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We investigate natural linear additive (NLA) functionals of a general
critical �ξ�K�ψ�-superprocess X. We prove that all of them have only fixed
discontinuities. All homogeneous NLA functionals of time-homogeneous su-
perprocesses are continuous (this was known before only in the case of
quadratic branching).

We introduce an operator � �u� defined in terms of �ξ�K�ψ� and we
prove that the potential h and the log-potential u of a NLA functional A
are connected by the equation u + � �u� = h. The potential is always an
exit rule for ξ and the condition h + � �h� < ∞ a.e. is sufficient for an exit
rule h to be a potential.

In an accompanying paper, these results are applied to boundary value
problems for partial differential equations involving nonlinear operator
Lu − uα where L is a second order elliptic differential operator and 1 <
α ≤ 2.

1. Introduction.

1.1. Superprocesses. We follow definitions and notation of [4].
Let E be a metrizable Luzin space. A superprocess X in E is a collection of

random measures on S = R+ × E characterized by the following elements.

1. A right Markov process ξ = �ξt��r�x� in E.
2. A (positive) continuous additive functional K of ξ.
3. A transformation ψ in the space of positive Borel functions on S.

[This is a mathematical model of a random cloud. The spatial motion of its
infinitesimal parts is described by ξ, and the branching mechanism is given
by K�ds� (the intensity of branching) and ψ (the branching law).]

We denote by � �S� the space of all finite measures on a measurable space
S. A set Q is called finely open if, for every �r� x� ∈ Q, there exists, �r�x-a.s.,
t > r such that �s� ξs� ∈ Q for all s ∈ �r� t�. To every finely open subset Q of S
and to every µ ∈ � �S� there corresponds a random measure �XQ�Pµ� called
the exit measure from Q. The quantity XQ describes the time–space mass
distribution of the cloud instantaneously frozen on Qc and Pµ is a probability
measure corresponding to initial time-space mass distribution µ. All Pµ have
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the same domain � . For every positive measurable function f,

Pµ exp
−f�XQ� = exp
−u�µ��

ur�x� + �r�x

∫ τ

r
K�ds�ψs�us��ξs� = �r�xf

τ�ξτ�
(1.1)

where τ = inf�t �t� ξt� /∈ Q� is the first exit time of ξ from Q.
The joint probability distribution of XQ1

� � � � �XQn
is determined by (1.1)

and by the Markov property: for every positive �⊃Q-measurable Y,

Pµ�Y∣∣�⊂Q� = PXQ
Y�(1.2)

where �⊂Q is the σ-algebra generated by XQ′ with Q′ ⊂ Q and �⊃Q is the
σ-algebra generated by XQ′′ with Q′′ ⊃ Q.

The existence of a family �XQ�Pµ� subject to conditions (1.1) and (1.2) is
proved in [5], Theorem 5.3.1, under a mild assumption on K for a class of
functions ψ which contains the family

ψs�z��x� = bs�x�z�x�2 +
∫
� �E�

Exp
z� ν�ns�x�dν��(1.3)

where

Exp�u� = exp�−u� − 1 + u(1.4)

and functions b ≥ 0 and
∫
� �E�


1� ν� ∧ 
1� ν�2ns�x�dν�(1.5)

are bounded. There is an additional condition which relates ns�x�dν� to the
Lévy measure of ξ (see 3.2.A).

Formula (1.3) describes the branching mechanism of the most general crit-
ical superprocess. Formulas (1.1) and (1.3) imply

Pµ
f�XQ� = �µf�τ� ξτ��(1.6)

where

�µ =
∫
E
�r�xµ�dr�dx��

We put S<t = �0� t� ×E and we denote by X<t the corresponding exit mea-
sure. Let Xt stand for the restriction of X<t to �t� × E and let Pr� ν mean
the measure Pµ with µ�ds�dx� = δr�ds�ν�dx�. (δz is Dirac’s measure at the
point z.) The collection �Xt�Pr�x� determines a measure-valued Markov pro-
cess which can be chosen to be a right process (see, e.g., [21]).

In this paper we assume the following conditions.

1.1.A. The process ξ is a Hunt process.

1.1.B. There exists a measure m (called the reference measure) such that,
if m�B� = 0, then �r�x�ξt ∈ B� = 0 for all r < t and all x.
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Under condition 1.1.A, the right version of the Markov process �Xt�Pr�x� is
a Hunt process (see [17]). By [11], under condition 1.1.B, there exists a mea-
surable function p�r� x� t� y� such that, for all r < t and all positive Borel f,

Tr
tf�x� = �r�xf�ξt� =

∫
E
p�r� x� t� y�f�y�m�dy�(1.7)

and, for all r < s < t and all x� z ∈ E,
∫
E
p�r� x� s� y�m�dy�p�s� y� t� z� = p�r� x� t� z��

We call p the transition density of ξ.

1.2. Additive functionals. We put � = � �S� and we denote by � 0�I� the
σ-algebra in * generated by Xt with t ∈ I. Let A�ω� ·� be a measure on �0�∞�
which depends on parameter ω ∈ * and let � ∗ ⊂ � . We say that A is an
additive functional of X with determining set � ∗ if, for every open interval I
and every µ ∈ � ∗, A�I� is measurable relative to the Pµ-completion of � 0�I�.
We assume that set � ∗ has the following properties.

1.2.A. If µ ∈ � ∗ and if µ̃ ≤ µ, then µ̃ ∈ � ∗.

1.2.B. For every µ ∈ � ∗ and for an arbitrary Q, Pµ�XQ ∈ � ∗� = 1.
Moreover, Pµ�Xt and Xt− ∈ � ∗ for all t� = 1.

1.2.C. The set S∗ = ��r� x�  δ�r� x� ∈ � ∗� is the complement of a ξ-polar
set. (A set S̃ ⊂ S is called ξ-polar if �r�x�ξt ∈ S̃ for some t� = 0 for all
�r� x� �∈ S̃.)

1.2.D. Every measure µ ∈ � ∗ is concentrated on S∗.

We call sets with properties 1.2.A–D total. Note that the intersection of any
countable family of total sets is a total set.

A positive measurable function h on S is called an exit rule if

Tr
sh

s ≤ hr and Tr
sh

s → hr as s ↓ r�

We say that h is a pure exit rule if, in addition, Tr
sh

s ↓ 0 as s → ∞. Denote
by H the set of all pure exit rules h such that hr�x� < ∞ m-a.e. for all r. To
every h ∈ H there corresponds a total set � �h� = �µ ∈ �  
h�µ� < ∞�.

Denote by �r the σ-algebra in �r�∞� × * generated by functions F�t�ω�
which are left continuous in t and adapted to � 0�r� t�. An additive functional
A is called natural if, for every r and every µ ∈ � ∗, the function A�r� t�� t ≥ r
is Pµ-indistinguishable from an �r-measurable function.

1.3. Natural linear additive functionals. Let h ∈ H. We say that A is a
natural linear additive �NLA� functional with potential h if A is a natural
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additive functional with determining set � ∗ ⊂ � �h� and if, for all µ ∈ � ∗,

PµA�0�∞� = 
h�µ�(1.8)

and

Pµ�A�0� r� = 0� = 1 if µ�S<r� = 0�(1.9)

[A heuristic interpretation of (1.9): nothing is accumulated by A before the
cloud is born.]

Put S∗ = ��r� x� δr�x ∈ � ∗�. The log-potential of an NLA functional A is
defined by

ur�x� = − logPr�xe
−A�r�∞�� �r� x� ∈ S∗�(1.10)

By Jensen’s inequality,

ur�x� ≤ hr�x� on S∗�(1.11)

The characteristic of A is defined by

hr
t �x� = Pr�xA�r� t� for r < t� �r� x� ∈ S∗�(1.12)

It can be continued to �r < t� �r� x� /∈ S∗� by

hr
t �x� = lim

s↓r

∫
E
p�r� x� s� y�hs

t�y�m�dy��(1.13)

(Since m does not charge the complement of S∗, the integrand is defined
m-a.e. The limit exists because the integral is monotone decreasing in s.) We
set hr

t �x� = 0 for r ≥ t.
An important class of NLA functionals is given by

A�I� =
n∑
1

δtk�I�
fk�Xtk−�(1.14)

where 0 < t1 < · · · < tn < ∞ and f1� � � � � fn are positive functions. We call
them discrete functionals. The potential of A is equal to

hr�x� = ∑
tk>r

Tr
tk
fk�(1.15)

1.4. Operator � . A superprocess X can be characterized by a nonlinear
operator acting on positive Borel functions on S by

� �u��r� x� = �r�x

∫ ∞

r
K�ds�ψs�us��ξs��(1.16)

The expression � �u�µ� = 
� �u�� µ� can be considered as a generalized energy
integral. A similar generalization is introduced in nonlinear potential theory
[see, e.g., [1], (2.2.6)]. We set

S� �h� = ��r� x� �h + � �h���r� x� < ∞��(1.17)

�� �h� = �µ 
h + � �h�� µ� < ∞��(1.18)
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For every total set � ∗, we put � ∗
� �h� = � ∗ ∩�� �h� and S∗

� �h� = S∗ ∩S� �h�.
Note that all measures µ ∈ � ∗

� �h� are concentrated on S∗
� �h�.

1.5. Continuity properties. An additive functional A with determining set
� ∗ is called continuous if there exists a set *′ such that: (1) the measure
A�ω� ·� is diffuse (i.e., it does not charge single points) for every ω /∈ *′;
(2) Pµ�*′� = 0 for every µ ∈ � ∗.

Theorem 1.1. Let A be an NLA functional with potential h and determin-
ing set � ∗ ⊂ �� �h�. If the characteristic hr

t �x� is continuous in t for every
�r� x� ∈ S∗, then functional A is continuous.

We say an additive functional A with determining set � ∗ has only fixed
discontinuities if there exists a set *′ and a set 0, at most countable inde-
pendent of ω such that: (1) A�ω� �t�� = 0 for all ω /∈ *′ and all t /∈ 0; (2)
Pµ�*′� = 0 for all µ ∈ � ∗.

Theorem 1.2. An NLA functional with determining set � ∗ ⊂ �� �h� has
only fixed discontinuities.

1.6. Discrete approximation. Let A be an NLA functional with potential h
and let 1 = �0 = t0 < t1 < · · · < tn�. Denote by A1 the discrete NLA functional
given by

A1�ds� =
n−1∑

1

δtk�ds�
h
tk
tk+1

�Xtk−� + δtn�ds�
htn�Xtn−��(1.19)

We say that 1n is a standard sequence of partitions of R+ if 11 ⊂ 12 ⊂ · · · and
the union of 1n is everywhere dense in R+.

Theorem 1.3. Let A be an NLA functional with potential h and deter-
mining set � ∗. Let 1n be a standard sequence of partitions. Then, for every
0 ≤ r < t ≤ ∞ and for every µ ∈ � ∗

� �h�,

A1n
�r� t� → A�r� t� in L1�Pµ��(1.20)

[Formula (1.20) with weak convergence follows easily from [3], VII. 8 and
VII.21. The strong convergence was proved in [16], Lemma 3.1, in the case
when A is piece-wise continuous.]

Remark. Let A1�A2 be two NLA functionals with potentials h1� h2 and
determining sets � ∗

1 ��
∗
2 . Theorem 1.3 implies that, if h1 = h2, then the

functionals A1 and A2 are indistinguishable with respect to all the measures
Pµ with µ ∈ � ∗

1 ∩ � ∗
2 .
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1.7. � -equation. By [4], Theorem I.1.8, discrete functionals have the prop-
erties:

1. for every µ ∈ � ,

Pµe
−A�0�∞� = e−
u�µ��(1.21)

2. the log-potential u satisfies equation

u + � �u� = h on S�(1.22)

We prove the following theorem.

Theorem 1.4. Let A be a NLA functional with potential h, log-potential u
and determining set � ∗. Then

Pµe
−A�0�∞� = e−
u�µ� for every µ ∈ � ∗

� �h�(1.23)

and

u + � �u� = h on S∗
� �h��(1.24)

We call (1.24) the � -equation.

1.8. Lifting and projection. Let a be a natural additive functional of ξ (see,
e.g., [5], Section 2.4.1). We consider only functionals satisfying the following
finiteness condition

h�r� x� = �r�xa�r�∞� < ∞� m-a.s.(1.25)

for all r. The function h is called the potential of a. It defines a uniquely up
to indistinguishability (see, e.g., [5], Theorem 2.4.1).

Let A be a NLA functional with determining set � ∗ and a be a natural
additive functional for ξ. We say that a is the projection of A and A is the
lifting of a if their potentials coincide, that is, if

Pr�xA�r�∞� = �r�xa�r�∞��(1.26)

for all �r� x� ∈ S∗.

Theorem 1.5. Let h be a potential of a natural additive functional a of the
process ξ. There exists a NLA functional A with potential h and determining
set � ∗ = � �h�.

In other words, the lifting can be constructed for every natural additive
functional subject to the finiteness condition (1.25). For instance, Theorem 1.5
is applicable to every bounded h ∈ H.
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1.9. Existence of linear additive functionals. Not every NLA functional has
a projection (an example could be given by Iscoe’s local times [19] for a super-
Brownian motion in dimensions 2 and 3). To consider general functionals, we
need some preparations. Let w�t�, 0 < t ≤ 1 be a positive continuous function.
We call it admissible if

∫ 1

0
tw�t�dt = ∞�

∫ 1

0
t2w�t�dt < ∞�(1.27)

For every admissible function w, we set

�w�u� =
∫ 1

0
w�t�� �tu�dt(1.28)

and �w�u�µ� = 
�w�u�� µ�. By (1.3), ψs�tz� ≥ t2ψs�z� for t < 1. Therefore
�w�h� ≥ const�� �h� and the set � �h + �w�h�� ⊂ �� �h�.

Theorem 1.6. Let h ∈ H. Assume that the function �w�h� belongs to H for
some admissible w. Then there exists a NLA functional A with potential h and
determining set � �h + �w�h��.

A stronger result can be established under the following condition.

1.8.A. There exists an increasing positive function q�λ� ↑ ∞ as λ → ∞,
such that

ψs�λz� ≥ λq�λ�ψs�z� for all λ > 1� z ≥ 0� 0 < s < ∞�

[It follows from (1.3) that λψs�z� ≤ ψs�λz� ≤ λ2ψs�z� on the same set.]

Theorem 1.7. Let 1.8.A be valid and let h�� �h� ∈ H. Then there exists a
NLA functional A with potential h and determining set �� �h�.

2. Continuity properties.

2.1. To prove Theorem 1.1, we use the following elementary observations.

2.1.A. Suppose that ϕ ≥ 0 and

ϕ�t� = o�t� as t ↓ 0�(2.1)

If akn ≥ 0, k = 1� � � � �mn,
∑

k akn ≤ C for all n and if limn supk akn = 0, then

lim
n

∑
k

ϕ�akn� = 0�(2.2)

This follows from an obvious inequality

∑
ϕ�ak� ≤

(∑
ak

)
sup
k

ϕ�ak�
ak

�(2.3)
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2.1.B. Suppose that ϕ is a convex function on R+ and ϕ�0� = 0. Then
∑

ϕ�ak� ≤ ϕ
(∑

ak

)
(2.4)

for every positive a1� � � � � am.
Indeed, for every y, ϕ�x + y� − ϕ�x� is an increasing function in x and

therefore ϕ�x + y� − ϕ�x� ≥ ϕ�y�.

2.2. First, we prove several lemmas.

Lemma 2.1. Let A be a NLA functional with potential h. Then

Pµ ExpA�0�∞� ≤ Exp
h�µ� + � �h�µ�(2.5)

for every µ ∈ � ∗.

Proof. (i) Put u�µ� = − logPµ exp�−A�0�∞��. By Jensen’s inequality,
Pµ exp�−A�0�∞�� ≥ exp�−PµA�0�∞��, and therefore

u�µ� ≤ 
h�µ��(2.6)

(ii) Let 1n be a standard sequence of partitions. Consider discrete func-
tionals An = A1n

given by (1.19). Denote by hn and un their potentials and
log-potentials. We claim that

u�µ� ≥ lim sup
n


un�µ��(2.7)

Indeed,

exp�−An�0�∞�� ≥ exp�−A�0�∞�� − exp�−A�0�∞��[An�0�∞� − A�0�∞�]

and therefore

Pµ exp�−An�0�∞�� ≥ Pµ exp�−A�0�∞��
− Pµ exp�−A�0�∞��[An�0�∞� − A�0�∞�]�

Since (1.20) holds with weak convergence in L1�Pµ�, we have

Pµ exp�−A�0�∞��[An�0�∞� − A�0�∞�] → 0

as n → ∞, and therefore

lim inf Pµ exp�−An�0�∞�� ≥ Pµ exp�−A�0�∞���
which implies (2.7).

(iii) By Jensen’s inequality, un ≤ hn. It follows from (1.15) and (1.19) that
hn ≤ h. By (1.22),


un�µ� + � �un�µ� = 
hn�µ��
and therefore


un�µ� + � �h�µ� ≥ 
hn�µ��
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Since hn ↑ h, we have

lim sup
un�µ� + � �h�µ� ≥ 
h�µ��
By (2.7),

u�µ� + � �h�µ� ≥ 
h�µ��(2.8)

By (1.4),

Pµ ExpA�0�∞� = exp�−u�µ�� − 1 + 
h�µ� = Expu�µ� + 
h�µ� − u�µ�
and (2.5) follows from (2.6) and (2.8). ✷

Lemma 2.2. Let h ∈ H and µ ∈ � �h�. Put S�h� = �h < ∞�. If the function

hr
t �x� = 1r<t�hr�x� − Tr

th
t�x��(2.9)

is continuous in t for every �r� x� ∈ S�h�, then

J
µ
δ �t� =

∫
�hr

t+δ�x� − hr
t �x��µ�dr�dx�(2.10)

converges to 0 as δ → 0 uniformly on every finite interval.

Proof. The function J
µ
δ �t� is increasing in δ. The dominated convergence

theorem implies that Jµ
δ �t� → 0 for every t as δ → 0. The uniform convergence

follows from an observation: Jµ
δ �tk� → 0 as δ → 0 and tk → t. ✷

Lemma 2.3. Let Y be measurable relative to the σ-algebra � 0
>t. Then, for

every µ ∈ � ,

PµY = PµPX<t
Y�(2.11)

Proof. By the multiplicative systems theorem, it is sufficient to prove
(2.11) for Y = e−A�t�∞� where A is a discrete NLA functional. Put Q = S<t.
For every s > t, Xs = X<s − µS>s

Pµ-a.s. Therefore � 0
>t is contained in the

σ-algebra generated by �⊃Q and sets of Pµ-measure 0 and (2.11) follows from
(1.2). ✷

Lemma 2.4. Let A be a NLA functional with determining set � ∗ and po-
tential h. The characteristic of A is given on S∗ by (2.9). For every µ ∈ � ∗,
s < t ∈ R+,

PµA�s� t� =
∫

�hr
t �x� − hr

s�x��µ�dr�dx�(2.12)

and

PµA�t� =
∫

�hr
t �x� − hr

t−�x��µ�dr�dx��(2.13)

Denote by A: the restriction

A:�I� = A�I ∩ :�(2.14)
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of A to the interval :. If : = �s� t�, then A: is a NLA functional with deter-
mining set � ∗ and potential

hr
: = hr

t − hr
s on S∗�(2.15)

If : = �t�, then A: is a NLA functional with potential

hr
�t� = hr

t − hr
t− on S∗�(2.16)

Proof. If µ ∈ � ∗, then by (2.11),

PµA�t�∞� = PµPX<t
A�t�∞��(2.17)

The measure X<t belongs, Pµ-a.s., to � ∗ and it is concentrated on S≥t. By
(1.9),

PX<t
A�0� t� = 0

and, by (1.8),

PX<t
A�t�∞� = PX<t

A�0�∞� = 
h�X<t��(2.18)

By (2.17), (2.18) and (1.6),

PµA�t�∞� = �µh
τ�ξτ��

where τ is the first exit time from S<t. Note that �r�x�τ = t� = 1 for r < t
and �r�x�τ = r� = 1 for r ≥ t. Therefore

PµA�t�∞� =
∫

�1r<tT
r
th

t�x� + 1r≥th
r�x��µ�dr�dx�

=
∫

�hr�x� − hr
t �x��µ�dr�dx��

(2.19)

Expression (2.9) for the characteristic on set S∗ and formulas (2.12), (2.13)
follow from (2.19). Formulas (2.12) and (2.13) imply that A: satisfies (1.8) and
(2.15) or (2.16). Formula (1.9) holds because A:�I� ≤ A�I�. ✷

2.3. Proof of Theorem 1�1. (i) Fix b ∈ R+ and µ ∈ � ∗. Put

σ = sup
t∈�0� b�

A�t�

and

0�1� = Pµ

n−1∑
i=0

Exp�A�:i��

for 1 = �0 = t0 < t1 < · · · < tn = b� and :i = �ti� ti+1�� The function
Exp is monotone increasing and therefore Pµ Exp�σ� ≤ 0�1� for all 1. Since
Exp�u� > 0 for u > 0, Theorem 1.1 will be proved if we show that, for every
b ∈ R+ and every standard sequence 1n of partitions of �0� b�,

0�1n� → 0�(2.20)
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Let A:i
be the NLA functional corresponding to :i by Lemma 2.4 and let

h:i
be its potential. By Lemma 2.1,

Pν Exp�A�:i�� ≤ Exp
h:i
� ν� + � �h:i

� ν�
for every ν ∈ � ∗. Since X<ti

∈ � ∗ Pµ-a.s., Lemma 2.3 implies that

0�1� = Pµ

∑
PX<ti

Exp�A�:i�� ≤ 01�1� + 02�1� + 03�1��
where

01�1� = ∑
Pµ� �h:i

�X<ti
��(2.21)

02�1� = ∑
Exp�PµA�:i���(2.22)

03�1� = Pµ

∑
Exp�PX<ti

A�:i�� − ∑
Exp�PµA�:i���(2.23)

(ii) First we prove that

01�1n� → 0�(2.24)

By (2.15), hs
:i

= hs
ti+1

for s ∈ �ti� ti+1� and hs
:i

= 0 for s ≥ ti+1. Let τi be be the
first exit time from S<ti

. By (1.6),

01�1� =
∫
µ�dr�dx�F1�r� x��

where

F1 = ∑
i

Fi
1

with

Fi
1�r� x� = �r�x� �h:i

��τi� ξτi� = 1r<ti
�r�x� �h:i

��ti� ξti�+1ti≤r<ti+1
� �h:i

��r� x��
By (1.16) and the Markov property of ξ,

Fi
1�r� x� = �r�x

∫ ti+1∨r

ti∨r
K�ds�ψs�hs

ti+1
��ξs�

and therefore

01�1� = �r�x

∫ b

r
K�ds�ψs�hs

α�s���ξs� ≤
∫
γ�ds�dx�ψs�hs

α�s���x�(2.25)

where α�s� = ti+1 if ti ≤ s < ti+1 and

γ�B� =
∫
µ�dr�dx��r�x

∫ ∞

r
K�ds�1B�s� ξs��(2.26)

By (1.12) hs
t ≤ hs for all t and therefore

ψs�hs
α�s�� ≤ ψs�hs��(2.27)
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We have
∫
γ�dr�dx�ψr�hr��x� = � �h�µ� < ∞�(2.28)

which implies

ψs�hs��x� < ∞� γ-a.e.(2.29)

If αn corresponds to partition 1n, then αn�s� ↓ s and

ψs�hs
αn�s�� → 0 on ��s� x� ψs�hs��x� < ∞�(2.30)

by (1.3) and the dominated convergence theorem. Formula (2.24) follows from
(2.25), (2.27), (2.28), (2.30) and the dominated convergence theorem.

(iii) By Lemma 2.4,

PµA�t� =
∫

�hr
t − hr

t−�µ�dr�dx� = 0 for all t�(2.31)

By (1.12),
∑

PµA�:i� ≤ 
h�µ� < ∞
and, by (2.12) and Lemma 2.2,

sup
0<t≤b

PµA�t� t + δ� ↓ 0 as δ → 0�(2.32)

Hence,

02�1n� → 0(2.33)

by 2.1.A.
(iv) It remains to prove that

03�1n� → 0�(2.34)

By (2.11), PµPX<ti
A�:i� = PµA�:i� and therefore

Pµ ExpPX<ti
A�:i� − ExpPµA�:i�

= Pµ exp�−PX<ti
A�:i�� − exp�−PµA�:i��

= Pµ exp�−
h:i
�X<ti

�� − exp�−
h:i
� µ���

(2.35)

For r < ti,

�r�xh
τi
:i

�ξτi� = �r�xh
ti
:i

�ξti� = Pr�xPti�X<ti
A�:i� = Pr�xA�:i� = hr

:i
�x�

and, by (1.1),

Pµ exp�−
h:i
�X<ti

�� = exp�−
v:i
� µ���

vr:i
�x� + �r�x

∫ ti∨r

r
K�ds�ψs�vs:i

��ξs� = hr
:i

�x��
(2.36)
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Since 0 ≤ e−y − e−x ≤ x − y for 0 ≤ y ≤ x, (2.35) and (2.36) imply

0 ≤ 03�1� ≤ ∑
i

∫
Gi

1�r� x�µ�dr�dx��(2.37)

where

Gi
1�r� x� = �r�x

∫ ti∨r

r
K�ds�ψs�vs:i

��ξs� ≤ �r�x

∫ ti∨r

r
K�ds�ψs�hs

:i
��ξs��(2.38)

Hence

0 ≤ 03�1� ≤
∫
γ�ds�dx�Q1�s� x��(2.39)

where

Q1�s� x� = ∑
ti>s

ψs�hs
:i

��x��(2.40)

Note that
∑
ti>s

hs
:i

�x� = Ps�x

∑
ti>s

A�:i� ≤ Ps�xA�s�∞� = hs�x�(2.41)

and, by 2.1.B applied to convex functions u2 and Exp�u�,
Q1 ≤ ψs�hs��(2.42)

The function ψs�hs� is γ-integrable by (2.28). To get (2.34) from (2.39), it is
sufficient to show that

Q1n
�s� x� → 0� γ-a.e.(2.43)

(v) If max�ti+1 − ti� < δ, then

sup
i


h:i
� ν� ≤ sup

t≤b

Jν
δ�t��(2.44)

where J is given by (2.10). For every ν ∈ � �h�, the right-hand side in (2.44)
tends to 0 as δ → 0 by Lemma 2.2 and therefore

sup
i


h:i
� ν� → 0 for all ν ∈ � �h��(2.45)

In particular,

sup
i

hr
:i

�x� → 0 for all �r� x� ∈ S∗�(2.46)

It is sufficient to prove (2.43) when

ψs�z��x� = bs�x�z�x�2(2.47)

or if

ψs�z��x� =
∫
�

Exp
z� ν�ns�x�dν��(2.48)
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In the first case, (2.43) follows from 2.1.A, (2.41) and (2.46). In the second case,

Q1�s� x� =
∫
q1�s� ν�ns�x�dν��(2.49)

where

q1�s� ν� = ∑
i

Exp
hs
:i
� ν��

By (2.41), ∑
i


hs
:i
� ν� ≤ 
hs� ν��(2.50)

Put Bs = �ν 
hs� ν� < ∞�. By 2.1.A, (2.50) and (2.45), q1n
�s� ν� → 0 for ν ∈ Bs.

Note that Exp
hs� ν� = ∞ on the complement of Bs. By (2.48), ns�x� ·� is
concentrated on Bs if ψs�hs��x� < ∞. By (2.28), the measure γ is concentrated
on the set �ψ�h� < ∞�, and (2.43) follows from (2.49) and the dominated
convergence theorem. ✷

2.4. Theorem 1.2 is an immediate implication of the following.

Theorem 2.1. Every NLA functional A with determining set � ∗ ⊂ �� �h�
has the form

A = Ã + ∑
t∈0

A�t��(2.51)

where Ã is a continuous NLA functional, 0 is at most countable set and A�t�
is a NLA functional which corresponds by Lemma 2.4 to the interval �t�.

Proof. There exists a measure µ0�dr�dx� = ρ�r� x�drm�dx� with strictly
positive ρ such that 
h�µ0� < ∞. By Lemma 2.4, the potential h�t� of A�t� is
given by (2.15) and therefore


h�t�� µ0� = F�t� − F�t−��
where

F�t� =
∫
hr
t �x�µ0�dr�dx�

is a bounded right continuous monotone increasing function. The set

0 = �t F�t� > F�t−��
is at most countable. If t /∈ 0, then 
h�t�� µ0� = 0 and, since h�t� is an exit rule,
it is equal to 0 identically. Formula

Ã = A − ∑
t∈0

A�t�

defines a NLA functional with characteristic

h̃r
t �x� = hr

t �x� − ∑
s∈0

hr
�s��x��

Clearly h̃r
t �x� is continuous in t and Ã is continuous by Theorem 1.1. ✷
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3. Discrete approximation, � -equation.

3.1. Proof of Theorem 1�3� The theorem has been already proved in [16],
Lemma 3.1, if the set 0 in (2.51) is finite and h is bounded. The second con-
dition can be dropped without any substantial change in the proof. If 0 is
countable, we consider a sequence of finite sets 0n ↑ 0 and we denote by An

functional of the form (2.51) with 0 replaced by 0n. For every µ ∈ � ∗ and
every partition 1 of R+,

Pµ A1�r� t� − A�r� t� ≤ Pµ An�r� t� − A�r� t� 
+ Pµ An1�r� t� − An�r� t� 
+ Pµ An1�r� t� − A1�r� t� �

(3.1)

where A1 corresponds to A and An1 corresponds to An by (1.19). Note that

Pµ A�r� t� − An�r� t� → 0 as n → ∞�(3.2)

A computation based on (1.15) shows that

Pµ A1�r� t� − An1�r� t� ≤ ∑
t∈0\0n

PµA�t��(3.3)

Since (1.20) holds for every functional An, it holds for A by (3.1), (3.2) and
(3.3). ✷

3.2. In the proof of Theorem 1.4 we use an additional condition on ns�x�dν�
mentioned in Section 1.1.

Recall that the Lévy measure of ξ is a random measure N�ds�dy� on S
concentrated on the set ��s� y� ξs− �= y� and such that

∑
r<s≤t

fs�ξs−� ξs� −
∫ t

r

∫
E
fs�ξs� y�N�ds�dy�

is a martingale relative to �� 0�r� t���r�x� for every r� x and every bounded
positive Borel function f on R+ ×E×E with the property fs�x� x� = 0 for all
s� x. We introduce a random measure on S

n̄�A�B� =
∫
A
K�ds�

∫
� �E�

ns�ξs� dν�ν�B��

The existence of a superprocess is proved in [5], Theorem 5.3.1, for ψ of the
form (1.3) under the following additional assumption.

3.2.A. The measure n̄ is dominated by the Lévy measure N in the follow-
ing sense: for every positive Borel function fs�x�y� such that fs�x� x� = 0 for
all s� x,

∫
fs�ξs−� y�n̄�ds�dy� ≤

∫
fs�ξs−� y�N�ds�dy� a.s.

(By [5], Theorem 6.1.1, condition 3.2.A holds for all critical superprocesses
with finite second moments.)
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Lemma 3.1. Let �r� x� ∈ S and let A ⊂ S be a set with the property

�r�x��t� ξt� ∈ A for all t ≥ r� = 1�

Then the measure

γ�r� x�B� = �r�x

∫ ∞

r
K�ds�1B�s� ξs�(3.4)

is concentrated on A and the measure

γ̄�r� x�C� = �r�x

∫
n̄�ds�dz�1C�s� ξs� z�

=
∫
γ�r� x�ds�dy�ns�y�dν�ν�dz�1C�s� y� z�

(3.5)

is concentrated on the set ��s� y� z� �s� z� ∈ A�.

Proof. The first statement is obvious since the right side of (3.4) vanishes
for B = Ac.

It follows from 3.2.A, (3.5) and the definition of the Lévy measure that
∫
γ̄�r� x�ds�dy�dz�fs�y� z� ≤ �r�x

∑
s>r

fs�ξs−� ξs�(3.6)

if fs�x� x� = 0. Put C′ = ��s� y� z� y �= z� �s� z� /∈ A�, C′′ = ��s� y� z� y =
z� �s� z� /∈ A�. Measure γ̄ does not charge C′ because the right-hand side in
(3.6) vanishes for f = 1C′ . It is clear from (3.5) that γ̄ does not charge C′′

[because �s� ξs� /∈ A if �s� ξs� z� ∈ C′′]. ✷

3.3. Proof of Theorem 1�4. (i) Let A1 be given by (1.19). By (1.15), its
potential

h1 = Tr
ti
hti �(3.7)

where i = min�k tk > r�. Fix µ ∈ � ∗
� �h�. By (1.21),

Pµ exp�−A1�0�∞�� = exp�−
u1�µ���
where u1 is the log-potential of A1.

Let 1n be a standard sequence of partitions of R+ and let un = u1n
. By

Theorem 1.3,

Pµ A1n
�0�∞� − A�0�∞� → 0

and therefore


un�µ� → − logPµe
−A�0�∞��(3.8)

Hence un tends to the log-potential u of A on A = S∗
� �h�. By (3.7) and (1.11),

un ≤ h�(3.9)

Therefore 
un�µ� → 
u�µ� and (1.23) follows from (3.8).
(ii) By (1.22),

un + � �un� = h1n
�(3.10)
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By (3.7), h1n
→ h. We know that un → u on A. We get (1.24) if we prove that

� �un� → � �u� on A�(3.11)

First, we show that, if �r� x� ∈ A, then

ψ�un� → ψ�u�� γ�r� x� ·�-a.e.(3.12)

Since ψ is represented by (1.3), we need to check that

us
n�y� → us�y� for γ�r� x� ·�-almost all �s� y�(3.13)

and ∫
Exp
us

n� ν�ns�y�dν� →
∫

Exp
us� ν�ns�y�dν�
for γ�r� x� ·�-almost all �s� y��

(3.14)

Formula (3.13) follows immediately from Lemma 3.1. To prove (3.14), we put
ν ∈ Bs if ν does not charge �y �s� y� /∈ A� and 
hs� ν� < ∞. If ν ∈ Bs, then
�s� y� ∈ A for ν-almost all y and us

n�y� → us�y� ν-a.e. By (3.9) and the domi-
nated convergence theorem, 
us

n� ν� → 
us� ν�.
Fix �r� x� ∈ A. By Lemma 3.1,

∫
γ̄�r� x�ds�dy�dz�1Ac�s� z� = 0(3.15)

and, by (3.4) and (2.48),
∫
γ�r� x�ds�dy� Exp
hs� ν�ns�y�dν� ≤ � �h��r� x� < ∞�(3.16)

Formulas (3.15) and (3.16) imply that, for γ�r� x� ·�-almost all �s� y�, measure
ns�y�dν� is concentrated on Bs and therefore (3.14) follows from the bounds
(3.9) and (3.16) and the dominated convergence theorem.

To get (3.11) from (3.12), it is sufficient to note that

� �un��r� x� =
∫
γ�r� x�ds�dν�ψs�us

n��y�
and ∫

γ�r� x�ds�dν�ψs�hs��y� = � �h��r� x� < ∞ on A

and to use the bound (3.9). ✷

4. Existence of NLA functionals.

4.1. A general existence theorem.

Theorem 4.1. Let h be a pure exit rule for ξ and let � ∗ be a total sub-
set of � �h�. Suppose that, for every µ ∈ � ∗, the process Yt = 
h�X<t� be-
longs to class (D) relative to �� µ

t �Pµ� where �
µ
t is the σ-algebra generated by

X<s� s ≤ t. Then there exists a NLA functional A with determining set � ∗

and potential h.
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Proof (cf. proof of Theorem 2.4.2 in [5]). By (1.2), Yt is a supermartin-
gale relative to �� µ

t �Pµ�. Let At�µ� be the compensator of Y [that is, a pre-
dictable increasing process such that A0�µ� = 0 and Y − A is a martingale].

To every 1 = �0 = t0 < t1 < · · · < tn� there corresponds an additive
functional A1 given by (1.19) with hs

t defined by (2.9). For every s < t ∈ R+,

Pµ�Ys − Yt �s−� = 
hs
t�X<s�

and therefore

A1�0� t� =
n−1∑
k=1

Pµ�Ytk
− Ytk+1

 �tk−� + Pµ�Ytn
 �tn−��

Let 1n be a standard sequence of partitions. By [3], VII.8 and VII.22, there
exists, Pµ-a.s. a weak limit at�µ� of A1n

�0� t� in L1�Pµ�. By Lemma 2.4.2 in
[5], there exists a natural additive functional A with the properties described
in Theorem 4.1. ✷

4.2. Proof of Theorem 1�5. Theorem 1.5 will follow from Theorem 4.1 if
we show that Yt = 
h�X<t� belongs to class (D) relative to ��t�Pµ� for every
µ ∈ � . According to [3], Theorem VI.25, it is enough to prove that PµYTn

→ 0
for every increasing sequence of stopping times with limn Tn = ∞.

Put ρ�t� = 
h1r>t� µ�. By [10], there exists a sequence of randomized stop-
ping times σn for the process ξ such that σn ≤ σn+1� limn σn = ∞ �µ-a.s.
and

PµYTn
= Pµρ�Tn� + �µh

σn�ξσn
� = Pµρ�Tn� + �µa�σn�∞�(4.1)

and the right-hand side of (4.1) tends to 0 since 
h�µ� < ∞. ✷

4.3. Proof of Theorem 1�6. Denote by � the family of all stopping times
relative to the filtration �t in Theorem 4.1. By Theorem 4.1, we need to check
that, for every µ ∈ � �h + �w�h��, the family YT, T ∈ � is uniformly Pµ-
integrable. To this end, it is sufficient to show that

sup
T∈�

Pµϕ�YT� < ∞(4.2)

for a positive function ϕ such that ϕ�u�/u → ∞ as u → ∞ (see, e.g., [3],
Theorem II.22).

Put

ϕ�u� =
∫ 1

0
w�t� Exp�tu�dt�(4.3)

There exists a constant c > 0 such that, for all u ∈ R+,

c−1q�u� ≤ Exp�u� ≤ cq�u��(4.4)

where q�u� = u ∧ u2. It follows from (1.27) and (4.4) that ϕ�u� < ∞ and

ϕ�u�/u ≥ c−1
∫ 1

1/u
tw�t�dt → ∞
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as u → ∞. We get (4.2) if we prove

Pµϕ�YT� ≤ ϕ�
h�µ�� + �w�h�µ��(4.5)

Since h ∧ N ∈ H if h ∈ H, it is sufficient to prove (4.5) for bounded h. By
Theorem 1.5, every bounded pure exit rule h is a potential of a NLA functional
A. Note that 
h�XT� = Pµ�A�T�∞� � 0

T � and, by Jensen’s inequality,

Pµϕ�
h�XT�� ≤ Pµϕ�A�T�∞�� ≤ Pµϕ�A�0�∞���
On the other hand, by Theorem 1.4,

Pµ Exp�A�0�∞�� = exp�−
u�µ�� − 1 + 
h�µ� = Exp
u�µ� + � �u�µ�
and therefore

Pµϕ�A�0�∞�� =
∫ 1

0
dtw�t�Pµ Exp�tA�0�∞��

=
∫ 1

0
dtw�t� Exp
ut� µ� +

∫ 1

0
dtw�t�� �ut� µ��

where ut is the log-potential of NLA functional tA. Since ut ≤ th, we get

Pµϕ�A�0�∞�� ≤
∫ 1

0
dtw�t� Exp�t
h�µ�� +

∫ 1

0
dtw�t�� �th�µ�

= ϕ�
h�µ�� + �w�h�µ��
which implies (4.5). ✷

4.4. Proof of Theorem 1�7. Condition 1.8.A implies the existence of admis-
sible function w such that �w�h� ≤ const�� �h�. Indeed, if q�u� ↑ ∞ as u → ∞,
then there is a function W�u� > 0 with the properties

∫ ∞

1
W�u�du = ∞�

∫ ∞

1

W�u�
u ∧ q�u�du < ∞�

Put w�t� = t−3W�t−1�. By construction, the function w is admissible and
∫ 1

0
tw�t�q−1�t−1�dt < ∞�(4.6)

By 1.8.A,

� �th� ≤ tq−1�t−1� � �h��
for 0 < t < 1, and Theorem 1.7 follows from (1.28), (4.6) and Theorem 1.6. ✷

5. Concluding remarks.

5.1. Class SL. Let Z be a positive � -measurable function on *. We say
that Z belongs to class SL if there exists a total set � ∗ and positive functions
h�u such that

PµZ = 
h�µ�� Pµe
−Z = e−
u�µ� for all µ ∈ � ∗�(5.1)
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It follows from [4], Section I.1.6, that SL contains all finite sums


ϕ1�XQ1
� + · · · + 
ϕn�XQn

��(5.2)

where Qi are finely open sets and ϕi are positive Borel functions. By Theo-
rem 1.4, SL contains A�0�∞� for every NLA functional with potential h and
determining set � ∗ ⊂ �� �h�. Using Theorem 1.3, it is easy to show that SL
contains the convex cone generated by these functionals and sums (5.2). We
do not know if SL is a convex cone itself.

5.2. More general processes ξ. Theorems 1.1–1.7 can be restated to cover
the case when ξ does not satisfy condition 1.1.B. Let h ∈ H and let hr

t be
defined by (2.9). There exists a unique exit rule h�t� such that

hr
�t��x� = hr

t �x� − hr
t−�x� for �r� x� ∈ S�h��(5.3)

Put

0�h� = �t hr
�t��x� �= 0 for some �r� x���

Let A be a NLA functional with potential h and determining set � ∗ ⊂ �� �h�.
By revising the proofs of Theorems 1.1–1.7, we get the following.

5.2.A. The functional A is continuous if 0�h� is empty.

5.2.B. Under condition 1.1.B, 0�h� is at most countable.

5.2.C. Theorems 1.3 and 1.4 hold if 0�h� is at most countable.

5.2.D. Theorems 1.5–1.7 remain valid.

Propositions 5.2.A–5.2.D can be applied, in particular, to the so-called his-
torical process which does not obey 1.1.B except in trivial cases. (For the defi-
nition and properties of historical processes and historical superprocesses we
refer to [7] (cf. [2]). Suppose that Q is a finely open set in S, τ is the first exit
time from Q and ϕ is a bounded positive measurable function on S. Put

h�w� = �r�xϕ�τ� ξτ�
if w is a path which is contained in Q and �r� x� is its end. Put h�w� = 0 if
w is not contained in Q. Consider the historical process ξ̂ and the historical
superprocess Ẑ corresponding to the part of ξ in Q. Function h is an exit rule
for ξ̂ and

0�h� = {
t �r�x�τ = t

} �= 0 for some r� x��
If condition 1.1.B holds for ξ, then

0�h� ⊂ {
t �r�m�τ = t

} �= 0 for some rational r�
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and therefore 0�h� is at most countable. Therefore Theorems 1.3–1.7 can be
applied to the h. The NLA functional A of X̂ can be expressed by the formula

A�0� t� = 
ϕ�X′
t��

where X′
t is the so-called absorption process. (Heuristicly, X′

t describes the
mass distribution of the part of random cloud which exited from Q during
time interval �0� t� and was frozen at the exit. A precise definition is given in
[15], Section 2.4.)

5.3. Superdiffusions. A special class of superprocesses (we call them su-
perdiffusions) is investigated in [15]. The corresponding process ξ is a diffusion
and the branching mechanism is given by K�ds� = ds and ψ�u� = uα with
1 < α ≤ 2. In [15], the general theory developed in the present paper is used,
in combination with methods of the theory of p.d.e. and the theory of capacity
to get stronger results on relationship between additive functionals and the
� -equation. In particular, we prove that, for every NLA functional, (1.24) in
Theorem 1.4 holds on S∗ [even if S∗

� �h� is trivial]. We also prove that h ∈ H
is the potential of a NLA functional if h = u + � �u� m-a.e. for some u.

5.4. Continuous functionals with discontinuous projections. It follows from
the results of this paper that, if a is the projection of A, then A is continuous
if and only if a has no fixed discontinuities. Indeed, by Theorem 2.1, A is con-
tinuous if and only if Pr�xA�t� = 0 a.e. for every t. On the other hand, (1.26)
implies Pr�xA�t� = �r�xa�t�. The class of continuous additive functionals of
a Hunt process ξ is, in general, smaller than the class of additive function-
als with no fixed discontinuities (see, e.g., Theorem 2.4.2 in [5] which is a
modification of a well-known result of M. Shur). This implies the existence of
continuous NLA functionals with discontinuous projections.

Acknowledgments. We wish to thank the anonymous referee for several
valuable remarks. In particular, he suggested the general form of Theorem 1.5
which had been stated only for bounded exit rules in the initial version of the
paper.
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