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ON MODERATE DEVIATIONS FOR MARTINGALES1
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Let Xn = �Xn
t ��

n
t �0≤t≤1 be square integrable martingales with the

quadratic characteristics �Xn�� n = 1�2� � � � � We prove that the large de-
viations relation P�Xn

1 ≥ r�/�1 − 	�r�� → 1 holds true for r growing
to infinity with some rate depending on Ln

2δ = E
∑

0≤t≤1 
Xn
t 
2+2δ and

Nn
2δ = E
�Xn�1 − 1
1+δ� where δ > 0 and Ln

2δ → 0� Nn
2δ → 0 as n → ∞�

The exact bound for the remainder is also obtained.

1. Introduction. Suppose we are given a triangular array of square in-
tegrable martingales

Xn = �Xn
k��

n
k �0≤k≤n� Xn

0 = 0 a.s., n = 1�2� � � � �

Write ξnk =Xn
k −Xn

k−1 and

�Xn�k = ∑
0<i≤k

E��ξni �2
� n
i−1��

where k = 1� � � � � n and n = 1�2� � � � �
The celebrated central limit theorem (CLT) for martingales gives us condi-

tions for the weak convergence of the distributions P�Xn
n ≤ x� to the standard

normal distribution 	�x� in terms of the asymptotic negligibility of the r.v.’s
ξnk� k = 1� � � � � n� and �Xn�n − 1� Exact bounds for the departure from nor-
mality of P�Xn

n ≤ x� under such conditions were obtained by many authors;
see, for example, Brown and Heyde (1970), Liptser and Shiryaev (1982, 1989),
Bolthausen (1982), Haeusler (1988), Haeusler and Joos (1988) and Grama
(1988a, b, 1990, 1993). We particularly point out the results of Haeusler (1988)
and Haeusler and Joos (1988), where exact bounds of the rate of convergence
are obtained under the assumptions that, for some δ > 0,

�1�1�
Ln

2δ = E
∑

0<i≤n

ξni 
2+2δ → 0�

Nn
2δ = E
�Xn�n − 1
1+δ → 0�

as n→ ∞� which clearly imply the conditions of the CLT for martingales. The
CLT yields that the expansion

�1�2� P�Xn
n ≥ r� = �1 −	�r��1 + o�1��
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holds true uniformly in r only in the range 0 ≤ r ≤ C, where C is some
constant not depending on n� whereas from the above-mentioned results on
the rate of convergence one can derive the equality (1.2) in some growing range
as n goes to ∞� In the present paper we concentrate on obtaining the widest
possible range in which (1.2) holds true uniformly in r� as well as on obtaining
exact bounds for the remainder if martingales Xn are only assumed to satisfy
conditions (1.1).

The case of sums of independent r.v.’s is studied in Rubin and Sethuraman
(1965) and Amosova (1972) [see also Petrov (1972), page 309], but until re-
cently this problem for martingales has not been properly settled. It should
be pointed out that some moderate deviations results for martingales were
obtained by Bose (1986a, b). These results are under rather stringent assump-
tions on the martingales Xn� which makes comparison with ours a difficult
task. In any case they do not provide us with the optimal rate and do not
allow us to manage the general case considered here.

The main results of the paper obtained in this direction are presented (for
continuous time martingales) in the next section. Let us write down some of
these results in the discrete case under consideration.

Assume that x is such that 1 ≤ x ≤ α�Ln
2δ +Nn

2δ�−1� where α > 0� Then, by
virtue of Theorem 2.1 and Remark 2.1, we have

�1�3� P�Xn
n ≥ r� = �1 −	�r��{1 + θC�α� δ�x1/�3+2δ��Ln

2δ +Nn
2δ�1/�3+2δ�}�

where 
θ
 ≤ 1, C�α� δ� is a constant depending only on α and δ and

�1�4� r2 = 2 log x− θ12c�δ� log
(
1 +

√
2 log x

)
�

with 0 ≤ θ1 ≤ 1� c�δ� = 3 + 6δ�
The first term in the above expansion for r2 is exact. Unfortunately the

constant c�δ� = 3+ 6δ in (1.4) is not the best one. We conjecture that the best
possible value for c�δ� is 3 + 2δ� but our method of the proof does not allow
us to reach it. The remainder in (1.3) is the best one since with x = 1 we get
exactly the rate of convergence in the CLT for martingales (see Lemma 3.4
below).

In particular, the above formulae imply that, for any 0 < q < 1 and x
subject to 1 < x ≤ α�Ln

2δ +Nn
2δ�−1,

�1�5� P
(
Xn

n ≥
√

2q log x
) = 1√

2π xq
√

2q log x

{
1 + θC�α� δ� q� 1

log x

}
�

where 
θ
 ≤ 1� C�α� δ� q� is a constant depending only on α, δ and q� For the
case of independent r.v.’s, (1.5) improves the result of Amosova (1972), from
which the remainder in the expansion (1.5) turns out to be exact too.

Now we present another consequence of (1.3), which gives us the possibility
to treat also the most interesting “limiting case” corresponding to q = 1� To
the best of our knowledge, this result seems to be new even in the case of
i.i.d. r.v.’s. Namely, from (1.3) and (1.4), it follows that, for any x in the range
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1 < x ≤ α�Ln
2δ +Nn

2δ�−1,

�1�6�

P
(
Xn

n ≥
√

2 log x− 2q�δ� log�1 +
√

2 log x �
)

= �1 +√
2 log x�q�δ�

√
2π x

√
2 log x− 2q�δ� log�1 +√

2 log x �

×
{

1 + θC�α� δ� 1

2 log x− 2q�δ� log�1 +√
2 log x �

}
�

where q�δ� = 9 + 10δ, 
θ
 ≤ 1 and C�α� δ� is a constant depending only on α
and δ�

Relations (1.3), (1.5) and (1.6) allow us to derive new limit theorems on
moderate deviations for martingales. For instance it follows from (1.5) that if
Ln

2δ +Nn
2δ < 1� then for any 0 < q < 1� uniformly in r subject to

0 ≤ r ≤
√

2q
 log�Ln
2δ +Nn

2δ�
�
we have

P�Xn
n ≥ r�

1 −	�r� → 1 as n→ ∞�

We will give a clear illustration of the above results by using independent
r.v.’s. Let ξnk = ηk/

√
n, k = 1� � � � � n� where η1� η2� � � � is a given sequence of

i.i.d. r.v.’s with satisfies

Eη1 = 0� Eη2
1 = 1� m2δ = E
η1
2+2δ <∞�

for some δ > 0� In this case Nn
2δ = 0 and Ln

2δ = n−δm2δ� What we can get from
(1.3), (1.5) and (1.6) is the following. Uniformly in x ∈ �1� αnδ� we have

�1�3′� P

(
1√
n

∑
0<i≤n

ηi ≥ r

)
= �1 −	�r��

{
1 + θC1x

1/�3+2δ�
(

1√
n

)2δ/�3+2δ�}
�

where r is defined by (1.4),

�1�5′� P

(
1√
n

∑
0<i≤n

ηi ≥
√

2qδ log n
)
= 1√

2π nqδ
√

2qδ log n

{
1 + θC2

1
log n

}
�

with 0 < q < 1� and

�1�6′�

P

(
1√
n

∑
0<i≤n

ηi ≥
√

2δ log n− 2q�δ� log�1 +
√

2δ log n �
)

= �1 +√
2δ log n �q�δ�

√
2π nδ

√
2δ log n− 2q�δ� log�1 +√

2δ log n �

×
{

1 + θC3
1

2δ log n− 2q�δ� log�1 +√
2δ log n �

}
�
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with q�δ� = 9 + 10δ, 
θ
 ≤ 1, C1 = C�α� δ�m2δ�, C2 = C�δ� q�m2δ� and C3 =
C�δ�m2δ� being constants depending on α, δ, q, m2δ respectively.

We are going to pay some attention to the methods of the proof and to the
related works now.

For the proofs we make use of the composition method which originally
goes back to Bergstrom (1944). It was developed for discrete time martin-
gales by Bolthausen (1982) and Haeusler (1988) to get rates of convergence
in the CLT. For the case of continuous time semimartingales the composition
method was extended by Grama (1988a, b). This method turns out to be useful
for obtaining large and moderate deviations results for martingales as well.
Roughly speaking the main idea behind the technique we propose is as fol-
lows. Consider the two-dimensional semimartingale �Xn

k�1 −Vn
k�, Vn

k where
is an increasing process in k, Vn

0 = 0, Vn
n = 1� Set

	�f�x�y� =
∫ ∞

−∞
f�x+ z

√
y �ϕ�z�dz�

where f is a smooth function and ϕ�z� is the standard normal density. We
apply Itô’s formula in order to give an expansion for the difference

	�f�Xn
k�1 −Vn

k� −	�f�Xn
0 �1 −Vn

0��

Producing a proper estimate for each obtained piece, we come to some
Gronwall–Bellman type inequalities. It also should be stressed that the
present proof crucially employs a smoothing of indicator functions due to
the pioneering work of Bentkus (1986) which is different from the usual
smoothing inequalities used to obtain bounds on the rate of convergence in
the martingale CLT.

A similar approach was used by Grama (1995) to get large deviations results
with bounds for the remainder for martingales. Closely related papers belong
to Bentkus (1986), Bentkus and Rackauskas (1990) (both deal with Banach
space valued independent r.v.’s) and Rackauskas (1990) (for real-valued mar-
tingales), where large deviations results were established in the discrete case.
Under quite general conditions exponential type inequalities for large devia-
tions probabilities for semimartingales were proved in the book of Liptser and
Shiryaev (1989). For large deviations results for independent r.v.’s we refer the
reader to the books of Ibragimov and Linnik (1965), Petrov (1972) and Saulis
and Statulevicius (1989).

2. Results. We begin this section by settling some notation which we will
use all through the paper. Throughout the paper 	�x� denotes the distribution
function of the standard normal r.v. N. Let C and Ci, i = 1�2� � � � � be absolute
constants, and let Ci�α�β� � � ��, i = 1�2� � � � � be constants depending only on
the arguments α�β� � � � � whose values may differ from place to place. Denote
by R1 the real line. We put a ∨ b = maxa� b� and a ∧ b = mina� b� for any
real numbers a and b�
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Suppose that on the probability space �(�� �P� we are given the square
integrable martingale

X = �Xt��t�0≤t≤1� X0 = 0 a.s.,

under the usual conditions. Corresponding to the martingale X is the
quadratic characteristic

�X� = ��X�t��t�0≤t≤1�

Let us introduce the following notation:

L2δ = E
∑

0<s≤1


Xs
2+2δ�

N2δ = E
�X�1 − 1
1+δ�

where δ > 0� Of course if we want to obtain nontrivial results we have to
assume that both L2δ and N2δ are finite for some δ > 0�

Our main result concerning moderate deviations for martingales is formu-
lated as follows.

Theorem 2.1. Assume that r ≥ 0 is the solution of the equation

�2�1� x = �1 + r�c�δ� exp�r2/2��

for some x in the range 1 ≤ x ≤ α�L2δ +N2δ�−1� where c�δ� = 3 + 6δ� α > 0�
Then

�2�2�
P�X1 ≥ r� = �1 −	�r��1 + θC�α� δ�x1/�3+2δ��L2δ +N2δ�1/�3+2δ���

P�X1 ≤ −r� = 	�−r�1 + θC�α� δ�x1/�3+2δ��L2δ +N2δ�1/�3+2δ���

where 
θ
 ≤ 1�

Remark 2.1. Let us observe that the solution r ≥ 0 of (2.1) can be written
explicitly as

�2�3� r =
√

2 log x− θ12c�δ� log�1 +
√

2 log x ��

where 0 ≤ θ1 ≤ 1�
With this expression for r we can reformulate Theorem 2.1 in the following

form: Expansions (2.2) hold true for any x in the range 1 ≤ x ≤ α�L2δ+N2δ�−1�
with r satisfying (2.3).

From Theorem 2.1 we can derive the following theorem (see Section 6 for
the proof).
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Theorem 2.2. Assume that x is such that 1 < x ≤ α�L2δ +N2δ�−1� where
α > 0� Then, for any 0 < q < 1,

P
(
X1 ≥

√
2q log x

) = 1√
2π xq

√
2q log x

{
1 + θC�α� δ� q� 1

log x

}
�

P
(
X1 ≤ −

√
2q log x

) = 1√
2π xq

√
2q log x

{
1 + θC�α� δ� q� 1

log x

}
�

where 
θ
 ≤ 1�

Remark 2.2. In particular, if ε = L2δ +N2δ < 1� then, for any 0 < q < 1,

P
(
X1 ≥ √

2q
 log ε
 ) = εq√
2π

√
2q
 log ε


{
1 + θC�δ� q� 1


 log ε

}
�

P
(
X1 ≤ −√

2q
 log ε
 ) = εq√
2π

√
2q
 log ε


{
1 + θC�δ� q� 1


 log ε

}
�

where 
θ
 ≤ 1�

The interesting case q = 1 is excluded in the above Theorem 2.2. However,
Theorem 2.1 gives us an answer for this case as well.

Theorem 2.3. Assume that x is such that 1 < x ≤ α�L2δ +N2δ�−1� where
α > 0� Then

P
(
X1 ≥ √

q�δ� x� ) = �1 +√
2 log x �q�δ�√

2π x
√
q�δ� x�

{
1 + θC�α� δ� 1

q�δ� x�
}
�

P
(
X1 ≤ −√

q�δ� x� ) = �1 +√
2 log x �q�δ�√

2π x
√
q�δ� x�

{
1 + θC�α� δ� 1

q�δ� x�
}
�

where q�δ� x� = 2 log x− 2q�δ� log�1 +√
2 log x �, q�δ� = 9 + 10δ and 
θ
 ≤ 1�

The above statements allow us to formulate some new limit theorems on
moderate deviations for martingales.

Let Xn = �Xn
t ��

n
t �0≤t≤1, Xn

0 = 0 a.s., be square integrable martin-
gales under the usual conditions with quadratic characteristics �Xn� =
��Xn�t�� n

t �0≤t≤1, respectively. Write

Ln
2δ = E

∑
0<s≤1


Xn
s 
2+2δ�

Nn
2δ = E
�Xn�1 − 1
1+δ�

where δ > 0�

Theorem 2.4. Assume that r ≥ 0 is the solution of the equation

x = �1 + r�c�δ� exp�r2/2�� x ≥ 1�
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with c�δ� = 3 + 6δ� Then, uniformly in r such that x = o��Ln
2δ +Nn

2δ�−1�,
P�Xn

1 ≥ r�
1 −	�r� → 1�

P�Xn
1 ≤ −r�

	�−r� → 1 as n→ ∞�

Theorem 2.5. Let Ln
2δ + Nn

2δ < 1 and 0 < q < 1� Then, uniformly in r

subject to 0 ≤ r ≤ √
2q
 log�Ln

2δ +Nn
2δ�
,

P�Xn
1 ≥ r�

1 −	�r� → 1�
P�Xn

1 ≤ −r�
	�−r� → 1 as n→ ∞�

3. Preliminary statements. Before proceeding with the proofs, let us
state some background assertions to be used later.

The following lemma is an almost obvious modification of the time change
formula in Dellacherie (1972) and is related to Lemma 3.1 in Grama (1995).

Lemma 3.1. Let A = �As�0≤s≤1� A0 = 0� A1 = T, be a right continuous
increasing function, where T > 0� For any s ∈ �0�T� write

τs = inf0 ≤ t ≤ 1� At > s� where inf � = 1�

Then for any 0 ≤ t ≤ T and any nonnegative real measurable function f =
�f�u��0≤u≤1,

∫ τt

0
f�s�dAs ≤

∫ t

0
f�τs�ds+ f�τt�Aτt

�

Proof. It is obvious that∫ τt

0
f�s�dAs =

∫ 1

0
1s < τt�f�s�dAs + f�τt�Aτt

�

Applying the time change formula [see Dellacherie (1972)],
∫ 1

0
1s < τt�f�s�dAs =

∫ A1

0
1τs < τt�f�τs�ds

(since τs < τt implies s < t)

≤
∫ T

0
1s < t�f�τs�ds�

This concludes the proof. ✷

The following two elementary formulas are well known.

Lemma 3.2. For any r ≥ 0 and ε ≥ 0, the following hold:

�a�
√

2/π
1 + r

exp
(
−r

2

2

)
≤ P�
N
 ≥ r� ≤ 4

3

√
2/π

1 + r
exp

(
−r

2

2

)
�

�b� P�r− ε ≤ 
N
 ≤ r+ ε� ≤ Cε�1 + r��1 −	�r�� exp�εr��
where N stands for the standard normal r.v.
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We shall need in what follows the well-known Gronwall–Bellman inequality.

Lemma 3.3. Assume that the function g = �gt�0≤t≤T� T ≥ 0, is bounded by
a constant not depending on t and satisfies, for any t ∈ �0�T�, the inequality

gt ≤ C1

∫ t

0
gs as ds+C2�

where a = �at�0≤t≤T is a nonnegative integrable function. Then, for any t ∈
�0�T�,

gt ≤ C2 exp
{
C1

∫ t

0
as ds

}
�

We shall make use of the following exact estimate in the CLT for continuous
time martingales due to Haeusler (1988) [see also Haeusler and Joos (1988)].

Lemma 3.4. Let X = �Xt��t�0≤t≤1� X0 = 0 a.s., be a square integrable
martingale under the usual conditions, and let �X� = ��X�t��t�0≤t≤1 be its
quadratic characteristic. Then, for any δ > 0�

sup
x∈R1


P�X1 ≤ x� −	�x�
 ≤ C�δ��L2δ +N2δ�1/�3+2δ��

Lemma 3.5. Let X and ξ be random variables on the probability space
�(�� �P�, and let X be � -measurable, where � ⊆ � � Then, for any ε ≥ 0,

sup
x∈R1


P�X ≤ x� −	�x�
 ≤ 2 sup
x∈R1


P�X+ ξ ≤ x� −	�x�


+ 5√
2π

ε+ 2P�E�ξ2
� � > ε2��

Proof. This assertion is a small improvement of Lemma 1 of Bolthausen
(1982) or Lemma 2 of Haeusler and Joos (1988) and therefore the proof is left
to the reader. ✷

Throughout the rest of the paper we shall be using the notation that we
proceed to introduce now. Let ϕ�x� be the standard normal density

ϕ�x� = 1√
2π

exp
(
−x

2

2

)
�

Given any bounded function f� R1 → R1, write

	�f�x�y� =
∫ ∞

−∞
f�x+ z

√
y �ϕ�z�dz� x�y ∈ R1� y ≥ 0�

Remark that provided y > 0 the function 	�f�x�y� can be rewritten as

	�f�x�y� =
∫ ∞

−∞
f�z�ϕ

(
z− x√
y

)
dz√
y
�
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For any Borel set G in R1 set 	�G�x�y� = 	�1G� x�y�� where 1G is the indi-
cator of the set G� Let f be any bounded function having four bounded deriva-
tives. By straightforward calculations we obtain for any x�y ∈ R1� y ≥ 0, the
equalities

∂2

∂x2
	�f�x�y� = 2

∂

∂y
	�f�x�y� =

∫ ∞

−∞
f′′�x+ z

√
y �ϕ�z�dz�(3.1)

∂3

∂x3
	�f�x�y� =

∫ ∞

−∞
f′′′�x+ z

√
y �ϕ�z�dz�(3.2)

∂2

∂y2
	�f�x�y� = 1

4

∫ ∞

−∞
f′′′′�x+ z

√
y �ϕ�z�dz�(3.3)

and, provided y > 0,

∂2

∂x2
	�f�x�y� = 1

y

∫ ∞

−∞
f�x+ z

√
y �ϕ′′�z�dz�(3.4)

∂3

∂x3
	�f�x�y� = 1

y

∫ ∞

−∞
f′�x+ z

√
y �ϕ′′�z�dz�(3.5)

∂2

∂y2
	�f�x�y� = − 1

4y3/2

∫ ∞

−∞
f′�x+ z

√
y �ϕ′′′�z�dz�(3.6)

4. Auxiliary results. In this section we shall prove some technical re-
sults which play the key role in the proof of the main result of the paper.
Before stating these results, it is appropriate to develop some more notation
to be involved in their formulation and in the proofs as well.

Suppose we are given the square integrable martingale X = �Xt��t�0≤t≤1�
X0 = 0 a.s., under the usual conditions. Let �X� = ��X�t��t�0≤t≤1 be the
quadratic characteristic of the martingaleX and let the quantity ε = L2δ+N2δ
be finite for some δ > 0� Assume that r� x ∈ R1 are such that

�4�1� 1 ≤ x = �1 + 
r
�c�δ� exp�r2/2� ≤ αε−1�

where c�δ� = 3 + 6δ� α > 0� Write

ε2 = �1 + 
r
�2ε1� ε1 = �α−1�1 + 
r
�−6 exp�r2/2�ε�1/�3+2δ��

It is easy to see that, due to (4.1), ε1 ≤ ε2 ≤ 1� Set T = 1+ε2
1� where of course

T depends on r� Introduce the process V = �Vt��t�0≤t≤1 as follows:

V = �X�1�0� τ� +T1�τ�1��

where

τ = inf0 ≤ s ≤ 1� �X�s > T� with inf � = 1�

Define the random time change �τt��t�0≤t≤T as

τs = inf0 ≤ u ≤ 1� Vu > s� with inf � = 1�
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and the nonnegative process λ = �λt��t�0≤t≤1 as

λt = T−Vt� 0 ≤ t ≤ 1�

We will denote, for convenience, the indicator of an event A ⊆ ( by 1A��
Finally, let Bx�a� be the one-dimensional ball of radius a with center in x�
that is, Bx�a� = �x− a� x+ a��

The main results of this section are formulated below.

Theorem 4.1. Assume that r� x ∈ R1 are such that condition (4.1) is satis-
fied with some α > 0� Then, for any fixed β ≥ 1 and any 0 ≤ t ≤ T,

E	�Br�βε2��Xτt
� λτt� ≤ C�α�β� δ� 1√

t ∧ 1
�xε�1/�3+2δ��1 −	�
r
���

Theorem 4.2. Let ε > 0� β ≥ 1 and r be such that (4.1) holds true. Set
hi = �β + i� ε2� i = 0�1� � � � � Assume that the function f� R1 → R1 has four
derivatives and fulfills the following conditions: with i = 1� � � � �4,

�4�2� 
f�i��y�
 ≤ Cε−i2 1Br�h1��y�� 0 ≤ f�y� ≤ 1� y ∈ R1�

where C is an absolute constant. Then, for any t ∈ �0�T�,

E	�f�Xτt

� λτt� −	�f�X0� λ0�


≤ C1

{∫ t

0
ρsAs ds+

ρt
�1 + 
r
�4

+ C�α� δ�√
t ∧ 1

h0 exp
(
−r

2

2

)}
�

where C1 is an absolute constant, ρt = E	�Br�h5��Xτt
� λτt� and the nonnega-

tive function As is such that

�4�3�
∫ T

0
As

ds√
s ∧ 1

≤ C�δ��

Remark 4.1. The following are examples of functions f satisfying (4.2):

(i) Let f�y� = f̂��y − r�/ε2�� y ∈ R1� where f̂ is a function with four
bounded derivatives such that 0 ≤ f̂�y� ≤ 1� f̂�y� = 0 if 
y
 ≥ β+ 1� f̂�y� = 1
if 
y
 ≤ β� For this example conditions (4.2) are satisfied with β ≥ 1�

(ii) Let f�y� = f̂��y − r�/ε2�� y ∈ R1� where f̂ is a function with four
bounded derivatives such that 0 ≤ f̂�y� ≤ 1� f̂�y� = 0 if y ≤ 0� f̂�y� = 1 if
y ≥ 1� For this example conditions (4.2) are satisfied with β = 1�

The following technical assertion will be used in the proof of Theorem 4.2.
Unfortunately we can not derive it directly from Lemma 3.4, so we have to
give a little bit intricate proof involving Lemma 3.5.

Lemma 4.1. Let r be such that (4.1) holds true. For any v ≥ 0 and t ∈ �0�T�,
sup
y∈R1

P�Xτt
∈ By�v�� ≤ C�α� δ� v ∨ ε2√

t ∧ 1
�



162 I. G. GRAMA

Proof. For brevity write t1 = t ∧ 1� Since τt1 ≤ τt for t ∈ �0�T�� then, by
Lemma 3.5,

�4�4�

sup
y∈R1

∣∣∣∣P�Xτt
≤ y� −	

(
y√
t1

)∣∣∣∣
≤ 2 sup

y∈R1

∣∣∣∣P�Xτt1
≤ y� −	

(
y√
t1

)∣∣∣∣
+ 5√

2π

3 ε2√
t1

+ 2P��X�τt − �X�τt1 > 9ε2
2��

First we give an estimate for the last probability in the right-hand side of
(4.4). Note that, for any s ∈ �0�1�,
�4�5� Vs ≤ �X�s + 
�X�1 −T
1s = 1�
and as soon as T = 1 + ε1 and ε1 ≤ ε2,

�4�6�

�X�1 −T
 ≤ ε2

1 + 
�X�1 − 1

≤ ε2

2 + 
�X�1 − 1
�
Since for any t ∈ �0�T�� t ≤ Vτt

≤ t+ Vτt
� then taking (4.5) into account,

Vτt
−Vτt1

≤ t− t1 + Vτt
≤ ε2

2 + Vτt
≤ ε2

2 + �X�τt + 
�X�1 −T
�
Note also that, for any 0 ≤ s ≤ T,


�X�s −Vs
 ≤ 
�X�1 −V1
 = 
�X�1 −T
�
These inequalities and (4.6) imply

�X�τt − �X�τt1 = ��X�τt −Vτt
� + �Vτt1

− �X�τt1 � + �Vτt
−Vτt1

�
≤ ε2

2 + �X�τt + 3
�X�1 −T

≤ 4ε2

2 + �X�τt + 3
�X�1 − 1
�
It is not hard to see that

�4�7� E
∑

0<s≤1

�X�1+δ
s ≤ L2δ�

From the above inequalities and from ε ≤ αε3+2δ
2 we get that, for the last

probability in (4.4), the following bounds hold:

�4�8�
P��X�τt − �X�τt1 > 9ε2

2� ≤ P��X�τt + 3
�X�1 − 1
 > 5ε2
2�

≤ ε−2−2δ
2 E�X�1+δ

τt
+E
�X�1 − 1
1+δ�

≤ ε−2−2δ
2 ε ≤ C�α�ε2�

Now we proceed to give an upper bound for the first term on the right-hand
side of (4.4). Since for s < T the time change τs can be also presented as

τs = inf0 ≤ u ≤ 1� �X�u > s�� inf � = 1�
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then �X�τs ≤ s+ �X�τs � Provided �X�1 > t1� we have


�X�τt1 − t1
 = �X�τt1 − t1 ≤ �X�τt1 �
Observe also that if �X�1 ≤ t1� then τt1 = 1� Therefore, for any t ∈ �0�T�,


�X�τt1 − t1
 = 1�X�1 > t1�
�X�τt1 − t1
 + 1�X�1 ≤ t1�
�X�τt1 − t1

≤ �X�τt1 + 1�X�1 ≤ t1��t1 − �X�1�
≤ �X�τt1 + 
�X�1 − 1
�

and thus, using (4.7), we get

E
�X�τt1 − t1
1+δ ≤ 21+δ�L2δ +N2δ� = C�δ�ε�
From this inequality, using the exact estimate of the rate of convergence in
the martingale CLT (see Lemma 3.4) and the inequality ε ≤ αε3+2δ

2 � it follows
that

sup
y∈R1

∣∣∣∣P�Xτt1
≤ y� −	

(
y√
t1

)∣∣∣∣ ≤ C�δ� 1√
t1
ε1/�3+2δ� ≤ C�α� δ� ε2√

t1
�

Implementing this estimate and (4.8) in (4.4), we arrive at

sup
y∈R1

∣∣∣∣P�Xτt
≤ y� −	

(
y√
t1

)∣∣∣∣ ≤ C1�α� δ�
ε2√
t1
�

Note that, for any v ≥ 0,

sup
y∈R1

P
(√
t1N ∈ By�v�

) ≤ v√
2πt1

�

The two last inequalities yield

sup
y∈R1

P�Xτt
∈ By�v�� ≤ sup

y∈R1

P�Xτt

∈ By�v�� −P�√t1N ∈ By�v��


+ sup
y∈R1

P�√t1N ∈ By�v��

≤ 2C1�α� δ�
ε2√
t1

+ v√
2πt1

≤ C2�α� δ�
v ∨ ε2√

t1
�

Lemma 4.1 is proved. ✷

Remark 4.2. If we had taken T = 1 in the definitions of V� τ and τs
above, then the assertion of Lemma 4�1 (with ε1/�3+2δ� replacing ε2) would
be an immediate consequence of Lemma 3�4 without making use of Lemma
3�5� However, in this case we are not able to give a simple estimate for the
term I3 [see (4.12) below], thus making the proof of Theorem 4�2 much more
complicated.
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Lemma 4.2. Let r be such that (4.1) holds true. If 
r
 ≤ γ� where γ is a
positive constant, then for any fixed β ≥ 1 and 0 ≤ t ≤ T,

E	�Br�βε2��Xτt
� λτt� ≤ C�α�β� γ� δ� 1√

t ∧ 1
ε1/�3+2δ��

Proof. Note that

E	�Br�βε2��Xτt
� λτt� =

∫ ∞

−∞
P�Gt�z��ϕ�z�dz�

where Gt�z� denotes the event 
z√λτt −Xτt
− r
 ≤ βε2�� Due to (4.5)–(4.7)

P�Vτt
> 2ε2

2� ≤ P��X�τt + 
�X�1 − 1
 > ε2
2�

≤ C�δ�ε−2−2δ
2 E�X�1+δ

τt
+E
�X�1 − 1
1+δ�

≤ C�δ�ε−2−2δ
2 ε�

With this bound it is easy to see that

P�Gt�z�� ≤ P�Gt�z� ∩ Vτt
≤ 2ε2

2�� +C�δ�ε−2−2δ
2 ε�

where ε−2−2δ
2 ε ≤ C�α�ε2 by virtue of ε ≤ αε3+2δ

2 � Since on the set Vτt
≤ 2ε2

2�
we have λτt ≤ T− t ≤ λτt +2ε2

2� then on the same set 
√λτt −
√
T− t
 ≤ √

2 ε2�

Writing, for brevity, y = r− z
√
T− t and u = βε2 +

√
2 
z
ε2� we get

P�Gt�z� ∩ Vτt
≤ 2ε2

2�� ≤ P�
Xτt
− y
 ≤ u��

where, by Lemma 4.1,

P�
Xτt
− y
 ≤ u� ≤ C�α� δ� u√

t ∧ 1
≤ C�α�β� δ�1 + 
z
√

t ∧ 1
ε2�

The above inequalities give us the bound

E	�Br�βε2��Xτt
� λτt� ≤ C1�α�β� δ�

ε2√
t ∧ 1

∫ ∞

−∞
�1 + 
z
�ϕ�z�dz

≤ C2�α�β� δ�
ε2√
t ∧ 1

�

To complete the proof it remains only to note that ε2 ≤ C�α� δ� γ�ε1/�3+2δ� for

r
 ≤ γ� ✷

4.1. Proof of Theorem 4.2. We apply Itô’s formula [see Jacod and Shiryaev
(1987), page 57] for the two-dimensional semimartingale �Xτt

� λτt�� According
to this formula we obtain, after some tedious calculations (which we include
in the Appendix), that, for any t ∈ �0�T�,
�4�9� E	�f�Xτt

� λτt� −	�f�X0� λ0�� = I1 + I2 + I3�
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where

�4�10�
I1 = E

∑
0<s≤τt

[
	�f�Xs� λs� −	�f�Xs−� λs�

− ∂

∂x
	�f�Xs−� λs�Xs −

1
2
∂2

∂x2
	�f�Xs−� λs�X2

s

]
�

�4�11� I2 = −E ∑
0<s≤τt

[
	�f�Xs−� λs−�−	�f�Xs−� λs�−

∂

∂y
	�f�Xs−� λs�Vs

]
�

�4�12� I3 = 1
2
E

∫ τt

0

∂2

∂x2
	�f�Xs−� λs�d��X�s −Vs��

Now we proceed to produce bounds for I1� I2� I3� Recall that, by the as-
sumptions of the theorem, ε = L2δ +N2δ > 0; thus εi > 0� i = 1�2�

Estimate I1� Write

λ∗s = ε2
2 ∨ λs� εs = ε1

(
ε2√
λ∗s

)1/δ

�

Applying Taylor’s formula, we arrive at


I1
 ≤ J1 +J2�

where

J1 = E
∑

0<s≤τt
sup

0≤θ≤1

∣∣∣∣ ∂
2

∂x2
	�f�Xs− + θXs� λs�

∣∣∣∣X2
s1
Xs
 > εs��

J2 = 1
6
E

∑
0<s≤τt

sup
0≤θ≤1

∣∣∣∣ ∂
3

∂x3
	�f�Xs− + θXs� λs�

∣∣∣∣ 
Xs
31
Xs
 ≤ εs��

Estimate J1� Relations (4.2) and (3.1) imply


f′′�x+ z
√
y �
 ≤ Cε−2

2

and ∣∣∣∣ ∂
2

∂x2
	�f�x�y�

∣∣∣∣ ≤
∫ ∞

−∞

f′′�x+ z

√
y �
 ϕ�z�dz ≤ Cε−2

2 �

On the other hand from (3.4) and (4.2) it follows that∣∣∣∣ ∂
2

∂x2
	�f�x�y�

∣∣∣∣ ≤ 1
y

∫ ∞

−∞

f�x+ z

√
y �
 
ϕ′′�z�
dz ≤ Cy−1�

Combining these two last estimates we get that, for any x ∈ R1 and y ≥ 0,

�4�13�
∣∣∣∣ ∂

2

∂x2
	�f�x�y�

∣∣∣∣ ≤ C�y ∨ ε2
2�−1�
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Taking into account the definitions of εs� ε1 and ε2 and the inequality ε1 ≤ ε2,
we have

�4�14� �λ∗s�−1ε−2δ
s = �λ∗s�−1(ε1

(
ε2/

√
λ∗s

)1/δ)−2δ = ε−2δ
1 ε−2

2

and

�4�15� ε−2−2δ
2 ε ≤ ε−2δ

1 ε−2
2 ε = C�α� δ�ε2 exp�−r2/2��

From (4.13)–(4.15) one can easily obtain the following bound

J1 ≤ CE
∑

0<s≤1

�λ∗s�−1ε−2δ
s 
Xs
2+2δ ≤ Cε−2δ

1 ε−2
2 ε = C�α� δ�ε2 exp�−r2/2��

Estimate J2� As in the case of (4.13), it follows from (3.2), (3.5) and (4.2)
that, for any x ∈ R1 and y ≥ 0,

�4�16�
∣∣∣∣ ∂

3

∂x3
	�f�x�y�

∣∣∣∣ ≤ Cε−1
2 �y ∨ ε2

2�−1
∫ ∞

−∞
1
z√y+ x− r
 ≤ h1�ψ�z�dz�

where ψ�z� = ϕ�z� ∨ 
ϕ′′�z�
� Implementing this estimate in J2 and using the
inequality 
Xs
 ≤ εs ≤ ε2, we obtain

J2 ≤ Cε−1
2 E

∑
0<s≤τt

εs
λ∗s
;s X

2
s ≤ Cε−1

2 E
∫ τt

0

εs
λ∗s
;s d�X�s�

where we write for brevity,

�4�17� ;s =
∫ ∞

−∞
1Gs�z��ψ�z�dz� Gs�z� =

{
z√λs +Xs− − r
 ≤ h2
}
�

Also for the sake of brevity set Ps = εs�λ∗s�−1;s� Note that since V1�0�1� =
�X�1�0�1� and V1 ≥ �X�1 on the set �X�1 ≤ T�� then

∫ τt

0
Ps d�X�s ≤ 1�X�1 ≤ T�

∫ τt

0
Ps dVs + 1�X�1 > T�

∫ τt

0
Psd�X�s

=
∫ τt

0
Ps dVs + 1�X�1 > T�

∫ τt

0
Ps d��X�s −Vs��

Since λ∗s ≥ ε2
2� εs = ε1�ε2/

√
λ∗s �1/δ ≤ ε1 and ε1 ≤ ε2� then εs/λ

∗
s ≤ ε1ε

−2
2 ≤ ε−1

2 �

Therefore Ps ≤ ε−1
2

∫∞
−∞ψ�z�dz ≤ C1ε

−1
2 � This implies the following bound:

J2 ≤H1 +H2 +H3�

where

H1 = Cε−1
2 E

∫ τt

0

εs
λ∗s
;s1Vs ≤ 2ε2

1�dVs�

H2 = Cε−2
2 E

∑
0<s≤1

Vs1Vs > 2ε2
1��

H3 = Cε−2
2 E1�X�1 > T�

∫ 1

0

d��X�s −Vs�
�
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Estimate H1� Recall that by the definition of ε2 we have ε2 = �1 + 
r
�2ε1�
This and the definition of εs yield

�1 + 
r
�2ε−1
2
εs
λ∗s

= �1 + 
r
�2ε−1
2 ε1

(
ε2

λ∗s

)1/δ 1
λ∗s

= as�

where as = ε
1/δ
2 �λ∗s�−1−1/�2δ�� Therefore

H1 = C1�1 + 
r
�−2E
∫ τt

0
;s1Vs ≤ 2ε2

1�as dVs�

Let us introduce the sets S1 = z� 
z
 ≤ 2
r
� and S2 = z� 
z
 > 2
r
�� Set

�4�18� ;
�i�
s =

∫
Si

1Gs�z��ψ�z�dz�

With this notation we have ;s = ;
�1�
s +;

�2�
s and therefore

H1 = L1 +L2�

where, for i = 1�2,

Li = C1�1 + 
r
�−2E
∫ τt

0
;

�i�
s 1Vs ≤ 2ε2

1�as dVs�

Estimate L1� Since ψ�z� ≤ ϕ�z��1 + 
z
�2 ≤ 4ϕ�z��1 + 
r
�2 on the set S1�
then, by (4.18),

;
�1�
s =

∫
S1

1Gs�z��ψ�z�dz

≤ 4�1 + 
r
�2
∫
S1

1Gs�z��ϕ�z�dz

= 4�1 + 
r
�2	�Br�h2��Xs−� λs��
Implementing this in the above equality for L1� we get

L1 ≤ C2E
∫ τt

0
	�Br�h4��Xs−� λs�1Vs ≤ 2ε2

1�as dVs = L∗
1�

where we write for brevity,

L∗
1 = C2E

∫ τt

0
U

�1�
s dVs

and

U
�1�
s = 	�Br�h4��Xs−� λs�1Vs ≤ 2ε2

1�as�
Now we apply the random time change formula in Lemma 3.1 to obtain

�4�19�
L∗

1 ≤ C2E

{∫ t

0
U�1�
τs
ds+U�1�

τt
Vτt

}

≤ C2

{∫ t

0
EU�1�

τs
ds+ 2ε2

1EU
�1�
τt

}
�



168 I. G. GRAMA

It is not hard to see that for any s ∈ �0�T� on the set Vτs
≤ 2ε2

1� we have

�4�20�
λτs = T−Vτs

≥ T− s− 2ε2
1 = 1 − s− ε2

1 ≡ λs�

λ∗τs = λτs ∨ ε2
2 ≥ λs ∨ ε2

2 ≡ λ∗s�

and therefore on the same set

aτs = ε
1/δ
2 �λ∗τs�−1−1/�2δ� ≤ as�

where

�4�21� as = ε
1/δ
2 �λ∗s�−1−1/�2δ��

This gives us the bound

�4�22� EU�1�
τt

≤ asE	�Br�h4��Xτt−� λτt�� t ∈ �0�T��
It is easy to see that, for any t ∈ �0�T�,
�4�23� E	�Br�h4��Xτt−� λτt� ≤ ρt + ε−2−2δ

2 ε�

where ρt=E	�Br�h5��Xτt
� λτt� and, by (4.15), ε−2−2δ

2 ε≤C�α� δ�ε2 exp�−r2/2��
Then, utilizing (4.22) and (4.23), we obtain

EU�1�
τs

≤ C3
(
ρs +C�α� δ� ε2 exp�−r2/2�)as�

Implementing this in (4.19) and taking into account that as ≤ ε−2
2 �

L∗
1 ≤ C4

{∫ t

0
�ρs +C�α� δ�ε2 exp�−r2/2��as ds

+ 2ε2
1ε

−2
2 �ρt +C�α� δ�ε2 exp�−r2/2��

}
�

Note that ∫ T

0
as ds = ε

1/δ
2

∫ T

0
�λ∗s�−1−1/�2δ� ds ≤ C�δ��

Since ε2 = �1 + 
r
�2ε1� this gives us the following bound:

L1 ≤ L∗
1 ≤ C5

{∫ t

0
ρs as ds+

ρt
�1 + 
r
�4

+C1�α� δ�ε2 exp
(
−r

2

2

)}
�

Estimate L2� Write, for brevity, U�2�
s = ;

�2�
s 1Vs ≤ 2ε2

1�as� Then, apply-
ing the random time change formula in Lemma 3.1, as in the case of L∗

1� we
arrive at

�4�24�

L2 ≤ C1E
∫ τt

0
U

�2�
s dVs

≤ C1E

{∫ t

0
U�2�
τs
ds+U�2�

τt
Vτt

}

≤ C1

{∫ t

0
EU�2�

τs
ds+ 2ε2

1EU
�2�
τt

}
�
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Since aτs ≤ as� then

�4�25� EU�2�
τs

≤ asE;
�2�
τs

1Vτs
≤ 2ε2

1��
Utilizing (4.18) it is easy to see that

�4�26� E;�2�
τs

1Vτs
≤ 2ε2

1� =
∫
S2

P
(
Gτs

�z� ∩ 1Vτs
≤ 2ε2

1�
)
ψ�z�dz�

In order to produce an estimate for the last probability we are going to apply
the bound provided by Lemma 4.1. For this observe that Vτs

≥ s for any
s ∈ �0�T�, and therefore λτs = T−Vτs

≤ T− s� Together with the first line in
(4.20) this yields that on the set Vτs

< 2ε2
1� we have λτs ≤ T− s ≤ λτs +2ε2

1�
and consequently

�4�27� ∣∣√λτs −
√
T− s

∣∣ ≤ √
2 ε1 ≤

√
2 ε2�

Writing, for brevity, y = r − z
√
T− s and u = h2 + 
z
√2 ε2 we get, utiliz-

ing (4.27),

�4�28� P
(
Gτs

�z� ∩ Vτs
≤ 2ε2

1�
) ≤ P�
Xτs− − y
 ≤ u��

To estimate the probability on the right-hand side we use the obvious inequal-
ity

P�
Xτs− − y
 ≤ u� ≤ P�
Xτs
− y
 ≤ u+ ε2� + ε−2−2δ

2 ε�

where, by (4.15), ε−2−2δ
2 ε ≤ C1�α� δ�ε2 exp�−r2/2� ≤ C1�α� δ�h0� Then, apply-

ing Lemma 4.1 with v = u+ ε2 ≤ 3h0�1 + 
z
�� we arrive at

�4�29� P�
Xτs− − y
 ≤ u� ≤ C2�α� δ�√
s ∧ 1

�1 + 
z
�h0�

Inequalities (4.26), (4.28) and (4.29) yield

E;�2�
τs

1Vτs
≤ 2ε2

1� ≤ C2�α� δ�√
s ∧ 1

h0;�r��

where

;�r� =
∫
S2

ψ�z��
z
 + 1�dz ≤ C2 exp�−r2/2��

Implementing this in (4.25) and then (4.25) in (4.24) and utilizing the inequal-
ity as ≤ ε−2

2 � we get

L2 ≤ C3�α� δ�h0 exp
(
−r

2

2

){∫ t

0

as√
s ∧ 1

ds+ ε2
1ε

−2
2√

t ∧ 1

}
�

Since, for any δ′ > 0,

�4�30� ε
1/δ′
2

∫ T

0
�λ∗s�−1−1/�2δ′� ds√

s ∧ 1
≤ C�δ′��
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then, by (4.21),
∫ T

0

as√
s ∧ 1

ds ≤ C�δ��

The above inequality and ε1 ≤ ε2 imply the following bound:

L2 ≤ C4�α� δ�
1√
t ∧ 1

h0 exp
(
−r

2

2

)
�

Estimate H2� Write ηs = �X�s+
�X�1−1
1s = 1�� It is easy to see that,
according to (4.5) and (4.6), Vs ≤ ε2

1 + ηs� Then

H2 = Cε−2
2 E

∑
0<s≤1

Vs1Vs > 2ε2
1�

≤ Cε−2
2 E

∑
0<s≤1

�ε2
1 + ηs�1ηs > ε2

1�

≤ 2Cε−2δ
1 ε−2

2 E
∑

0<s≤1

�ηs�1+δ

≤ C�δ�ε−2δ
1 ε−2

2 E

( ∑
0<s≤1

�X�1+δ
s + 
�X�1 − 1
1+δ

)
�

Due to (4.7) the last expectation does not exceed L2δ + N2δ = ε� Then, by
(4.15),

H2 ≤ C�δ�ε−2δ
1 ε−2

2 ε ≤ C�α� δ�ε2 exp�−r2/2��

Estimate H3� Since V = �X� on �0� τ� and V = T on �τ�1�� then
∫ 1

0

d��X�s −Vs�
 = 
�X�1 −T
�

Therefore

H3 = Cε−2
2 E��X�1 −T�1�X�1 > T�

≤ Cε−2
2 E��X�1 − 1�1�X�1 − 1 > ε2

1�
≤ Cε−2δ

1 ε−2
2 E
�X�1 − 1
1+δ ≤ Cε−2δ

1 ε−2
2 ε

≤ C�α� δ�ε2 exp�−r2/2��
where for the last inequality we make use again of the bound in (4.15).

Now we put together the bounds for J1, J2, H1, H2, H3, L1 and L2 to
obtain

�4�31� 
I1
 ≤ C

{∫ t

0
ρsas ds+

ρt
�1 + 
r
�4

+ C�α� δ�√
t ∧ 1

h0 exp
(
−r

2

2

)}
�

Estimate I2� Since λs− = λs + Vs� then by Taylor’s formula we get


I2
 ≤K1 +K2�
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where

K1 = 2E
∑

0<s≤τt
sup

0≤θ≤1

∣∣∣∣ ∂∂y	�f�Xs−� λs + θVs�
∣∣∣∣Vs1Vs > 2ε2

1��

K2 = 1
2
E

∑
0<s≤τt

sup
0≤θ≤1

∣∣∣∣ ∂
2

∂y2
	�f�Xs−� λs + θVs�

∣∣∣∣V2
s1Vs ≤ 2ε2

1��

Estimate K1� From (3.1) and (4.13) we have, for any x ∈ R1 and y ≥ 0∣∣∣∣ ∂∂y	�f�x�y�
∣∣∣∣ ≤ C1�y ∨ ε2

2�−1 ≤ C1ε
−2
2 �

This yields

K1 ≤ 2C1E
∑

0<s≤1

Vs1Vs > 2ε2
1� = C2H2�

where H2 has been already estimated.

Estimate K2� From (3.3), (3.6) and (4.2) we get, for any x ∈ R1 and y ≥ 0
[for a similar bound see (4.16)],∣∣∣∣ ∂

2

∂y2
	�f�x�y�

∣∣∣∣ ≤ Cε−1
2 �y ∨ ε2

2�−3/2
∫ ∞

−∞
1
z√y+ x− r
 ≤ h1�ψ̃�z�dz�

where ψ̃�z� = ϕ�z� ∨ 
ϕ′′′�z�
� Note also that for any 0 ≤ θ ≤ 1 we have

λs + θVs ≥ λs and
√
λs + θVs −

√
λs ≤

√
Vs ≤

√
2ε1

on the set Vs ≤ 2ε2
1�� Taking into account these bounds, one obtains

K2 ≤ 1
2Cε

−1
2 E

∑
0<s≤τt

�λ∗s�−3/2;̃s1Vs ≤ 2ε2
1�V2

s �

where, by the analogy of (4.17), we write, for brevity,

;̃s =
∫ ∞

−∞
1G̃s�z��ψ̃�z�dz�

G̃s�z� = 
z
√
λs +Xs− − r
 ≤ h1 +

√
2ε1
z
��

Since ε2 = �1 + 
r
�2ε1� then we arrive at

K2 ≤ Cε−1
2 ε2

1E
∑

0<s≤τt
�λ∗s�−3/2;̃s1Vs ≤ 2ε2

1�Vs

≤ C�1 + 
r
�−4E
∫ τt

0
;̃s1Vs ≤ 2ε2

1�a1
s dVs�

where a1
s = ε2�λ∗s�−3/2� Set, by the analogy of (4.18),

;̃
�i�
s =

∫
Si

1G̃s�z��ψ̃�z�dz�
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With this notation we have ;̃s = ;̃
�1�
s + ;̃

�2�
s � and thus

K2 = L′
1 +L′

2�

where

�4�32� L′
i = C�1 + 
r
�−4E

∫ τt

0
;̃

�i�
s 1Vs ≤ 2ε2

1�a1
s dVs�

Estimate L′
1� Since, on the set S1 = z� 
z
 ≤ 2
r
�,

ψ̃�z� ≤ 3ϕ�z��1 + 
z
�3 ≤ 24ϕ�z��1 + 
r
�3

and

h1 +
√

2ε1
z
 ≤ h1 + 2
√

2ε1
r
 ≤ h1 + 3ε2 = h4�

then

;̃
�1�
s =

∫
S1

1G̃s�z��ψ̃�z�dz

= 24�1 + 
r
�3
∫
S1

1G̃s�z��ϕ�z�dz

= 24�1 + 
r
�3	�Br�h4��Xs−� λs��
Implementing this bound in (4.32), we get

L′
1 ≤ CE

∫ τt

0
	�Br�h4��Xs−� λs�1Vs ≤ 2ε2

1�a1
s dVs�

The further estimate of L′
1 is exactly the same as for L∗

1� but with a1
s replacing

as� Therefore we arrive at

L′
1 ≤ C

{∫ t

0
ρsa

1
s ds+

ρt
�1 + 
r
�4

+C�α� δ�ε2 exp
(
−r

2

2

)}
�

where

�4�33� a1
s = ε2�λ∗s�−3/2�

Estimate L′
2� The estimate for L′

2 is essentially the same as for L2� For
brevity, set Ũ�2�

s = ;̃
�2�
s 1Vs ≤ 2ε2

1�a1
s � An application of the random time

change formula in Lemma 3.1 gives us, by the analogy of L2�

�4�34� L′
2 ≤ C1

{∫ t

0
EŨ�2�

τs
ds+ 2ε2

1EŨ
�2�
τt

}
�

As in the case of L′
2 we can prove that

E;̃�2�
τs

1Vτs
≤ 2ε2

1� ≤ C1�α� δ�√
s ∧ 1

h0 exp
(
−r

2

2

)
�
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The only difference is that this time ψ̃�z� and h1 +√
2ε1
z
 replace ψ�z� and

h2, respectively. Implementing this bound in the inequality

EŨ�2�
τs

≤ a1
sE;̃

�2�
τs

1Vτs
≤ 2ε2

1�

and then the last inequality in (4.34), we get, since a1
s ≤ ε−2

2 �

L′
2 ≤ C2�α� δ�h0 exp

(
−r

2

2

){∫ t

0

a1
s√

s ∧ 1
ds+ ε2

1ε
−2
2√

t ∧ 1

}
�

Utilizing (4.33) and (4.30), with δ′ = 1, and the inequality ε1 ≤ ε2� we arrive
at the bound

L′
2 ≤ C3�α� δ�

1√
t ∧ 1

h0 exp
(
−r

2

2

)
�

Thus, collecting the bounds for K1, K2, L′
1 and L′

2,

�4�35� 
I2
 ≤ C

{∫ t

0
ρsa

1
s ds+

ρt
�1 + 
r
�4

+ C�α� δ�√
t ∧ 1

h0 exp
(
−r

2

2

)}
�

Estimate I3� It follows from (3.1) and (4.2) that, for any x ∈ R1 and y ≥ 0,
∣∣∣∣ ∂

2

∂x2
	�f�x�y�

∣∣∣∣ ≤
∫ ∞

−∞

f′′�x+ z

√
y �
ϕ�z�dz

≤ Cε−2
2 	�Br�h1�� x� y��

Implementing this bound in (4.12), we get


I3
 ≤ Cε−2
2 E

∫ τt

0
	�Br�h1��Xs−� λs�
d��X�s −Vs�
�

For brevity, set 	s = 	�Br�h1��Xs−� λs� and note that since �X�1�0�1� = V1�0�1�
on the set �X�1 ≤ T�� then, on the same set �X�1 ≤ T�,

∫ τt

0
	s
d��X�s −Vs�
 = 1τt = 1�	1 T− �X�1�

= 1τt = 1�	τt
T− �X�1�

≤ 	τt

�X�1 −T
�

Taking into account that 	�·� x� y� ≤ 1� we arrive at


I3
 ≤ G1 +G2�

where

G1 = Cε−2
2 E1�X�1 > T�

∫ 1

0

d��X�s −Vs�
 = C1H3�

G2 = Cε−2
2 E	τt


�X�1 −T
�
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Estimate G2� First note that, by virtue of (4.6), 
�X�1−T
 ≤ 2ε2
1+ζ� where

ζ = 
�X�1 − 1
1
�X�1 − 1
 > ε2
1�� Then it is clear that, with 	τt

≤ 1, we have

G2 ≤ Cε−2
2 E	τt

2ε2
1 + ζ� ≤ C2ε2

1ε
−2
2 E	τt

+ ε−2
2 Eζ��

Since ε2 = �1 + 
r
�2ε1� then

G2 ≤ C

{
2

�1 + 
r
�4
E	τt

+ ε−2
2 Eζ

}
�

Note that ε−2
2 Eζ ≤ ε−2δ

1 ε−2
2 ε� Utilizing inequalities (4.23) and ε1 ≤ ε2� we get

G2 ≤ C

{
2

�1 + 
r
�4
ρt + 3ε−2δ

1 ε−2
2 ε

}
�

Now we make use of (4.15) to produce a bound for ε−2δ
1 ε−2

2 ε� This yields

G2 ≤ C1

{
ρt

�1 + 
r
�4
+C�α� δ� ε2 exp

(
−r

2

2

)}
�

Putting together the bounds for G1 and G2� we obtain the following estimate:

�4�36� 
I3
 ≤ C

{
ρt

�1 + 
r
�4
+C�α� δ� ε2 exp

(
−r

2

2

)}
�

Thus from (4.31), (4.35) and (4.36) it follows that 
I1
+ 
I2
+ 
I3
 is bounded
by

C

{∫ t

0
ρsAs ds+

ρt
�1 + 
r
�4

+ C�α� δ�√
t ∧ 1

h0 exp
(
−r

2

2

)}
�

where we denote As = as + a1
s � with as and a1

s defined by (4.21) and (4.33),
respectively. Finally, it is easy to see that, by (4.30),

∫ T

0
As

ds√
s ∧ 1

≤ C�δ��

This completes the proof of Theorem 4.2.

4.2. Proof of Theorem 4.1. We can assume that ε = L2δ +N2δ > 0; other-
wise the assertion of Theorem 4.1 becomes trivial. For the proof we consider
a fixed pair r� x ∈ R1 such that condition (4.1) is satisfied with some fixed
α > 0� For brevity, set hi = �β+ i�ε2� i = 0�1� � � � � where β ≥ 1� In the sequel
we shall make use of the function f� R1 → R1 defined as

f�y� = f̂

(
y− r

ε2

)
� y ∈ R1�

where f̂� R1 → R1 is a fixed function with four bounded derivatives and such
that 0 ≤ f̂�y� ≤ 1 and

f̂�y� =
{

0� if 
y
 ≥ β+ 1�
1� if 
y
 ≤ β�
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It is easy to see that the function f satisfies, for any y ∈ R1 and i = 1� � � � �4,
the bounds

�4�37� 
f�i��y�
 ≤ Cε−i2 1Br�h1��y�� 0 ≤ f�y� ≤ 1�

where C is an absolute constant (in particular, C does not depend on β).
All we want to do at this stage is to prove that the function g = �gt�0≤t≤T�

defined as

�4�38� gt = sup
β≥1

E	�Br�βε2��Xτt
� λτt�

βε2 exp�−r2/2 + βε2
r
�
� t ∈ �0�T��

satisfies for any t ∈ �0�T� the inequality

�4�39� gt ≤ C�α� δ� 1√
t ∧ 1

�

if 
r
 > C∗� where C∗ is a positive absolute constant whose value will be
specified later. Taking into account that, by the definition of ε1 and ε2,

�4�40� ε2�1 + 
r
� = �α−1xε�1/�3+2δ� ≤ 1�

then (4.38)–(4.40) and Lemma 3.2(a) imply that, under the assumption

r
 > C∗,

E	�Br�βε2��Xτt
� λτt� ≤ C�α� δ� 1√

t ∧ 1
βε2 exp

(
−r

2

2
+ βε2
r


)

≤ C�α�β� δ� 1√
t ∧ 1

ε2�1 + 
r
��1 −	�
r
��

≤ C�α�β� δ� 1√
t ∧ 1

�xε�1/�3+2δ��1 −	�
r
���

This proves Theorem 4.1 provided 
r
 > C∗� If 
r
 ≤ C∗� then the assertion of
Theorem 4.1 follows obviously from Lemma 4.2.

Thus the proof of Theorem 4.1 will be completed if the inequality (4.39) is
proved. For the last we are going to show that the function gt satisfies the
Gronwall-Bellman inequality in Lemma 3.3. Before giving the proof of (4.39)
remark that the function g is actually bounded from above by a constant, but
which depends on ε� r and α� At this moment it is important for us that this
constant does not depend on t�

We start our estimation of the function g by substituting an appropriate
smooth function for the indicator of the interval Br�h0� = �r−h0� r+h0� in the
quantity 	�Br�h0��Xτt

� λτt�. Following this line, we take into consideration
the inequalities

1Br�h0��y� ≤ f�y� ≤ 1Br�h1��y�� y ∈ R1�

to obtain

�4�41�
E	�Br�h0��Xτt

� λτt� ≤ 
E	�f�Xτt
� λτt� −	�f�X0� λ0��


+P
(√
λ0 N ∈ Br�h1�

)
�
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where N is the standard normal r.v. Due to (4.37) the function f fulfills the
conditions of Theorem 4.2, which gives us the bound

�4�42�

E	�f�Xτt

� λτt� −	�f�X0� λ0��


≤ C

{∫ t

0
ρsAs ds+

ρt
�1 + 
r
�4

+ C�α� δ�√
t ∧ 1

h0 exp
(
−r

2

2

)}
�

with ρt and As from Theorem 4.2. What remains for us to estimate is the
probability on the right-hand side of (4.41). By virtue of Lemma 3.2 and (4.40)
we have

�4�43� P
(√
λ0 N ∈ Br�h1�

) ≤ Ch0 exp�−r2/2 + h0
r
��
From (4.41)–(4.43) we derive

�4�44�
E	�Br�h0��Xτt

� λτt�

≤ C

{∫ t

0
ρsAs ds+

ρt
�1 + 
r
�4

+ C1�α� δ�√
t ∧ 1

h0 exp
(
−r

2

2

)}
�

Recall that hi = �β+ i�ε2� i = 1�2� � � � � Since h5 ≤ 6h0 and, by (4.40), h5
r
 =
�h0 + 5ε2�
r
 ≤ h0
r
 + 5� then

�4�45�
ρt = E	�Br�h5��Xτt

� λτt�
≤ gth5 exp�−r2/2 + h5
r
� ≤ 6gth0 exp�−r2/2 + h0
r
 + 5��

Implementing (4.45) in (4.44), we get

E	�Br�h0��Xτt
� λτt�

≤ C1h0 exp
(
−r

2

2
+ h0
r


){∫ t

0
gsAs ds+

gt
�1 + 
r
�4

+ C1�α� δ�√
t ∧ 1

}
�

Then, dividing both sides by h0 exp�−r2/2 + h0
r
� and taking the supremum
in β ≥ 1�

gt ≤ C1

{∫ t

0
gsAs ds+

gt
�1 + 
r
�4

+ C1�α� δ�√
t ∧ 1

}
�

Choosing C∗ large enough that �1 + C∗�−4C1 ≤ 1/2� we obtain, for any r
satisfying 
r
 > C∗ and t ∈ �0�T�,

gt ≤ 2C1

{∫ t

0
gsAs ds+

C1�α� δ�√
t ∧ 1

}
�

Multiplying both sides by
√
t ∧ 1 and writing ḡt = gt

√
t ∧ 1� we obtain that,

for every t ∈ �0�T�,

ḡt ≤ C2

∫ t

0
ḡsAs

ds√
s ∧ 1

+C2�α� δ��
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Since ḡt ≤ gt and the function g is bounded by a constant not depending on t�
then by virtue of the Gronwall–Bellman inequality in Lemma 3.3 and of (4.3),

ḡt ≤ C2�α� δ� exp
{
C2

∫ t

0
As

ds√
s ∧ 1

}
≤ C3�α� δ��

and finally gt ≤ �t∧1�−1/2C3�α� δ�� Inequality (4.39) is proved, thus completing
the proof of Theorem 4.1.

5. Proof of the main result. We proceed to prove Theorem 2.1 now. We
give a proof only for the first inequality in Theorem 2.1, the second being
proved in the same way.

Assume that ε > 0; otherwise the assertion of Theorem 2.1 becomes trivial.
Let x and r, r > 0, be such that the conditions of Theorem 2.1 are satisfied.
Introduce into consideration two functions fi� R1 → R1� i = 1�2, defined as

f1�y� = f̂

(
y− r

ε2

)
� f2�y� = f̂

(
y− r+ ε2

ε2

)
� y ∈ R1�

where f̂� R1 → R1 is a function with four bounded derivatives and such that
0 ≤ f̂�y� ≤ 1 and f̂�y� = 0 if y ≤ 0� f̂�y� = 1 if y ≥ 1� The functions fi�
i = 1�2, satisfy, for any y ∈ R1 and k = 1� � � � �4,


f�k�
i �y�
 ≤ Cε−k2 1Br�ε2��y���5�1�

0 ≤ 1r+ ε2 ≤ y� ≤ f1�y� ≤ 1r ≤ y� ≤ f2�y� ≤ 1r− ε2 ≤ y� ≤ 1�

Utilizing the second line in (5.1), it is easy to see that

	��r�∞��X1� λ1� −	��r�∞��X0� λ0�
≤ 	��r�∞��X1� λ1� −	��r− ε2�∞��X0� λ0� +P

(√
λ0 N ∈ Br�ε2�

)
≤ 	�f2�X1� λ1� −	�f2�X0� λ0� +P

(√
λ0 N ∈ Br�ε2�

)
and in the same way

	��r�∞��X1� λ1� −	��r�∞��X0� λ0�
≥ 	�f1�X1� λ1� −	�f1�X0� λ0� −P

(√
λ0 N ∈ Br�ε2�

)
�

where N is the standard normal r.v. These inequalities give rise to

�5�2�

E	��r�∞��X1� λ1� −	��r�∞��X0� λ0�


≤ max
i=1�2


E	�fi�X1� λ1� −	�fi�X0� λ0�


+P
(√
λ0 N ∈ Br�ε2�

)
�

Since by the definition of τt we have τT = 1 a.s., then

�5�3� E	�fi�X1� λ1� −	�fi�X0� λ0� = E	�fi�XτT
� λτT� −	�fi�X0� λ0��
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Due to (5.1) the functions fi� i = 1�2, satisfy condition (4.2) of Theorem 4.2,
with β = 1� Then, according to Theorem 4.2, we have

�5�4�

E	�fi�XτT

� λτT� −	�fi�X0� λ0�


≤ C

{∫ T

0
ρsAs ds+

ρT
�1 + 
r
�4

+ C�α� δ�√
t ∧ 1

ε2 exp
(
−r

2

2

)}
�

where

ρs = E	�Br�6ε2��Xτs
� λτs�� s ∈ �0�T��

By Theorem 4.1 with β = 6� we have that, for any s ∈ �0�T�,

ρs ≤ C2�α� δ�
1√
s ∧ 1

�xε�1/�3+2δ��1 −	�r���

Then, implementing this bound in (5.4) and taking into account (4.3), the
inequality in Lemma 3.2(a) and (4.40), we obtain

�5�5� 
E	�fi�XτT
� λτT� −	�fi�X0� λ0�
 ≤ C3�α� δ��xε�1/�3+2δ��1 −	�r���

As in (4.43), the probability on the right-hand side of (5.2) does not exceed

Cε2 exp�−r2/2� ≤ C4�α� δ��xε�1/�3+2δ��1 −	�r���

Then from (5.2), (5.3) and (5.5) it follows that

�5�6�

E	��r�∞��X1� λ1� −E	��r�∞��X0� λ0�


≤ C5�α� δ��xε�1/�3+2δ��1 −	�r���

Finally, we note that

�5�7� E	��r�∞��X1� λ1� = P�X1 ≥ r�

and

�5�8�

E	��r�∞��X0� λ0� = P
(√
λ0 N ≥ r

)
= P�N ≥ r� + θ1P

(√
λ0 N ∈ Br

(√
2ε2

))
= 1 −	�r� + θ2Cε2 exp�−r2/2�
= 1 −	�r� + θ3C6�α� δ��xε�1/�3+2δ��1 −	�r���

where 
θi
 ≤ 1� i = 1�2�3� Now the assertion of Theorem 2.1 follows from
(5.6)–(5.8).
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6. Proofs of Theorems 2.2–2.5. First we give the proof of Theorem 2.2.
Let x be in the range 1 ≤ x ≤ α�L2δ + N2δ�−1 and 0 < q < 1� Set r =√

2q log x� Observe that r is the solution of the equation

�1 + r�c�δ� exp�r2/2� = xq�1 + r�c�δ� = x′

and that

x′ = xq
(
1 +

√
2q log x

)c�δ�
≤ C�δ� q�x(1 +

√
2q log x

)−6−4δ

≤ αC�δ� q��L2δ +N2δ�−1(1 +
√

2q log x
)−6−4δ

�

Therefore

x′�L2δ +N2δ��1/�3+2δ� ≤ C1�α� δ� q�
�1 +√

2q log x �2
≤ C1�α� δ� q�

log x

and

1 ≤ x′ ≤ αC3�δ� q��L2δ +N2δ�−1�

A one-term asymptotic expansion for 1 −	�r� yields

1 −	�r� = 1√
2πr

exp
(
−r

2

2

){
1 + θ

1
r2

}

= 1√
2π

1

xq
√

2q log x

{
1 + θ

1
2q log x

}
�

where 
θ
 ≤ 1� Therefore, by Theorem 2.1 with x′ replacing x� we have

P�X1 ≥ r� = �1 −	�r��{1 + θC�α� δ� q��x′�1/�3+2δ��L2δ +N2δ�1/�3+2δ�}

= 1√
2π

1

xq
√

2q log x

{
1 + θ

C�α� δ� q�
log x

}
�

for some 
θ
 ≤ 1� Theorem 2.2 is proved.
The proof for Theorem 2.3 is carried through in the same manner.
Set r = √

q�δ� x� � Observe that r is the solution of the equation

�1 + r�c�δ� exp�r2/2� = �1 + r�c�δ�x(1 +
√

2 log x
)−q�δ� = x′�

and, since r ≤ √
2 log x,

x′ ≤ x
(
1 +

√
2 log x

)c�δ�−q�δ� ≤ α�L2δ +N2δ�−1(1 +
√

2 log x
)−6−4δ

�

Therefore

x′�L2δ +N2δ��1/�3+2δ� ≤ C�α�
2 log x

≤ C�α�
q�δ� x�

and

1 ≤ x′ ≤ α�L2δ +N2δ�−1�
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A one-term asymptotic expansion for 1 −	�r� yields

1 −	�r� = 1√
2πr

exp
(
−r

2

2

){
1 + θ

1
r2

}

= 1√
2π

�1 +√
2 log x �q�δ�

x
√
q�δ� x�

{
1 + θ

1
q�δ� x�

}
�

where 
θ
 ≤ 1� This allows us to derive Theorem 2.3 from Theorem 2.1 as in
the previous case.

Theorem 2.4 follows immediately from Theorem 2.1 if we observe that the
remainder in (2.2) goes to 0 uniformly under the assumption

x = o��L2δ +N2δ�−1��
Finally, we give the proof of Theorem 2.5.
Set εn = L2δ +N2δ < 1� Let r satisfy the condition 0 ≤ r ≤ √

2q
 log εn
� If
we write x = exp�r2/2�� then 1 ≤ x ≤ ε

−q
n � Let us observe that r is the solution

of the equation

�1 + r�c�δ� exp�r2/2� = x
(
1 +

√
2 log x

)c�δ� = x′�

where

1 ≤ x′ ≤ ε−qn
(
1 +

√
2
 log εn


)c�δ� = o�ε−1
n ��

Thus we proved that conditions of Theorem 2.4 are satisfied with x′ replacing
x� Therefore the requested assertion is immediate.

APPENDIX

We give a proof of equalities (4.9)–(4.12). Applying the standard Itô’s for-
mula [see, e.g., Jacod and Shiryaev (1987), page 57) for the two-dimensional
semimartingale �Xτt

� λτt�� we get

	�f�Xτt
� λτt� −	�f�X0� λ0�

=
∫ τt

0

∂

∂x
	�f�Xs−� λs−�dXs −

∫ τt

0

∂

∂y
	�f�Xs−� λs−�dVs

+ 1
2

∫ τt

0

∂2

∂x2
	�f�Xs−� λs−�d�Xc�s

+ ∑
0<s≤τt

[
	�f�Xs� λs� −	�f�Xs−� λs−�

− ∂

∂x
	�f�Xs−� λs−�Xs +

∂

∂y
	�f�Xs−� λs−�Vs

]
�

where �Xc� is the quadratic characteristic of the continuous martingale part
Xc of the martingale X� Adding the last component of the fourth term to the
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second term on the right-hand side of the above equality and taking (3.1) into
account, we arrive at

	�f�Xτt
� λτt� −	�f�X0� λ0�

=
∫ τt

0

∂

∂x
	�f�Xs−� λs−�dXs +

1
2

∫ τt

0

∂2

∂x2
	�f�Xs−� λs−�d��Xc�s −Vc

s�

+ ∑
0<s≤τt

[
	�f�Xs� λs� −	�f�Xs−� λs−� −

∂

∂x
	�f�Xs−� λs−�Xs

]
�

Now we add and subtract 	�f�Xs−� λs� and �∂/∂x�	�f�Xs−� λs�Xs to obtain

	�f�Xτt
� λτt� −	�f�X0� λ0�

=
∫ τt

0

∂

∂x
	�f�Xs−� λs−�dXs +

1
2

∫ τt

0

∂2

∂x2
	�f�Xs−� λs−�d��Xc�s −Vc

s�

+ ∑
0<s≤τt

[
	�f�Xs� λs� −	�f�Xs−� λs� −

∂

∂x
	�f�Xs−� λs�Xs

]

− ∑
0<s≤τt

�	�f�Xs−� λs−� −	�f�Xs−� λs��

− ∑
0<s≤τt

[
∂

∂x
	�f�Xs−� λs−� −

∂

∂x
	�f�Xs−� λs�

]
Xs�

Note that, since Vc and �Xc� are continuous,

∫ τt

0

∂2

∂x2
	�f�Xs−� λs−�d��Xc�s −Vc

s� =
∫ τt

0

∂2

∂x2
	�f�Xs−� λs�d��Xc�s −Vc

s��

Taking expectations we obtain

E	�f�Xτt
� λτt� −	�f�X0� λ0�

= 1
2
E

∫ τt

0

∂2

∂x2
	�f�Xs−� λs�d��Xc�s −Vc

s�

+E
∑

0<s≤τt

[
	�f�Xs� λs� −	�f�Xs−� λs� −

∂

∂x
	�f�Xs−� λs�Xs

]

−E
∑

0<s≤τt
�	�f�Xs−� λs−� −	�f�Xs−� λs��

−E
∑

0<s≤τt

[
∂

∂x
	�f�Xs−� λs−� −

∂

∂x
	�f�Xs−� λs�

]
Xs�

Now we can get rid of the last expectation if we take into account that

E
∑

0<s≤τt

[
∂

∂x
	�f�Xs−� λs−� −

∂

∂x
	�f�Xs−� λs�

]
Xs = 0�
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To prove this last claim, note that

�∂/∂x�	�f�Xσ−� λσ−� − �∂/∂x�	�f�Xσ−� λσ�  = 0

only for predictable stopping times σ , but for any predictable stopping time σ
we have E�Xσ 
�σ−� = 0�

Next we add and subtract

1
2
E

∑
0<s≤τt

∂2

∂x2
	�f�Xs−� λs� �X2

s − Vs�

= 1
2
E

∫ τt

0

∂2

∂x2
	�f�Xs−� λs�d��Xd�s −Vd

s ��

where �Xd� = �X� − �Xc� is the quadratic characteristic of the discontinuous
martingale part Xd =X−Xc of the martingale X� and Vd = V−Vc� Taking
(3.1) into account, we arrive at

E	�f�Xτt
� λτt� −	�f�X0� λ0�

= 1
2
E

∫ τt

0

∂2

∂x2
	�f�Xs−� λs�d��X�s −Vs�

+E
∑

0<s≤τt

[
	�f�Xs� λs� −	�f�Xs−� λs� −

∂

∂x
	�f�Xs−� λs�Xs

− ∂2

∂x2
	�f�Xs−� λs�X2

s

]

−E
∑

0<s≤τt

[
	�f�Xs−� λs−� −	�f�Xs−� λs� −

∂

∂y
	�f�Xs−� λs�Vs

]

= I1 + I2 + I3�

as claimed in (4.9)–(4.12).
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