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MODERATE DEVIATIONS FOR EMPIRICAL MEASURES
OF MARKOV CHAINS: LOWER BOUNDS

BY A. DE ACOSTA

Case Western Reserve University

We obtain lower bounds for moderate deviations of empirical mea-
sures of a Markov chain with general state space under the assumption of
ergodicity of degree 2. We derive an explicit expression for the rate
function.

Ž .1. Introduction. Let MM S be the space of finite signed measures on a
Ž . � .measurable space S, SS and let X ; j � 0 be an S-valued ergodic Markovj

� 4chain with invariant probability measure � . Let b be a positive sequencen
Ž .such that b � �, and let M be the random element of MM S defined byn n

n�11
M � � � � .Ž .Ýn X jbn j�0

� Ž . � � 4Let U � � � MM S : H f d� � � , i � 1, . . . , k , where the f ’s are boundedi i
measurable functions on S; that is, U is a neighborhood of the zero measure

Ž .in the �-topology see Section 3 . If b � n for all n, then by ergodicity asn
n � �,

k n�11
cP M � U � P f X � f d� � �� 4 Ž .Ý Ý Hn i j i½ 51.1Ž . ni�1 j�0

� 0.
Ž .The estimation of the order of magnitude of the small probabilities in 1.1

falls under what is usually called large deviation theory. Since in this case
Ž . n�1M � L � � , where L � 1�n Ý � is the empirical measure, the ques-n n n j�0 X j

Ž .tion is usually framed in terms of L as a random element of the space PP Sn
Ž . Žof probability measures on S, SS and an extensive literature exists see, e.g.,

� � � � � � � �.1 , 6 , 7 , 9 .
� 4Suppose now that the Markov chain X , j � 0 is ergodic of degree 2; thisj

Ž .is a strengthening of the ergodicity assumption see Section 2 . It is known
that under this hypothesis, the following central limit property holds: for
every bounded measurable function f on S,

n�1
�1�2 2LL n f X � f d� � N 0, �Ž . Ž .Ý Hj fž /j�0
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2 Ž . � 4for a certain variance � see Section 2 . Now assume that b satisfiesf n

1.2 b �n1�2 � �, b �n � 0.Ž . n n

Ž .By the first condition in 1.2 we have again as n � �,

k n�11
cP M � U � P f X � f d� � �� 4 Ž .Ý Ý Hn i j i½ 51.3Ž . bni�1 j�0

� 0,

Ž .but because of the second condition in 1.2 the order of magnitude of the
Ž . Ž .probabilities in 1.3 is larger than that in 1.1 . The estimation of the

Ž .probabilities in 1.3 is usually called a moderate deviation problem.
This is the problem addressed in the present paper. More specifically, we

are concerned with lower bounds. Roughly speaking, we show in our main
Ž .result Theorem 3.2 that, under the assumption of ergodicity of degree 2, for
Ž . � 4A 	 MM S an asymptotic lower bound for P M � A isn

b2
n

exp � inf I �Ž .0½ 5n ��A

Ž . 
for a certain functional I : MM S � R .0
We have also obtained the corresponding upper bounds. However, the

upper bound result requires stronger assumptions and a different technique
of proof and will be reported elsewhere.

Moderate deviations for empirical measures of Markov chains have been
� � � �previously studied in 8 and 11 under assumptions which are considerably

more restrictive than ours.
In Section 2 we develop some useful consequences of the assumption of

ergodicity of degree 2; the assumption appears to be minimal for our problem.
Section 3 contains the main result of the paper, Theorem 3.2. As a prelimi-
nary step, we prove a moderate deviation lower bound for functionals of the
chain taking values in a finite-dimensional space. In spite of the difference

� �between the two situations, the technique of proof is partly inspired by 6 , in
which it is elegantly shown how to use directly the minorization property of

� �irreducible Markov kernels to obtain large deviation lower bounds. Paper 5
also provided some useful ideas.

In Section 4 we derive an explicit formula for the rate function I . As it0
turns out, this requires an analytically intricate argument.

2. Preliminary results: some consequences of the assumption of
Ž .ergodicity of degree 2. Let S, SS be a measurable space: we assume that

SS is countably generated. N will denote the set of nonnegative integers.
Ž . Ž .Given a Markov kernel P on S, SS and a probability measure 	 on S, SS ,

Ž N N .P will denote the Markovian probability measure on S , SS determined by	

� 4 NP and 	. Let X , j � 0 be the coordinate projections on S ; thenj
Ž N N � 4.S , SS , P , X , j � 0 is the canonical Markov chain with state space S,	 j
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Žtransition kernel P and initial distribution 	. Let us recall see pages 114
� �. � 4 Ž .and 118 in 12 that X , j � 0 or P is as defined in the following.j

Ž .1. It is ergodic if there exists a probability measure � on S, SS such that
� n �lim P x , 
 � � � 0Ž . v

n

� �for all x � S, where 
 is the total variation norm.v

2. It is ergodic of degree 2 if it is ergodic and for all B � SS such that
Ž .� B � 0,

2.1 E � 2 � dx � �,Ž . Ž .Ž .H x B
B

� 4 �where E is the P -expectation and � � inf j � 1: X � B assumptionx x B j
Ž .2.1 is a strengthening of the condition

E � � dx � �,Ž . Ž .H x B
B

Ž . �which holds for every B such that � B � 0 if P is ergodic .

For the purposes of this paper, there are two important consequences of
the assumption of ergodicity of degree 2, namely Propositions 2.1 and 2.2. We

Ž . � � Ž . 1 Ž .� Ž .denote by B S resp., L � ; resp., L � the subspace of the space B S of0 0 0
� �Ž .bounded measurable functions on S resp., of the space L � of �-essentially

1Ž . �bounded functions; resp., of the space L � of �-integrable functions consist-
ing of functions f such that H f d� � 0.

PROPOSITION 2.1. If P is ergodic of degree 2, then we have the following:

Ž . � � kŽ . � Ž .i Ý H P x, 
 � � � dx � �.vk�0
Ž . � Ž . � n k 4 1Ž .ii For each f � L � , the series Ý P f converges in L � and if0 k�0

� k � Ž . 1 Ž .Gf � Ý P f , then G is a bounded operator from L � into L � .k�0 0 0

Ž . Ž .PROOF. i In what follows, g � B S . By the invariance of � , we have for
k � 1,

� k �� dx P x , 
 � �Ž . Ž .H v

k� � dx sup P x , dy g y � g d�Ž . Ž . Ž .H H H
� �g �1

k k� � dx sup P x , dy g y � � dz P z , dy g yŽ . Ž . Ž . Ž . Ž . Ž .H H H H
� �g �1

k k� � dx sup � dz P x , dy � P z , dy g yŽ . Ž . Ž . Ž . Ž .H H H
� �g �1

� k k �� � dx � dz P x , 
 � P z , 
Ž . Ž . Ž . Ž .HH v

Ž . � �and now 1 follows from Corollary 6.9, page 118 of 12 .
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� ˜ ˜Ž . Ž . Ž .ii Let f � L � and let f � fI ; then f � B S . By the invariance0 � � f � � � f � 4 0�n n n ˜� �of � , it is easily seen that P f is defined a.s. � and in fact P f � P f a.s.
� �� . Therefore

� �
n n ˜� � � �P f d� � P f d�Ý ÝH H

n�0 n�0
�

n ˜ ˜� �� P f � f d� d�Ý H H
n�0

�
n� � � �� P x , 
 � � f � dxŽ . Ž .Ý H v �

n�0

Ž . Ž .and therefore ii follows from i . �

The next preliminary result is a central limit theorem.

Ž .PROPOSITION 2.2. If P is ergodic of degree 2, then for every f � B S , every0
Ž .probability measure 	 on S, SS ,

n�1
�1�2 2LL n f X � N 0, � ,Ž . Ž .ÝP j w f	ž /j�0

where

2.2 � 2 � f 2 d� 
 2 fPGf d� .Ž . H Hf

Ž . � �PROOF. This result is Corollary 7.3 ii , page 140 of 12 , except for the
2 2 � � Žexpression for � . We will show that the form of � in 12 which primaf f

. Ž .facie depends on certain noncanonical objects in fact coincides with 2.2 .
� �As in 12 , our assumption implies that it is possible to choose a number

Ž .m � N, a function s � B S such that 0 � s � 1 and H s d� � 0, and a0
Ž .probability measure � on S, SS satisfying H s d� � 0, such that the minoriza-

tion condition

2.3 P m0 � s � �Ž .

Ž .Ž . Ž . Ž .holds, where s � � is the kernel defined by s � � x, A � s x � A . The
2 � �expression for � in 12 isf

m m0 0
2 �1 j j2.4 f d� 
 2m m � j fP f d� 
 fP G f d� ,Ž . Ž .Ý ÝH H H0 0 m , s , �0

j�1 j�1

� m n m �1 i0 0Ž . Ž .where G � Ý P � s � � Ý P . To establish the equality ofm , s, � n�0 i�10

Ž . Ž . Ž2.2 and 2.4 , we first recall the following algebraic formula used, e.g., in
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� �.12 ; if a and b are elements of a ring, then for n � 1,

n
n i�1n n�i2.5 a 
 b � a 
 a 
 b ba .Ž . Ž . Ž .Ý

i�1

The proof is

n
n Ž . n�1n� i�1n i�1 ia 
 b � a � a 
 b a � a 
 b aŽ . Ž . Ž .Ý

i�1
n

n� i i�1� �� a 
 b a 
 b � a aŽ .Ý
i�1

n
n� i i�1� a 
 b ba ,Ž .Ý

i�1

Ž . m0 Ž .which is the same as 2.5 . Taking a � P � s � � , b � s � � in 2.5 , we
have for n � 1,

n
n n�im n m m Ž i�1. m0 0 0 0P � P � s � � 
 P s � � P � s � �Ž . Ž . Ž .Ý

i�1

and therefore for any N � 1, j � 1,

N N
nj m n j m0 0P P � P P � s � �Ž .Ý Ý

n�0 n�0

N n
n� ij m Ž i�1. m0 0
 P P s � � P � s � �Ž . Ž .Ý Ý

n�1 i�1

N
nj m0� P P � s � �Ž .Ý

n�0

N N�i
kj m Ž i�1. m0 0
 P P s � � P � s � � .Ž . Ž .Ý Ý

i�1 k�0

Ž .For f, g � B S ,0

N
j m n0fP P g d�ÝH
n�0

N
nj m0� fP P � s � � g d�Ž .ÝH

n�0
2.6Ž .

N N�i
kj m Ž i�1. m0 0
 fP P s � � P � s � � g d� .Ž . Ž .Ý ÝH

i�1 k�0
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Ž . ŽThe second term on the right-hand side of 2.6 may be written taking into
.account that H f d� � 0 and setting s � s � H s d� ,

N
j
m Ž i�1.02.7 � dx f x P x , dy s yŽ . Ž . Ž . Ž . Ž .Ý H H

i�1

�
N�i

km0� dz P � s � � g z .Ž . Ž . Ž .ÝH
k�0

� �According to 12 , Corollary 5.2, page 74, the measure
�

km0� P � s � �Ž .Ý
k�0

Ž .is proportional to � and, in particular, finite ; therefore for each i,

N�i
km0lim � dz P � s � � g zŽ . Ž . Ž .ÝH

N�� k�0

�
km0� gd � P � s � � � 0.Ž .ÝH ž /

k�0

2.8Ž .

Ž .The ith term in the series in 2.7 is dominated by

�
km j
m Ž i�1.0 0� � � � � �d � f g d � P � s � � P x , 
 � � � dx ,Ž . Ž . Ž .Ý�H H vi ž /

k�0

� 4 Ž .and d is summable by Proposition 2.1; therefore 2.8 implies that thei
Ž .second term on the right-hand side of 2.6 converges to 0 as N � �. Letting

Ž .N � � in 2.6 we obtain: for all j � 1,
� �

nj m n j m0 02.9 fP P g d� � fP P � s � � g d� .Ž . Ž .Ý ÝH H
n�0 n�0

and the common value is finite; the meaningfulness and finiteness of the
left-hand side, as well as the passage to the limit leading to it, are justified by
Proposition 2.1, and the corresponding points for the right-hand side are

� �justified by the fact that by 12 , Proposition 5.16, page 85, the assumption of
ergodicity of degree 2 implies that

� G S � �.Ž .m , s , �0

Ž . Ž .Next, 2.9 implies that for f , g � B s , j � 1,0

m �1� � 0
j n j m n i0fP P g d� � fP P P g d�Ý Ý ÝH H
n�0 n�0 i�0

2.10Ž .
m �1� 0

nj m i0� fP P � s � � P g d� .Ž .Ý ÝH ž /n�0 i�0
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Ž . Ž .We are now ready to transform 2.4 . By 2.10 ,
m m �0 0

j j nfP G f d� � fP P f d�Ý Ý ÝH Hm , s , �0
j�1 j�1 n�0

m �0
n� f P f d�Ý ÝH

j�1 n�j

� 4min n , m� 0
n� f P f d�Ý ÝH

n�1 j�1

m �0
n n� f P fn d� 
 f P fm d� ,Ý ÝH H 0

n�1 n�m 
10

Ž .so finally the term in brackets in 2.4 equals
m m �0 0

n n nm � n fP f d� 
 n fP f d� 
 m f P f d�Ž .Ý Ý ÝH H H0 0
n�1 n�1 n�m 
10

�
n� f P f d� mÝH 0ž /

n�1

� fPGf d� m ,H 0ž /
Ž . Ž .proving the equality of 2.2 and 2.4 . �

3. Moderate deviation lower bounds. Let V be a finite-dimensional
� 4real vector space, and let b be a positive sequence such thatn

b �n1�2 � �, b �n � 0.n n

� Ž .4We first consider moderate deviation lower bounds for LL S �b , whereP n n	n�1 Ž .S � Ý f X and f : S � V is a bounded measurable function such thatn j�0 j
H f d� � 0. We denote by V * the dual space of V.

THEOREM 3.1. If P is ergodic of degree 2, then for any probability measure
Ž .	 on S, SS and any open set U in V,

n Sn
lim inf log P � U � � inf J z ,Ž .	 f2 ½ 5bbn z�Unn

where

21² : ² : ² : ² :J z � sup z , � � f , � d� 
 2 f , � PG f , � d� .Ž . H Hf 2 ž /
��V *

Ž .PROOF. In the minorization condition 2.3 , s may be taken to be of the
Ž .form s � 
I , where 0 � 
 � 1, C � SS and � C � 0; thus for any x � S,C

A � SS ,
3.1 P m0 x , A � 
I x � A .Ž . Ž . Ž . Ž .C
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Ž .It follows from 3.1 that for every nonnegative measurable function �
defined on SN, any x � S,

3.2 E ��� m0 � 
I x E � ,Ž . Ž . Ž .x C �

where � is the shift operator on SN.
As is easily seen, in order to prove the theorem it is enough to prove that

for any open convex set U in V, any z � U,

n Sn
3.3 lim inf log P � U � �J z .Ž . Ž .	 f2 ½ 5bbn nn

We will assume henceforth that U is an open convex set. For fixed t � 0, let
2 2n t n

p � , q � ,n n2 pb nn

� �where 
 is the integer part function.

� Ž c. 4CLAIM I. For � � 0, let U � x � V: d x, U � � , where d is the metric�

� �associated to some norm 
 on V. Then for any probability measure 	 on
Ž .S, SS ,

n Sn
lim inf log P � U	2 ½ 5bbn nn

n
�1� lim inf log P b S � U , X � C .� 4	 n p q �m 
1 � p q �m2 n n 0 n n 0bn n

The claim will obviously follow if we can prove that

� 4 �13.4 P S �b � U � P b S � U , X � C a ,Ž . � 4	 n n 	 n p q �m 
1 � p q �m nn n 0 n n 0

� 4 Ž .where a is a positive sequence bounded away from zero. To prove 3.4 , wen
notice first that

0 � n � p q � p ,n n n

2n � p q p nn n n 2� � t � 0.2 2 2ž /b b bn n n

3.5Ž .

� Ž 1�2 .4It follows from Proposition 2.2 that LL S �n converges to a GaussianP n	

Ž .measure on V and therefore 3.5 implies

3.6 b�1S � 0.Ž . n n�p q Pn n 	

Ž .If n � p q � m 
 1, then 3.4 is obvious. Assume n � p q � m 
 1. Letn n 0 n n 0
� � � 4 Ž .B � z � V: z � � . Writing S � S 
 S � S , we� n p q �m 
1 n p q �m 
1n n 0 n n 0

have by the Markov property

� 4 �1 �1P S �b � U � P b S � U , X � C , b T � B� 4	 n n 	 n p q �m 
1 � p q �m n n �n n 0 n n 0

3.7Ž .
�1� E I b S I X P A ,Ž .Ž .Ž .½ 5	 U n p q �m 
1 C p q �m X n� n n 0 n n 0 p q �mn n 0
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where T � S � S andn n p q �m 
1n n 0

n�p q 
m �1n n 0
N �1A � x � S : b f x � B .Ž . Ž .Ýn j n j �j�0½ 5

j�1

�1Ž . � Ž .�Choose now n such that n � n implies b m � 1 sup f x � ��2.0 0 n 0 x � S
Ž .Suppose n � n . If 1 � n � p q , then by 3.2 with0 n n

n�p q �1n n
�1� x � I b f x ,Ž . Ž .Ž . Ýj B n jj�0 ��2 ž /j�0

we have for x � C
n�p q 
m �1n n 0

�1P A � P b f X � BŽ . Ž .Ýx n x n j � �2½ 5
j�m0

� E ��� m0Ž .x3.8Ž .
� 
 E ��

� 
 P b�1S � B ,� 4� n n�p q � �2n n

Ž .which converges to 1 by 3.6 . If n � p q , thenn n

3.9 A � SN .Ž . n

Ž . Ž . Ž .It is clear now from 3.7 to 3.9 that 3.4 holds, proving Claim I.

CLAIM II. Let r � b �tq . Then for every open convex set U in V, � � 0,n n n
there exists n � N such that for n � n ,0 0

P b�1S � U, X � C� 4� n p q �m 
1 p q �mn n 0 n n 0

qn�1� 
 P r S � tU , X � C .� 4ž /� n p �m 
1 � p �mn 0 n 0

� 4We proceed to prove this claim. Letting FF � � X , j � k we have by thek j
convexity of U and the Markov property

P b�1S � U, X � C� 4� n p q �m 
1 p q �mn n 0 n n 0

p q �mn n 0

� E E I S 
 f XŽ .Ý� � t r q U p Žq �1.�m 
1 jn n n n 0ž /Ž .j�p q �1 �m 
1n n 0

�I X FFŽ .C p q �m p Žq �1.�mn n 0 n n 0

p q �mn n 0

� E E I S I f XŽ .Ž . Ý� � t r Žq �1.U p Žq �1.�m 
1 t r U jn n n n 0 n ž /Ž .j�p q �1 �m 
1n n 0

3.10Ž .

�I X I X FFŽ . Ž .C p q �m C p Žq �1.�m p Žq �1.�mn n 0 n n 0 n n 0

� E I S I X P E ,Ž .Ž . Ž .½ 5� t r Žq �1.U p Žq �1.�m 
1 C p Žq �1.�m X nn n n n 0 n n 0 p Žq �1.� mn n 0
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where
pn

NE � x � S : f x � tr U, x � C .Ž . Ž .Ýn j j n pj�0 n½ 5
j�1

We notice that, as n � �,
�1

b n nn �1r � � b t � t .n n ž /2 2� �t n�p bn tn n

2bn

Ž .�1Ž . � Ž .�Choose now n such that n � n implies tr m � 1 sup f x � � .0 0 n 0 x � S
Ž .Then by 3.2 with

p �mn 0
�1

� x � I tr f x I x ,Ž . Ž . Ž . Ž .Ž . Ýj U n j C p �mj�0 � n 0ž /
j�0

we have for x � C, n � n ,0

pn
�1P E � P tr f X � U , X � CŽ . Ž . Ž .Ýx n x n j � pn½ 5

j�m0

� E ��� m0Ž .x

� 
 E ��

3.11Ž .

p �mn 0
�1� 
 P tr f X � U , X � C .Ž . Ž .Ý� n j � p �mn 0½ 5

j�0

Ž . Ž .By 3.10 and 3.11 , we have for n � n :0

P S � tr q U, X � C� 4� p q �m 
1 n n p q �mn n 0 n n 0

� P S � tr q � 1 U, X � CŽ .� 4� p Žq �1.�m 
1 n n p Žq �1.�mn n 0 n n 0
3.12Ž .

� 
 P S � tr U , X � C .� 4� p �m 
1 n � p �mn 0 n 0

Ž .Iterating 3.12 , we obtain

P S � tr q U, X � C� 4� p q �m 
1 n n p q �mn n 0 n n 0

� P S � tr U, X � C� 4� p �m 
1 n p �mn 0 n 0

q �1n
� 
 P S � tr U , X � C ,� 4Ž .� p �m 
1 n � p �mn 0 n 0

and Claim II is proved.

Ž �1�2 . Ž .CLAIM III. Let � � lim LL n S See Proposition 2.2 . Then forf n P n	

every open set W 	 V,

lim inf P n�1�2S � W , X � C � � W � C .Ž . Ž .� 4	 n n�1 f
n
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To prove this claim, given � � 0, choose k such that0

� k 0 �3.13 � dx P x , 
 � � � � .Ž . Ž . Ž .H v

�1�2 � Ž .�Then given � � 0, choose n such that n k sup f x � � . Then for0 0 0 x � S
n � n ,0

P n�1�2S � W , X � C� 4	 n n�1

� P n�1�2S � W , X � C� 4	 n�k � n�10

�1�2 �� E E I n S I X FFŽ .Ž .	 	 W n�k C n�1 n�k �1� 0 0

3.14Ž .

� E I n�1�2S P k 0 X , C .Ž .½ 5Ž .	 W n�k n�k �1� 0 0

Next,

�1�2 k �1�20E I n S P X , C � E I n S � CŽ .Ž .½ 5 ½ 5Ž . Ž .	 W n�k n�k �1 	 W n�k� 0 0 � 0

3.15Ž .
n�k �1 k0 0� �� 	P dx P x , 
 � � .Ž . Ž .Ž .H v

Ž . Ž . � n �By 3.13 to 3.15 and since lim 	P � � � 0 by ergodicity, we havevn

lim inf P n�1�2S � W , X � C � lim inf P n�1�2S � W � C ��Ž .� 4 � 4	 n n�1 	 n�k �0n n

� � W � C � � .Ž . Ž .f �

Since � and � are arbitrary, Claim III follows.

We shall now finish the proof. First we note that for an arbitrary probabil-
Ž . Ž .ity measure 	 on S, SS , it follows from 3.2 that for any nonnegative

measurable function � on SN, m � N,1

3.16 E ��� m0
m 1 � 
	P m1 C E � .Ž . Ž . Ž .	 �

Ž . � n �Since � C � 0 and 	P � � � 0, one may choose m such thatv 1
m1Ž . �1Ž	P C � 0. Given � � 0, let n be such that n � n implies b m 
0 0 n 0
. � Ž .� Ž .m sup f x � � . Then by 3.16 ,1 x � S

n�1
m �11� 4P S �b � U � 
	P C P b f X � UŽ . Ž .Ý	 n n � n j �½ 53.17Ž . j�m 
m0 1

m1 � 4� 
	P C P S �b � U .Ž . � n n 2 �
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Ž . Ž . Ž .By 3.17 and Claims I to III , for any open convex set U and any t � 0,
� � 0, we have

n Sn
lim inf log P � U	2 ½ 5bbn nn

n Sn� lim inf log P � U� 2 �2 ½ 5bbn nn

n
�1� lim inf log P b S � U , X � C� 4� n p q �m 
1 3� p q �m2 n n 0 n n 0bn n

n
�1� lim inf q log 
 P r S � tU , X � C� 4n � n p �m 
1 3� p �m2 n 0 n 0bn n

� t�2 log 
� tU � C ,Ž . Ž .� 4f 3�

since
n n n

�2 �1�2q � � t and r � p .n n n2 2 2 2b b n tn n

2bn

� �Letting t � � it follows from Lemma 3.2, page 107 of 5 , and the fact that �
is arbitrary, that for every z � U,

n S 1n 2� �lim inf log P � U � � z ,�	 f2 ½ 5b 2bn nn

� �where 
 is the reproducing kernel Hilbert space norm associated to � .� ff

But, as is well known,

21 1 2� � ² :z � sup z , � � � d� ,� H f2 2f
��V *

Ž .which equals J z since, by Proposition 2.2,f

2 ² :2 ² : ² :� d� � f , � d� 
 2 f , � PG f , � d� . �H H Hf

REMARK 1. It is clear from the proof of Theorem 3.1 that the result is valid
under the weaker assumption that P is ergodic if further restrictions, as in

� � Ž . � � Ž .�the central limit theorem in 12 , are imposed on f � B S or L � .0

REMARK 2. It is easily seen from the proof of Theorem 3.1 that if D is a
Ž .set of probability measures on S, SS such that, as n � �,

� n �sup 	P � � � 0,v
	�D
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then we have the following uniformity result:

n Sn
lim inf log inf P � U � � inf J z .Ž .	 f2 ½ 5bbn 	�D z�Unn

Ž .If follows, for example, that the result will hold for D � PP S if P is
Ž � �.uniformly ergodic see 8 .

The next proposition is one of the main results of this paper. The proof is
based on the projective system method and is in fact an implementation of

Ž . � �Remark 1 following Theorem 3.3 of 4 . Similar arguments may be found in
� � � �2 and in 3 , where we studied moderate deviations of empirical measures in
the i.i.d. case.

Ž .Let us recall that the �-topology on the space MM S of finite signed
Ž . Ž .measures on S, SS is the smallest topology such that for each f � B S , the

� Ž .� Ž . Ž .map � � H f d� � � MM S is continuous. For B 	 MM S , we denote by int B�

Ž .the interior of B in the �-topology. The �-algebra BB on MM S is defined to be
Ž .the smallest �-algebra such that for each f � B S , the map � � H f d� is

measurable. Recall that
n�1

�1M � b � � � .Ž .Ýn n X j
j�0

THEOREM 3.2. If P is ergodic of degree 2, then for every probability
Ž .measure 	 on S, SS , every B � BB,

n
� 43.18 lim inf log P M � B � � inf I � ,Ž . Ž .	 n 02bn Ž .��int Bn r

Ž .where for � � MM S , setting f � f � H f d� ,

1 2I � � sup f d� � f d� 
 2 fPGf d� .Ž . H H H0 2 ž /
Ž .f�B S

� Ž . Ž . 4Moreover, for each a � 0 the level set L � � � MM S : I � � a is �-com-a 0
pact.

Note. In the next section we compute the variational expression in the
definition of I and obtain an explicit formula for I .0 0

Ž .PROOF. Let FF be the family of finite subsets of B S , directed upward by
Ž . F Ž .Ž .inclusion. For each F � FF, let � : MM S � R be the map � � f �F F

Ž .H f d� f � F . Then

LL � M � LL S �b ,Ž . Ž .Ž .P F n P n n	 	

where
n�1 n�1

S � f X � f d� � h X � h d� ,Ž . Ž .Ý ÝH Hn j jž / ž /½ 5
j�0 j�0f�F
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F Ž . � Ž .4where h: S � R is defined by h x � f x . Now let B � BB, and sup-f � F
Ž .pose � � int B . By the definition of the �-topology, there exist F � FF, U�

F �1Ž . Ž .open in R such that � � � U 	 B. Then z � � � � U and by Theo-F F
rem 3.1,

n n
� 4lim inf log P M � B � lim inf log P � M � U� 4Ž .	 n 	 F n2 2b bn nn n

n Sn� lim inf log P � U	2 ½ 5bbn nn

3.19Ž .

� �J z .Ž .h

Writing h � h � H h d� , g � g � H g d� , we have, since z � H h d�,

² :J z � sup h , � d�Ž . Hh
��R F

21 ² : ² : ² :� h , � d� 
 2 h , � PG h , � d�H H2 ž /3.20Ž .
1 2� sup g d� � g d� 
 2 gPGg d�H H H2 ž /

Ž .g�B S

� I � .Ž .0

Ž . Ž . Ž .Now 3.18 follows from 3.19 and 3.20 .
Ž .Next we show that if I � � �, then0

3.21 � S � 0 and � � � .Ž . Ž .
In fact, setting g � tI for A � SS , t � R, we have by the definition of I ,A 0

1 2 2t� A � tI d� � t � d� 
 2 � PG� d� 
 I � ,Ž . Ž . Ž .H H HA A A A 02 ½ 5
Ž . Ž . Ž .where � � I � � A . Now if A � S, then t� S � I � for all t � R andA A 0

Ž . Ž . Ž . Ž .therefore � S � 0. If � A � 0, then again t� A � I � for all t � R,0
Ž . Ž .implying � A � 0. This proves 3.21 .

11� Ž . � Ž .� 4 Ž .Let H � g � L � : sup H fg d� � � f, f � a , where � f , f �a 0 f � BŽS . 2
2 1Ž . Ž . Ž .H f d� 
 2 H fPGf d� and f � f � H f d� . Define T : L � � MM S by T g �

Ž 1Ž . �Ž ..g d� . Then T is continuous from the weak topology � L � , L � to the
Ž . Ž .�-topology and by 3.21 , T H � L . Therefore it suffices to prove that H isa a a

Ž 1Ž . �Ž ..� L � , L � compact.

Ž . 1Ž .i H is bounded in L � . To prove this, we observe first thata

1 1sup fg d� � � f , f � sup fg d� � � f , fŽ . Ž .H H2 2
�Ž . Ž .f�B S f�L �

Ž . �Ž .see Proposition 2.1 . Therefore for any f � L � ,

1sup fg d� � � f , f 
 a.Ž .H 2
g�Ha
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The result follows now from the Banach�Steinhaus theorem.
Ž .ii H is uniformly integrable. To prove this, let g � H and set f �a a
Ž .b sgn g I where b, t � 0. Then� � g � � t4

1� �3.22 b g I d� � fg d� � � f , f 
 a.Ž . Ž .H H� � g � � t4 2

Now

� f , f � b2 I d�Ž . H � � g � � t4

�
2 n� �
 2b I x P x , 
 � � 2� dxŽ . Ž . Ž .ÝH v� � g � � t4

n�1

b2 8b2 m
� � � �� g d� 
 g d�H Ht t

3.23Ž .

�
2 n� �
 4b P x , 
 � � � dx .Ž . Ž .Ý H v

n�m
1

Ž . Ž . Ž .Dividing by b in 3.22 and using 3.23 and i , we have for each b � 0,
m � N:

� a
n� � � �lim sup sup g I d� � 4b P x , 
 � � � dx 
 .Ž . Ž .ÝH H v� � g � � t4 bt�� g�H n�m
1a

Ž .Since b, m are arbitrary we conclude that ii holds. Therefore by the Dunford
Ž � � . Ž 1Ž . �Ž ..Pettis theorem see, e.g., 10 , page 20 , H is � L � , L � relativelya

Ž 1Ž . �Ž ..compact. Since clearly H is � L � , L � closed, it follows that it isa
Ž 1Ž . �Ž ..� L � , L � compact. �

4. Identification of the rate function. The purpose of this section is to
obtain an explicit formula for I . It is necessary to discuss first the concept of0

Ž � � .adjoint of P see 13 , Chapter 4 . We recall first that by the formula

Pf x � P x , dy f y ,Ž . Ž . Ž .H
Ž . 1Ž .P acts as an operator of norm 1 on each of the function spaces B S , L � ,

2Ž . �Ž . ŽL � and L � in the three latter cases, this is of course due to the
. 1Ž .invariance of � . Now for f � L � , define for A � SS ,

fP A � P x , A f x � dx .Ž . Ž . Ž . Ž . Ž .H
Ž .Then fP is a finite signed measure and fP � � ; for, if � A � 0, then

Ž . Ž . Ž . � � Ž .Ž .HP x, A � dx � 0, so P 
, A � 0 a.s. � and therefore fP A � 0. We
define

d fPŽ .
4.1 P*f �Ž .

d�
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in the Radon�Nikodym sense. We call the operator P* the adjoint of P. It
has the following easily proved properties.

1Ž . �Ž .1. P* is an operator of norm 1 on both L � and L � .
�Ž . 1Ž . Ž 1Ž . �Ž .2. For all f � L � , g � L � or f � L � , g � L � ,

4.2 Pf g d� � fP*g d� .Ž . H H
2Ž . 2Ž . Ž .3. P* is an operator of norm 1 on L � and if f , g � L � then 4.2 holds;

2Ž . 2Ž .that is, P* operating on L � is the standard L � -adjoint of P. More-
2 Ž . �Ž .n � �over, for f � L � , P* f � 0 this is proved by first doing it for20

� Ž . �f � L � and then approximating .0
n j Ž n. � Ž n.4. Let G � Ý P . If P * and G are defined as P* was, then P * �n j�0 n

Ž .n � n Ž . jP* and G � Ý P* .n j�0

We are now ready to state the main result of this section.

Ž .THEOREM 4.1. If P is ergodic of degree 2, then for every � � MM S ,

�� j j2 21 � � � �P*P I � P* g 
 PP* P I � P* g d� ,Ž . Ž . Ž . Ž .� 4Ý H2
j�0
I � �Ž .0

if � S � 0 and � � � ,Ž .�
�, otherwise,

where g � d��d� .

The key part of the proof is the following inequality.

� Ž . 1 Ž .LEMMA 4.2. For all f � L � , g � L � ,0 0

1 14.3 fg d� � � f , f 
 � g , g ,Ž . Ž . Ž .H 2 2

where

� f , f � f 2 d� 
 2 fPGf d�Ž . H H
�

j j2 2� � � �� g , g � P*P I � P* g 
 PP* P I � P* g d� .Ž . Ž . Ž . Ž . Ž .� 4Ý H
j�0

PROOF.

1 Ž . Ž .Step I. It is enough to prove the statement for g � L � , f � I � P h0
� Ž .with h � L � .0
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Ž .PROOF OF STEP I. Assume that 4.3 is valid for functions of the form
Ž . � Ž . Ž . n jI � P h. Given f � L � , let f � I � P G f , where G � Ý P . Then0 n n n j�0
we have the following:

Ž . n
1i f � f � P f � 0 pointwise by the ergodicity of P;n
Ž . � � � n
1 � � � � � � � � � � �ii f � f � P f � f a.s. � , f � 2 f a.s. � .� �n n

Therefore, by the dominated convergence theorem

� � �4.4 f g d� � fg d� � f � f g d� � 0,Ž . H H Hn n

4.5 f 2 d� � f 2 d� .Ž . H Hn

Also,

f PGf d� � f PG I � P G f d� � f PG f d�Ž .H H Hn n n n n n

and therefore,

f PGf d� � fPGf d� � f PG f d� � fPG f d�H H H Hn n n n n


 fPG f d� � fPGf d�H Hn

�
j� � � � � �� f � f x P x , 
 � � f d�Ž . Ž .ÝH v �n

j�1

�
j� � � � � �
 f x P x , 
 � � f d�Ž . Ž .ÝH v �

j�n
1

and by dominated convergence,

4.6 f PGf d� � fPGf d� .Ž . H Hn n

Ž . Ž . Ž . Ž .Since by assumption 4.3 holds for f , it follows from 4.4 to 4.6 that 4.3n
� Ž .holds for f � L � . �0

2Ž . Ž .Step II. For f , g � L � , � , 
 � 0, 1 , define

� f , g � fG� I � 
� 2P*P G g d� ,Ž . Ž .H� , 
 � �

� n n � 2Ž .� � 2Ž .where G � Ý � P which operates in L � , and G is its L � -� n�0 �

Ž . � Ž .adjoint. For f � I � P h with h � L � , define0

2 � � 2� f , f � f d� 
 2 fPGf d� 
 1 � 
 PGf d� .Ž . Ž .H H H
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� � � 2 � Ž . � 2 � � 2 �Note that H PGf d� � H PG I � P h d� � H Ph d� � �. Then for all
Ž . � Ž .f � I � P h with h � L � ,0

lim � f , f � � f , f .Ž . Ž .� , 
 

��1

Ž .PROOF OF STEP II. For f � I � P h,

� f , f � fG� I � 
� 2P*P G f d�Ž . Ž .H� , 
 � �

� G f I � 
� 2P*P G f d�Ž .H � �

� � 2 2� G f d� � 
 G f� P*PG f d�H H� � �4.7Ž .

� � 2 � � 2� f 
 �PG f d� � 
 �PG f d�H H� �

2 � � 2� f d� 
 2 f�PG f d� 
 1 � 
 �PG f d� .Ž .H H H� �

Now

�
2 j j� � � �f�PG f d� � fPGf d� � f 1 � � P x , 
 � � d�Ž . Ž .ÝH H � H v�4.8Ž . j�1

� 0

by Proposition 2.1 and dominated convergence. Also

� ��PG f � �PG I � P h � PG I � P h � Ph a.s. � ,Ž . Ž .� �

� � � � � ��PG I � P h � �PG I � �P h 
 �PG � � 1 PhŽ . Ž . Ž .� � �

� � � �� Ph 
 h� �

� �� 2 h �

� � Ž .�1since G � 1 � � . By dominated convergence it follows thatv�

� � 2 � � 2 � � 24.9 �PG f d� � Ph d� � PGf d� .Ž . H H H�

Ž . Ž .By 4.7 to 4.9 , the proof of Step II is complete. �

2Ž .Step III. For f , g � L � ,

�
j1 1 j 24.10 fg d�� � f , f 
 
 I��P � P*P I��P* g g d� .Ž . Ž . Ž . Ž . Ž .ÝH H� , 
2 2

j�0
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² :PROOF OF STEP III. First we express f, g � H fg d� in terms of � . Let� , 

� Ž 2 . 2Ž .L � G I � 
� P*P G ; then L is an invertible operator on L � and� , 
 � � � , 


its inverse is

�
j�1 j 2 jL � I � �P 
 � P*P I � �P* .Ž . Ž . Ž .Ý� , 
 ž /

j�0

Then

² : ² �1 : �1f , g � f , L L g � � f , L g .Ž .� , 
 � , 
 � , 
 � , 


Next we observe that � is positive semidefinite; for,� , 


² : � 2� f , f � f , L f � f , G I � 
� P*P G f² :Ž . Ž .� , 
 � , 
 � �

� G f , I � 
� 2P*P G f² :Ž .� �

� � 2 2 � � 2� G f � 
� PG f2 2� �

� 0

by the invariance of � and Jensen’s inequality. Since � is also symmetric,� , 


it follows that

² : �1f , g � � f , L gŽ .� , 
 � , 


1 1 �1 �1� � f , f 
 � L g , L gŽ . Ž .� , 
 � , 
 � , 
 � , 
2 2

1 1 �1² :� � f , f 
 g , L gŽ .� , 
 � , 
2 2

�
j1 1 j 2� � f , f 
 
 I � �P � P*P I � �P* g g d� ,Ž . Ž . Ž . Ž .Ý H� , 
2 2

j�0

Ž .proving 4.10 . �

Ž . � Ž . 2Ž .Step IV. For f � I � P h with h � L � , g � L � ,0

�
j 21 1 2 j � �fg d� � � f , f 
 
 P*P I � P* g d�Ž . Ž . Ž .ÝH H
2 2 ½

j�04.11Ž .
j 22 j
1 � �

 PP* P I � P* g d� .Ž . Ž .H 5

Ž .PROOF OF STEP IV. First let � � 1 in 4.10 . Then:

j j2
2i I � �P � P*P I � �P* g � I � P P*P I � P* g ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .L Ž� .

j2ii I � �P � P*P I � �P* g g d�Ž . Ž . Ž . Ž .H
j� � � �� I � �P P*P I � �P* g gŽ . Ž . Ž . 2 2

� � 2� 4 g 2
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and therefore by dominated convergence,

�
jj 2
 I � �P � P*P I � �P* g g d�Ž . Ž . Ž .Ý H

j�0

�
jj� 
 I � P P*P I � P* g g d� .Ž . Ž . Ž .Ý H

j�0

Ž . Ž . � Ž . 2Ž .Now by 4.10 and Step II, for f � I � P h with h � L � , g � L � , we0
have

�
j1 1 j4.12 fg d� � � f , f 
 
 I � P P*P I � P* g g d� .Ž . Ž . Ž . Ž . Ž .ÝH H
2 2

j�0

Next, for j � 2k we have

2 kI � P P*P I � P* g g d�Ž . Ž . Ž .H
2 k�1� I � P* g P*P P*P I � P* g d�Ž . Ž . Ž . Ž .H

2 k�1� P*P I � P* g P*P I � P* g d�Ž . Ž . Ž .H
4.13Ž .

...
k k� P*P I � P* g P*P I � P* g d�Ž . Ž . Ž . Ž .H
k 2� �� P*P I � P* g d� .Ž . Ž .H

and for j � 2k 
 1,

2 k
1g I � P P*P I � P* g d�Ž . Ž . Ž .H
2 k� I � P* g P*P P*P I � P* g d�Ž . Ž . Ž . Ž .H

2 k� P I � P* g PP* P I � P* g d�Ž . Ž . Ž .H4.14Ž .

...
k 2� �� PP* P I � P* g d� .Ž . Ž .H

Ž . Ž . Ž .Now 4.11 follows from 4.12 to 4.14 . �

Ž . � Ž . 1 Ž . Ž .Step V. For f � I � P h with h � L � , g � L � , 4.11 holds.0 0
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�Ž . � 2PROOF OF STEP V. If H I � P* g d� � � there is nothing to prove, so
�Ž . � 2 Ž . � 4assume H I � P* g d� � �. Let � � I � P* g, and let � be a sequencen

of bounded measurable functions such that

� � � �� � � , � � � pointwise.n n

� Ž . 2Ž . Ž . Ž . Ž .n
1Define g � G � . Then i g � L � , ii I � P* g � � � P* � . Nown n n n n n n
� � 2 � by dominated convergence and sincen L Ž� .

n
1 n
1 n
1� � � � � �P* � � P* � � � 
 P* �Ž . Ž . Ž . Ž .2 2 2n n

n
1� � � �� � � � 
 P* �Ž .2 2n

�Ž .n
1 � Ž .and P* � � 0 by property 3 of the adjoint operator, we have2

I � P* g � 2 I � P* g .Ž . Ž .n L Ž� .

Therefore, for all j � 0,

j j
2P*P I � P* g � P*P I � P* gŽ . Ž . Ž . Ž .n L Ž� .

and in particular

j j2 2� � � �4.15 P*P I � P* g d� � P*P I � P* g d� .Ž . Ž . Ž . Ž . Ž .H Hn

Similarly,

j j2 2� � � �4.16 PP* P I � P* g d� � PP* P I � P* g d� .Ž . Ž . Ž . Ž . Ž .H Hn

Also

j 2 2 2� � � � � �P*P I � P* g � I � P* g � 4 � ,Ž . Ž . Ž .2 2 2n n

j 2 2 2� � � � � �PP* P I � P* g � I � P* g � 4 � .Ž . Ž . Ž .2 2 2n n

Ž . Ž .By 4.15 to 4.17 and dominated convergence,

�
j 22 j � �
 P*P I � P* g d�Ž . Ž .Ý H n½

j�0

j 22 j
1 � �

 PP* P I � P* g d�Ž . Ž .H n 5
4.18Ž . �

j 22 j � �� 
 P*P I � P* g d�Ž . Ž .Ý H½
j�0

j 22 j
1 � �

 PP* P I � P* g d� .Ž . Ž .H 5
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Also

fg d� � I � P hG�� d�Ž .H Hn n n

� G I � P h � d�Ž .H n n4.19Ž .

� h� d� � P n
1h� d� .H Hn n

But � � 1 �, and thereforen L Ž� .

h� d� � h� d� � h I � P* g d�Ž .H H Hn

� I � P hg d�Ž .H4.20Ž .

� fg d� ,H
while

n
1 n
1� � �4.21 P h � d� � P h � d� � 0Ž . H Hn

by dominated convergence, since P n
1h � 0 pointwise by ergodicity and
� n
1 � � � � � �P h � � h � .�

Ž . Ž .From 4.19 to 4.21 we conclude that

4.22 fg d� � fg d� .Ž . H Hn

Ž .Finally, since 4.11 holds for g , passing to the limit as n � � and usingn
Ž . Ž . Ž . Ž . � Ž .4.18 and 4.22 , we indeed obtain 4.11 for f � I � P h with h � L � ,0

1 Ž . Ž .g � L � . Now letting 
 � 1 in the general form of 4.11 and taking into0
Ž .account Step I, the proof of 4.3 is complete. �

PROOF OF THEOREM 4.1. We have already shown in the proof of Theorem
Ž . Ž .3.2 that I � � � implies � S � 0 and � � � . In view of Lemma 4.2, it only0

1 Ž .remains to prove that for every g � L � ,0

1 1sup fg d� � � f , f � � g , g .Ž . Ž .H 2 2
�Ž .f�L �0

We consider two cases.

�Ž . � 2Case I. H I � P* g d� � �.
By Abel’s theorem,

�
j 22 j � �� g , g � lim 
 P*P I � P* g d�Ž . Ž . Ž .Ý H½


 �1 j�04.23Ž .
j 22 j
1 � �

 PP* P I � P* g d� .Ž . Ž .H 5
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� 4Let g be as in the proof of Lemma 4.2. Then, arguing as in that proof,n

j jP*P I � P* g P*P I � P* gŽ . Ž . Ž . Ž .�H n

j j
 PP* P I � P* g PP* P I � P* g d�Ž . Ž . Ž . Ž . 4n

j j2 21 � � � �� P*P I � P* g 
 PP* P I � P* g d�Ž . Ž . Ž . Ž .� 4H n n2

j j2 21 � � � �� P*P I � P* g 
 PP* P I � P* g d� .Ž . Ž . Ž . Ž .� 4H2

Ž j. Ž . jŽ . Ž j. Ž . jŽ . Ž .Let u � P*P I � P* g, u � P*P I � P* g . Then by 4.17 ,n n

1 1 2Ž j. Ž j. Ž j. Ž j. Ž j. Ž j. Ž j.�² : ² : � � � � � � �u , u � u , u � u u 
 u2 2 2n n n n n2 2

� � 2� 6 I � P* g ,Ž . 2

and a similar bound holds for

j jŽ j. Ž j.v � PP* P I � P* g , v � PP* P I � P* g .Ž . Ž . Ž . Ž .n n

Therefore, by dominated convergence,

1 � g , gŽ .2

�
j j2 j� lim lim 
 P*P I � P* g P*P I � P* gŽ . Ž . Ž . Ž .Ý H n½n��
�1 j�0

j 21 � �� P*P I � P* g d�Ž . Ž . n24.24Ž .
j j2 j
1

 PP* P I � P* g PP* P I � P* gŽ . Ž . Ž . Ž .H n

j 21 � �� PP* P I � P* g d�Ž . Ž . n2 5
�

2 j2 j� lim lim 
 g I � P P*P I � P* gŽ . Ž . Ž .Ý H n½n��
�1 j�0

2 j1� g I � P P*P I � P* g d�Ž . Ž . Ž .n n2

2 j
12 j
1

 g I � P P*P I � P* gŽ . Ž . Ž .H n

2 j
11� g I � P P*P I � P* g d�Ž . Ž . Ž .n n2 5
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�
jj� lim lim g I � P 
 P*P I � P* gŽ . Ž . Ž .ÝH nž /n��
�1 j�0

�
j1 j� g I � P 
 P*P I � P* g d�Ž . Ž . Ž .Ýn n2 ž /

j�0

�1Žn. Žn. 2 Žn.� lim lim lim gh d� � h G I � 
� P*P G h d� ,Ž .H H
 � , 
 � � � , 
2
n��
�1 ��1

where

�
jŽn. jh � I � P 
 P*P I � P* g ,Ž . Ž . Ž .Ý
 nž /

j�0

�
jŽn. j 2 jh � I � �P 
 � P*P I � �P* g ,Ž . Ž . Ž .Ý� , 
 nž /

j�0

so

g � G� I � 
� 2P*P G hŽn. .Ž .n � � � , 


Arguing as in Step II of the proof of Lemma 4.2 and using the easily proved
fact that for each fixed n, 
, as � � 1,

� Žn. Žn. �h � h � 0,�� , 
 


we have, as � � 1,

hŽn. G� I � 
� 2P*P G hŽn. d�Ž .H � , 
 � � � , 


2Žn. Žn. Žn.� h d� 
 2 h �PG h d�Ž .H H� , 
 � , 
 � � , 


� Žn. � 2
 1 � 
 �PG h d�Ž .H � � , 
4.25Ž .
2Žn. Žn. Žn.� h d� 
 2 h PGh d�Ž .H H
 
 


2
�

jj
 1 � 
 P 
 P*P I � P* g d� .Ž . Ž . Ž .ÝH nž /
j�0

Ž . Ž .Now by 4.24 and 4.25 ,

21 1Žn. Žn. Žn. Žn.� g , g � lim lim inf gh d� � h d� 
 2 h PGh d�Ž . Ž .H H H
 
 
 
2 2 ž /n
�1

1� sup fg d� � � f , f .Ž .H 2
�Ž .f�L �0
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�Ž . � 2Case II. H I � P* g d� � �.
Ž .In this case � g, g � �, so we must show

14.26 sup fg d� � � f , f � �.Ž . Ž .H 2
�Ž .f�L �0

Ž . �Ž . � Ž .Let f � I � P h, with h � L � . Then f � L � and0

1fg d� � � f , fŽ .H 2

21� g I � P h d� � I � P h 
 2 I � P h Ph d�Ž . Ž . Ž .Ž .H H2

4.27Ž .
21 2� h I � P* g d� � h � Ph d�Ž . Ž .Ž .H H2

1 2� h� d� � h d� ,H H2

Ž .where � � I � P* g. Now let h � �I . Thenn � � � � � n4

1 12 24.28 h � d� � h d� � � I d� � �.Ž . H H Hn n � � � � � n42 2

Ž . Ž . Ž .But 4.27 and 4.28 imply 4.26 . This completes the proof. �

ADDENDUM. After the present paper had been submitted for publication,
� �paper 14 appeared. This work contains some results related to our Theo-

� �rems 3.1 and 3.2, namely Theorem 2.1 and 2.3 of 14 . The assumptions in
� �14 are, however, substantially stronger than those in our results. For, let P

� � 2Ž . 2Ž .be ergodic. It is assumed in 14 that for the operator P: L � � L � , 1 is
an isolated simple eigenvalue and there is no other point of the spectrum on
� � � 4z: z � 1 . It is not difficult to show that under this condition, there exists
� � 1 such that

�
n n� �4.29 � P � 1 � � � �,Ž . Ý 2

n�0

� � Ž 2Ž ..where 
 is the operator norm in L L � . But it is easy to verify that2
Ž . Ž � �.condition 4.29 is stronger than geometric ergodicity see 12 , which is in

turn stronger than ergodicity of degree 2.
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