n_z)
< max &+ 0™,
C'nP [logn<k<nP

where

Sk = {exp( ZP nP(Bi)an)I(Yj e[sn,pal_sn,p]3)>}-
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Lemma 4.5 below will prove that maxc/,r/1ogn<k<nr Sk = O(n=?) for some
P = pe. So by the Borel-Cantelli lemma, max e, Sy»(B;)/logn? > (1 —¢)/0
eventually. Combine this with (4.14) to complete the proof of liminf inequality
of (4.11). O

LEMMA 4.5.  Suppose condition (1.1) holds. Set G, = {k € N; C'n”/logn <
k < nP}. For any given ¢ € (0, 1/4), there exists p > 0 such that maxyeg, {k =
0(n=?).

PROOF. Recall B; = B(Y;,s,,p). Set Ny =#{1 <j <nP; Y;e B}, 1 <i
< k. By Bernstein’s inequality (Lemma A.2), for any given x € (0, 1),
(1 —x)logn? (1+ x)logn?
ON©O) ~ OA(O)
Oy

4.17) P(N,- ¢ ( )) < exp{—(px?/60A'(6))logn}

uniformly for i = 1,2,...,k and for large n. It follows from Chebyshev’s
inequality similar to (4.16) that

k C'n?
(4.18) sup P(ZIOX (N)) < ) =0(n™?)

keG, \i5 ~ 2logn

for p > 129A’(9)/x2. If N; € Oy, by Proposition 2.1, there is a constant C, such
that

 Cre— Nk Ba/D
(4.19) PX(Sur(Bi) > by) = min T
for large n. Since A*(¢) is increasing on (0, 4-00), lim,_, o+ {max;co, [A% (b,/1)/
logn?} = A*((1 —e)A'(0))/0 A’ (6) < 1 uniformly for any n > 2 by Lemma A.3.
So, for the given ¢ € (0, 1/4), choose a suitable xg € (0, 1) in the definition of O,
such that

inf. PX(Sur(Bi) > by) > Cpryn®P//Togn
L3N € X0

for some constant C), , and a, € (0, 1) and large n. Consequently, by (4.18), we
have that

I{n%x o < exp{—Cn(l_“f)”(logn)_3/2} +0mn™?).
S n

The desired equality follows by taking p sufficiently large. [J

We need the following two lemmas to prove Theorem 9. Define

1/3
lle( logn )/ 148 log, n ,
2\OA (O)n logn
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where the sign on the left-hand side matches the sign on the right-hand side. Let
Q= {(r,D) €[l L1 x {1,2,...,n}; B(Y;,[;}) C [0, 17} and

Wy = max S,(B(Yi,r)).

(r,i)eQ2,

LEMMA 4.6. Suppose condition (1.1) holds. Let z,, =logn/0 + x. Then, for
any a > 0, there exists B > 0 such that

P(W,>z,)— P(Wn,l >zp) = O(GOgn)_a)‘
PROOF. By Lemma 4.4, it is enough to show that

P( max S, (B(Y;,r)) > zn) = O((logn)™)
(ri)eS,

for some B > 0, where Q) = {(r,i) € ((0, Lr,) \ (ln_,l,j)) x {1,2,...,n}; B(Y;,
1) C [0, 1]°} for some constant C;,. By Lemma 4.2,

o 0 -2

(ri)e<,
(4.20)

< n(logn)6EY{ max PX(S,(B(Y;,r)) > zn)} +0mn?).
(ri)e,

Set ¢ = (OA'(6))"1/3. Note that [nvol(B(Y;,r)) — cilogn| > 2Bc3((logn)

x logyn)'/? for any (r,i) € Q/, when n is sufficiently large. Consequently, for

such (r, i),

;

n
> Ipn(Y)) —nvol (B(Y;, 1))
J=l1

{3

n
Z Iy; r(Yj) — c(3) logn
j=1

< (Bcp)y/ (logn) log, n}
> (Bcg)/ (logn) logzn} = A

So, by Bernstein’s inequality, P(A¢) < 2e~PCrlog2m for some constant C; and
large n. It follows that for any (r, i) € 2),,

—X

@421)  PX(Sy(B(Y;, 1) > z4) < PX(Sy(B(Y;, 7)) > 20)Ia, + Inc,

where the second term above is obtained by using the Chernoff’s bound for
PX(S,(B(Yi, 1)) > z5). By Corollary 2.1, there exists a constant Cy such that

e—Gx

n(logn)Cxp>+1/2

PX(Sy(B(Yi, 1)) > za)a, <
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uniformly on (r, i) € ©),. Combining this with (4.20) and (4.21), we finally get

<

) e 0% n 4e=*
~ (logn)€xp*=55  (logn)PCr="o

P( max Sy(B(Yi,r)) >z,
(ri)eQ,

for n large. The proof is completed by choosing g sufficiently large. [

LEMMA 4.7. Suppose condition (1.1) holds. Let T, = {1 <i <n; Y; €
[, 1 — L), Then,

Ay = Z PX( max S,(B(Yi,r)) > zn> — Ke 0% in probability,

- +
ieT, In <r<ly

where K is as in Lemma A.1.
PROOF. First, recall S, =37, X;, by Lemma A.1,
4.22) Ay <nP (malx Sy > z,,) — Ke %% as.
i>

By Bernstein’s inequality (Lemma A.2),

(4.23) P(T, <n(1 =23 —logn) <n~%

1/2

for some constant & > 0. Define A, = (8n(l;f)3 log, n)'/< and

n
Y IY; = Yill <5 —8n(h)?
j=1

-

It is easy to check that

fhn}, i=1,2,...,n.

max P (Af) <2exp{—Cxlog,n}

ieT,

for some constant Cx and large n. Consequently, by Chebyshev’s inequality,

(4.24) P( Y I(A) ST, — nP(Ag)W) = 0((logn)~x/?)  as.

ieT,

Also, 8n{(I.1)3 —(17)%} ~ (68/0A'(0)),/(logn) log, nn. Set h/, = ((log n) log, n)®-3

and
Li== Sh;},

i=1,2,...,n.
By Bernstein’s inequality again,

(4.25) max P (L{) < 2exp{—Cx(log n)O'l} a.s.

ieT,

Sy < 1Y =Yl <50 = 8n(GH* = (,)?)
j=1
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for n large. Thus, by an argument similar to that used in establishing (4.24), we
have

P( Y IL)<T, - nP(Lﬁ)W)

€Ty,

(4.26)

= O(exp(—(Cx/2)(logn)*1)) a.s.
From (4.23), (4.24) and (4.26), it follows that with probability approaching 1, at
least n — o(n) of {Y;; 1 <i < n} satisfy the following conditions:

(a) fallinto [I}, 1 — 7%
(b) every box centered at every such Y; and with radius l,‘l" contains at
least 811(1,‘,")3 —h, ~ (GA’(B))_I(logn + 38./(logn)log, n) elements of {Y1, >,

oLk
(c) For every such Y;, B(Yi,l,‘l") \ B(Y;,l;) contains at least (6/0A’(0))

x B+/(logn)log, n elements of {Y1, Y2, ..., Y,}.
By Lemmas A.1, 2.5 and 2.6, there exists y > 0 for which
4.27) nP <max S > z,,) — Ke 0%,

€0y

where O, = NN {k; [k —logn/6A'(0)| < y/(ogn)log, n}. Therefore, by (a),
(b), (¢) and the definition of A,,,

PY (A > (n—o(m)(1/n){Ke ™ +o(1)}) — 1

for sufficiently large B, which together with (4.22) proves the lemma. [

PROOF OF THEOREM 9. We continue to use the notation of Lemmas 4.6
and 4.7. Define V,; = max;—_, _;+ Sy (B(Y;,r)), i=1,2,...,n. Then W, | =
max;e7, Vn,i. By Lemma 4.6, to prove the theorem, it is enough to show that

(4.28) P<max Voi > zn> 1 — e Ke™,
ieTy
By Lemma 2.2, we have

‘P(max Vi > zn) — 14+ EYe™

ieT,

<b) + b5,
where

b| = EY{ S PXWy > 2) PX (Vi > 2)I(d (Y}, Yi) < 21,?)}
i€T, jeT,
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and

by=E"{ > > PX(Vyj > 2n, Vi > 2)I(d (Y}, Yi) < 21;)}.
ieT, jeT,

Evidently, EY¢™* — exp(— K e™*) by Lemma 4.7. Also,

—20x
by < Ss—n?P(d(¥1, Y2) <20}) = e > O(logn/n)
n

since PX(Vn,j > z,) < e~%*/n. Moreover,
by <n*EY{PX (Vi1 > 2n, Vi > 20) Ty, + Ty},

where

W, = [n"logn) ™ <d(Y\,Y2) <27, Y\, Yae[lf, 1 -1}T)
and

W ={d(Y1, V) <n Yogn)°, Yi,Vaell, 1 -1}

for some § € (0, 1/6). Obviously,
(4.29) n*EY{PX (Vo1 > zu, Voo > z0) T | < 8e % (logn) ™.
Define «,, = the volume of B(Y>,/,) \ B(Y1, l:). It is easy to check that on W,,,
(4.30) i, > L (07 P ogn) ™ — (I —17)} ~ Cn~ logn)?/3 70

for some constant C > 0 because l,f -1l = o(n_1/3(10g n)~%) with § € (0, 1/6).
By Bernstein’s inequality, conditionally on Y1, Y5 € [IF, 1 — 1],

n
P ( 2 Teys ionBey, i) (Yi) < niy — (log n)7/12—6/2>
i=1

4.31) pS

< exp(—C(logn)/67%).

Recall the definition of L; appearing between (4.24) and (4.25). We have,
by (4.25),

anY{PX(Vn,l > Zns Vn,Z > Zn)I\IJ”}

< Cx,,gnz(log n)

(4.32) xloganY{ max PX(S,,(B(Y,-,ri))>zn,i:1,2)1\pnlemL2}

Ly <ri,r<bf

+ nZPYI,Yz(\IJn)(n—le—QX) . 4e—Cx(10gn)0‘l .

O ((logn)e=(logm®1)
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For any ri,r> € (;,1;)), on Wy, B(Y2,r1) \ B(Y1,r2) D B(Y2, 1) \ B(Y1,,)).
Therefore, by Lemma 2.4, (4.30) and (4.31), there exists a positive { depending
on X and 8 such that

PX(Sy(B(Yi, i) > 2a, i = 1,2)Igc < n~lec0oem™™™

for any fixed Y1, Y € [}, 1 — []?. Consequently, the first term of (4.32) is less
than

an(log n)(log, n) PYvY2(yp )y (n_le_{(k’g”)z/%6 + n_le_exe_c(log”)l/ﬁia)

=0 ((log n)3e_§(1°g")l/675>.

Combining the above equality with (4.32) and then (4.29), we conclude that
b, —0. O

5. Concluding remarks. In this short section, we comment on some results
obtained in this paper and list an open problem.

REMARK 5.1. The one-dimensional setting of Theorem 5 originally arose
from studying GI/G/1 queue in [13] and was later applied to the CUSUM method
and the BLAST program. It would be interesting to know any possible applications
of Theorems 5 and 6 to queuing theory.

REMARK 5.2. Let {X;;i > 1} be a sequence of i.i.d. random variables and
N Zf-‘zl X;.Let f:N — Nbe an increasing function. We studied in Theorems 1
and 2 the asymptotic behavior of maxx>1 Srx) when f(x) =xP,p=2,3,...,
and the case f(x) = x is treated in Lemma A.1. It would be interesting to see
what happens for general f(x), particularly the case when f(x)/x — oo but the
fluctuation theory still works.

REMARK 5.3. We impose the condition Ee’X < oo for any ¢ € R in almost
every one of our theorems. It would be interesting to see what happens in the case
that the moment generating function does not exist, for example, X is a «-stable
variable (0 < < 1).

REMARK 5.4. One of basic assumptions in this paper is that random
variables {X} are i.i.d. It would be interesting to know what happens if random
variables { X} are not independent, but instead are related in a Gaussian manner.
Also, X7 and X; become asymptotically independent as the distance between
I and J goes to infinity.

REMARK 5.5. We dealt with the maximum indexed by squares and rectangles
in Theorems 5 and 7. One should not have much difficulty in handling general
convex sets by understanding the local behavior as in Theorems 1 and 3 and then
using the Chen—Stein method globally.
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REMARK 5.6. Theorem 7 is a result for d = 2. It is interesting to ask
what happens when d > 3. The key is to address the following number
theoretic question: set g4 (k) =#{(p1,..., pa) € N, Pi, ..., pa =k}. What is the
asymptotic behavior of )} _, qq(k)? If there exist two constants ¢; and ¢, such
that

Z qa(k) = cin(log n)d-1 4 czn(logn)d_z(l +o(1))
k=1

as n — oo, then the following result can be proved: under condition (1.1), there
exist a constant K > 0, an integer m > 0, and coefficients a, as, . .., a, such that

m
P(Un < Zak log, (n) -I-x) — oK™ Vx eR,
k=1

as n — oo, where log; (n) :=log(log(- - - (logn))) with k iterated natural logs.

OPEN PROBLEM. Suppose condition (1.1) holds. Do there exist a constant
K’ > 0 and a sequence of numbers {a,; n > 1} such that 0 < a,, = o(logn) and

~ 1 ’—Ox
lim P(UnE%%—a,ﬁ—x):l—e_Ke ’

n—oo

for all x € R?
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