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MODERATE DEVIATIONS FOR EMPIRICAL MEASURES
OF MARKOV CHAINS: LOWER BOUNDS

By A. DE ACOSTA

Case Western Reserve University

We obtain lower bounds for moderate deviations of empirical mea-
sures of a Markov chain with general state space under the assumption of
ergodicity of degree 2. We derive an explicit expression for the rate
function.

1. Introduction. Let M(S) be the space of finite signed measures on a
measurable space (S, S) and let {X;; j = 0) be an S-valued ergodic Markov
chain with invariant probability measure . Let {b,} be a positive sequence
such that b, — =, and let M, be the random element of M(S) defined by

1 n-1
M, = b, j:o(éxi — 7).

Let U={AxeM(S): |[f,dA < e, i=1,...,k}, where the f's are bounded
measurable functions on S; that is, U is a neighborhood of the zero measure
in the rtopology (see Section 3). If b, = n for all n, then by ergodicity as

k

P{M,eU%} < Y P{|—
i=1

n — o,
28}
- 0.

The estimation of the order of magnitude of the small probabilities in (1.1)
falls under what is usually called large deviation theory. Since in this case
M, =L, m, where L, = (1/nX]_; 8, Is the empirical measure, the ques-
tion is usually framed in terms of L, as a random element of the space P(S)
of probability measures on (S, S) and an extensive literature exists (see, e.g.,
[1], [6], [7], [9D.

Suppose now that the Markov chain {Xj, j = 0} is ergodic of degree 2; this
is a strengthening of the ergodicity assumption (see Section 2). It is known
that under this hypothesis, the following central limit property holds: for
every bounded measurable function f on S,

oo o

nilfi(xj) — [fidm

j=0

(1.1)

—>N(0 O'f)
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260 A. DE ACOSTA

for a certain variance o;*> (see Section 2). Now assume that {b,} satisfies
(1.2) b,/n*? -,  b,/n— 0.

By the first condition in (1.2) we have again as n — «,

. k 1 n-1
(1.3) PIM, € U7 < i;lp{ b_nj¥o[fi(xj)_,/fi dw} 28}

- 0,

but because of the second condition in (1.2) the order of magnitude of the
probabilities in (1.3) is larger than that in (1.1). The estimation of the
probabilities in (1.3) is usually called a moderate deviation problem.

This is the problem addressed in the present paper. More specifically, we
are concerned with lower bounds. Roughly speaking, we show in our main
result (Theorem 3.2) that, under the assumption of ergodicity of degree 2, for
A c M(S) an asymptotic lower bound for P{M, € A} is

bZ
oo\~ ot (o)

for a certain functional 1,: M(S) — R™.

We have also obtained the corresponding upper bounds. However, the
upper bound result requires stronger assumptions and a different technique
of proof and will be reported elsewhere.

Moderate deviations for empirical measures of Markov chains have been
previously studied in [8] and [11] under assumptions which are considerably
more restrictive than ours.

In Section 2 we develop some useful consequences of the assumption of
ergodicity of degree 2; the assumption appears to be minimal for our problem.
Section 3 contains the main result of the paper, Theorem 3.2. As a prelimi-
nary step, we prove a moderate deviation lower bound for functionals of the
chain taking values in a finite-dimensional space. In spite of the difference
between the two situations, the technique of proof is partly inspired by [6], in
which it is elegantly shown how to use directly the minorization property of
irreducible Markov kernels to obtain large deviation lower bounds. Paper [5]
also provided some useful ideas.

In Section 4 we derive an explicit formula for the rate function I,. As it
turns out, this requires an analytically intricate argument.

2. Preliminary results: some consequences of the assumption of
ergodicity of degree 2. Let (S, S) be a measurable space: we assume that
S is countably generated. N will denote the set of nonnegative integers.
Given a Markov kernel P on (S, S) and a probability measure u on (S, S),
P, will denote the Markovian probability measure on (SN, S") determined by
P and pu. Let {X;, j >0} be the coordinate projections on S"; then
(8™, s™,P,,{X;,j = 0} is the canonical Markov chain with state space S,
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transition kernel P and initial distribution w. Let us recall (see pages 114
and 118 in [12]) that {X;, j = 0} (or P) is as defined in the following.
1. It is ergodic if there exists a probability measure 7 on (S, S) such that
lim|P"(x,") = =«lly,=0
n
for all x € S, where |- ||, is the total variation norm.

2. It is ergodic of degree 2 if it is ergodic and for all B € S such that
7(B) > 0,

(2.1) fB(Exfg)w(dx) < oo,

where E, is the P,-expectation and 7 = inf{j > 1: X; € B} [assumption
(2.1) is a strengthening of the condition

J (Exrg)m(dx) <=,
B
which holds for every B such that #(B) > 0 if P is ergodic].

For the purposes of this paper, there are two important consequences of
the assumption of ergodicity of degree 2, namely Propositions 2.1 and 2.2. We
denote by B,(S) [resp., L5(7); resp., L(7)] the subspace of the space B(S) of
bounded measurable functions on S [resp., of the space L*(s) of 7-essentially
bounded functions; resp., of the space L'() of -integrable functions] consist-
ing of functions f such that [fdw = 0.

ProprosiTiON 2.1. If P is ergodic of degree 2, then we have the following:

() Zioo [IIPK(X, ) = mllym(dx) < .
(ii) For each f € Lg(m), the series {¥_, P*f} converges in L'(7) and if
Gf = T_, P*f, then G is a bounded operator from L(7) into L}(7).

Proor. (i) In what follows, g € B(S). By the invariance of 7, we have for
k>1,

/w(dx)IIPk(x,-) —lly

=fw(dX)ISTJp [ PR dy)a(y) —fgdw‘

gl<1

= [ (@0 su | [ PHCx ay)a(y) — [ m(d2) [ PH(z.d)a(y)|
gl<

=f77(dx)|sTJp1 frr(dz)f[Pk(x,dy) — Pk(z,dy)]g(y)‘
gl<

< [ [ #(d)m(d2)IP*(x, ") = P*(z,)lly
and now (1) follows from Corollary 6.9, page 118 of [12].
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(i) Let f € L3(w) and let f = fi afi <yt then f e B,(S). By the invariance
of o, it is easily seen that P"f is deflned as.[w] and in fact P"f = P"f a.s.
[7]. Therefore

i‘,flP“fldrr= i‘,flP“ﬂdw
= f‘,ﬂp f—/fdwldw
< i/IIP”(x ) = Il (dx)

and therefore (ii) follows from (i). O
The next preliminary result is a central limit theorem.

ProposITION 2.2.  If P is ergodic of degree 2, then for every f € B,(S), every
probability measure u on (S, S),

n—-1
|_Pﬂ(n1/2 Y f(X))| =w N(0, o),
j=0
where
(2.2) of = [2dm + 2 fPGTdr.

Proor. This result is Corollary 7.3(ii), page 140 of [12], except for the
expression for o;2. We will show that the form of o> in [12] (which prima
facie depends on certain noncanonical objects) in fact coincides with (2.2).

As in [12], our assumption implies that it is possible to choose a number
m, € N, a function s € B(S) such that 0 <s<1 and [sdw >0, and a
probability measure » on (S, S) satisfying [sdv > 0, such that the minoriza-
tion condition

(2.3) PM >s® v
holds, where s ® v is the kernel defined by (s ® v)(x, A) = s(x)v(A). The
expression for o2 in [12] is

Mo Mo
(24) [f2dm+2mg?| ¥ (mg —j)[fPifdm+ ¥ [fPIG, fdr|,
j=1 j=1

where G, ., =X;_o(PM™ —s® »)"(Z;* PY). To establish the equality of
(2.2) and (2 4), we first recall the following algebraic formula (used, e.g., in
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[12]); if a and b are elements of a ring, then for n > 1,

(2.5) (a+b)"=a"+ Xn‘,(a+b)i’1ba”*‘.

i=1

The proof is

(a+hb)" —a"

Zn: [(a +b)" " Paltl — (a4 b)”_la‘]

(a+b)" [a+b-a]a?

{NERANE

Il
[N

(a+b)" 'ba"?,

which is the same as (2.5). Taking a=P™ —-s® v, b=s® v in (2.5), we
have for n > 1,

n R
PMN = (P™ —s® )" + ¥ P Y(s@v)(P™-s® )"
i=1

and therefore forany N > 1, j > 1,

N N
PIY P =Pl Y (P™ —s5®p)"
n=0 n=0
N n )
+PIY Y P™i-D(s® y)(P™ —s®»)""
n=1i=1
N
=PIy (PM-s® )"
n=0

N N—i
+PIY PMi-D(s@p) Y (P™ s v)-
i=1 k=0
For f, g € By(S),
) N
JPI Y Pmrgda
=0

n=

N
(2.6) =fijZ(Pm°—s®v)ngd7T
n=0

N N-—i
+ [PIY P D(s@») ¥ (P™ —s®v)gdr.
i=1 k=0
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The second term on the right-hand side of (2.6) may be written (taking into
account that [fdz = 0 and setting 5 = s — [sdm),

(2.7) L [ [ m(a0t00 [ premsnix, ay)siy)|

i=1

X

/v(dz)kZOI(PmO -s® v)kg(z)}.

According to [12], Corollary 5.2, page 74, the measure
Y v(P™—s® I/)k
k=0

is proportional to 7 (and, in particular, finite); therefore for each i,

im [ 4(d2) T (P™ =50 1)“g(2)
(2.8) .
=fgd( Y u(P™—se v)k) —o.
k=0

The ith term in the series in (2.7) is dominated by

d;, = ||f||wf|g| d( Y v(PM™—s® v)k)fIIP“mO“”(x, ) = wllym(dx),
k=0
and {d;} is summable by Proposition 2.1; therefore (2.8) implies that the
second term on the right-hand side of (2.6) converges to 0 as N — «, Letting
N — « in (2.6) we obtain: for all j > 1,

0

(2.9) [fPI Y pmorgdm = [fP1 Y (P™ —s @ v) gdr.
n=0 n=0

and the common value is finite; the meaningfulness and finiteness of the
left-hand side, as well as the passage to the limit leading to it, are justified by
Proposition 2.1, and the corresponding points for the right-hand side are
justified by the fact that by [12], Proposition 5.16, page 85, the assumption of
ergodicity of degree 2 implies that

WGmO,S,V(S) < .
Next, (2.9) implies that for f, g € B,(s), j > 1,

0 mo—l

ffPi Y P“gdw=fij Y pmon Y pigds
n=0 n=0 i=0

(2.10) ) o1
=ffPJ' Y (PM™—s® v)”( Y Pi)gdﬂ-.
n=0 i=0
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We are now ready to transform (2.4). By (2.10),

mgy o
[fPJGm . fdr=Y /fPi Y Pfdn
j=1 j=1 n=0

Mo )
-y ff Y P "fdm
j=17 n=j

o min{n, my}

=[f2 _2 P fdx

—ffZandw+/f Z P"fm, d,

n=mgy+1

SO finally the term in brackets in (2 4) equals

©

Z (mo—n)[fp fdm + Z n[fPrfdm+my[f ¥ Pfdr

n=mg+1
= (/f Y P”fdrr)mo
n=1

= (ffPGfdw)mo,

proving the equality of (2.2) and (2.4). O

3. Moderate deviation lower bounds. Let V be a finite-dimensional
real vector space, and let {b,} be a positive sequence such that

b,/n'/? — o, b,/n — 0.

We first con5|der moderate deviation lower bounds for { L, (Sn/b )}, where
S, =1XjC f(X yand f: S - V is a bounded measurable function such that
[fdﬂ' = 0 We denote by V* the dual space of V.

THeorem 3.1. If P is ergodic of degree 2, then for any probability measure
w on (S, S) and any open set U in V,

n S,
liminf— logP{— U} > — inf J;(2),

nb2 g“{bn } zeU f()
where

Ji(z) = sup [(z g>—-(/<f £y drr+2f<f £YPG(H, §>d7r)}

Eev>*

Proor. In the minorization condition (2.3), s may be taken to be of the
form s = Bl., where 0 < 8 <1, Ce S and «(C) > 0; thus for any x € S,
AE€S,

(3.1) PMo(x, A) = Blc(x)v(A).
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It follows from (3.1) that for every nonnegative measurable function ®
defined on SN, any x € S,

(3.2) E(Po6M) > Bl (X)E, P,
where 6 is the shift operator on SN,

As is easily seen, in order to prove the theorem it is enough to prove that
for any open convex set U in V, any z € U,

n S,
(3.3) lim ing log P“{b_ € U} > —J:(2).

n

We will assume henceforth that U is an open convex set. For fixed t > 0, let

n2t? n
P, = br% ) an = [p_n},

where [-] is the integer part function.

CLam l. For &> 0, let U, = {x € V: d(x,U°) > &}, where d is the metric

associated to some norm ||| on V. Then for any probability measure w on
(S, 8),
lim inf —s log P >n U
im inf— lo — €
n b2 9Tk b
- - n 71
> lim inf — log P0r*Sp q,-mgs1 € Uss Xp g —m, € C}-
n

The claim will obviously follow if we can prove that

(34) PJ{S,/b,eU}=Pfb's, . . €U, X e Cla,,

Pndn—Mg

where {a,} is a positive sequence bounded away from zero. To prove (3.4), we
notice first that

Osn_pnqnspn'
35 — 2
(35) n S“Q"gp—;gﬁ(l So
by bq ba

It follows from Proposition 2.2 that { LPM(Sn/nl/z)} converges to a Gaussian
measure on V and therefore (3.5) implies

(3.6) by 'Sh pa.

~p, 0.
If n =p,q, — My + 1, then (3.4) is obvious. Assume n > p,q, — m, + 1. Let
B,={zeV: |zl < &. Writing S,=S .1 +(S,—-S L), we

have by the Markov property

Pnln—Mg Pnln—Mg

"

P{Sn/b, € U}

Pﬂ{brl_lspnqn_m0+1 < US' X
(3.7)

€ C,b,'T, € B,}

(A},

Pntn—Mo

EM{ Iug( bn_lsann_mU'*'l) IC( Xpnqn_mo)PX

Pndn—mq
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where T, =S, = S, ; _n, +1 and

N=ppQp+me—1
(X)) ;20 €SN b Y f(xj)eBE}.

j=1

A, =

Choose now n, such that n > n, implies b, *(m, — 1) sup, .5 [If(XIl < /2.
Suppose n > n,. If 1 < n — p,q,, then by (3.2) with

n—ppo,—1

CD((Xj)jZo): IBS/Z(bn_l > f(xj))'

j=0
we have for x € C

%

n_pnqn+m0_1
Px(An) Px{bn1 Z f(xj) = Bg/z}

j=mg

(3.8) E, (Do0m)

> BE,d
- 'BPV{bn_lSn—pnqn € BE/Z}’
which converges to 1 by (3.6). If n = p,q,, then
(3.9 A, =SN
It is clear now from (3.7) to (3.9) that (3.4) holds, proving Claim 1.

Cram Il.  Let r, = b,/tg,. Then for every open convex set U in V, ¢ > 0,
there exists ny € N such that for n > n,,
Pv{br?lspnqrmwl €U, Xpq-me € C}
dn
= (pr{r;lspn*mwrl = tUE’ Xpn*mo = C}) ’

We proceed to prove this claim. Letting F, = o{X;, j < k} we have by the
convexity of U and the Markov property

P,{b,'s eu, X eC)

Pndn—mo+1 Pndn—Mg

Pnln—MmMg

Po(dn—1)—mo+1 T )y f(X;)
j=pn(dn—1D-mgy+1

S

EVEV|: Itl’nan

X e (Xpan-mo)| Fontan-1- mo}

(3.10)

Pnln—Mg

v [ e an- 10 (Spoan-1-mo+1) liru ( 2 f(X;)

i=pnldn—D-mg+1

\
m
m

X IC( Xann*mo) IC( Xpn(qnfl)*mo) Fpn(qnl)mow

Ev{ L (an-10 (Spoa-1-mo+ 1) I (Xpa,-1-me) Pxy a1 mel En)>7
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where
Pn
En=1{(X));.0€S": X f(x) etr,U, x, €Cy.
j=1
We notice that, as n — o,

b, n n
I‘n=—=bnt_1 ~t(—).
t[n/pn] n2t? bn
b7

Choose now n, such that n > n, implies (tr,)"*(m, — Dsup, . sl f(x)Il < &.
Then by (3.2) with

Pn—MmMg

(D(( Xi)iZO) = IUS((trn)l Z f( Xj)) lc(Xp,—mj)
i=0

we have for x € C, n > ny,

\

J=Mmg

Px( En) = Px{(trn)_l % f(xj) & UE’ Xpn € C}

E,(Do6M)

(3.11) . BED

= BP,

1 Pn—Mmg
(tr,) 'Zo f(X;))eU,, X, _m € C}.
j=

By (3.10) and (3.11), we have for n > ny:

P(s € tr,q,U, X e c}

PnGn—Mo+1 Pnln—Mmo

(3.12) > P{Sp - n-mo+1 € T8y = DU, X g —1)-m, € C}

X BPS, _m 1 € tr,U,, X, . € C}.
Iterating (3.12), we obtain

PV{Spnqn_m0+l € trnan' Xpnqn_mo € C}
> PfS, _m+1 €tr,U, X, ,, €C}
Qn71
><('BF>V{Spn_m0+1 < trnU‘q’ Ph—Mg = C}) !
and Claim Il is proved.
CLamm 1. Let y = lim, Lp(n~%/2S,) (See Proposition 2.2). Then for

every open set W c V,
liminfP{n"/2S e W, X, , € C} > %(W)x(C).

n
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To prove this claim, given ¢ > 0, choose k, such that
(3.13) [ m(@)liP () = 7ll, < e

Then given & > 0, choose n, such that ny*/?k, sup, sl f(x)ll < 6. Then for
n=>ng,

P{n"'2s, eW, X, , €C}

>P[n?s, €W, X, , €C]

3.14
( ) = EMEM[IWs(nil/ZSn—ko)IC(Xn—l)an—ko—l]
= EM{IWE(n’l/zsn,ko)PkO(Xn,ko,l,C)}.
Next,
Bl (n2S0 1, )P*o(Xp-ky-1:C)} = E{lw(n"28,_ )7 (C)}]
(3.15)

< f(;LP”’kO’l)(dx)IIPKO(x,~) — ally.

By (3.13) to (3.15) and since lim || uP" — «|l, = 0 by ergodicity, we have

v

lim inf P{n"'/?S, e W, X, , € C}

n

lim inf P{n"?s, . eW}m(C) -«

(W) 7(C) — &

[\

Since ¢ and é are arbitrary, Claim 111 follows.

We shall now finish the proof. First we note that for an arbitrary probabil-
ity measure u on (S, S), it follows from (3.2) that for any nonnegative
measurable function ® on SN, m, € N,

(3.16) E (®o0M*™) > BuP™(C)E,d.

Since w(C)>0 and [[uP" — =]y, = 0, one may choose m; such that
wP™(C) > 0. Given &> 0, let n, be such that n > n, implies b;*(m, +
m,)sup, c sl f(x)Il < &. Then by (3.16),

n—-1
P(S./b, € U} = BuP™(C)P,ibyt X f(X;) e\,
(3.17) j=mg+m,

= B/‘LPml(C)PV{Sn/bn < U26‘}'
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By (3.17) and Claims (1) to (111), for any open convex set U and any t > 0,
£ > 0, we have

|"fn|F>Sn U
Imintr— 1o — e
n b2 09Tk b

lim i f—n logP,| — € U
> lim in 0 IS
n b2 g% b, 2e

n
> lim inf — log P,{b, 'S
n b

n

L€ U,,, X e c}

Pnln— Mo+ Pndn—Mg

eC}

Pn—=Mg

n
> lim inf -~ q, log BPra'S, —m,i1 € tUs,, X
n n

> t°2 log{ By; (tUs,) 7(C)},

since
n n n ) q 12
—0q, = — - t7° an r, ~p;-/°.
br%ql"l bg n2t2 n pl"l
2
by

Letting t — « it follows from Lemma 3.2, page 107 of [5], and the fact that &
is arbitrary, that for every z € U,
. ..n S, 1 )
lim qub_ﬁ log P, ™ eVlU) > —Ellzllyf.

where ||-||,, is the reproducing kernel Hilbert space norm associated to v;.
But, as is well known,

2llzll3, = sup [<z,§> -3 /¢ dvf},
EeVv*

which equals J;(z) since, by Proposition 2.2,

fgzdyf=f<f,g>2dw+2f<f,g>PG<f,§>dw. O

RemARK 1. Itis clear from the proof of Theorem 3.1 that the result is valid
under the weaker assumption that P is ergodic if further restrictions, as in
the central limit theorem in [12], are imposed on f € B(S) [or L(w)].

REMARK 2. It is easily seen from the proof of Theorem 3.1 that if D is a
set of probability measures on (S, S) such that, as n — o,

sup || uP" — ||y = 0,
y,ED
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then we have the following uniformity result:

n S,
liminf—=log inf P{— U} > — inf J;(2).
n b? g,u.eD “{ b, } zeU «(2)
If follows, for example, that the result will hold for D = P(S) if P is
uniformly ergodic (see [8]).

The next proposition is one of the main results of this paper. The proof is
based on the projective system method and is in fact an implementation of
Remark (1) following Theorem 3.3 of [4]. Similar arguments may be found in
[2] and in [3], where we studied moderate deviations of empirical measures in
the i.i.d. case.

Let us recall that the 7topology on the space M(S) of finite signed
measures on (S, S) is the smallest topology such that for each f € B(S), the
map v — [fdv [v € M(S)] is continuous. For B c M(S), we denote by int_(B)
the interior of B in the ~topology. The o-algebra B on M(S) is defined to be
the smallest o-algebra such that for each f € B(S), the map v — [fdv is
measurable. Recall that

THeEoReM 3.2. If P is ergodic of degree 2, then for every probability
measure w on (S, S), every B € B,

n
(3.18) liminf - logP{M, €B} = — inf I,(A),
n bn A€int (B)

where for A € M(S), setting f = f — [ fd,
I,(A) = sup [ fd)\—l( f2dm+2 f_PGf_dw)}.
o0 = s |[1on =i [Fe a2

Moreover, for each a > 0 the level set L, = {A € M(S): 1,(A) < &} is -com-
pact.

Note. In the next section we compute the variational expression in the
definition of I, and obtain an explicit formula for I,.

Proor. Let F be the family of finite subsets of B(S), directed upward by
inclusion. For each F € F, let II.: M(S) » RF be the map II-(AXf) =
[fdA (f € F). Then

LPM(HF( Mn)) = LPM(Sn/bn)v
where
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where h: S - RF is defined by h(x) = {f(x)} .. Now let B € B, and sup-
pose A € int,(B). By the definition of the topology, there exist F € F, U
open in RF such that A € II;}(U) c B. Then z =I1.(\) € U and by Theo-
rem 3.1,

n n
lim |ng logP{M, € B} > lim n;]lfp log P,{ITc(M,) € U}

(3.19) . ..n Sh
= f—logP{— U
m |g b2 ogPk, b,

%

—Jn(2).
Writing h = h — fhdw, =9 — [gdw, we have, since z = [hdAa,

Jn(z) = sup [f(h,a)dA

a€ERE

(3.20) —%(I(F},a>2dw+2](ﬁ,a>PG<Fl,a>d7T)]

IA

sup [ gdA — 1( g2dm+ 2 gPngw)}
S o il o a2
= |o()‘)-
Now (3.18) follows from (3.19) and (3.20).
Next we show that if 1,(A) < o, then
(3.21) AMS)=0 and A< .

In fact, setting g = tl, for A € S, t € R, we have by the definition of I,

tA(A) = [(tly) dA < %tz{fgpg dm + 2 [ ¢, PGe, dw} + 1(A),

where ¢, = 1, — w(A). Now if A =S, then tA(S) < I,(A) for all t € R and
therefore AM(S) = 0. If w(A) =0, then again tA(A) < I,()) for all teR,
implying ACA) = 0. This proves (3.21).

Let H, = {g € Ly(m): sup;cgs)/fagdm — 3®(f, f)] < a}, where &(f, f) =
[f2dm + 2 [fPGfd7 and f=f — [ fdw. Define T: LX) — M(S) by T(g) =
gds. Then T is continuous from the weak topology o (L(7), L*(7)) to the
7-topology and by (3.21), T(H,) = L,. Therefore it suffices to prove that H, is
a (LX), L(ar)) compact.

(i) H, is bounded in L'(sr). To prove this, we observe first that

sup [ffgdw—%(l)(f,f)}= sup [ffgdrr—%(l)(f,f)

feB(S) fe l"(w)

(see Proposition 2.1). Therefore for any f € L™(7r),

ffgdw

sup <3®(f, f) +a.

geH,
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The result follows now from the Banach—Steinhaus theorem.
(ii) H, is uniformly integrable. To prove this, let g € H, and set f =
b(sgn @)y -, Where b, t > 0. Then

(3.22) b[ 19l dm = [fgdm < JO(f, ) +a.
Now
O(F,f) <b?[ Iy, dn
+ 2b2fl(‘g‘>t}(x) il”pn(x, ) — w27 (dx)
e
(3.23) o2 Sbm
< — floldw+ —— [lgldm

rap? Y JUIPR(x, ) = wllym(dx).

n=m+1

Dividing by b in (3.22) and using (3.23) and (i), we have for each b > 0,
m € N:

* a
lim sup sup /Igll{|g|>t) dm<4b ) fIIP"(x,-) — allym(dx) + —.
t-oo geH, n=m+1 b
Since b, m are arbitrary we conclude that (ii) holds. Therefore by the Dunford
Pettis theorem (see, e.g., [10], page 20), H, is o (L), L*(7r)) relatively
compact. Since clearly H, is o(L'(w), L*(7)) closed, it follows that it is
o (LY(7), L*(ar)) compact. O

4. ldentification of the rate function. The purpose of this section is to
obtain an explicit formula for 1,. It is necessary to discuss first the concept of
adjoint of P (see [13], Chapter 4). We recall first that by the formula

PI(x) = [ P(x,dy)f(y),

P acts as an operator of norm 1 on each of the function spaces B(S), L(w),
L%2(r) and L*(w) (in the three latter cases, this is of course due to the
invariance of 7). Now for f € L'(#), define for A € S,

(fP)(A) = [ P(x, A)F(x)m(dx).

Then fP is a finite signed measure and fP < a; for, if w(A) =0, then
[P(x,A)m(dx) =0, so P(-, A)=0 as. [«#] and therefore (fP)(A) = 0. We
define

L. d(fP)
(4.1) Prf = ——
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in the Radon—Nikodym sense. We call the operator P* the adjoint of P. It
has the following easily proved properties.

1. P* is an operator of norm 1 on both L(7) and L*(x).
2. Forall fe L™(x), g € LYw) (or f € LY(7), g € L(w),

(4.2) [ Pfgdm = [fP*gdm.

3. P*is an operator of norm 1 on L2(w) and if f, g € L?(7) then (4.2) holds;
that is, P* operating on L2(7) is the standard L?(sr)-adjoint of P. More-
over, for fe L3(x), (P*)"fll, > O [this is proved by first doing it for

f € L(7r) and then approximating].
4. Let G, = X, PL If (P")* and G} are defined as P* was, then (P™)* =

(P¥)" and G} = L_(P*)/.

We are now ready to state the main result of this section.

THeEOREM 4.1. If P is ergodic of degree 2, then for every A € M(S),

0

E X (PP (1 = P#)gf* +I(PP%)P(1 ~ P¥)gF) d,
= 1=0
o(A) if A(S) =0and A < 7,

o, otherwise,
where g = dA/d7.
The key part of the proof is the following inequality.

LEmMA 4.2, For all f € L(m), g € Ly(w),
(4.3) [fgdm < 30(f, ) + 3w (9, 9),
where
®(f, f) = [f2dm+ 2 fPGfdm

¥(9,9) = y J{P=P) (1 = P¥)g? +I(PP*)'P(1 = P*)g[*} dr.
j=0

PRroOF.

Step 1. It is enough to prove the statement for g € Li(w), f= (1 — P)h
with h e LG(ar).



MODERATE DEVIATIONS OF MARKOV CHAINS 275

ProoF oF STEP |. Assume that (4.3) is valid for functions of the form
(I = P)h. Given f e Ly(m), let f, = (1 — P)G,f, where G, = X]_, P). Then
we have the following:

(i) f—f,=P""f - 0 pointwise by the ergodicity of P;
Gi) [f—f =P " f| < |fl. as. [7], |f,| < 2[fl. as.[7].

Therefore, by the dominated convergence theorem

(4.4) ‘/fngdw—/fgdw‘sflfn—f||g|d7r—>0,
(4.5) [f2dm— [f2dm.
Also,

/fnPan dr = /fnPG(I — P)G, fdm = /fnPandw
and therefore,

<

f PGf, dm — [ fPGfdm
J /

ffnPandrr—ffPandvr‘
+‘ffPand7r—ffPGfdrr‘

< [If, = fi(x) i IPI(x,") = wll Il fll. dor
j=1

o]

+[1F 00l X IPI(x,7) = mllIf ]l dr

j=n+1

and by dominated convergence,
(4.6) | £.PGT, dm — [ fPGfda.

Since by assumption (4.3) holds for f,, it follows from (4.4) to (4.6) that (4.3)
holds for f € Ly(7). O

Step Il. For f, g € L%(7r), «a, B € (0,1), define
®, 5(f,9) = [G¥(1 — Ba?P*P)G, gdm,

where G, = Y7_, «"P" [which operates in L2(w)], and G¥* is its L2(w)-
adjoint. For f = (1 — P)h with h € Ly(7), define

Oy(f, ) = [f2dm+ 2 [ fPGFdm + (1 — B) [IPGFI du.
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[Note that [|PGf|> dm = [|PG(I — P)h|* d7 = [|Ph|* dm < «.] Then for all
f= (1 — P)h with h € (),

lim @, (. 1) = d(f, ).

ProoF oF STep Il. For f= (1 — P)h,
D, 5(f, f) = ffe;m — Ba?P*P)G, fdn
= [ G, (1 = Ba?P*P)G, fdm
(4.7) = /IGaflz dm — 3/ G, fa?P*PG, fdm
= /|f + aPG, f|? dm — BflaPGaflz dr
= [f2dm +2[ faPG,fdm + (1 - B) [|aPG, fI* dr.
Now

faPG, fdm — fPGfdﬂ" < | fl1? Y (1- ozj) ||Pj(X, ) — 7l dm

e |/ J La-«f v
-0

by Proposition 2.1 and dominated convergence. Also

@PG,f = aPG,(1 — P)h > PG(1 — P)h = Phas. [7],
laPG,(1 — P)h| <|aPG,(1 — aP)h| + |aPG,(a — 1) Ph|
< [IPhll.. + lIhll.
< 2[hll

since ||G,llv = (1 — «)~*. By dominated convergence it follows that
(4.9) [laPG, f? dm — [IPh* dm = [IPGF* drr.

By (4.7) to (4.9), the proof of Step Il is complete. O

Step Ill. For f, g € L%(m),

(4.10) [fgdm<id, 4(f, f) +%_i ij(l—aP)(aZP*P)j( | —aP*)ggdm.
j=0
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ProoF oF STep I1l.  First we express (f, g) = [fgdm interms of &, ;. Let
L. s = G¥(1 — Ba®P*P)G,; then L, , is an invertible operator on L*(s) and
its inverse is

Lok =(1- aP)( )y Bjazj(P*P)j)(l — aP¥).
j=0
Then
(.0 = (Lo gLy @) = @, 5(f. L5 0).
Next we observe that @, , is positive semidefinite; for,
®, 4(f,F) =(f, L, ,f> =(f,G¥(I — Ba?P*P)G,T)
=(G,f, (1 — Ba?P*P)G,f)
=[G, flIz = Ba?lIPG, fl

>0

by the invariance of = and Jensen’s inequality. Since ®, , is also symmetric,
it follows that

(f,g9) = q)a,ﬁ(f' L;,lﬁg)
<3P, 4(f, )+ %‘Da,B(LJ,1B9, L;}Bg)
=30, 5(f,f) +3(g, L @)
=30,(1. ) +3 T p1[(1 - aP)(a?P*P)'(1 - aP¥)ggam,
J:
proving (4.10). O

Step IV. For f= (1 — P)h with h € Li(w), g € L?(w),

/fgdrrs 30(F ) +3 X {BijI(P*P)j(I - P*)gl’ dm
(4.11) =0

+2° [I(PP)'P(1 = P g dr ).
Proor oF STEP IV. First let @ — 1 in (4.10). Then:
(i) (1= aP)(a?P*P) (I — aP*)g = s, (1 = P)(P*P)'(1 — P¥)g,
(ii) U(I — aP)(a?P*P) (1 - aP*)ggdw‘

<I(1 = aP)(P*P) (1 — aP*)gl.llgll,
< 4|lgli3
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and therefore by dominated convergence,
Y B [(1 - aP)(a?P*P)’ (1 - aP*)ggdn
i=0

~ ¥ B[(1-P)(P*)I(1 — P)ggdn.

j=0

Now by (4.10) and Step II, for f = (1 — P)h with h € Ly(7), g € L(w), we
have

(412) [fgdm < 3d,(f, ) + %é‘,oﬁjf(l — P)(P*P)’(1 — P*)ggd.
Next, for j = 2k we have
J(r=P)(P*P)*(1 = P¥)ggdn
= [(1 = P*)g(P*P)(P*P)** *(1 — P*)gdnm

(4.13) = [P*P(1 = P*)g(P*P)* (I = P*)gdn

= [(P*P) (1 = P*)g(P*P)"(1 — P*)gdn

= /I(P*P)k(l — P*)g|? dr.
and for j = 2k + 1,

J (1 =P)(P*P)*}(1 — P¥)gdn

= [(1=P5)a(PP)(PP)™ (1 — P¥)gdn
(4.14) = [P(1 = P*)g(PP*)**P(I - P¥)gdnm
= [I(PP*) P (1 = P*)g|* dm.
Now (4.11) follows from (4.12) to (4.14). O

Step V. For f = (1 — P)h with h € L(w), g € Li(m), (4.11) holds.
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PrROOF OF STEP V. If [|(I — P*)g|® dm = = there is nothing to prove, so
assume [|(1 — P*)g|* d7 < ». Let ¢ = (1 — P*)g, and let {¢,} be a sequence
of bounded measurable functions such that

lonl < lel, ®, = ¢ pointwise.

Define g,, = G}@,. Then (i) g,, € L2(7), (i) (1 — P*)g, = ¢, — (P*)"" % . Now
®n = 12(z) ¢ by dominated convergence and since

I(P*) " il < (P (@, — @)ll2 + I(P*)" ol
n+1

<llgy — @l +II(P*)" " "ell2

and [(P*)"*%]|l, — 0 by property (3) of the adjoint operator, we have
(1= PGy =) (1= P,
Therefore, for all j > 0,
(P*P))(1 = P*) gy =12y (P*P) (1 = P¥) g
and in particular
(415)  [I(P*P)I(1 = P*)g,* dm — [[(P*P)!(1 - P*)g|* dr.
Similarly,
(416)  [I(PP*)'P(1 = P*)g,|* dm — [I(PP*)'P(1 —P*)g|* dm.
Also

I(P*PY (1 = P*)g,ll5 <lI(1 — P*)g,l3 < 4llel3,
I(PP*)'P(1 = P*)g,l5 <Ii(1 — P*)g,ll5 < 4llel3.

By (4.15) to (4.17) and dominated convergence,
> {B”II(P*PV(I ~ P¥)g,l* dm
j=0

+sz+1f|( PP*)jP(l _ P*)gn|2 dﬂ}
(4.18)

= X {87 [((PP) (1 - P)gl" dm

j=0

_|_’82j+1f|( PP*)jP(I _ P*)g|2 dW}'
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Also

ffgn drr = [(l — P)hGie, dmr
(4.19) = [G,(1 = P)h g, d

= /hqgn dmr — fP”+lh¢n drr.

But ¢, = 1,,%, and therefore
[heydm > [hedm= [h(1 - P*)gdr
(4.20) = [(1 = P)hgdn

= /fgdw,
while

(4.21)

fP'”lh @, dﬂ" < flP”“hIIgol dm — 0

by dominated convergence, since P"**h — 0 pointwise by ergodicity and
IP"**hllel < lhll.lel.
From (4.19) to (4.21) we conclude that

(4.22) [ 9, dm — [fgdn.

Finally, since (4.11) holds for g,, passing to the limit as n — « and using
(4.18) and (4.22), we indeed obtain (4.11) for f = (1 — P)h with h € Lj(=),
g € Li(m). Now letting B — 1 in the general form of (4.11) and taking into
account Step I, the proof of (4.3) is complete. O

ProoF oF THEOREM 4.1. We have already shown in the proof of Theorem
3.2 that 1,(A) < o« implies A(S) = 0 and A < 7. In view of Lemma 4.2, it only
remains to prove that for every g € L(w),

sup [[fgdw— zO(f, f)] >34(9,9).
feLg(m)

We consider two cases.

Case l. [I(1 —P*)gl|? dm < .
By Abel’s theorem,

ltll(ga 9) = lim i {B21f|(p*p)1(| _ P*)g|2 drr
B11 0
(4.23)

+B2j+1f|( PP*)/P(1 — P*)g|? d'n'}_
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Let {g,} be as in the proof of Lemma 4.2. Then, arguing as in that proof,

J{(PP) (1 =P g (P*P)!(1 = P9 g,
+(PP*)!P(1 = P*)g (PP*)'P(1 - P¥)g,} dr
=3 [{I(P*P)!(1 = P¥) g, > +1(PP*)'P(1 = P*)g,[*} dm
- %f{l(P*P)j(l — P*)gl> +|(PP*)'P(1 — P*)g|*} d.
Let ud = (P*P)I(1 — P*)g, u = (P*P)I(1 — P*)g,. Then by (4.17),
Ku®, u) = 2u@, udd| < TuDllluPll + Sluidl
< 6l(1 - P*)gl3,
and a similar bound holds for
v = (PP*)IP(1 — P*) g, v’ =(PP*)/P(1-P¥)g,.
Therefore, by dominated convergence,
1
3¥(9.9)
= lim lim ¥ {Bij[(P*P)j(I — P*)g(P*P)'(1 — P*)g,

B—1 n-ei_g
(4.24) —3(P*P) (1 = P*)g,*] dm
+p217 [[(PP%)'P(1 = P¥) g (PP¥)'P(1 - P)g,

~3(PPY)R(1 = P4 g,["] dn |

o

= lim lim ) {BZ" [a(1=P)(P*P)?(1 - Pr)g,
B—1 n—>ooj=0
—1g,(1 = P)(P*P)?(1 = P*)g,] dm
+p21 [[9(1 = PY(PP) (1 = P,

=30,(1 = P)(P*P) (1 = P g, d“}
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(1 -P%g,

lim lim [g(l - P)( i Bi(P*P)’
j=0

'Bal n— o

_%gn(l - P)( i Bj(P*P)j)(I - P*)gn dm
j=0

lim lim lim [fgh(ﬁn) dm — 3 [h,GE (1 = Ba2P*P)G,h(, dw],

B—=1ln—-ox a—1

where
hi = (1 - P)( r Bj(P*P)j)(l - P¥)g,.
j=0
(1o £ ety (1 - a0,
j=0
S0

g, = G*(1 — Ba?P*P)G, h(",.

Arguing as in Step Il of the proof of Lemma 4.2 and using the easily proved
fact that for each fixed n, 8, as a — 1,

Ih$, — hVlL. — 0,

we have, as a — 1,
fhg?BGj(l — Ba?P*P)G, h(", dr
2
= f ()" dmr + 2 f h("; PG, h("; dar
(4.25) +(1 - B) [laPG h, | d

> [(hg)” dm + 2 [hPPGHEY dir
2

+(1—B)f dm.

P( iei(P*P)")u Py,
j=0

Now by (4.24) and (4.25),

1 . R 1 2
s¥(9,0) < ;I;Lml lim 'ﬂ [fgh%n) dm — E(f(h%”)) dm + th(Bmth;;n) dw)]
< sup [ffgdrr— %@(f,f)].

fe Lg(m)
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Case Il. [I(1 — P*)g|* d7r = .
In this case (g, g) = «, so we must show

(4.26) sup [/ fgdm — 3O( f, f)] = o,
fely(w)

Let f = (1 — P)h, with h € (7). Then f € Ly(#) and

[ fgdm — 3@(f, 1)

= [9(1 = P)hdm— 3 [([(1 = P)h]* + 2(1 = P)hPh) d=
(4.27)

= [h(1 = P*)gdm — 3 [(h? = (Ph)*) d

Z/hqodrr—%fhzdrr,

where ¢ = (I — P*)g. Now let h,, = ¢l Then

{lel<n)
(4.28) [hagdm = [hidm =3[ @21, dm - .
But (4.27) and (4.28) imply (4.26). This completes the proof. O

ADDENDUM. After the present paper had been submitted for publication,
paper [14] appeared. This work contains some results related to our Theo-
rems 3.1 and 3.2, namely Theorem 2.1 and 2.3 of [14]. The assumptions in
[14] are, however, substantially stronger than those in our results. For, let P
be ergodic. It is assumed in [14] that for the operator P: L2(7) — L%(w), 1 is
an isolated simple eigenvalue and there is no other point of the spectrum on
{z: |z| = 1}. It is not difficult to show that under this condition, there exists
A > 1 such that

(4.29) L ANPY 1@ 7ll, < oo
n=0

where |- ||, is the operator norm in L(L2(w)). But it is easy to verify that
condition (4.29) is stronger than geometric ergodicity (see [12]), which is in
turn stronger than ergodicity of degree 2.
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