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Let �B�t��t≥0 be the linear Brownian motion starting at 0, and set
Xn�t� = �1/n!� ∫ t0�t− s�n dB�s�. Watanabe stated a law of the iterated log-
arithm for the process �X1�t��t≥0, among other things. This paper proposes
an elementary proof of this fact, which can be extended to the general case
n ≥ 1. Next, we study the local asymptotic classes (upper and lower) of
the �n + 1�-dimensional process Un = �B	X1	 
 
 
 	Xn� near zero and in-
finity, and the results obtained are extended to the case where B is the
d-dimensional Brownian motion.

1. Introduction. Let �B�t��t≥0 be the linear Brownian motion starting at
0. Denote by

Xn�t� =
1
n!

∫ t
0
�t− s�n dB�s�

its n-fold primitive, and

Un = �B	X1	 
 
 
 	Xn�


Upon integration by parts, we obtain the integral of Brownian motion as a
special case: X1�t� =

∫ t
0 B�s�ds (cf. Lemma 3 for a generalization to n > 1).

The Gaussian process Xn was first mentioned by Shepp [18]. Later, Wahba
used this process to derive a correspondence between smoothing by splines
and Bayesian estimation in certain stochastic models ([22], [23]). See also
[2] where Xn is equally introduced in describing some degenerate Gaussian
diffusions. Let us point out that the process X1 has been studied at length by
several authors (see [11] for further references related to this particular case).

This work is concerned with the asymptotic behavior of the real process
Xn, as well as that of the �n+ 1�-dimensional process Un.

In [15], McKean studied the asymptotic behavior of the successive hitting
times at level 0 for the process X1, as well as the corresponding hitting loca-
tions of the Brownian motion B. More precisely, setting

t0 = 1	

tn = inf�t > tn−1� X1�t� = 0		
bn = B�tn�	 n ≥ 1	
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he derived from the law of large numbers the following asymptotics:

log bn ∼
4π√

3
n as n→ ∞	

log tn ∼
8π√

3
n as n→ ∞


So, it may be asked how the process U1 grows. In fact, U1 will be proven to be
transient; that is, ��U1�t��� → +∞ a.s. as t→ +∞. By the way, note that each
component of U1 is recurrent. We now ask the question of how to derive the
escape speed of ��U1�t���. For instance, two particular results will be obtained:

lim sup
t→+∞

��U1�t���
��2t3/3� log log t�1/2

= 1 a.s.,

lim sup
t→+∞

�log t�1/2+ε

t1/2
��U1�t��� =

{
0	 if ε ≤ 0	
+∞	 if ε > 0


On the other hand, in [24], Watanabe established a law of the iterated loga-
rithm forX1. In fact, he derived this formula from a general result concerning
a large class of Gaussian processes (see also [17]), and so his proof is quite
difficult. The aim of this paper is first to give a short and elementary proof
of the law of the iterated logarithm which can be extended to the process Xn
for any n ≥ 1, and second to characterize the local asymptotic classes of the
�n+ 1�-dimensional process Un, which will be shown to be a Markov process.

This article is divided into three parts. In Section 2 we write three laws of
the iterated logarithm corresponding to the following cases: t→ 0+, t→ +∞
and t → t0 for a fixed time t0 ∈�0	+∞�. The study of the case t → +∞ will
follow from the case t → 0+ thanks to a time inversion, and the case t → t0
will be obtained by using the Markov property of the process Un. The law of
the iterated logarithm related to the situation t→ 0+ is based on an estimate
about the tail of the distribution of max0≤s≤t Xn�s�, which will be deduced from
a large deviations principle concerning Gaussian processes stated by Marcus
and Shepp [14]. We will also need an independence property of some particular
increments of Xn.

Sections 3 and 4 are devoted to the local asymptotic classes of the process
Un. Several integral tests for certain classes of Gaussian processes are well
known (see [9], [10], [25], [26]). Unfortunately, none of them can be applied
to the process Un, because it does not have the required conditions. In fact,
in Section 3, we will derive, directly from the integral tests of Kolmogorov for
Brownian motion and Watanabe for some stationary Gaussian processes, a
necessary and sufficient condition to decide whether a given function belongs
to the local asymptotic upper class of Un—that is, to say exactly when the
event �∃ ε > 0 �resp. T > 0�	 ∀ t < ε �resp. t > T�� ��Un�t��� < f�t�	 occurs
with probability 1. Here, �� · �� denotes the Euclidean norm in R

n+1. It will be
seen that the upper classes near +∞ of both processes Un and Xn coincide,
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while the upper class near 0+ of Un is the same as the one of Brownian mo-
tion B.

In Section 4 we give some new integral tests characterizing the asymp-
totic lower classes of Un (i.e., related to the events �∃ ε > 0 �resp. T > 0�	
∀ t < ε �resp. t > T� ��Un�t��� > f�t�	). Our results are analogous to the
classical tests successively written by Dvoretsky and Erdős in the case of
space-valued Brownian motion [3], and by Hendricks [4], Takeuchi [20], [19]
and Taylor [21] for multidimensional processes with stable and independent
components. Here, the method consists in obtaining several estimates of some
hitting probabilities.

Finally, in Section 5 we discuss the case where B is the d-dimensional
Brownian motion, and exhibit more general results.

2. Laws of the iterated logarithm for Xn. Let us introduce some no-
tation. Set

ϕn�t� =
√

2γn t
n+1/2�log log�1/t��1/2	

ψn�t� =
√

2γn t
n+1/2�log log t�1/2	

where

γn =
1

�2n+ 1��n!�2

and

Yn�s	 t� =Xn�t� −
n∑
k=0

�t− s�k
k!

Xn−k�s�
(1)

Theorem 1. The following laws of the iterated logarithm near 0+	+∞ and
any t0 > 0 hold:

lim sup
t→0+

Xn�t�
ϕn�t�

= 1 a.s.,(2)

lim sup
t→+∞

Xn�t�
ψn�t�

= 1 a.s.,(3)

lim sup
t→t0

Yn�t0	 t�
ϕn��t− t0��

= 1 a.s.(4)

Suppose that assertion (2) is true and let us prove (3) and (4). Assertion (3)
obviously hinges on the following lemma.

Lemma 2. Set X̂n�0� = 0 and for t > 0, X̂n�t� = t2n+1Xn�1/t�. Then the

processes �Xn�t��t≥0 and �X̂n�t��t≥0 are identical in law.
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Proof. It is easy to verify that the above Gaussian processes have the
same covariance functions and the proof is complete. ✷

In order to prove assertion (4) we need some properties of the quantity
Yn�s	 t�.

Lemma 3. (i) If s < t then

Yn�s	 t� =
∫ t
s

�t− σ�n
n!

dB�σ�

=
∫ t
s

�t− σ�n−1

�n− 1�! B�σ�dσ − �t− s�n
n!

B�s�

(5)

(ii) Fix an instant s ≥ 0. Then the processes �Yn�s	 s+ t��t≥0 and �Xn�t��t≥0
have identical laws, and �Yn�s	 s+t��t≥0 is independent of σ�B�r�	 0 ≤ r ≤ t	.

Proof. (i) We have∫ t
s

�t− σ�n
n!

dB�σ� =Xn�t� −
∫ s

0

�s− σ + t− s�n
n!

dB�σ�

Then, by using the binomial theorem,

�s− σ + t− s�n =
n∑
k=0

(
n

j

)
�s− σ�n−k�t− s�k	

we get (5). For the second portion of (i), use (5) and integration by parts.
(ii) Part (ii) is a consequence of the iid increments of Brownian motion. ✷

As a result,

lim sup
t→t+0

Yn�t0	 t�
ϕn��t− t0��

= 1 a.s.	

which implies

lim sup
t→t0

Yn�t0	 t�
ϕn��t− t0��

≥ 1 a.s.

The corresponding upper bound is obtained in exactly the same manner as
the one for Xn�t� via the analogue of Lemma 5.

Proof of Theorem 1. We imitate the original proof of Khintchine (see,
e.g., [13], page 242) mutatis mutandis.

We first prove the relation

P

{
lim sup
t→0+

Xn�t�
ϕn�t�

≤ δ
}
= 1(6)

for every δ > 1. To do this, we need an estimate on the tail of the law of
the random variable max0≤s≤t Xn�s�. This one is contained in the following
lemma.
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Lemma 4. For every t > 0 and ε > 0, there exists A = A�t	 ε� > 0 such that
for all a > A,

P

{
max
0≤s≤t

Xn�s� > a
}
≤ exp

(
−�1 − ε� a2

2γnt2n+1

)

(7)

Proof. This inequality is the result of a large deviations principle stated
in [14] as follows: if �Xt�t∈I is a real-bounded Gaussian process indexed by a
linear interval I, then

lim
a→+∞

1
a2

P

{
sup
t∈I
Xt > a

}
= −

(
2 sup
t∈I

E�X2
t �
)−1

 ✷

Pick now θ ∈ �0	1�, and put

tj = θj	
aj = δϕn�tj+1�	
Aj =

{
max
tj+1≤s≤tj

Xn�s� > aj
}
	

pj = P�Aj�

We have

a2
j

2γnt
2n+1
j

= δ2θ2n+1 log�j log θ�


Therefore, it comes from (7) that

pj ≤ �j log θ�−�1−ε�δ2θ2n+1



Choose now θ < 1 and ε ∈ �0	1� such that �1 − ε�δ2θ2n+1 > 1. This yields∑
pj < +∞

and hence, by the Borel–Cantelli lemma we get

P

(
lim sup
j≥0

Aj

)
= 0


This can be written as follows: there exists a.s. an integer j0 such that for all
j > j0 and all t ∈ �tj+1	 tj�,

Xn�t� ≤ aj ≤ δϕn�t�	
and then for every δ > 1,

lim sup
t→0+

Xn�t�
ϕn�t�

≤ δ a.s.

Let δ ↓ 1+ through the rational numbers and (6) ensues.
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Now, let us prove the converse inequality

lim sup
t→0+

Xn�t�
ϕn�t�

≥ δ a.s.	(8)

for each δ < 1. Pick again θ ∈ �0	1�, and set

tj = θj	
Bj = �Yn�tj+1	 tj� ≥ �1 − θ�n+1/2ϕn�tj�		
qj = P�Bj�


We will minorize the probability qj as follows. By scaling and Lemma 3(ii),

qj ≥ P

{
Xn�1� ≥ t−�n+1/2�

j ϕn�tj�
}
≥ P

{
N ≥

√
2 log log tj

}

where N is a normal Gaussian variable.
Using the classical inequality

∫ +∞

A
exp

(
−x

2

2

)
dx ≥ exp�−A2/2�

A+ 1/A
	

a lower bound of qj is now obtained:

qj ≥
1√
2π

exp�− log log�1/tj��√
2 log log�1/tj� + 1/

√
2 log log�1/tj�




The right-hand side is equivalent to const.�j√log j�−1 when j→ +∞, so that∑
qj = +∞


The Borel–Cantelli lemma together with the independence of the events Bj
then yield

P

(
lim sup
j≥0

Bj

)
= 1


Thus a.s.,

Xn�tj� ≥ �1 − θ�n+1/2ϕn�tj� +
n∑
k=0

1
k!
tkj�1 − θ�kXn−k�tj+1�

for infinitely many j. Invoking the first part, we are able to minimize each
term of the sum arising in the above right-hand side as follows: a.s., for each
k ∈ �0	 
 
 
 	 n	, there exists an integer jk such that for all j ≥ jk the following
inequality holds:

Xn−k�tj+1� ≥ −2ϕn−k�tj+1�

But we have for large enough j,

log��j+ 1� log�1/θ�� ≤ 2 log�j log�1/θ��
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Hence we can choose jk such that, a.s., for all j ≥ jk,
Xn−k�tj+1� ≥ −4ϕn−k�tj�θn−k+1/2


Thus, setting l0 = max0≤k≤n jk, it follows, a.s., for all j ≥ l0,
n∑
k=0

1
k!
tkj�1 − θ�kXn−k�tj+1� ≥ −4

√
θ
n∑
k=0

θn−k�1 − θ�ktkjϕn−k�tj�


Finally, there exist some positive constants ηkn	 k ∈ �0	 
 
 
 	 n	, depending
only on n, such that a.s.,

Xn�tj�
ϕn�tj�

≥ �1 − θ�n+1/2 −
√
θ
n∑
k=0

ηknθ
n−k�1 − θ�k

for infinitely many j.
Since the right-hand side tends to 1 as θ ↓ 0+, it can be chosen larger than

δ, which is less than 1. Hence relation (8) is checked and the proof of (2) is
easily completed. ✷

3. The asymptotic upper classes of Un. In [24], Watanabe asserts that
if �ξt�t≥0 is a centered Gaussian process with an autocorrelation function ρ
defined by ρ�s	 t� = E�ξsξt�/

√
E�ξ2

s�E�ξ2
t � which satisfies

ρ�t	 t+ h� ≥ 1 − α1�h�α3 as h→ 0+ and t→ +∞	(9)

ρ�t	 t+ h� ≤ �1 − α2�h�α3� ∨ α4 as t→ +∞	(10)

lim
s→+∞ sρ�t	 t+ s� = 0 uniformly with respect to t(11)

for some constants α1	 α2 > 0	0 < α3 < 2	 α4 < 1, then for any nondecreasing
function f� �0	+∞� → �0	+∞� we have

∫ +∞
f�t��2/α2�−1 exp�−f�t�2/2�dt

{
<
=
}
+∞

⇒ P�∃ T > 0� ∀ t > T	 ξt < f�t�	 =
{

1
0

}



We will apply this result to a centered Gaussian process built on Xn. Set

Vn�t� =
√
γn e

−�2n+1�tXn�e2t� and r�s	 t� = E�Vn�s�Vn�t��

It can be checked that Vn is a centered stationary Gaussian process satisfying
(9)–(11).

Put t = e2s and f�t� = g� 1
2 log t�. We have

Vn�s� ≤ g�s� ⇔ Xn�t� ≤ f�t�

and then

∫ +∞ exp�−g�s�2/2�ds and
∫ +∞ exp�−f�t�2/2� �dt/t� simultaneously

converge or diverge. Hence, we obtain the following integral test, which was
written by Watanabe in the case n = 1 [24].
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Theorem 5. Let f� �0	+∞� → �0	+∞� be a nondecreasing function. We
have

P
{∃ T > 0� ∀ t > T	 �Xn�t�� ≤

√
γn t

n+1/2f�t�	 = 1 or 0(12)

according to the integral
∫ +∞ exp�−f�t�2/2� �dt/t� converges or diverges.

Due to Lemma 2, the same test holds for small t with
∫

0+ under the as-
sumption that f is nonincreasing.

Now we are able to state a similar test related to the process Un.

Theorem 6. (i) Let f� �0	+∞� → �0	+∞� be a nondecreasing function.
Then

��Un�t��� < √
γn t

n+1/2f�t� for any large t with probability

1 or 0 according as the integral
∫ +∞ exp�−f�t�2/2� �dt/t�

converges or diverges.

(ii) Assume f does not increase. Then

��Un�t��� < t1/2f�t� for any small t with probability 1 or
0 according as the integral

∫
0+ f�t� exp�−f�t�2/2� �dt/t�

converges or diverges.

Proof. (i) The divergence part of the first assertion can be easily deduced
from the one related to Xn thanks to the obvious inequality:

�Xn�t�� ≤ ��Un�t���

In order to prove the convergence part, write

��Un�t���√
γn t

n+1/2
=
[(

Xn�t�√
γn t

n+1/2

)2

+
n∑
k=1

αkn
t2k

(
Xn−k�t�√
γn−k tn−k+1/2

)2]1/2

(13)

with αkn = γn−k/γn

Suppose

∫ +∞ exp�−f�t�2/2� �dt/t� < +∞
 As in [24] we can limit ourselves
to the case

√
log log t ≤ f�t� ≤ √3 log log t
 Put g�t� = �1+ ε�t��−1/2f�t� where

ε�t� =
n−1∑
k=1

αkn
t2k

+ βn
t2n

�

the positive constant βn will be chosen later. Since

exp
(
−g�t�

2

2

)
= exp

(
1
2
ε�t�

1 + ε�t�f�t�
2
)

exp
(−f�t�2

2

)

∼ exp
(−f�t�2

2

)
as t→ +∞	

we get
∫ +∞

exp
(−g�t�2

2

)
dt

t
< +∞	
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which implies in regard to (12) that a.s. for large t and k ∈ �1	 
 
 
 	 n	:

�Xk�t�� <
√
γk t

k+1/2g�t�
(14)

By another way, the well-known law of the iterated logarithm of Brownian
motion yields the almost sure majorization

�B�t�� <
√

3t log log t < κ
√
tg�t�(15)

for large t and some appropriate constant κ > 0. Consequently, from (13), (14)
and (15) comes the following inequality, which is valid a.s. for all large t:

��Un�t���√
γn t

n+1/2f�t� ≤ g�t�
[
1 +

n−1∑
k=1

αkn
t2k

+ κ
2αnn
t2n

]1/2

= f�t�

for βn = κ2αnn. This proves the first assertion.
(ii) The proof of the second assertion is quite similar to the proof of (i). In

order to check the convergence part, write

��Un�t���
t1/2

=
[
B�t�
t1/2

+
n∑
k=1

γkt
2k
(
Xk�t�√
γk t

k+1/2

)2]1/2

	

and suppose that
√

log log�1/t� ≤ f�t� ≤ √
3 log log�1/t�
 We set now h�t� =

�1 + ε�t��−1/2f�t� with

ε�t� =
n∑
k=1

γkt
2k


We have

h�t� ∼ f�t� and exp�−h�t�2/2� ∼ exp�−f�t�2/2� as t→ 0+


Thus, if the integral
∫

0+ f�t� exp�−f�t�2/2� �dt/t� is convergent, so are the
following:

∫
0+
h�t� exp�−h�t�2/2� dt

t
and

∫
0+

exp�−h�t�2/2� dt
t



Hence, we get by the classical Kolmogorov test (see, e.g., [5], page 33)

�B�t�� < t1/2h�t� when t→ 0+	

as well as, with the aid of (12),

�Xk�t�� <
√
γk t

k+1/2h�t� for any small t and k ∈ �1	 
 
 
 	 n	 a.s.	

so that

��Un�t���
t1/2

< h�t�
(

1 +
n∑
k=1

γkt
2k
)1/2

= f�t� as t→ 0+ a.s. ✷
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4. The asymptotic lower classes of Un. The results we are going to
state below are some integral tests which allow us to decide whether or not a
function f eventually minorizes ��Un�� either near 0 or ∞. Our method is sim-
ilar to the one described by Dvoretsky and Erdős in the case of space-valued
Brownian motion [3], and in [4], [19], [20] and [21] for multidimensional pro-
cesses with stable and independent components. We will need some estimates
concerning the potential associated with the process Un.

We start by stating some properties of the process Un.

4.1. Preliminaries.

Proposition 7. Un is a strong Markov process.

Proof. Since Un satisfies the following stochastic differential system:

dX0�t� = dB�t�
dX1�t� = X0�t�dt










dXn�t� =Xn−1�t�dt	
it is easy to see that Un is a Gaussian diffusion with generator (see, e.g., [5]):

� = 1
2
∂2

∂x2
0

+
n∑
k=1

xk−1
∂

∂xk



By Itô’s formula, for all f ∈ C2
B,

f�Un�t�� = f�Un�0�� +
∫ t

0
�f�Un�s��ds+ martingale


Therefore, �Un	� � solves the martingale problem and is a strong Markov
process by the Stroock–Varadhan theorem. ✷

Now write

pt�x�y�dy = Px�Un�t� ∈ dy		 x = �x0	 
 
 
 	 xn�	 y = �y0	 
 
 
 	 yn�
for the transition densities of the Markov process Un.

Since Un is a Gaussian process, we get an explicit formula for pt�x�y�:

pt�x�y�=
γ

tν+1
exp

[
− ∑

0≤i	 j≤n

aij

ti+j+1

(
yi−

i∑
k=0

tk

k!
xi−k

)(
yj−

j∑
k=0

tk

k!
xj−k

)]
	(16)

where the double of the matrix �aij�0≤i	 j≤n is the inverse of the covariance
matrix of the random vector U1, namely

2 =
(

1
�i+ j+ 1�i!j!

)
0≤i	 j≤n

and γ = 1

�2π��n+1�/2√det2
	 ν = 1

2�n+ 1�2 − 1
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The density (16) has the following matrix representation:

pt�x�y� =
γ

tν+1
exp

[−�y− xJt�At�y− xJt�T
]
	(17)

where we put for all x = �x0	 
 
 
 	 xn� ∈ R
n+1:

xT =



x0






xn


	 At =

(
aij

ti+j+1

)
0≤i	 j≤n

	

Jt =




1 t
t2

2

 
 


tn

n!

0 1 t 
 
 

tn−1

�n− 1�!
0 0 1 
 
 


tn−2

�n− 2�!













 
 







0 0 0 
 
 
 1







Now set

4�x� =
∫ +∞

0
pt�x�0�dt	

the 0-potential related toUn �0 denotes the origin �0	 
 
 
 	0��. In order to make
this expression more explicit, we require the duality relationship stated below.

Lemma 8. For all x=�x0	 
 
 
 	 xn� ∈R
n+1 put x∗ = �x0	−x1	 x2	 
 
 
 	 �−1�nxn�


For all x	y ∈ R
n+1 we have

pt�x�y� = pt�y∗�x∗�
(18)

Proof. In view of (17) we have to verify that the following equality holds:

�y− xJt�At�y− xJt�T = �x∗ − y∗Jt�At�x∗ − y∗Jt�T

This one is the result of an elementary computation that leads to the following
relation:

JtAtJ
T
t = −A−t
 ✷

Therefore,

4�x� =
∫ +∞

0

γ

tν+1
exp

(
− ∑

0≤i	 j≤n
�−1�i+j aij

ti+j+1
xixj

)
dt
(19)
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It is well known that

�4 = −δ0
(20)

Finally, notice that each component of Un has a scaling property such that
for any µ > 0,

�Xk�µ ·��0≤k≤n
law= �µk+1/2Xk�·��0≤k≤n


This property implies the following identity:

pt�x0	 x1	 
 
 
 	 xn�0� =
1
tν+1
pt

(
x0

t1/2
	
x1

t3/2
	 
 
 
 	

xn
tn+1/2

�0
)



All scaling factors are different so this leads us to change the Euclidean norm
on R

n+1 into the application N defined by

N�x� = max
0≤i≤n

�xi�1/�2i+1�


4.2. Hitting probabilities. We wish to estimate the following hitting prob-
abilities of a ball for the process Un:

p�x	T	R� = Px�∃ t > T� ��Un�t��� ≤ R		
p�x	T1	T2	R� = Px�∃ t ∈ �T1	T2�� ��Un�t��� ≤ R	


To do this, we shall need some estimates concerning the potential 4.

Proposition 9. (i) The potential 4 is a C∞-function over R
n+1 \ �0	.

(ii) There exist some positive constants a	 b such that for any x ∈ R
n+1 \ �0	

we have

a

N�x�2ν
≤ 4�x� ≤ b

N�x�2ν

(21)

(iii) There exist some positive constants c	 λ such that for any x ∈ R
n+1 \ �0	

and any T > 0 we have

∫ +∞

T
pt�x�0�dt ≥

c

Tν
exp

[
−λ
(
N�x�2

T
∨
(
N�x�2

T

)2n+1)]

(22)

Proof. (i) The first assertion of Proposition 9 is an easy fact, and its proof
is left to the reader.

(ii) Since the matrix A1 is positive definite, it is clear that there exist some
positive constants λ1 and λ2 such that

λ1

n∑
i=0

x2
i ≤

∑
0≤i	j≤n

aijxixj ≤ λ2

n∑
i=0

x2
i 
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Hence by (19),

4�x� ≤
∫ +∞

0

γ

tν+1
exp

(
−λ1

n∑
i=0

x2
i

t2i+1

)
dt

≤ min
0≤i≤n

∫ +∞

0

γ

tν+1
exp

(
−λ1

x2
i

t2i+1

)
dt

≤ b min
0≤i≤n

�xi�−2ν/�2i+1� = b

N�x�2ν

with

b = max
0≤i≤n

∫ +∞

0

γ

tν+1
exp

(
− λ1

t2i+1

)
dt


On the other hand,

4�x� ≥
∫ +∞

0

γ

tν+1
exp

(
−λ2

n∑
i=0

x2
i

t2i+1

)
dt

≥
∫ +∞

0

γ

tν+1
exp

(
−λ2

n∑
i=0

(
N�x�2

t

)2i+1)
dt

≥ a

N�x�2ν

with

a =
∫ +∞

0

γ

tν+1
exp

(
−λ2

n∑
i=0

1
t2i+1

)
dt


This proves fact (21).
(iii) Checking (22) is quite similar. Indeed, we have

∫ +∞

T
pt�x�0�dt ≥

∫ +∞

T

γ

tν+1
exp

(
−λ2

n∑
i=0

(
N�x�2

t

)2i+1)
dt

≥ exp
(
−λ2

n∑
i=0

(
N�x�2

T

)2i+1) ∫ +∞

T

γ

tν+1
dt


Finally, observing that
∑n
i=0X

2i+1 ≤ �n + 1�max�X	X2n+1� for any X ≥ 0,
prove (22) with the choices λ = �n+ 1�λ2 and c = γ/ν
 ✷

The following proposition is an easy consequence of Itô’s rule with the aid
of (20), as well as (21).

Proposition 10. Put τR = inf�t > 0� ��Un�t��� < R	 with inf � = +∞
and let ��x�� > R. Then, under Px, �4�Un�t ∧ τR���t≥0 is a continuous bounded
martingale with respect to the Brownian filtration.



SUCCESSIVE PRIMITIVES OF BROWNIAN MOTION 1725

Doob’s optional sampling theorem yields immediately

4�x� = Ex�4�Un�τR��	 τR < +∞�

and as a result, the corollary.

Corollary 11. We have for any x such that ��x�� > R

4�x�
sup��y��=R 4�y�

≤ Px�τR < +∞	 ≤ 4�x�
inf ��y��=R 4�y�


(23)

Now, we are going to deal with the probability p�x	T	R�. This one has the
following properties.

Proposition 12. There exist some constants α	β > 0	 η ∈ �0	1� such that
if R ≤ T1/2 ∧Tn+1/2,

p�x	T	R� ≤ β
(
R2 ∨R2/�2n+1�

T

)ν
(24)

and if ��x�� ≤ R ≤ η�T1/2 ∧Tn+1/2�,

p�x	T	R� ≥ α
(
R2 ∨R2/�2n+1�

T

)ν

(25)

Proof. Due to the Markov property, we get

p�x	T	R� = Ex�PUn�T��τR < +∞	�
= Px���Un�T��� ≤ R	 + Ex�PUn�T��τR < +∞		 ��Un�T��� > R�


From this we obtain

p�x	T	R� ≤ Px���Un�T��� ≤ R	 +
Ex�4�Un�T���
inf ��y��=R 4�y�

	(26)

p�x	T	R� ≥ 1
sup��y��=R 4�y�

Ex�4�Un�T���

− Ex�4�Un�T��	 ��Un�T��� ≤ R�

(27)

So we have to evaluate three terms, namely Px���Un�T��� ≤ R	, Ex�4�Un�T���
and Ex�4�Un�T��	 ��Un�T��� ≤ R�.

In the sequel the ci	 i ∈ �1	 
 
 
 	18	 will denote some positive constants
that we shall not explicitly write.
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The first term is easy to estimate. By (16),

Px���Un�T��� ≤ R	 =
∫
��y��≤R

pT�x�y�dy ≤
∫
��y��≤R

pT�0�0�dy = c1
Rn+1

Tν+1

(28)

The second term can be evaluated. From (16) and the Chapman–Kolmo-
gorov equation,

Ex�4�Un�T��� =
∫

R
n+1
pT�x�y�dy

∫ +∞

0
pt�y�0�dt

=
∫ +∞

0
dt
∫

R
n+1
pT�x�y�pt�y�0�dy

=
∫ +∞

0
pt+T�x�0�dt

≤ γ
∫ +∞

T

dt

tν+1
= c2
Tν



(29)

On the other hand, referring to (22),

Ex�4�Un�T��� ≥
c

Tν
exp

[
−λ
(
N�x�2

T
∨
(
N�x�2

T

)2n+1)]
	

so that if ��x�� ≤ R ≤ T1/2 ∧Tn+1/2, then

N�x� ≤ R ∨R1/�2n+1� ≤
√
T	

which implies

Ex�4�Un�T��� ≥
c3
Tν

(30)

Bounding from above, the third expectation needs more work. Indeed, by (9),

Ex�4�Un�T��	 ��Un�T��� ≤ R�

=
∫
��y��≤R

pT�x�y�4�y�dy

≤ γ

Tν+1

∫
⋂n
i=0�y� �yi�≤R	

4�y�dy

= γ
∫
⋂n
i=0�y� �yi�≤R/�Ti+1/2�	

4�y0T
1/2	 y1T

3/2	 
 
 
 	 ynT
n+1/2�dy

≤ γ
∫
⋂n
i=0�y� �yi�≤R/�Ti+1/2�	

bN�y0T
1/2	 y1T

3/2	 
 
 
 	 ynT
n+1/2�−2ν dy

= c4
Td

∫
⋂n
i=0�y� �yi�≤R/�Ti+1/2�	

dy

N�y�2ν
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Carrying out the change of variable defined as yi = u2i+1
i 	 i ∈ �0	 
 
 
 	 n	, we

get

Ex�4�Un�T��	 ��Un�T��� ≤ R�(31)

≤ c5
Tν

∫
⋂n
i=0�u� �ui�≤�R1/�2i+1��/√T	

∏n
i=1 u

2i
i

��u��2ν du

≤ c5
Tν

∫
⋂n
i=1�u� �ui�≤�R1/�2i+1��/√T	

du

��u��n−1
since ∀ i	 �ui� ≤ ��u��

≤ c6
Tν

∫ max0≤i≤n �R1/�2i+1��/√T

0
rdr with r = ��u��

= c7
Tν
R2 ∨R2/�2n+1�

T

(32)

Now we are able to derive the inequalities (24) and (25). Indeed, invoking
(26) together with (21), (28) and (29) yields

p�x	T	R� ≤ c1
Rn+1

Tν+1
+ c2
a

(
R2 ∨R2/�2n+1�

T

)ν



Since �2�ν + 1�/�2n+ 1�� < n+ 1 < 2�ν + 1�, we get

Rn+1 ≤ (R2 ∨R2/�2n+1�)ν+1



Therefore, R ≤ T1/2 ∧Tn+1/2 implies

Rn+1

Tν+1
≤
(
R2 ∨R2/�2n+1�

T

)ν+1

≤
(
R2 ∨R2/�2n+1�

T

)ν

so that

p�x	T	R� ≤ β
(
R2 ∨R2/�2n+1�

T

)ν

with β = c1 + c2/a.
The inequality (25) can be checked by using (21), (27), (30) and (32) taken

altogether. In fact, if ��x�� ≤ R ≤ T1/2 ∧Tn+1/2, then

Ex�4�Un�T��	 ��Un�T��� > R� ≥
c3
Tν

(
1 − c7
c3

R2 ∨R2/�2n+1�

T

)



This last expression is greater than α/Tν provided that η and α are chosen
such that η2 ∨ η2/�2n+1� < c3/�2c7� and α = c3/2. The proof of (25) is com-
plete. ✷

Now, let us consider the quantity p�x	T1	T2	R�. It is easy to deduce from
proposition (12) the following one.
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Proposition 13. There exist some constants α′	 η′ ∈ �0	1�	 δ′ ∈ �1	+∞�
such that if ��x�� ≤ R ≤ η′�T1/2

1 ∧Tn+1/2
1 � and T2 ≥ δ′T1, then

p�x	T1	T2	R� ≥ α′
(
R2 ∨R2/�2n+1�

T

)ν
=




α′
(
R√
T1

)2ν

	 if R ≥ 1	

α′
(
R1/�2n+1�√
T1

)2ν

	 if R ≤ 1


(33)

Proof. The following lower bounds are obvious:

p�x	T1	T2	R� ≥ p�x	T1	R� − p�x	T2	R�

≥ α
(
R2 ∨R2/�2n+1�

T1

)ν
− β

(
R2 ∨R2/�2n+1�

T2

)ν

≥ α
(
R2 ∨R2/�2n+1�

T1

)ν[
1 − β
α

(
T1

T2

)ν]
	

which is greater than α′��R2 ∨R2/�2n+1��/T1�ν if α′	 δ′	T1	T2 are chosen such
that δ′ ≥ �2β/α�1/ν	 α′ = α/2 and T2 ≥ δ′T1. ✷

4.3. Integral tests. Here we give a characterization of the functions for
which the event �Un�t� > f�t�	 is asymptotically realized as t → 0+ or t →
+∞ with probability 1.

Theorem 14. Let f� �0	+∞� → �0	+∞�.
(i) Suppose the function t  → t1/2f�t� is nondecreasing and greater than 1

for large t. Then

��Un�t���>t1/2f�t� for any large t with probability 1 or 0 ac-

cording to whether the integral
∫ +∞�f�t��2ν �dt/t� converges

or diverges.

(ii) Suppose the function t  → tn+1/2f�t� is nondecreasing and less than 1
for small t. Then

��Un�t��� > tn+1/2f�t� for any small t with probability 1 or
0 according to whether the integral

∫
0+�f�t��2ν/�2n+1� �dt/t�

converges or diverges.

Before sketching the proof, we give an immediate corollary.

Corollary 15.

lim inf
t→+∞

[
log t log2 t · · · logk−1 t�logk t�1+ε]1/2ν ��Un�t���

t1/2
=
{

0	 if ε ≤ 0
+∞	 if ε > 0	
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lim inf
t→0+

[
log

1
t

log2
1
t
· · · logk−1

1
t

(
logk

1
t

)1+ε]�2n+1�/2ν ��Un�t���
tn+1/2

=
{

0	 if ε ≤ 0	
+∞	 if ε > 0	

with the notation logk = log logk−1.
In particular the process Un is transient.

Proof of Theorem 14. The proof of this theorem is classical. We will only
check the first assertion. The proof of the second one is quite similar. Here,
we write P for P0.

Suppose at first the integral
∫ +∞�f�t��2ν �dt/t� is convergent. We get, by

virtue of (24),

P
{∃ �tk�k≥0 ↗ +∞� ��Un�tk��� ≤ t1/2k f�tk�

}
= P

{∀ N ≥ 1	 ∃ k ≥N	 ∃ t ∈ �2k−1	2k�� ��Un�t��� ≤ t1/2f�t�
}

≤ P
{∀ N ≥ 1	 ∃ k ≥N	 ∃ t ≥ 2k−1� ��Un�t��� ≤ 2k/2f�2k�}

≤ c8 inf
N≥1

∑
k≥N

�f�2k��2ν


Since the function t  → t1/2f�t� is nondecreasing for large t, we get for large k,

�f�2k��2ν ≤ 1
�2k�d+1

∫ 2k+1

2k
�t1/2f�t��2ν dt

≤ c9
∫ 2k+1

2k
�t1/2f�t��2ν dt

td+1

= c9
∫ 2k+1

2k
�f�t��2ν dt

t
	

which proves that

P
{∃ �tk�k≥0 ↗ +∞� ��Un�tk��� ≤ t1/2k f�tk�

} = 0


Hence

P
{��Un�t��� > t1/2f�t� for any large t

} = 1


To check the divergence part, suppose the integral
∫ +∞�f�t��2ν �dt/t�

diverges and introduce the event

Tk =
{
t ∈ �δ′k	 δ′k+1�� ��Un�t��� ≤ δ′k/2f�δ′k�

}
	

Dk = �∃ t� t ∈ Tk		
where δ′ is defined in Proposition 13.
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We have by virtue of (33),

P�Dk� ≥ c10f�δ′k�2ν

≥ c11

∫ δ′k
δ′k−1

�t1/2f�t��2ν dt

≥ c12

∫ δ′k
δ′k−1

�f�t��2ν dt

t
	

so that ∑
k≥1

P�Dk� = +∞


We wish to use the Borel–Cantelli lemma. Since the eventsDk are not indepen-
dent, we refer to the more general following version (see, e.g., [16], page 65): if∑

k≥1

P�Dk� = +∞

and if there is a constant C > 0 such that for all integers j	 k such that
�k− j� ≥ 2,

P�Dj ∩Dk� ≤ CP�Dj�P�Dk�	
then

P

(
lim sup
k≥1

Dk

)
> 0


Let us study P�Dj ∩Dk� for k ≥ j+ 2. Define the following stopping times:

τj =
{

inf Tj	 if Tj #= �	

+∞	 if Tj = �


Using the strong Markov property of the process Un and remarking that τj ≤
δ′j+1 as well as ��Un�τj��� ≤ δ′j/2f�δ′j� < δ′k/2f�δ′k� when τj < +∞, we get

P�Dj ∩Dk� = P�τj < +∞	 τk < +∞	
= E

[
��τj<+∞	PUn�τj�

{∃ t ∈ �δ′k − τj	 δ′k+1 − τj��
��Un�t��� < δ′k/2f�δ′k�

}]
≤ P�τj < +∞	 sup

��x��≤δ′j/2f�δ′j�
Px

{∃ t ≥ δ′k − δ′j+1�

��Un�t��� < δ′k/2f�δ′k�
}



From (24) we deduce that

P�Dj ∩Dk� ≤ βP�Dj�
(
δ′kf�δ′k�2

δ′k − δ′j+1

)ν
≤ β

(
δ′

δ′ − 1

)ν
P�Dj�f�δ′k�2ν


On the other hand, we know from (33) that

f�δ′k�2ν ≤ 1
α′

P�Dk�
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Hence if k ≥ j+ 2,

P�Dj ∩Dk� ≤ c13P�Dj�P�Dk�

This last inequality allows us to assert that

0 < P
{∀ N ≥ 1	 ∃ k ≥N	 ∃ t ∈ �δ′k	 δ′k+1�� ��Un�t��� ≤ δ′k/2f�δ′k�

}
≤ P

{∀ N ≥ 1	 ∃ k ≥N	 ∃ t ∈ �δ′k	 δ′k+1�� ��Un�t��� ≤ t1/2f�t�
}

≤ P
{∃ �tk�k≥0 ↗ +∞� ��Un�tk��� ≤ t1/2k f�tk�

}



Finally, since the tail σ-field of Brownian motion is trivial, the last probability
in fact equals one. ✷

5. Addendum. In this section, we state some results about the multidi-
mensional analogues of the results of the previous sections.

Let �Bd�t��t≥0 be the d-dimensional Brownian motion starting at 0, that is,

Bd = �B�1�	 
 
 
 	B�d��	
where B�i�, 1 ≤ i ≤ d, are independent linear Brownian motions, and set

Xdk�t� =
∫ t

0

�t− s�k
k!

dBd�s�	

Ud = �Bd	Xd1 	 
 
 
 	Xdn�

All the previous results may be extended to the Markov process Ud. We will
briefly state the corresponding results. We will also write out some integral
tests concerning the non-Markov process Xdn.

Let us introduce some other notation. Recall that

γn =
1

�2n+ 1��n!�2
	 ν = 1

2�d+ 1�2 − 1


Set

Ydn�t� =
1√

γn t
n+1/2

Xdn�t�	

4d�x� =
∫
���y��>x	

exp
(
−1

2
��y��2

)
dy

�2π�d/2 


The Gaussian process Ydn has independent components with unit variances.
Elementary computations show that the increments of each component of Ydn
satisfy the following property (denote by Yn any of these components).

There exists some positive constants c14 and c15 such that for all 0 < s < t,

c14
t− s
t

≤ �E�Yn�t� −Yn�s��2�1/2 ≤ c15
t− s
s

(34)

In the next theorem the local asymptotic lower class for the process Ud is
characterized.
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Theorem 16. Let f� �0	+∞� → �0	+∞� be a function.

(i) If the function t  → t1/2f�t� is nondecreasing near +∞, then

∫ +∞
f�t�νd−1 dt

t

{
<
=
}
+∞ ⇒ P

{��Ud�t��� ≥ t1/2f�t� for large t
} =

{
1
0

}



(ii) If the function t  → tn+1/2f�t� is nondecreasing near 0, then

∫
0+
f�t��νd−1�/�2n+1� dt

t

{
<
=
}
+∞

⇒ P���Ud�t��� ≥ tn+1/2f�t� for small t	 =
{

1
0

}



The proof of this characterization is quite similar to the one associated with
the case d = 1.

Let us now consider the Gaussian processXdn in the case d ≥ 2. Kolokoltsov
[8] recently obtained by an elementary method the following particular result:

for any β <
3
2
− 1
d
	 lim inf
t→+∞

��Xd1 �t���
tβ

= +∞


The reader will also find in [8] some other physical motivations of this study.
In fact, we have the following integral test.

Theorem 17. Suppose d ≥ 2. Let f� �0	+∞� → �0	+∞� be a function that
does not increase near +∞. Then
∫ +∞

f�t�d−1 dt

t

{
<
=
}
+∞ ⇒ P���Xdn�t��� ≥ tn+1/2f�t� for large t	 =

{
1
0

}



The same test holds near 0 with a nondecreasing function f.

Since the process Xdn is not Markovian, the previous techniques cannot be
used. However, Xdn is a Gaussian process, and the general results of [9] can
be applied. Indeed, due to (34), the following estimate may for instance be
written as in [9], Lemma 4.

There exists a constant c16 such that for small positive x,

P

{
inf
t∈�a	 b�

$Yd�t�$ < x
}
≤ c16

b− a
a
xd−1


After that, all the techniques described in [9] may work in the present situa-
tion. We omit the details.

Remark. Independently, Khoshnevisan and Shi have recently derived the
same test in the case n = 1. Their method is quite different from ours and
hinges on some specifical properties of the primitive of Bd [6]. They have also
extended this test to integrated Brownian sheet [7]. See also [1].
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We conclude this work by considering the question of regular points for the
process Xdn.

Let f� �0	+∞� → �0	+∞� be a function such that x  → x−1f�x� is increasing
near 0 and set

T =
{
�x1	 
 
 
 	 xd� ∈ R

d� xd ≥ 0	
d−1∑
i=1

x2
i ≤ f�xd�2

}



We wish to provide a necessary and sufficient condition on f which allows us
to decide whether or not the origin is a regular point for T. That is to say, we
wish to decide whether

P
{
Xdn�t� ∈ T for infinitly many small t

} = 1 or 0


For Brownian motion, the relationship between the local asymptotic lower
classes and regular points for T is well known; see, for example, [5], page 261.
This is the result of the independence of the components of Bd. The same is
true for the process Xdn and the result can be stated as follows.

Theorem 18. Suppose d ≥ 3. Then

0 is a regular point for T if and only if the integral∫
0+�f�x�/x�d−2 �dx/x� is divergent. If d = 2, 0 is a regular

point for T.

We refer the reader to [12] for some further results about regular points for
the process Un.
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Univ. Lyon 1.

[12] Lachal, A. (1997). Regular points for the successive primitives of Brownian motion. J. Kyoto
Math. Univ. To appear.

[13] Lévy, P. (1948). Processus Stochastiques et Mouvement Brownien. Gauthier-Villards, Paris.
[14] Marcus, M. B. and Shepp, L. A. (1972). Sample behaviour of Gaussian processes. Proc. Sixth

Berkeley Math. Symp. Statist. Probab. 2 423–441. Univ. California Press, Berkeley.
[15] McKean, H. P., Jr. (1963). A winding problem for a resonator driven by a white noise.

J. Math. Kyoto Univ. 2 227–235.
[16] Port, S. C. and Stone, C. J. (1978). Brownian Motion and Classical Potential Theory.

Academic Press, New York.
[17] Qualls, C. and Watanabe, H. (1971). An asymptotic 0–1 behaviour of Gaussian processes.

Ann. Math. Statist. 42 2029–2035.
[18] Shepp, L. A. (1966). Radon–Nikodym derivatives of Gaussian measures. Ann. Math. Statist.

37 321–354.
[19] Takeuchi, J. (1964). A local asymptotic law for the transient stable process. Proc. Japan

Acad. Ser. A Math. Sci. 40 141–144.
[20] Takeuchi, J. (1964). On the sample paths of the symmetric stable processes in spaces.

J. Math. Soc. Japan 16 109–127.
[21] Taylor, J. (1967). Sample paths of a transient stable process. J. Math. Mech. 16 1229–1246.
[22] Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against

model error in regression. J. Roy. Statist. Soc. Ser. B 40 364–372.
[23] Wahba, G. (1983). Bayesian “confidence intervals” for the cross-validated smoothing spline.

J. Roy. Statist. Soc. Ser. B 45 133–150.
[24] Watanabe, H. (1970). An asymptotic property of Gaussian processes. I. Trans. Amer. Math.

Soc. 148 233–248.
[25] Weber, M. (1978). Classes supérieures de processus gaussiens. Z. Wahrsch. Verw. Gebiete

42 113–128.
[26] Weber, M. (1980). Analyse asymptotique des processus gaussiens stationnaires. Ann. Inst.

H. Poincaré 16 117–176.

Laboratoire de Probabilités
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