
The Annals of Probability
1997, Vol. 25, No. 4, 1670�1711

MULTIPLE SCALE ANALYSIS OF CLUSTERS
IN SPATIAL BRANCHING MODELS

BY ACHIM KLENKE

Universitat Erlangen�Nurnberg¨ ¨
In this paper we will investigate the long time behavior of critical

Ž .branching Brownian motion and finite variance super-Brownian motion
Ž . dthe so-called Dawson�Watanabe process on � . These processes are
known to be persistent if d � 3; that is, there exist nontrivial equilibrium
measures. If d � 2, they cluster; that is, the processes converge to the 0
configuration while the surviving mass piles up in so-called clusters.

We study the spatial profile of the clusters in the ‘‘critical’’ dimension
d � 2 via multiple space scale analysis. We will also investigate the
long-time behavior of these models restricted to finite boxes in d � 2. On
the way, we develop coupling and comparison methods for spatial branch-
ing models.

1. Introduction.

1.1. Background. For several interacting infinite particle systems and
Žrelated models, there is a dichotomy between stability i.e., nontrivial equilib-

.rium measures exist and clustering depending on transience or recurrence of
the interaction kernel. Many infinite particle systems with site space �d or
� d and finite variance interaction are stable if d � 3 and cluster if d � 1, 2.
This is well known, for example, for the voter model, linearly interacting
diffusions with compact state space, branching Brownian motion,
Dawson�Watanabe process and so on.

The dimension d � 2 is ‘‘critical’’ in the sense that the Green function of
the interaction kernel grows only on a logarithmic scale and is thus ‘‘almost
bounded.’’ In the critical dimension the phenomenon of ‘‘diffusive clustering’’
occurs. This means that clusters grow at a randomly chosen algebraic scale of

� � �order t , � � 0, 1�2 . For many models, the structure of the clusters in the
critical dimension is known. The voter model in �2 has been investigated by

Ž .Cox and Griffeath 1986 . ‘‘Critical dimension’’ linearly interacting diffusions
with compact state space on the so-called hierarchical group have been

Ž . Ž .studied by Fleischmann and Greven 1994 , Dawson and Greven 1993a, b ,
Ž . Ž .Dawson, Greven and Vaillancourt 1995 and Klenke 1996 . The techniques
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employed to describe clusters cover scaling, renormalization and the so-called
interaction chain.

Noncompact models such as super-random walk on �d and linearly inter-
d Ž .acting Brownian motions labelled by � have been treated by Winter 1995

Ž .and Kopietz 1995 .
Clusters of branching Brownian motion have been studied by Fleischman

Ž . Ž .1978 and Lee 1991 . Lee has rather precise statements for the dimension
Ž .dependent rate at which the height of clusters grows conditioned on local

Ž .nonextinction Theorem 2.4 . Lee does not, however, treat the question of
spatial extension and profile of the clusters. His results are obtained by
studying sub- and super-solutions of the partial differential equation deter-
mining the Laplace functional.

The main point of this paper is to determine the spatial profile of the
clusters of branching and super-Brownian motion in dimension d � 2. Unlike

Ž .Lee 1991 , we will not condition on local nonextinction, but follow a different
route. The compensation of the local extinction will be obtained by ‘‘blowing
up’’ the initial configuration. This approach also enables us to give a descrip-

Ž .tion of the finite system considered next in terms of the so-called finite
� Ž .�systems scheme introduced by Cox and Greven 1990 that emphasizes the

similarities to other models.
In the theory of interacting particle systems, a systematic treatment of the

comparison of finite to infinite systems in high dimensions can be found in
Ž .Cox and Greven 1990, 1994 . The critical dimension voter model has been

Ž .studied by Cox and Greven 1991 . Comparison of finite to infinite systems of
linearly interacting diffusions labelled by the hierarchical group in high and

Ž .critical dimensions can be found in Klenke 1996 . In this paper we will also
relate the behavior of our infinite branching processes to that of their finite
versions, defined on d-dimensional tori, in both the cases d � 3 and d � 2.

One aim of this paper is to exhibit how the clustering phenomenon can be
studied with probabilistic tools, namely, by techniques from the theory of
infinite particle systems. These will be applied to both branching particle
systems and super processes. In particular we rely on moment calculations
and develop coupling and comparison techniques in Section 3. Thus our

Ž .approach is completely different from Lee’s 1991 and coupling and compari-
son provide a more probabilistic understanding of these processes. These
methods should allow an easy adaption to related problems.

1.2. The models. We only give a short heuristic description of the consid-
Ž .ered models. An extensive treatment can be found in Dawson 1977, 1993

Ž .and in Fleischman 1978 . Nevertheless, we have to give the basic definitions
for random measures first.

Basic definitions for random measures. Let E be a locally compact Polish
Ž . Ž . Ž .space. By BB E we denote the Borel �-field on E. By C E and C E web c

denote the spaces of continuous real-valued functions on E that are bounded,
respectively, have compact support.
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Ž . Ž .A measure � on BB E is called locally finite if � K � � for all compact
sets K � E. Let

� 41.1 MM E � locally finite measures on EŽ . Ž .
Ž . � Ž . Ž . 4and MM E � � � MM E : � E � � .f

Ž .For � � MM E and f : E � �-measurable and �-integrable, we define
² : Ž .�, f � H f d�. The space MM E is a Polish space with the vague topology,

² : ² : Ž . Ž Ž ..defined by � � � iff � , f � �, f for all f � C E . The space MM MM En n c 1
Ž .of probability measures on MM E , equipped with the weak topology, is also

� Ž .�Polish see, e.g., Kallenberg 1983 . For weak convergence of probability
measures we use the symbol � .

Ž Ž .. Ž . �Let Q � MM MM E and A � BB E . We define the restriction Q �A1
Ž Ž ..MM MM E of Q to A by1

� ² : ² :1.2 Q d� F � , f � Q d� F � , f � 1 ,Ž . Ž . Ž .Ž . Ž . Ž .H A H A

Ž . Ž .for f � C E and F � C � .c b
� � � Ž . Ž .For a signed measure �, we denote by � � sup � B 	 � E 
 B : B �

Ž .4BB E the total variation of �.
Ž . Ž .The space of nonnegative integer-valued measures � on BB E will be

denoted by

� 41.3 NN E � � � MM E : � A � 0, 1, 2, . . . , � � A � BB E .� 4Ž . Ž . Ž . Ž . Ž .
Ž . Ž . � Ž .The space of finite measures in NN E is denoted by NN E � � � NN E :f

Ž . 4� E � � .
� �We use the notation LL X for the distribution of a random variable X. Let

Ž . Ž .X be a Markov process with values in E and x � E or Q � MM E . Byt t � 0 1
x�Ž . � Q�Ž . � Ž .LL X and LL X , we denote the distributions of X witht t � 0 t t � 0 t t � 0
x� � Q� �LL X � � and LL X � Q.0 x 0

Ž .Branching Brownian motion. Let S be the semigroup of a Fellert t � 0
Ž .process on E and let p be a probability distribution on � withk k�0, 1, . . . 0

Ž .Ý kp � �. We will consider a particle moving on E according to S havingk k t
an exponential lifetime with mean 1�c. At the time of death, the particle
produces an offspring of k particles with probability p . The offspring behavek
as k independent copies of the one-particle system started at the parent
particle’s final position. The process started with a single particle in x � E

Ž x . Ž .will be denoted by 	 . Its state space is NN E .t t � 0 f
� Ž . Ž .For initial configuration 	 � Ý � � � Dirac measure on x in NN E0 i�1 x xi

we define
�

i1.4 	 � 	 ,Ž . Ýt t
i�1

ŽŽ i. . Ž x i.where 	 , i � � are independent copies of 	 . In the case p � pt t � 0 t t � 0 0 2
1 Ž .� we will refer to 	 as the critical binary branching process associatedt2

Ž .with S . One main object of consideration will be the critical binary branch-t
d Ž d .ing Brownian motion on � , abbreviated BBM � .
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Dawson�Watanabe process. Next we consider the short lifetime high
Ž . N Ž .density limit of binary branching processes. Let � � MM E and � � NN E ,f f

Ž . N Ž N .N � �, such that 1�N � � �, as N � �. Let 	 be the branchingt t � 0
1process corresponding to p � p � with expected lifetime 1�cN and with0 2 2

initial state 	 N � �N. It is well known that there exists a continuous Markov0
Ž . Ž .process 
 with values in MM E such thatt t � 0 f

1N� � N1.5 LL 
 � w-lim LL 	Ž . Ž .t tt�0 ž /NN�� t�0

� Ž . �see Dawson 1993 , Section 4.4ff .
Ž . Ž .The process 
 will be called the super process associated with S . Oft t � 0 t

particular interest will be super-Brownian motion on � d, abbreviated
Ž d .SBM � .
Ž . � �Let Z be Feller’s branching diffusion. That is, the diffusion on 0, �t t � 0

with generator

� 2

1.6 x .Ž . 2
� xŽ .

�� � � � �� � Ž .It is well known that LL 
 � LL Z for � � MM E and t � 0. Hencet t�2 f
� xŽ . � Ž .P 
 E � 0 � 1 as t � �, since Z is a martingale and 0 is an absorbingt t

boundary point.
Ž . Ž .For � � MM E we can define 
 with initial configuration 
 � � as thet t � 0 0

Ž n. nincreasing limit of 
 with initial configurations � , n � �, such thatt t � 0
n Ž d . Ž .� � �. It is known that SBM � takes values in MM E if we impose a

² Žregularity condition on the initial state �. For example, assume �, 1 �
� � 2 .	p:� � � for some p � d�2. This condition will always be fulfilled in

Ž .this paper. The same condition also assures that 	 � NN E , a.s., for all t � 0.t
Another more analytic, though less intuitive, description is the following.

Ž .We define the semigroup V of nonlinear operators on the space oft t � 0
� �bounded and measurable functions �: E � 0, � uniquely by the following

equation:

t 211.7 V � � S � 	 c S V � ds, t � 0.Ž . Ž .Ž .Ht t t	s s2
0

Ž . Ž .We can now define 
 by its log-Laplace semigroup V , namely, by thet t
relation

² : ² :1.8 
 , V � � 	log E exp 	 
 , � .Ž . Ž .0 t t

Ž . Ž .A pathwise construction of 
 can be found in Le Gall 1991 .t
From the scaling properties of Brownian motion in � d and Feller’s diffu-

Ž �� � � � �. Ž d .sion i.e., LL �Z � LL Z it is clear that SBM � has the following� � �

Ž d . Ž . Ž 	1�2 .basic scaling property: for K � 0 and � � MM � let �� � � K� K � .
Then

�� 	1 1�2 �1.9 LL K 
 K � � LL 
 � .Ž . Ž . Ž .K t t
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Ž 2 .In particular, for d � 2 and � � � Lebesgue measure on � this becomes
� 	1 1�2 �1.10 LL K 
 K � � LL 
 � .Ž . Ž . Ž .K t t

Ž .For simplicity we will henceforward only consider the expected lifetime
c	1 � 1.

1.3. Basic ergodic theory. In the following we will state the results for
Ž d . Ž d .BBM � and SBM � simultaneously. For convenience we will thus denote

Ž . Ž d . Ž d .by � either BBM � or SBM � . Also let, for  � 0,t t � 0

HH  , if � is BBM � d ,Ž . Ž . Ž .t
1.11 M  �Ž . Ž . d½ � , if � is SBM � ,Ž . Ž .�� t

Ž . Ž . Ž Ž d ..where � is the d-dimensional Lebesgue measure and HH  � MM MM � is1
the law of a Poisson point process on � d with intensity measure  � �.

� Ž . Ž .�It is well known see Dawson 1977 and Fleischman 1978 that if d � 1
Ž .or d � 2, then � clusters:t

M Ž  .� �1.12 LL � � � as t � � �  � 0,Ž . t 0

Ž d .where � means the unit mass on 0 � MM � .0
Ž . Ž .For any d � 3, � is persistent or stable . This means that there exists at

Ž . Ž Ž d .. Žfamily � ,  � 0 , � � MM MM � , of nontrivial invariant under the dynam-  1
.ics measures such that

M Ž  .� �1.13 LL � � � as t � �.Ž . t 

The � have the following properties: � is translation-invariant and ergodic 

with intensity ,

² : ² :1.14 m , � � dm �  � �, � ,Ž . Ž .H 

d � �for �: � � 0, � -measurable. Since the particles evolve independently, the
� form a convolution semigroup � � � �� , , � � 0. Hence any � is ��  � 

infinitely divisible and thus allows a description via its canonical measure.
Ž .For details and proofs, see Gorostiza and Wakolbinger 1991 , Theorem 2.2,

Ž d . Ž . Ž d . Žfor � BBM � and Dawson 1977 for SBM � . Analogous and moret
.detailed results for a discrete time setting have been known for a long time.

Ž .See, for example, Kallenberg 1977 .
For extensions of the basic ergodic theory to more general branching

mechanisms and motion semigroups, see Gorostiza, Roelly and Wakolbinger
Ž .1992 . For extensions to initial configurations with infinite intensity or that

Ž .are not translation invariant, see Bramson, Cox and Greven 1993, 1997 for
Ž d . Ž d .the d � 1, 2, respectively, d � 3 case for � BBM � and SBM � .t

2. Results.

2.1. Cluster formation for d � 2. Since the branching mechanism has
mean 1, local extinction implies the existence of relatively small areas where
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more and more mass piles up. We call this phenomenon clustering. Our goal
is to determine the spatial profile of the clusters. One way to do so is to

Ž .condition on a test set B being in a cluster. The precise statement for �t
Ž 2 . Ž .BBM � is given by Fleischman 1978 as follows:

log t log t
M Ž1. 	x� �2.1 P � B � B x � e as t � �, x � 0,Ž . Ž .t8� 8�

Ž 2 .where B � BB � is bounded. Roughly speaking, with probability 8��log t
Ž .we see a cluster of ‘‘height’’ log t �8�-times an exponential mean 1 random

Ž 2 . Ž . Žvariable. For BBM � , Lee 1991 has a more precise statement Theorem
. Ž .2.4 due to conditioning on 	 B � 0. Lee studies sub- and super-solutions oft

Kolmogorov’s equations for the Laplace functional. His methods also apply to
SBM, but it is still open whether the same is true for branching random walk

Žon the lattice or for linearly interacting Feller’s diffusions super-random
.walk . This reflects the fact that difference equations are usually more

difficult to treat than the related differential equations.
Our approach to describing the structure of clusters is based on two

rescaling concepts.
High density rescaling. For time t � 1 we define

8�
0˜ ˜2.2 � � � � �Ž . t t tlog t

with
log t˜� �2.3 LL � � M t � M .Ž . Ž .0 ž /8�

This serves first to obtain a nontrivial limiting probability of local nonextinc-
tion. Second, the height of the clusters is scaled down to have a nontrivial
limit.

Ž . � �Spatial rescaling. For � BBM or SBM let I � 0, 1 respectively, I �t
˜�� � Ž .	 �, 1 . We fix � � I and define � byt

˜� ˜ 	�˜ ��22.4 � B � SS � B � t � t B ,Ž . Ž . Ž . Ž .t � , t t t

2 2 	� � �2 ˜ ˜0Ž . Ž . Ž . Ž .where SS : MM � � MM � , � � � t � t � . As above we let � � � .� , t t t
This is the right notion since clusters turn out to grow spatially as t ��2 for
any � � I.

REMARK. Note that by the rescaling procedures we do not lose too much
information on the family structure. This is because the high density rescal-

Ž .ing is so smooth that by 2.1 in the limit t � � we get a Poisson mean 1
Ž 2 .number of families in each bounded set B � BB � . On the other hand, the

spatial extension of a typical family is of order t ��2, � � 1 random. Hence the
rescalings do not cause an overlap of the families. The high density rescaling
also proves useful in giving a description of the finite versions of our branch-
ing models that underlines the similarities to other models.
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A related rescaling approach to clustering phenomena in subcritical di-
Ž .mensions and for a more general setting has been made by Dawson and

Ž . Ž 1. K Ž .Fleischmann 1988 . In the special case of SBM � their rescaling is X � �t
	1 Ž . ��Ž K . �K 
 K � . They obtain that w-lim LL X is the super process ontK K �� t t � 0

� associated with no motion. Hence their rescaling describes the family
structure of the clusters, but it is too rough to describe their spatial exten-
sion.

� Ž .Now we are able to formulate the first theorem recall that Z is Feller’st
Ž .�branching diffusion defined in 1.6 .

Ž . Ž . Ž 2 .THEOREM 1 Infinite system, d � 2 . Let � be either BBM � ort
Ž 2 . � � � �SBM � and I � 0, 1 , respectively, I � 	�, 1 . Fix � � I. Then the follow-

ing holds:

M̃ Ž t . � 1˜ � �2.5 LL � � LL Z � � as t � �.Ž . t 1	�

Theorem 1 gives a first rough description of the profile of clusters. How-
ever, the averaging procedure induced by scaling loses information about the
spatial structure inside blocks of size t ��2.

The next aim is to give a more detailed description of the clusters via
multiple space scales. That is, we want to look for different spatial scales on

Ž .tuples of windows of observation see Figure 1 . To describe this properly on a

Ž .FIG. 1. The points dotted centers of the small circles are grouped at distances growing at
different scales t AŽ�.�2. The small circles represent the windows of observation, which also grow at
different scales.
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� Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4FIG. 2. Diagram of the tree � � �, 1 , 2 , 1, 1 , 1, 2 , 1, 2, 1 , 1, 2, 2 , 2, 1 , 2, 2 , 2. 3 .

Ž .formal level, we introduce a rooted tree � see Figure 2 and a space scale A
associated with it.

Ž .Tree. We give the following representation of a rooted tree �. Let � be a
finite set of finite sequences with values in �. The root will be denoted by

Ž . Ž . Ž .� � �. Let e, f � �, e � e , . . . , e , f � f , . . . , f possibly m � 0 or n � 01 m 1 n
� Ž . Ž .4and l � max k: e , . . . , e � f , . . . , f � 0. We then define the minimum1 k 1 k

Ž .e  f of e and f by e  f � e , . . . , e if l � 0 and e  f � � if l � 0. We1 l
Ž . Ž .will assume that e , . . . , e � � � k � m whenever e , . . . , e � �. In1 k 1 m

particular, this implies e  f � � � e, f � �. � allows an ordering by e � f if
and only if e � e  f. The set of maximal elements in � will be denoted by
�M. Note that we do not exclude the case in which � is linear, that is,

M Ž .�� � 1. In order to avoid redundancy we will assume that e , . . . , e , g1 m	1
Ž .� � for g � 1, . . . , e , whenever e , . . . , e � �.m 1 m

Ž .Space scale. A pair � � �, A consisting of a tree � and a strictly
decreasing map

A: � � I
Ž � � � � .recall that I � 0, 1 or I � 	�, 1 in the case of BBM, respectively, SBM

Ž .will be called a multiple space scale. Given a multiple space scale � � �, A ,
Ž e . e 2we assume that X � x , e � �, t � 0 is a family of points x � � , sucht t

that
� e f � AŽe  f .�2x 	 x � t as t � �.t t

Ž . Ž .By a � b we mean log a � log b � 1 as t � �. We say that X is �-spaced.t t t t
� Ž .�Our goal is to investigate the common distribution of recall SS from 2.4� , t

˜eSS TT � as t � �,ž /AŽe. , t x tt e��

Ž d . Ž d . Ž .Ž . Ž .where TT : MM � � MM � is the translation by z, TT � � � � z � � .z z

Ž e . �Feller tree. Let Z , e � � be the following diffusion on � . Eacht t � 0
Ž e. e fZ is a Feller diffusion. Let e, f � � with e � f. Then Z � Z fort t � 0 t t

� Ž .� Ž . e ft � 0, 1 	 A e  f . For t � 1 	 A e  f the evolutions of Z and Z shallt t
Ž .be independent see Figure 3 .
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Ž e. M � Ž . Ž . Ž . Ž . Ž . Ž . Ž .FIG. 3. A sample of Z , e � � for � � �, 1 , 2 , 1, 1 , 1, 2 , 1, 2, 1 , 1, 2, 2 , 2, 1 ,s s� 0
Ž . Ž .42, 2 , 2, 3 .

A similar approach to describe the age and spatial extension of clusters in
� �a model of interacting diffusions with state space 0, 1 has been made by

Ž .Fleischmann and Greven 1996 . They describe multiple scale space�time
correlations with their so-called Fisher�Wright tree. This is the analogue of

Žour Feller tree, but with an underlying Fisher�Wright diffusion and with
.only one ‘‘trunk’’ having branches . The similarity of their results and ours

displays a close relationship between the family structures of clusters in the
considered models.

Ž . Ž . Ž 2 .THEOREM 2 Infinite system, multiple scale . Let � be either BBM �t
Ž 2 .or SBM � . Then the following hold:

M̃ Ž t . e˜ea LL SS TT � � LL Z � � as t � �.Ž . Ž .ž /AŽe. , t x t 1	AŽe. e��t e��

Ž 2 .In particular, for � linear and B � BB � bounded,

M̃ Ž t . � 1˜ � �b LL � B � LL B � Z as t � �.Ž . Ž . Ž .Ž .t 1	� ��I��I fdd
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At each scale of observation, quasi-equilibria are exhibited that are deter-
mined by their density. Observation at different scales shows a certain
self-similarity of those quasi-equilibria. This is reflected by the fact that the
transition between scales is determined by a homogeneous Markov process.

2.2. Finite systems, stable case. Computer simulations of particle systems
evidently have to be restricted to finite versions of the model. However, there
are also other good reasons to study finite systems. Finite systems model a
finite nature and the infinite system can be regarded as an idealization for
analytical convenience only. So the questions arise: How well do finite

Ž .systems approximate the infinite system and vice versa ? How long can a
finite system be observed until it ‘‘feels’’ its finiteness and which effects of
finiteness do occur?

We start with the definition of the finite versions of the d-dimensional
BBM and SBM. Fix d � � and let �d , ll � 0, be the torus of size ll ,ll

2.6 �d � � d� ll �d .Ž . Ž .ll

d � � dWe will regard � as the cube 0, ll with periodic boundary conditions. Thell
d Ž . d Ž .torus � inherits the Brownian motion X from � . That is, X hasll ll , t t � 0 ll , t

transition densities

2.7 p x , y � p x , y � ll k ,Ž . Ž . Ž .Ýll , t t
dk��

where

� � 2x 	 y	d�22.8 p x , y � 2� t exp 	Ž . Ž . Ž .t ž /2 t

is the transition density of d-dimensional Brownian motion. Finally, denote
Ž . Ž . Ž . Ž . dby M  , HH  and so on the restrictions of M  , HH  and so on to � .ll ll ll

The objects of interest will be critical binary branching Brownian motion
Ž . d Ž d . Ž .	 on � , abbreviated BBM � , and super-Brownian motion 
ll , t t � 0 ll ll ll , t t � 0

d Ž d . Ž . Ž d .on � , abbreviated SBM � . Again let � be either BBM � orll ll ll , t t � 0 ll

Ž d .SBM � . The behavior of the system is dictated by the empirical populationll

density of the finite system

ll 	d� �d .Ž .ll , t ll

Note that we have
	dM Ž  . d ll2.9 LL ll � � � LL Z as ll � �,Ž . Ž .ll , T Ž ll . ll � �2

Ž .if the observation time T ll satisfies
	d � �2.10 ll T ll � � , � � 0, � as ll � �.Ž . Ž .

The idea of how to describe stable, that is, d � 3, finite systems is
Ž .suggested by Cox and Greven 1990, 1994 . The system is dominated by the

macroscopic variable of the empirical population density. Roughly speaking,
it relaxes to the equilibrium state � with intensity � , given that the empiri-�
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cal population density is � . This relaxation takes place faster than the
fluctuation of the empirical population density.

Ž . dThus, by 2.9 , ll is the right time scale to look at the finite system. At
this scale the empirical population density becomes random.

�With these heuristics we are prepared for the theorem recall � from

Ž .�1.13 .

Ž . Ž .THEOREM 3 Finite system, stable case . Let d � 3 and � be eitherll , t t � 0
Ž d . Ž d . � � Ž . 	d Ž .BBM � or SBM � . Fix � � 0, � and T ll such that ll T ll � � asll ll

ll � �. Then the following holds:

1M Ž  . ll2.11 LL � � P Z � d� � as ll � �.Ž . Hll , T Ž ll . � �2 �
0

2.3. Finite systems, critical dimension. In dimension d � 2 we have to
modify the ideas developed above in the fashion of rescaling presented in
Section 2.1.

Fix � � I and let, for t, ll � 1,

8�
� 	� � �2 2 2˜2.12 � B � t � t B � � , B � BB � .Ž . Ž . Ž . Ž .Ž .ll , t ll , t lllog t

˜ ˜ 2Ž . Ž .Denote by M t the restriction of M t to � . Thenll ll

M̃ ŽT Ž ll .. 2 1ll ˜ � �2.13 LL � � � LL Z as ll � �,Ž . Ž .ll , T Ž ll . ll 4��

Ž .if the observation time T ll satisfies

T llŽ . � �2.14 � � as ll � � � � 0, � .Ž .
� llŽ .

Here

2.15 � ll � ll 2 log ll .Ž . Ž .
Ž . 2It is due to the high density rescaling that � ll � ll log ll is the right

time scale to be used in the critical dimension. Many models in the critical
Ž .dimension show a behavior similar to 2.13 , namely, linearly interacting

Ž .diffusions with compact state space Fisher�Wright, Fleming�Viot, etc. , the
voter model and so on. Interacting diffusions have been investigated in the
critical dimension on the so-called hierarchical group by Fleischmann and

Ž . Ž .Greven 1994 , Dawson and Greven 1993a, b , Dawson, Greven and Vaillan-
Ž . Ž . Ž . Ž .court 1995 and Klenke 1996 . Cox 1989 and Cox and Greven 1991 treat

the voter model on �2. The point seems to be that the Green function of the
interaction kernel is growing so slowly that taking the block averages is
asymptotically the same as renormalization. Thus the role of the limiting

� Ž .�diffusion here Feller’s diffusion in 2.13 is played by the fixed point of the
� Ž .�renormalization see also Baillon, Clement, Greven and den Hollander 1995 .´

The appropriate time scale in these models is the volume of the finite box
times the recurrent potential kernel of the interaction kernel, maximized
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over the box. For an extensive treatment of this latter point, see Theorem 1 of
Ž .Klenke 1996 .

Having in mind the proceeding of Section 2.1, the finite versions of
Theorem 1 and 2 are easy to guess.

Ž . Ž . Ž 2 .THEOREM 4 Finite system, d � 2 . Let � be either BBM � orll , t ll , t ll

Ž 2 . � � � � � � Ž .SBM � and I � 0, 1 , respectively, 	�, 1 . Fix � � 0, � and T ll suchll

Ž . Ž .that T ll �� ll � � as ll � �. Then the following holds:
�

M̃ ŽT Ž ll .. � 1 ll ˜ � � � �LL � � P Z � d LL Z as ll � �Hž /ll , T Ž ll . 2�� 1	�
02.16Ž .
1� �� LL Z , � � I.2���1	�

Ž .REMARK. Cox and Greven 1991 suggested studying the asymptotics of
occupation times for the related model of branching random walk on �2. Note
that our result is more detailed than a description of the occupation time in
that a time average is not made.

Ž . Ž e .Let � � �, A be a multiple space scale and let X � x , e � �, ll � 0 bell

�-scaled.

Ž .THEOREM 5 Finite system, multiple scale . Under the conditions of Theo-
rem 4, the following hold:

M̃ Ž ll . ˜ea LL SS TT �Ž . ž /AŽe. , T Ž ll . x ll , T Ž ll .ll e��

�
1  e� �� P Z � d LL Z � � as ll � �.Ž .H 2�� 1	AŽe. de��

0

Ž 2 .In particular, for � linear and B � BB � bounded,
M̃ ŽT Ž ll .. � 1ll ˜ � �b LL � B � LL B � Z as ll � �.Ž . Ž . Ž .ž /ll , T Ž ll . 2���1	� ��I��I fdd

2.4. Outline. The rest of this paper is organized as follows. In Section 3,
we will provide some tools needed later. This includes moment formulas,
coupling techniques and comparison techniques. In Section 4, we prepare for
the proof of Theorem 1 with an admittedly rather tedious moment calcula-
tion. Theorem 1 will be proved in Section 5. There we also apply the refined
coupling methods in order to prove Theorem 2. In Section 6, the finite version
theorems are proved with the comparison techniques from Section 3.

3. Basic tools. In this section we develop the following tools for the
investigation of the long-time behavior of our branching processes.

1. We give a general basic coupling lemma and then give its applications to
the special setting of an underlying Brownian motion. A further refine-

Ž .ment will be obtained by the so-called local coupling Lemma 3.5 . This is
the main result of this section. It serves to speed up the coupling. Hence it
overcomes the difficulty that the subsequently given comparison technique

Ž . Ž . 2works only for times L t of order L t � t .
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2. We give a simple comparison technique.
Ž .3. We give nth moment recursion formulas.

For logical reasons we start with the presentation of the moment formulas.

3.1. Moment formulas. Let E be either Rd or �d . We will developll

Ž . Ž .recursion formulas for the moments of BBM E and SBM E .
Ž . Ž .We start with 	 BBM E .t t � 0

Ž . Ž . Ž .LEMMA 3.1 Moment formula, BBM . Let 	 be a BBM E , where E ist t � 0
d d Ž .� or � . Denote by S the semigroup of Brownian motion on E.ll t t � 0

Ž .a For n � �, x � E and �: E � �-measurable and bounded or nonnega-
tive, the nth moment satisfies the following recursion formula:

nx n² : ² :E 	 , � � � , S �Ž .t x t

n	1
tn k n	k1 � �² : ² :� S E 	 , � E 	 , � x ds.Ž .Ý H ž /t	s s s2 ž /k 0k�1

3.1Ž .

In particular, the first and second moments are

x ² : ² :3.2 E 	 , � � � , S � ,Ž . t x t

t 22x 2² :3.3 E 	 , � � � , S � � � , S S � ds .² :Ž . Ž .Ž . Ž .Ht x t x t	s s¦ ;
0

Ž . Ž . Ž .b For � � NN E , or � � NN E and � bounded with compact support, thef
first and second moments are

� ² : ² :3.4 E 	 , � � � , S � ,Ž . t t

t 22 2� ² : ² :E 	 , � � � , S � � � , S S � dsŽ .Ž .Ht t t	s s¦ ;
03.5Ž .

22� � , S � 	 S � .Ž .² :Ž .t t

Ž d . Ž .PROOF. For f : NN � � in the domain of the generator of BBM � , f 	f t
satisfies the following Kolmogorov backward equation:

� 1 1
� � 2 �x x xE f 	 � �E f 	 � E f 	Ž . Ž . Ž .t t t� t 2 2

3.6Ž .
1

0 � x� E f 	 	 E f 	 ,Ž . Ž .t t2
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Ž .where � denotes the Laplace operator with respect to x and 0 � NN E meansf
� �the zero measure. In particular, for �: E � 0, � twice continuously differ-

Ž . ² :n Ž . Žentiable, n � � and f � � �, � , 3.6 becomes using the independence
.of the particles

n	1� 1 1 nn k n	kx x x² : ² : ² :3.7 	 � E 	 , � � E 	 , � E 	 , � .Ž . Ýt t tž /ž / k� t 2 2 k�1

Ž . Ž .Integrating this yields 3.1 . By an approximation argument, 3.7 holds for �:
E � �-measurable and bounded or nonnegative.

Ž .For part b , note that by the independence of the particles we have

2 2� x² : ² : ² :3.8 E 	 , � � � , S � � � dx Var 	 , �Ž . Ž .Ht t t

Ž .and use part a . �

Ž .We continue with a moment recursion formula for SBM E .

Ž . Ž . Ž .LEMMA 3.2 Moment formula, SBM . Let 
 be a SBM E , where E ist t � 0
d d Ž .� or � . Recall that S is the semigroup of Brownian motion on E. Letll t t � 0

� ��: E � 0, � be bounded, measurable and with compact support and let
Ž .� � MM E . Then, for t � 0 and n � �,

n	1
n 	 1n k� Žn	k . �² : ² : ² :3.9 E 
 , � � � , u t E 
 , � ,Ž . Ž .Ýt tž /k

k�0
Žn.Ž . dwhere u t : � � � is defined by

S � , n � 1,� t

n	1Žn. � t3.10 u t �Ž . Ž . n1 Žk . Žn	k .S u s u s ds, n � 2.Ž . Ž .Ž .Ý H t	s2 ž /� k 0k�1

Ž .In particular for � not necessarily nonnegative ,
� ² : ² :3.11 E 
 , � � � , S � ,Ž . t t

t 22 2� ² : ² :3.12 E 
 , � � � , S � � � , S S � ds .Ž . Ž .Ž .Ht t t	s s¦ ;
0

Note that the first moment coincides with that of BBM while the second
moment of BBM is greater than that of SBM. This reflects the fact that the
‘‘motion part’’ of SBM is deterministic while that of BBM is random.

Ž .The result and the idea of the proof can be found in Dawson 1993 ,
Lemma 4.7.1. Unfortunately, there are some misprints, so we give the proof
in detail.

Ž . Ž . Ž .PROOF. Recall from 1.8 that V is the log-Laplace semigroup of 
 .t t
Ž .Also recall that we assumed c � 1 in 1.7 . For � � 0 and n � �, let

� n
n	1Žn.3.13 u t , � � 	1 V ��Ž . Ž . Ž . Ž .n t

��Ž .
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and

uŽ0. t , � � 	V �� .Ž . Ž .t

Žn.Ž . Ž .We can calculate u t, � recursively with 1.7 :

S � , n � 1,� t
nŽn. � t3.14 u t , � �Ž . Ž . n1 Žk . Žn	k .c S u s, � u s, � ds, n � 2.Ž . Ž .ÝH t	s2 ž /� ž /k0 k�0

Ž .Differentiating 1.8 w.r.t. � yields
Ž1. � �² : ² : ² :² :3.15 � , u t , � E 
 , � exp 	� 
 , � � E exp 	� 
 , � .Ž . Ž . Ž . Ž .t t t

Ž . Ž .Differentiate 3.15 n 	 1 -times w.r.t. � to obtain
n� ² : ² :E 
 , � exp 	� 
 , �Ž .t t

n	1
n 	 1 kŽn	k . � ² : ² :² :� � , u t , � E 
 , � exp 	� 
 , � .Ž . Ž .Ý t tž /k

k�0

3.16Ž .

Ž .Evaluating 3.16 at � � 0 yields the assertion.
To see that the second moment formula still holds for �, assuming also

� 	 � 	 Ž .negative values, let � � � 	 � , where � � � � 0 and � � 	� � 0. Now
use

2 2 2 2� � � � 	 � � 	² : ² : ² : ² :E 
 , � �2E 
 , � �2E 
 , � 	E 
 , � � � . �t t t t

3.2. Coupling. In this section we shall construct two different couplings
Ž .for our processes, the so-called basic coupling lemma Lemma 3.3 and the

Ž .local coupling Lemma 3.5 . On the way we recall in Lemma 3.4 the usual
coupling for Brownian motions. We start by explaining the notion of coupling
in general.

Ž .Let S be the semigroup of a Feller process on the locally compactt t � 0
Ž .polish space E. By a coupling we mean a bivariate Feller process X , Yt t t � 0

Ž . Ž .with cadlag paths such that X and Y are each copies of a Feller processt t
Ž .with semigroup S . Note that in general these copies are not independent.t

This definition is more general than the usual definition. In particular, our
coupling does not need to be successful. In fact, we will use different notions
of the ‘‘success’’ of a coupling.

Define the coupling time � by

� 43.17 � � inf t � 0: X � Y .Ž . t t

Ž . Ž x, y .� �We say that the coupling is successful for x, y � E � E if P � � � � 1
and

Ž x , y . � 4 � 43.18 P X � Y � � � t � 0 � t � 0.Ž . t t

Ž .We come to the first coupling basic coupling . It deals with the coupling of
two deterministic initial configurations �1 and �2.
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1 2 Ž . Ž . 1 2Let � , � � MM E and define � � MM E � E by � � � � � . We needf f
Ž .that the coupling time is stochastically uniformly bounded for all starting

points in the support of �. Thus we assume that there exists a nonnegative
random variable H such that

Ž x , y .� � � �3.19 LL � � LL H stochastically for �-almost all x , y � E � E.Ž . Ž .
Ž . Ž .Also we assume that 3.18 holds. For A � BB E let

C A � sup S � x , x � supp �1 � �2 .Ž . Ž . Ž .� 4Ž .t t A

Ž 1. Ž 2 .Let � and � be binary branching processes or super processest t � 0 t t � 0
Ž . 1 2associated with S . In the former case we will also assume that � , � �t

Ž .NN E .f

Ž . Ž 1 2 .LEMMA 3.3 Basic coupling . There exists a coupling � , � witht t t � 0
Ž 1 2 .� � � , � that is successful in the sense that0

1 2E � 	 �Ž .t t A3.20Ž .
1 2 1 2� � � � � � � � � �� C A � � 	 � � 2 min � , � � P H � t .Ž . Ž .t

� 1 � � 2 �In particular, for � � � ,
1 2 1� � � �3.21 E � 	 � � 2 � � P H � t .Ž . Ž .t t

� 1 � � 2 � 2PROOF. Without loss of generality we may assume � � � . Let � �
2 2 2 2 1� � � � Ž .� � � be a decomposition of � such that � � � . Then 3.19 holds˜

2 2 2 Žwith � replaced by either � or � . It is clear by the first moment formulas˜
. Ž . Ž 1 2 .of the previous section that 3.20 holds for any coupling � � � , � with˜ ˜ ˜t t t

2 1 2Ž . Ž . Ž . Ž .� � 0, � . Thus if we can show 3.21 for � with � � � , � , we are˜ ˜0 t 0
i i idone by setting � � � � � , i � 1, 2.˜t t t

� 1 � � 2 � Ž . �Thus we will now assume � � � . Let � � MM E � E resp., � �f
Ž .� 1Ž . Ž . 2Ž . Ž .NN E � E with marginals � � � � �� E and � � � � E � � . Letf

Ž .X , Y and � be as above. Then we have by assumptiont t t � 0

Ž x , y .� � � �3.22 P X � Y � P H � t for �-almost all x , y .Ž . Ž .t t

Ž . Ž .Define � to be the critical branching or super process on E � Et t � 0
Ž .associated with the bivariate process X , Y on E � E. For t � 0, wet t t � 0

Ž . Ž .have that � is in MM E � E , respectively, NN E � E , almost surely. Lett f f
1Ž . Ž . 2Ž . Ž .� � � � �� E and � � � � E � � be its marginals. Since the branchingt t t t

Ž 1. Ž 2 .mechanism is spatially homogeneous, � and � are criticalt t � 0 t t � 0
Ž . Ž . Ž .branching respectively, super processes associated with X and Y . Thust t

Ž 1. Ž 2 . Ž . Ž 1.� and � are both associated with S . For example, we show that � ist t t t
Ž . Ž . Ž x, y .� �an S -super process. Let q x, y, A, B � P X � A, Y � B denote thet t t t

Ž . Ž . x� � Ž .transition kernel of X , Y and let p x, A � P X � A � q x, y, A, E .t t t t t
Ž . Ž . Ž .Let � � C E , � � 0, and let �� x, y � � x , x, y � E. Thenb

Ž x , y . ² :u x , y � 	 log E exp 	 � , ��Ž . Ž .t t

Ž x , y . 1² :� 	 log E exp 	 � , �Ž .t

3.23Ž .
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� Ž .� Ž . Ž .is the unique solution see 1.7 of u x, y � � x and0

u x , y � q x , y , dx�, dy� �� x�, y�Ž . Ž . Ž .Ht t
E�E

3.24Ž .
t 21	 ds q x , y , dx�, dy� u x�, y� .Ž . Ž .H H t	s s2

0 E�E

Ž . Ž . Ž . x� Ž ² :.�Let 
 be an S -super process and let v x � 	log E exp 	 
 , � .t t t t
Ž . Ž .Then v x � � x and0

t 213.25 v x � p x , dx� � x� 	 ds p x , dx� v x� .Ž . Ž . Ž . Ž . Ž . Ž .H H Ht t t	s s2
E 0 E

Ž . Ž . Ž . Ž . Ž 1.Note that v x solves 3.24 . Thus u x, y � v x , x, y � E, and � is ant t t t
Ž .S -super process as claimed.t

�Ž . 4Denote by D � x, x : x � E the diagonal in E � E. Then

� 1 2 �� � � � � �3.26 E � 	 � � E � E � E 
 D � 2 � � P H � t . �Ž . Ž .Ž .t t t

d d Ž .We come back to the special situation E � � or E � � and S thell t t � 0
semigroup of Brownian motion on E. In this case there exists a successful
coupling.

LEMMA 3.4. Let E be either �d or � d and let R � 0. For x, y � E withll

� � Ž 1 2 . Ž .x 	 y � R there exists a coupling W , W for the standard Brown-t t t � 0
ian motion on E such that

1
Ž x , y . 1 2 	1�23.27 P W � W � Rt .Ž . (t t �

PROOF. We may assume E � � d since on �d the coupling works evenll

better. By translation and orthogonal transformation, we may also assume
Ž . � �x � 0 and y � r, 0, . . . , 0 with r � x 	 y � R.

If d � 2 we let

3.28 W i � Y i , Z , i � 1, 2.Ž . Ž .t t t

Ž . d	1Here Z is a Brownian motion on � with Z � 0. The processest t � 0 0
Ž 1. Ž 2 .Y and Y are Brownian motions on � that move independentlyt t � 0 t t � 0
until they first meet and then move together. The initial points are Y 1 � 00

2 Ž i. Ž i.and Y � r. In the case d � 1, we simply let W � Y , i � 1, 2.0 t t
1 2 2 1� 4 ŽLet H � inf t � 0: Y � 0 . Then since Y 	 Y is a Brownian motiont t t2

. � � 1 24� r� �running at double speed LL inf t � 0: W � W � LL H . By the reflectiont t
principle,

22 u 1'r� 2 tr 	1�2� �3.29 P H � t � exp 	 du � Rt . �Ž . ( (H ž /� 2 �0
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Ž .The aim is now to couple the evolutions of � started from twot t � 0
Ž .different random configurations. In the context of our problem, one of those

laws is only vaguely known since it will be the result of long-time evolution of
Ž .a � -type process. The other law will be better known. Typically, it will bet
Ž . Ž .M � , where the random value � is obtained by some averaging over the

first configuration. The details follow in the subsequent sections.
Ž 1 2 .Since supp � � � will typically be too large to apply Lemma 3.4 di-

rectly, we have to construct a local coupling. The idea is the following.
We start with a translation invariant initial configuration. Thus the sup-

port is large. In order to apply Lemma 3.4 successfully, we divide E into
boxes of length R � 0. We do the coupling independently in each box accord-
ing to Lemma 3.4. Finally we have to shift the pattern of boxes by a random

� � doffset z � 0, R in order to obtain a translation invariant coupling.
Ž 1 2 . Ž Ž . Ž ..Let Q � Q d� , d� � MM MM E � MM E be translation invariant. That1

Ž Ž . Ž ..is, TT Q � Q � x � E, where the translation TT Q � MM MM E � MM E is de-x x 1
fined by

1 2 ² 1 : ² 2 :TT Q d� , d� exp 	 � , f 	 � , gŽ . Ž .H x

1 2 ² 1 : ² 2 :� Q d� , d� exp 	 � , TT f 	 � , TT gŽ . Ž .H x x3.30Ž .

1 2 ² 1 : ² 2 :� Q d� , d� exp 	 � , f x � � 	 � , g x � � ,Ž . Ž .Ž . Ž .H
� �for f, g: E � 0, � measurable.

Fix R � 0. In the case E � �d we will assume that t�R 	 N � �.ll

Ž . Ž .LEMMA 3.5 Local coupling . There exists a translation invariant cou-
Ž 1 2 . Ž . Ž .pling � , � of BBM E or SBM E witht t t � 0

1 23.31 LL � , � � QŽ . Ž .0 0

and such that

1 2E � 	 �Ž .t t A

	d 1 2 d� � � �� A � R E � 	 � 0, RŽ .Ž .0 03.32Ž .
d1 2 	1�2'� ��E � � � 0, R d�� R � t .Ž . Ž .0 0

Ž 1 2 . Ž . Ž .PROOF. Fix an initial configuration � , � � MM E � MM E . Let
d� �3.33 C � kR � 0, R ,Ž . k

d Ž � 4d d .for k � � or k � 0, . . . , N 	 1 if E � � . Letll

3.34 �i � �i� , i � 1, 2 for each k .Ž . k Ck

We want to use the independence in the branching systems to obtain a
Ž 1 2 . 1 2coupling � , � for � and � , for each k separately. Fix k. We applyk , t k , t t � 0 k k
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ŽLemma 3.3 and Lemma 3.4 with A � E note that two points in C havek' .distance at most R d to get
1 2Ž � ,� . 1 2k k � �E � 	 �k , t k , t

3.35Ž .
1 2 1 2 	1�2� � � � � � � � '� � 	 � � 2 min � , � d�� R � t .Ž .k k k k

Ž . Ž 1 2 .Integrating 3.35 with respect to Q d� , d� and using translation invari-
ance we get

1 2� �E � 	 �k , t k , t

1 2 1 2 	1�2'� E � 	 � C � E � � � C d�� R � tŽ . Ž .Ž . Ž .0 0 0 0 0 0
3.36Ž .

	 � .
i i �Ž 1 2 .� ŽIf we let � � Ý � , i � 1, 2, then LL � , � � Q and by translationt k k , t 0 0

.invariance
1 23.37 E � 	 � � � � k .Ž . Ž . Ct t k

�Ž 1 2 . � �Note that in the last step we have used the �-additivity of � 	 � as aCt t
Ž .function of C � BB E . In order to get a translation invariant coupling, we

pick z � C at random and shift the ‘‘grid’’ R�d by z. For z � C define0 0
Ž iŽ .. Ž .� z , i � 1, 2, as above with C replaced by C z � z � C . Lett t � 0 k k k

1
i i3.38 LL � � LL � z dz , i � 1, 2.Ž . Ž .Ht tdR C0

Ž 1 2 . Ž .Then � , � is a coupling with the asserted properties: 3.31 holdst t
Ž 1Ž . 2Ž .. � �Ž 1because it holds for each � z , � z , z � C . By construction, E � 	0 0 0 t

2 . � ��� is translation invariant on E as a measure in B. Hence it is aBt
Ž .multiple of the Lebesgue measure on E. By 3.37 , its density is less than or

equal to ��Rd. �

Ž Ž d . Ž d .. Ž Ž d . Ž d ..COROLLARY 3.6. Let Q � MM MM � � MM � or MM NN � � NN � be1 ll ll 1 ll ll

translation invariant with

3.39  � t	d � 1 �d Q d� 1, d� 2 � �.Ž . Ž .Ž .H ll

1 Ž 1 2 . 2 Ž .Given � , under Q d� , d� , the distribution of � shall be M � witht
	d 1Ž d .� � t � � .ll

Let further N � �, R � t�N and � � 0 such that

d1 d d 1 d� �3.40 E � � 	 N � 0, R � � t .Ž . Ž . .Žll

Ž 1 2 . Ž d . Ž d .Then there exists a coupling � , � of BBM � or SBM � withll , t ll , t t � 0 ll ll

�Ž 1 2 .� Ž d .LL � , � � Q and such that for B � BB � and t � 0,ll , 0 ll , 0 ll

1 2 	d 	1�2� � ' '3.41 E � 	 � � B � � 2 R � 2 d�� R � t .Ž . Ž .ll , t ll , t B

d 	dŽ . Ž . Ž .'If � is SBM � , the term 2 R on the r.h.s. of 3.41 can be dropped.t ll
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� �Ž 1 2 .Ž� � d . �� dPROOF. In the case of SBM, clearly E � , � 0, R � � R . Con-ll , 0 ll , 0
sider now the case of BBM. Note that for a Poisson random variable X with

' ' '� � �� Ž . � �mean � � 0, E X 	 � � � � 1� � Var X � 2 � . By this and Jensen’s
inequality, we obtain

d1 2 � �E � 	 � 0, RŽ . Ž .ll , 0 ll , 0

dd 2 	d 1 d� �� � R � E � 0, R 	 N � �Ž . Ž .ll

3.42Ž .
d 	d 1 d� � R � 2E N � �' Ž .ll

d d'� � R � 2 R .

Now apply Lemma 3.5. �

d Ž 1. Ž d .COROLLARY 3.7. Let S � R � 0 and E � � . Consider � BBM �t t � 0
Ž d . � 1 �or SBM � . Assume that LL � is translation invariant and that � , � � 00

and 0 �  � � are chosen such that
d1 � �E � 0, 1 �  ,Ž .0

d d	d 1 	d 1� � �3.43 E R � 0, R 	 S � 0, S � � ,Ž . Ž . ž /0 0

ddd1 1 d� � � � �3.44 E � 0, S 	 � S z � 0, 1 � �S � z � 	1, 1 .Ž . Ž .0 0 ž /ž /
Ž 1 2 .Then there exists a coupling � , � such thatt t t � 0

d2 1 	d 1 �3.45 LL � 
 � � M S � 0, SŽ . ž /ž /0 0 0

and for t � 0,
1 2E � 	 �Ž .t t B

2 	d 	1�2� � ' '� B � � 3� � d exp 	D �2 t � 2 R � 2 d�� Rt ,Ž .
3.46Ž .

Ž d . � � d Ž d � � d . Ž .where B � BB � , B � 0, S and D � dist B, � 
 0, S . If � ist
d 	dŽ . Ž .'SBM � , the term 2 R on the r.h.s. of 3.46 can be dropped.

REMARK. The coupling takes place at scale R while the averaging takes
Ž . Ž . 1place at scale S. The conditions 3.43 and 3.44 make sure that � does not0

vary too much on these scales.

PROOF. If the common distribution of � 1 and � 2 was translation invari-0 0
ant we could argue as in Corollary 3.6. However, in general it is not. So we

Ž 3.have to work a little more. The aim is to construct a third process �t t � 0
� 1 3 � 2 3such that LL � , � is translation invariant while � and � are close.0 0 t t

Here are the details.
Ž Ž d .. �Recall that � denotes the convolution in MM MM � and that Q is theA1

Ž Ž d .. Ž d . � Ž .� Ž d .restriction of Q � MM MM � to A � BB � see 1.2 . For � � MM � and1
z � � d, define

d	d � �3.47 � z , � � � M S � S k � z � 0, 1 .Ž . Ž . dŽ .Ž .Ž .ž /Ž � � .S z�k� 0, 1dk��
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Define � 1 and � 3 on one probability space such that0 0

3 1 1LL � 
 � � � z , � dz .Ž .H0 0 0
d� �0, 1

�Ž 1 3.� Ž . ŽWe show that LL � , � is translation invariant. Since TT � z, � � � z �0 0 x
. d Ž . Ž .d dx, TT � , x � � , we have H TT � z, � dz � H � z, TT � dz. Hence, forx �0, 1� x �0, 1� x
d � �f , g: � � 0, � measurable, we have

1 3² : ² :E exp 	 � , TT f 	 � , TT gŽ .0 x 0 x

1 3 1² : ² :� E exp 	 � , TT f E exp 	 � , TT g 
 �Ž . Ž .0 x 0 x 0

1 1² : ² :� E exp 	 � , TT f dz � z , � dm exp 	 m , TT gŽ . Ž .Ž . Ž .H H0 x 0 x
d d� � Ž .0, 1 MM �

1 1² :� E exp 	 TT , � , f dz TT � z , � dmŽ .Ž . Ž .H Hx 0 x 0
d d� � Ž .0, 1 MM �

² :�exp 	 m , gŽ .
3.48Ž .

1 1² : ² :� E exp 	 TT � , f dz � z , TT � dm exp 	 m , gŽ . Ž .Ž . Ž .H Hx 0 x 0
d d� � Ž .0, 1 MM �

1 1² : ² :� E exp 	 � , f dz � z , � dm exp 	 m , gŽ . Ž .Ž . Ž .H H0 0
d d� � Ž .0, 1 MM �

1 3² : ² :� E exp 	 � , f 	 � , g .Ž .0 0

� Ž .Then clearly by a suitable coupling of the Poisson processes in 3.47 and
Ž . �3.45 in the case of BBM we can assume

d3 2 � � � �3.49 E � 	 � � � A , A � 0, S ,Ž . Ž .0 0 A

Ž 2 . Ž 3.which implies that we can couple � and � such thatt t

3 2 � �E � 	 � B � � B � 2  dx dy p x , yŽ . Ž .Ž . H Ht t t
d d� �� 
 0, S B

D2

� �� B � � 2  d exp 	 .ž /ž /2 t

3.50Ž .

ŽThis coupling is done by defining three independent processes with initial
2 3 Ž 2 3.� Ž 2 3.	 . Ž .configurations �  � , � 	 � , � 	 � . As in 3.42 , we get0 0 0 0 0 0

d d d3 1 3 3� � � � � �E � 	 � 0, R � E � 0, R 	 E � 0, RŽ . Ž . Ž . Ž .0 0 0 0

d d1 3 1� � � �� E � 0, R 	 E � 0, R �Ž . Ž .0 0 03.51Ž .

d d'� 2 R � � � � R .Ž .
Ž 1 3.Now apply Lemma 3.5 to � , � . �0 0
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3.3. Comparison. In this section we compare the finite versions of our
branching processes to their infinite versions. We show that the finite system

Ž .is not too far off from its infinite counterpart if the time L t of observation is
Ž . 2not too large. Unfortunately, ‘‘not too large’’ here means L t � t . Hence the

obtained comparison result is not at all surprising. However, with the strong
tool of local coupling, this will be sufficient for our purposes.

Ž . Ž d . � �LEMMA 3.8 Comparison . Let ll � 0 and A � BB � , A � 0, such thatll
1 1 dŽ Ž .. Ž .D � ll 	 diam A � 0. There exist two BBM or SBM, � on � andt t � 02

Ž 2 . d� on � , on one probability space such that for t � 0,ll , t t � 0 ll

3.52 � 1 � M  and � 2 � M Ž . Ž . Ž .0 ll , 0 ll

and
2 'D t

1 2 � �3.53 E � A 	 � A � 2 d exp 	 �  A .Ž . Ž . Ž .t ll , t ž /2 t D
Ž . 2 � �2 � �In particular, for a sequence L ll � ll and A � ll A, � � 0, 2 , we getll

uniformly in  � 0,
	d� �2ll

��2 � �21 23.54 E � ll A 	 � ll A � 0 as ll � �.Ž . Ž . Ž .LŽ ll . ll , LŽ ll .� � A

PROOF. Without loss of generalization we may assume that A is centered
in �d such thatll

1d d� �inf x 	 y , x � A , y � � 
 � � ll 	 diam A .Ž .� 4 Ž .ll 2

d Ž m. Ž d . Ž d . ŽFor m � � let � be independent BBM � or SBM � with indepen-t t � 0
.dent initial configurations

m
d3.55 LL � � M  .Ž . Ž .0 ll Žm��0, 1� .

Let

3.56 � 1 � � � m � and � 2 � � � 0 m ll � � .Ž . Ž . Ž . Ž . Ž .Ý Ýt t ll , t t
d dm�� m��

Ž 1. Ž 2 . Ž .Then � and � are as asserted and we have to show 3.53 . Byt ll , t
construction,

1 2 m 0E � A 	 � A � E � A � E � m ll � AŽ . Ž . Ž . Ž .Ýt ll , t t t
d � 4m�� 
 0

0� 2 E � m ll � AŽ .Ý t
d � 4m�� 
 03.57Ž .

� 2  dx dy p x , yŽ .H H t
d d� 
� All

0� � � �� 2  A P W � D ,t

Ž . d Ž .where W is a standard Brownian motion on � . The proof of 3.53 ist t � 0
Ž . Ž .now a standard estimate while 3.54 is an immediate consequence of 3.53 .

�
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4. Moment calculations in the critical dimension. In this section we
Ž 2 . Ž 2 .give the asymptotics of the moments of BBM � and SBM � . We will

obtain bounds for the moments as well. These allow us to express the Laplace
transform in terms of the moments in the next section.

Ž 2 . � �Fix B � BB � and � � 0, 1 . For t � 0, let

4.1 B � B � t ��2B.Ž . t � , t

For n � �, x � �2, s � 0 and t � 1, we define
nx4.2 m x , s, t � m x , s, t , � � E � B ,Ž . Ž . Ž . Ž .Ž .n n s � , t

s n	n� x4.3 m x , s, t � m x , s, t , � � t E � BŽ . Ž . Ž . Ž .Ž .˜ ˜n n s � , tn	1log sŽ .
and

� � 21 x
24.4 � x � exp 	 , x � � .Ž . Ž . ½ 52� 2

The proof of the following lemma relies on a recursion that requires some
uniformity in the statements. This forces us to a somewhat cumbersome
formulation.

2 Ž . Ž . Ž .Fix x � � and three nonnegative sequences a �0, b �0 and c ��.t t t

Ž 2 . � �LEMMA 4.1. Let B � BB � be bounded and � � 0, 1 .

Ž .a Uniformly in � such that 1 � � � � and uniformly in the sequences
Ž . Ž . � � �Ž . Ž . �x and s such that x � s 	 x � a and log s � log t 	 � �'t t � 0 t t � 0 t t t t
b , and such that s � t �c , the following hold:t t t

n	1 n� �� B n!
4.5 lim m x , s , t , � � � x 1 	Ž . Ž . Ž .˜ n t t n	1ž /�t�� 8�Ž .

and
n	1 n� �1 � B n!

4.6 lim m y , s , t , � dy � 1 	 .Ž . Ž .˜H n t n	1ž /2s �t�� � 8�Ž .t

Ž .b There exists � � � such that

1
4.7 sup sup m x , s , t , � � �Ž . Ž .˜ n t tnn!�t : t�s �3 n��t

and

1 1
4.8 sup sup m y , s , t , � dy � �.Ž . Ž .˜H n tn 2n!� s �t : t�s �3 n�� tt

Ž .n	1REMARK. We use the convention 1 	 ��� � 1 if � � � � 0. This case
Ž .is actually covered in Fleischman 1978 .
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PROOF OF LEMMA 4.1. Throughout the proof we will suppress the � where
no ambiguities may occur.

Ž d . �Our main tool is the moment recursion formula for BBM � recall pt
Ž .� Ž 2 .from 2.8 , which holds for all A � BB � :

n	1 sn n1x xE 	 A � E 	 A � du dy p x , yŽ . Ž . Ž .Ž . Ý H Hs s s	u2 ž / 2k 0 �k�14.9Ž .
k n	ky y�E 	 A E 	 AŽ . Ž .Ž . Ž .u u

� Ž . � Ž .this is 3.1 with � � � . In particular, for A � B , 4.9 becomesA � , t

m x , s, t � m x , s, tŽ . Ž .n 1

n	1 sn1� du dy p x , y m y , u , t m y , u , t .Ž . Ž . Ž .Ý H H s	u k n	k2 ž / 2k 0 �k�1

4.10Ž .

Ž d .Compare this with the moment formula for SBM � given in Lemma 3.2.
Ž .The main contribution turns out to come from the k � 0 term in 3.9 . Since

the leading terms coincide, it suffices to prove the assertion for the case
Ž . Ž . Ž 2 . Ž . Ž d .� � 	 is BBM � . Note that for the case � SBM � , also the exis-t t t
tence of � with the asserted properties follows easily from the existence in
the case considered here.

Ž .We start with the proof of part a . The proof follows an idea of Durrett
Ž . Ž . Ž .1979 Proof of Theorem 8.1 . We proceed by induction over n using 4.10 . To

� �do so, we cut the left and right side of the domain 0, s of integration. In thet
Ž . Ž .remaining term we may use the asymptotics 4.5 and 4.6 . On the other

hand, the error terms resulting from the truncation of the domain of integra-
tion will be estimated by the following bounds. These will be proved succes-
sively in the course of the induction.

Ž .We show the existence of constants C , D and E depending on B withn n n

1
4.11 sup s 	 u p y , z m z , u , t dz � C ,Ž . Ž . Ž . Ž .˜H s	u n n

2u �t�s�u�3
2y��

4.12 sup m y , u , t � DŽ . Ž .˜ n n
t�u�3

2y��

and

1
4.13 sup m y , s, t dy � E .Ž . Ž .˜H n n

2s �t�s�3
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For n � 1, the assertions clearly hold because

	� � �4.14 m x , s , t � t s p x , y dy � � x B as t � �,Ž . Ž . Ž . Ž .˜ H1 t t t s tt
Bt

1
	� 	� � �4.15 m y , s , t dy � t dy dz p z , y � t dy � B ,Ž . Ž . Ž .˜H H H H1 t st2 2s � B � Bt t t

1
s 	 u p y , z m z , u , t dzŽ . Ž . Ž .˜H s	u 1

2s �

s 	 u s 	 u u
	� � � � �� ut p y , z dz � B � B ,Ž .H ss s sBt

4.16Ž .

	� � �4.17 m y , u , t � ut p y , z dz � BŽ . Ž . Ž .˜ H1 u
Bt

and

1
	� � �4.18 m y , s, t dy � t dy dz p y , z � B .Ž . Ž . Ž .˜H H H1 s

2 2s � � Bt

We will also need the following bound for the moments of the total mass:

n n	1x 24.19 E 	 � � F � t � 1 ,Ž . Ž . Ž .Ž .t n

Ž .where F � n!. For n � 1, this is clear since the l.h.s. of 4.19 equals 1. Forn
Ž .n � 2 this is easily shown by induction using 4.9 ,

n	11n t n	2nx 2E 	 � � F t � 1 � F F s � 1 dsŽ . Ž . Ž .Ž . Ý Ht 1 k n	kž /k2 0k�1

n	11 1 n	1n� F t � 1 � F F t � 1Ž . Ž .Ý1 k n	kž /k2 n 	 1 k�1

4.20Ž .

n	1� n! t � 1 .Ž .

Ž . Ž . Ž .The uniformity of the claim in terms of the sequences a , b and c willt t t
be needed to do the induction properly. Following the lines of the proof, it can
easily be established. We omit the details to avoid an unnecessary blowup of
the proof.

Ž . Ž .Now let n � 2. In the sequel we will assume that the validity of 4.5 , 4.6
Ž . Ž .and 4.11 � 4.13 is already shown for all n� � n.

We start with providing an inequality needed in some places. Assume that
X , . . . , X are the positions of the particles of 	 at time u. That is,1 �	 � uu
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�	u � Ž . � �	 � Ý � . Further, let Y � 1 X . Each Y is independent of 	 andu X k B k k uk�1 k tx t� � Ž . � Ž .�has expectation E Y � H p x , y dy. Thus by 4.19k B u tt

n� �	u

� �m x , u , t � E E Y 	Ž . Ýn t kž /k�1

� �	u
n	1 x t� � � �� E 	 E Y 	Ýu k u

k�14.21Ž .

nx t � �� E 	 p x , y dyŽ .Hu u t
Bt

n	1� F u � 1 p x , y dy.Ž . Ž .Hn u t
Bt

Note that

n	1n�t log tŽ .
4.22 m x , s , t � .Ž . Ž .1 t t st

Ž .That is, the l.h.s. in 4.22 is negligible compared with the expected main term
Ž .of m X , s , t . We thus calculate nown t t

h x , s, v , wŽ .n , k t

w
� du dy p x , y m y , u , t m y , u , t .Ž . Ž . Ž .H H s	u t k n	k

2v �

4.23Ž .

Ž . Ž .Let � be a sequence with � �� so slowly that � � log t � 0 as t � �.t t � 0 t t
Ž . Ž .By 4.19 and 4.21 ,

h x , s , 0, � t �Ž .n , k t t t

� t �
n	2t� F F du u � 1 dy p x , y dz p y , zŽ . Ž . Ž .H H Hk n	k s 	u t ut20 � Bt

F F t �
k n	k n	1� � �� � t � 1 BŽ .tn 	 1 st

4.24Ž .

t n�
n	1� log sŽ .tst

is small. The other side of the integration interval will be estimated as
Ž .follows. Let � be a sequence such that � �0 and such thatt t � 0 t
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Ž . Ž .log � � log t � 0 as t � �. Thent

h x , s , � s , sŽ .n , k t t t t t

n	2n� st log uŽ .t
� 2 C � D D duŽ . Hk k n	k s u� st t t

n	1n�1 t log �tn	1� 2 C � D D log s 1 	 1 	Ž . Ž .k k n	k t ž /n 	 1 s log st t

4.25Ž .

t n�
n	1� log s .Ž .tst

� � �Hence the main term results from the integration over � t , � s . Tot t t
evaluate this integral, we split the spatial integral into the integral over the

2 c 2'� � � 4disc D � y � � : y � K u and its complement D � � 
 D , whereu u u u
Ž . Ž .K �� as u � � will be fixed later. By the induction hypotheses 4.5 , 4.11u

Ž .and 4.12 we get
	n �

� ss t 1t tt
lim sup duHn	1 � u� tlog sŽ .t�� tt

� dy p x , y um y , u , t m y , u , tŽ . Ž . Ž .H s 	u t k n	ktcDu

n	2
� s1 log uŽ .t t

� D lim sup duHn	k n	1 � u� tlog sŽ .t�� tt

1
� dy s p x , y m y , u , tŽ . Ž .˜H t s 	u t ktc uDu

4.26Ž .

n	2
� s1 1 log uŽ .t t

� D lim sup duHn	k n	1 �� u� tlog sŽ .t�� tt

1
� dy m y , u , t .Ž .˜H k

c uDu

1Ž .The last inequality holds since s p x , y � 1�� for � � . Fix �� � 0t s 	u t t 2t
Ž . Ž . Ž .and let u be a sequence such that log u � log t � �� as t � �. Then byt t

Fatou’s lemma,
1

lim inf m y , u , t dy � lim inf m y u , u , t dyŽ . '˜ ˜H H ž /k t k t tut�� t�� � �D y �Ktu ut t

k	1 k� �� B k!
� 1 	 � y dyŽ .Hk	1ž / 2�� �8�Ž .

4.27Ž .

k	1 k� �� B k!
� 1 	 .k	1ž /�� 8�Ž .



CLUSTERS IN SPATIAL BRANCHING MODELS 1697

Ž . � Ž .Let u be a sequence with u � t and let � � 0. Then by 4.6 for tt t
sufficiently large,

1
4.28 m y , u , t dy � � .Ž . Ž .˜H k t

c uD tut

Ž .Thus the expression in 4.26 is less than or equal to

n	1n	1 �1 �D log � s 	 log � tŽ . Ž .n	k t t t
lim sup n	1� n 	 1 log sŽ .t�� t4.29Ž .

n	11 �D �n	k� 1 	 .ž /ž /� n 	 1 �

Ž .Since � � 0 was arbitrary, the three expressions in 4.26 are equal and equal
to zero.

Ž . Ž .Our task is now to determine the main term. By 4.5 , 4.12 and the
Žtheorem of dominated convergence, we may let K �� so slowly that uni-u

.formly in �� � 1

1
m u y , u , t m u y , u , t dy' '˜ ˜H ž / ž /k t t n	k t tu Dt ut

� m y , u , t m y , u , t dyŽ . Ž .˜ ˜H k t n	k t
� �y �K ut

n	2 n� �� B k! n 	 k !Ž . 2� 1 	 � y dy as t � �Ž .Hn	2ž / 2�� �8�Ž .

4.30Ž .

n	2 n� �� B k! n 	 k !Ž .
� 2 1 	 .n	1ž /�� 8�Ž .

Assuming further K � � 0 as t � � we get uniformly in u � � s and'� s t t tt t

y � D thatu

4.31 s p x , y � � x as t � �.Ž . Ž . Ž .t s 	u tt

We are now in the position to calculate
	n �

� ss t t tt
lim du dy p x , y m y , u , t m y , u , tŽ . Ž . Ž .H H s 	u t k n	kn	1 t�t�� � t Dlog sŽ . t ut

n	2
� ss log uŽ .t tt� lim duHn	1 � ut�� � tlog sŽ . tt

4.32Ž .

1
� dy p x , y m y , u , t m y , u , tŽ . Ž . Ž .˜ ˜H s 	u t k n	kt uDu
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n	2
� s� x log uŽ . Ž .t t

� lim duHn	1 � ut�� � tlog sŽ . tt

1
� dy m y , u , t m y , u , tŽ . Ž .˜ ˜H k n	kuDu

� � nB k! n 	 k ! 1Ž .
� � x 2 limŽ . n	1 n	1t��8� log sŽ . Ž .t

�

n	2 n	2
� s log u log tŽ .t t

1 	 � duH ž /� u log u� tt

4.33Ž .

� � n2 B k! n 	 k !Ž .
� � xŽ . n	1n 	 1 8�Ž .

�

n	1n	1 �log � s 	 � log t 	 log � t 	 � log tŽ . Ž .Ž . Ž .t t t
lim n	1t�� log sŽ .t

n	1 n� �2 � B k! n 	 k !Ž .
� � x 1 	 .Ž . n	1ž /n 	 1 � 8�Ž .

Ž . Ž .Summation over k in 4.10 now yields 4.5 .
Ž . Ž .To show 4.6 , we integrate 4.10 :

m x , s, t dxŽ .H n
2�

� m x , s, t dxŽ .H 1
2�

4.34Ž .
n	1 sn1� du dy m y , u , t m y , u , t .Ž . Ž .Ý H H k n	k2 ž / 2k 0 �k�1

As above, the first term is small and we have to evaluate

w
4.35 g v , w � du dy m y , u , t m y , u , t .Ž . Ž . Ž . Ž .H Hn , k k n	k

2v �

Ž . Ž . Ž .For � as above, we get from 4.13 and 4.19 thatt

g 3, � t �Ž .n , k t

n	k	1
� log uŽ .� t k	1tŽn	k .�� t F du u�1 dy m y , u , tŽ . Ž .˜H Hk n	k

24.36Ž . u3 �

k	14 F Ek n	k n	kk	1Žn	1.� � �� t t� log � t � tŽ . Ž .Ž .t tž /3 n 	 k
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Ž Ž . . Ž .note that u � 1 �u � 4�3 on the domain of integration . Let � � diam B .
By assumption, � � �, which serves to show that

3
g 0, 3 � du dy m y , u , tŽ . Ž .H Hn , k n

20 �

3
��2� du dy m y � l�t , u , tŽ .ÝH H n

��2 2� �0 0, � t dl��

n3 y 2� du dy E 	 �Ž .Ž .H H u
��2 2� �0 0, � t

4.37Ž .

4n 	 1
2 �� � t F .nn

n� Ž .n	1Since the expected main term is of order t log t , we have got that
Ž � . Ž . Ž .g 0, � t is negligible. Let also � be as above to obtain by 4.12 andn, k t t

Ž . Ž .4.13 that g � s , s is small,n, k t t t

g � s , sŽ .n , k t t t

n	2
s log u 1Ž .tn�� t du dy m y , u , t m y , u , tŽ . Ž .˜ ˜H H k n	k

2u u� s �t t
4.38Ž .

D Ek n	k n	1n	1 n	1n� n�� t log s 	 log � s � t log s .Ž . Ž . Ž .Ž .t t t tn 	 1
Ž � .We split up g � t , � s as above. The integral over D has already beenn, k t t t u

Ž . cdetermined in 4.33 and the integral over D is small sinceu

� tst du dy m y , u , t m y , u , tŽ . Ž .H H k n	k
� c� t Dt u

n	2
� s log u 1Ž .t tn�� D t du dy m y , u , tŽ .˜H Hn	k k

� cu u� t Dt u

4.39Ž .

n	1n�� t log s .Ž .t

Ž . Ž .So far we have shown part a of the lemma. To prove part b we still have
Ž . Ž .to show that 4.11 � 4.13 hold and that the size of the constants can be

controlled. We will do this by means of recursion formulas for C , D and E .n n n
Ž .By 4.2.1 we have

3
du dy s 	 u p y , z m z , u , t m z , u , tŽ . Ž . Ž . Ž .H H s	u k n	k

20 �

3 n	2� F F du u � 1 dz dw s 	 u p y , z p z , wŽ . Ž . Ž . Ž .H H Hk n	k s	u u
20 � Bt

3 n	2� F F du u � 1 dw s 	 u p z , wŽ . Ž . Ž .H Hk n	k s
0 Bt

4.40Ž .

F Fn n	k n	1 �� �� 4 B t .
n 	 1
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Ž .Putting this into the recursion formula 4.10 we get
s 	 u

p y , z m z , u , t dzŽ . Ž .˜H s	u n
2u �

n	11 1 n� C � Ý1n	1 ž /k2log uŽ . k�1

F Fk n	k n	1 � �� 4 Bž n 	 14.41Ž .

n	2
u log vŽ .

� dz dv dz� s 	 u p y , zŽ . Ž .H H H s	u
2 2v� 3 �

1
�p z , z� m z�, v , t m z�, v , t .Ž . Ž . Ž .˜ ˜u	v k n	k /v

Doing the integration, the summands equal
n	2

u log vŽ .
dv dz� s 	 u p y , z�Ž . Ž .H H s	v

2v3 �

1
� m z�, v , t m z�, v , tŽ . Ž .˜ ˜k n	kv

4.42Ž .

n	2
u log v C DŽ . k n	k n	1� C D dv � log u .Ž .Hk n	k v n 	 13

Ž .We have shown that 4.11 holds with
n	11 C D F Fk n	k k n	kn n	1 � �4.43 C � C � � 4 B .Ž . Ýn 1 ž / ž /k2 n 	 1 n 	 1k�1

Ž .We now turn to the D . By the recursion formula 4.10 , we get for t � s � 3n
and y � �2,

m y , s, tŽ .˜ n

n	1s 1 n	n �� t m y , s, t � h y , s, 0, t .Ž . Ž .Ý1 n , kn	1 ž /ž /k2log sŽ . k�1

4.44Ž .

Now

12 n	k	1h y , s, 3, t � D du dz p y , z m z , s, t log suŽ . Ž . Ž . Ž .H Hn , k n	k u	s k
2u0 �

n	2
s log uŽ .

� 2 C � D D duŽ . Hk k n	k u3
4.45Ž .

n	12 C � D D log sŽ . Ž .k k n	k� .
n 	 1 s



CLUSTERS IN SPATIAL BRANCHING MODELS 1701

Ž .From this and 4.24 we get that D can be chosen to ben

n	11 n n	1 � �4.46 D � D � F F 4 B � 2 C � D D .Ž . Ž .Ýn 1 k n	k k k n	kž /k2 n 	 1Ž . k�1

Finally, the E will be determined as follows:n

n	11 1 1n4.47 m y , s, t dy � E � g 0, s .Ž . Ž . Ž .˜ ÝH n 1 n , kn	1ž /2 ks 2� log sŽ .k�1

Now
s 1 k	1g 3, s � D log u dz m z , u , tŽ . Ž . Ž .H Hn , k k n	k

2u3 �

k	2
s log uŽ .

� D E duHk n	k u3

4.48Ž .

D Ek n	k n	1� log s .Ž .
n 	 1

Ž .Together with 4.37 this yields that we can choose E to ben

n	11 n 2 n4.49 E � E � D E � � 4 F .Ž . Ýn 1 k n	k nž /k2 n 	 1Ž . k�1

Ž . Ž . Ž . Ž .Putting together 4.19 , 4.43 , 4.46 and 4.49 , we see that we can choose

4.50 C � D � E � n!� nŽ . n n n

Ž .for some � � � depending on � . �

Next we give a lemma that provides some uniformity in different spatial
��2 �scalings that are approximately equal to t recall that a � b meanst t

Ž . Ž . �log a � log b � as t � �1 .t t

Ž . Ž 2 . Ž 2 . � �LEMMA 4.2. Let � be BBM � or SBM � and I � 0, 1 , respectively,t
� � Ž . Ž . Ž . Ž . �	�, 1 . Fix � � I and v t � u t with u t , v t � t . Then uniformly in all

Ž . Ž . Ž . Ž .sequences w t such that u t � w t � v t � t � 0 the following holds:
21 12 2M̃ Ž t . ˜ ˜� � � �' 'h t � E � 0, u t 	 � 0, w tŽ . Ž . Ž .ž / ž /t tž /4.51Ž . u t w tŽ . Ž .

� 0 as t � �.

PROOF. Let
1 1

2 21�2 1�2� � � 	 � .� �t �0, uŽ t . �0, w Ž t .u t w tŽ . Ž .
Ž . 2Recall that S is the semigroup of Brownian motion on � . By the seconds

Ž . Ž .moment formulas 3.5 and 3.12 ,

4.52 h t � a � b � c ,Ž . Ž . t t t
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Ž .with equality in the case of BBM where

28� 2 ˜² :a � � , S � M t d� ,Ž . Ž .Ž .Ht t tž /log t

28� 22 ˜b � � , S � 	 S � M t d� ,Ž . Ž . Ž .¦ ;Ž .Ht t t t tž /log t
4.53Ž .

28� T 2 ˜c � � , S S � ds M t d� .Ž . Ž . Ž .Ž .H Ht t	s s t¦ ;ž /log t 0

Clearly, a � 0 as t � � and b � 0 as t � �. To show c � 0 as t � � wet t t
Žhave to be more careful. By translation invariance we get recall that � is the

.Lebesgue measure

8� t 24.54 c � �, S � ds .Ž . Ž .Ht s t¦ ;log t 0

Note that by Holder’s inequality¨

2 � ��, S � � S � � sup S � xŽ . Ž .² : �s t s t s t
2x��

1 1 1 1 2
� min , � � min , .ž / ž /2� s u t w t 2� s u tŽ . Ž . Ž .

4.55Ž .

Thus

8� Ž .v t log t 2
�, S � dsŽ .² :H s tlog t 0

8� 2 u tŽ .
� � log v t log t 	 logŽ .Ž . ž /ž /log t log t log t

4.56Ž .

� 0 as t � �.

On the other hand,

� �S � �s t

� sup sup sup p x , y 	 p x , zŽ . Ž .s s
2 1�2 2 1�2 2� Ž . � � Ž . �x�� y� 0, u t z� 0, v t

221 r r 	 
Ž .
� sup sup exp 	 	 exp 	½ 5 ½ 52� s 2 s 2 s1�2 1�2r�� � Ž Ž .. Ž Ž .. �
� 	 2 v t , 2 v t

4.57Ž .

	1e 2v tŽ .
� .(

2� s s
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Thus
'8� 8 1t 24.58 � S � ds � � 0 as t � �.Ž . Ž .² :H s t (log t e log tŽ .v t log t

We conclude c � 0 as t � � and the proof is complete. �t

5. Proof of the clustering results for the infinite systems.

5.1. Proof of Theorem 1. The proof of Theorem 1 will be based on an
˜asymptotic result related to the Laplace transforms of � . This is formulatedt

in Propositions 5.1 and 5.2.
2 2 'Ž .Let x � � and x be a sequence in � such that x � t � x ast t � 0 t

t � �.

Ž 2 .PROPOSITION 5.1. Then for B � BB � bounded and � � 0,
t log t

x �t ˜lim 1 	 E exp 	�� BŽ .� 4ž /t8�t��

� �� B
� � x as t � �,Ž .

� �1 � � B 1 	 �Ž .

5.1Ž .

log t
M Ž1. �˜lim 1 	 E exp 	�� BŽ .� 4ž /t8�t��

� �� B
� as t � �.

� �1 � � B 1 	 �Ž .

5.2Ž .

PROOF. Let
t log t

x �t ˜5.3 � � � 1 	 E exp 	�� B , � � �, Re � � 0.Ž . Ž . Ž . Ž .� 4ž /t t8�

Then
t log t

x �t ˜� � � �5.4 � � � � � E � B � � .Ž . Ž . Ž .t t8�
Ž .Thus � � is uniformly bounded for � in compact sets. Let � � � be as int

Ž . Ž . � � Ž . Ž .Lemma 4.1 b . By 4.7 for � � 1�� we can express � � in terms of thet
moments

nn x �t ˜� 	� E � BŽ . Ž .Ž .t log t t
� � � 	Ž . Ýt 8� n!n�15.5Ž .

n n	1� 	� 8� m x , t , t , �Ž . Ž . Ž .˜ n t� 	 .Ý n!n�1

Ž .Hence by 4.5 ,
� �� B 1

� �5.6 � � � � x as t � �, � � .Ž . Ž . Ž .t � �1 � � B 1 	 � �Ž .
� Ž .� Ž .By Vitali’s theorem see, e.g., Remmert 1991 , equation 5.6 holds for all �

on the right half plane.
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Ž .The proof of 5.2 is analogous. Here we take

log t
M Ž1. �˜5.7 � � � 1 	 E exp 	�� BŽ . Ž . Ž .� 4t t8�

Ž . Ž .and use 4.6 and 4.8 . �

� �For � � 1 and B � 0, Proposition 5.1 can be reformulated in terms of
distributions.

Ž .PROPOSITION 5.2. Assume � � 1. Let x as in Proposition 5.1 and lett
Ž 2 . � �u � 0. Then for B � BB � bounded, B � 0,

t log t � x uŽ .
x �t ˜5.8 lim P � B � u � exp 	 ,Ž . Ž .t ½ 5� �8� 1 	 � B 1 	 �t�� Ž .

log t 1 u
M Ž1. �˜5.9 lim P � B � u � exp 	 .Ž . Ž .t ½ 5� �8� 1 	 � B 1 	 �t�� Ž .

Ž .PROOF. We show only 5.8 since the proof of the other statement is
x t ˜�Ž . ŽŽ . . � Ž . �similar. Let F u � log t �8� P � B � u andt t

u� x 1 	sŽ .
G u � exp ds.Ž . H ž /� � � �1 	 � B 1 	 � B 1 	 �Ž . Ž .0

Ž .Note that 5.1 states that
� �

	� u 	� u5.10 1 	 e dF u � 1 	 e dG u as t � �.Ž . Ž . Ž . Ž . Ž .H Ht
0 0

Ž 	� u . � �Since u � 1 	 e , u � 0 is a separating class on 0, � , we are done. �

Ž .PROOF OF THEOREM 1. From Proposition 5.1 the proof is easy. Let L s, �
1� � 4� Ž . Ž .� E exp 	�Z be the Laplace transform of Feller’s diffusion Z . By 1.6 ,s s

Ž . � 4L 0, � � exp 	� and

� �
1 2 2� 45.11 L s, � � E � Z exp 	�Z � 	� L s, � .Ž . Ž . Ž .s s� s ��

Ž .The solution of 5.11 is

�
5.12 L s, � � exp 	 , � � 0, s � 0.Ž . Ž . ½ 51 � � s

� � Ž 2 . Ž .Let � � 0, 1 and B � BB � bounded. Use 5.2 to obtain
Ž .log t �8�

M̃ Ž t . � M Ž1. �˜ ˜E exp 	�� B � 1 	 1 	 E exp 	�� BŽ . Ž .� 4 � 4ž /t tž /
� �� B

� exp 	 as t � �.½ 5� �1 � � B 1 	 �Ž .

5.13Ž .

Ž .Comparing this with 5.12 yields the claim.
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Ž d .The case � � 0 and � � 
 SBM � can be done with the scaling prop-t t
Ž .erty 1.10 as follows,

8�˜ ˜M Ž t . � M Ž t . 	� � �2˜LL 
 B � LL t 
 t BŽ . Ž .t tlog t

8�
M̃ Ž t .

1	 �� LL 
 BŽ .tlog t5.14Ž .
1	 �M̃ ŽŽ t .�Ž1	� .. ˜1	 �� LL 1 	 � 
 BŽ . Ž .t

1�Ž1	� .� LL 1 	 � Z as t � �Ž . 1

1� �� LL Z .1	�

In the last step we have used the scaling property of Feller’s diffusion,
�� � � � �LL � Z � LL Z , �, � ,  � 0. �� ��

5.2. Proof of Theorem 2. In order to understand why Theorem 2 should
Ž .be true, we draw a time�space picture see Figure 4 . Consider a point

Ž . 2 � � Ž .x, t � � � 0, � . We want to investigate the events C x, t that form the
'Ž .history of x, t . Since Brownian motion at time s has range approximately s ,

we may roughly set
1�2 2� � � �C x , t � u , s , u 	 x � t 	 s , u � � , s � 0, t .Ž . Ž . Ž .� 4

� �Now let for � � 0, 1 ,
2 � � 4C x , t � C x , t � � � t 	 tŽ . Ž . Ž .�

� Ž . � �be the events at time t 	 t that may influence x, t . Fix � � 0, 1 and let
Ž . Ž . 2 � � ��2x , y � � be such that x 	 y � t . Then for � � � we have thatt t t t

Ž . Ž . Ž .C x , t and C y , t are asymptotically completely disjoint. For � � � we� t � t
Ž . Ž . Ž .have that C x , t and C y , t asymptotically overlap completely. By the� t � t

Ž . Ž .Markov property, the common history is contained in C x , t � C y , t .� t � t
� Ž . Ž .After time t 	 t the evolutions leading to x , t and y , t are independent.t t

� � ��2FIG. 4. Historical cones for x 	 y � t .t t
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Ž . Ž .We have to justify that the information contained in C x , t � C y , t is� t � t
sufficiently well described by the common value of Z . This will be done by1	�

showing that the distribution of mass is not ‘‘too inhomogeneous.’’
We make the preceding idea precise. It is sufficient to check that

5.15Ž .
M̃ Ž t . e e e˜ � �eLL SS TT � B � LL B Z as t � �,Ž . Ž .ž /AŽe. , t x t 1	AŽe. e��t e��

e Ž 2 .for B � BB � bounded for all e � �.
� 4We do the proof by induction over the length of the tree �. For � � � this

is the assertion of Theorem 1. Now assume that the claim has been shown for
all trees shorter than �.

Ž . AŽ�.The idea of the proof is the following. We introduce a time scale L t � t
Ž . Ž . Ž 2 .and couple � for s � t 	 L t with another process � . This process shalls s

Ž .have initial configuration M  , where  is the empirical population density
1 AŽ�.�2 Ž .of � in a box of length approximately equal to t . L t will bet	LŽ t .

Žchosen small enough that the evolutions of the subtrees resulting from
.eliminating the root � from � are asymptotically independent. On the other

Ž .hand, L t has to be chosen large enough so that the local coupling with local
Ž . AŽ��2.size R t � t is successful. Here are the details.

� Ž e. 4Let b � max diam B , e � � . Let d �0, t � �, such thatt

Ž AŽe  f .	dt .�2 � e f � AŽe.�2 AŽ f .�2t � x 	 x 	 b t � tŽ .t t

1e f AŽe.�2 AŽ f .�2 Ž AŽe  f .�d .�2t� �� x 	 x � b t � t � tŽ .t t 2

5.16Ž .

for all e, f � �. We may and will assume that t dt � � as t � �. Let
Ž .� � A � . Let

S � S t � t Ž��dt .�2 ,Ž .
R � R t � t Ž�	3dt .�2 ,Ž .
L � L t � t �	2 dt .Ž .

e e AŽe.�2 e e Ž e .Let B � x � t B and B � � B . By shifting X � x , e � � , ift t t e� � t t
� � 2necessary, we can assume that B � 0, S for all t � 0 andt

2	1�2 2 � � �5.17 L � dist B , � 
 0, S � � as t � �.Ž . Ž .t

1 Ž .Apply Corollary 3.7 with � � � , L t instead of t,  � log t�8� , and0 t	LŽ t .
ŽŽ . .with � � � � log t �8� � , where � � 0 as t � �. This last choice is possi-t t

Ž 1 2 . � 2 � 1 �ble due to Lemma 4.2. Thus we obtain a coupling � , � with LL � �s s s� 0 0 0
Ž 	2 1Ž� � 2 ..� M S � 0, S such that there exists a sequence � �0 with0 t

M̃ Ž t . 1 2 2˜ ˜ � �5.18 E � 	 � C � � C � C � BB � bounded.Ž . Ž . Ž .ž /LŽ t . LŽ t . t

So we all have to show is

8�
M̃ Ž t . 	AŽe. 2 e 1 e e� �5.19 LL t � B � LL B Z as t � �.Ž . Ž . Ž .Ž .LŽ t . t 1	AŽe.e�� e��log t
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Ž .By Theorem 1 and Lemma 4.2 we know that

8� 2M̃ Ž t . 	2 1 � � � �5.20 LL S � 0, S � LL Z as t � �.Ž . Ž .0 1	�log t

Ž . Ž .Hence using the Chapman�Kolmogorov equation showing 5.19 amounts to
showing, for  � 0,

8�
M Ž  log t�8� . 	AŽe. e  eLL t � B � LL Z as t � �Ž . Ž .Ž .LŽ t . t �	AŽe.e�� e��log t5.21Ž .

�� e� LL �Z .Ž .1	AŽe.� � e��

The last equality is the basic scaling property of Feller’s diffusion.
�Ž . 4Let � � j, l , . . . , l � �, n � � , j � 1, . . . , J be the partition of � intoj 2 n
Ž � 4 . Ž . Žsubtrees � � � � � � � ��� � � . To prove 5.21 it suffices by the induc-j 1 J

.tion hypothesis to show that

8�
	A Že. e5.22 t � B , j � 1, . . . , JŽ . Ž .LŽ t . tž /log t e��j

are J asymptotically independent random variables.
Ž . e jFor each j � 1, . . . , J, fix one e � � and let C � C t � x �j j j j t

� Ž . Ž .� 2 2 Ž .	R t , R t and C � � 
 C � ��� � C . Then for t large enough we0 1 J
have C � C � � for i � j. Leti j

� � � t � inf dist B e , �2 
 C .Ž . Ž .j j t j
e��j

Ž . 'Since A: � � I is strictly decreasing, we have � t � L t � � as t � �.Ž .j
Ž j. Ž 2 . Ž 2 .Let � , j � 0, 1, . . . , J, be independent BBM � or SBM � withs s� 0

j 0 J� � M log t�8�  , j � 0, 1, . . . , J. We can assume � � � � ��� �� .Ž .Ž .0 C s s sj

Now for j � 1, . . . , J and e � � ,j

J8�
	A Že. i eE t � BŽ .Ý LŽ t . tlog t i�0,

i�j

� e � 	A Že.�  B t dx dy p x , yŽ .H H LŽ t .
2 e� 
C Bj t

5.23Ž .

� e � 2�  B exp 	� �L t � 0 as t � �.Ž .� 4j

Ž .Thus 5.22 holds and the proof is complete. �

6. Proofs for finite systems.

6.1. Proof of Theorem 3. The idea of the proof is again to introduce a new
Ž . 2 Ž . Ž . Ž .time scale L ll � ll and to let T � ll � T ll 	 L ll . As in the previous
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Ž . 	d Ž d .section, we want to couple locally given ll � � �  with a processT �Ž ll . ll

Ž .started in M  . This latter process will then be compared to the infinitell

Ž .process started in M  . So as to impose the local coupling, we will have to
d Ž . Ž .d Ž .cut � into a growing with ll number of boxes N ll . N ll has to bell

chosen such that the empirical densities of � within the boxes andT �Ž ll .
within �d are asymptotically close.ll

Ž d . � �Step 1. We start with showing this latter point. Let A, B � BB � , A ,1
� � � �	1 � �	1B � 0, and � � ll A � 	 ll B � , ll � 0. Then by the second momentll ll A ll B

Ž . Ž . � Ž . Ž .formulas 3.5 and 3.12 recall that S is the semigroup and p �, � thet ll , t
d �transition density of Brownian motion on � ,ll

2	1 	1M Ž  .ll � � � �E ll A � ll A 	 ll B � ll BŽ . Ž .ž /ll , T Ž ll . ll , T Ž ll .

2 22² :� � , S � � � , S � 	 S �Ž .Ž .¦ ;Ž .H T Ž ll . ll T Ž ll . ll T Ž ll . ll6.1Ž .

T 2� � , S S � ds M  d� ,Ž . Ž . Ž .H T Ž ll .	s s ll ll¦ ;
0

Ž . 2 Ž .with equality in the case of BBM. Fix a sequence � ll such that ll � � ll
Ž .� T ll . Then

d6.2 sup sup ll p 0, z 	 1 	 � � 0 as ll � �.Ž . Ž .ll , t ll
dŽ .t�� ll z�� ll

Ž .Thus for t � � ll ,
	d² :6.3 sup � , S � � 2� llŽ . x t ll ll

dx�� ll

and, of course, for all t � 0,
	1 	1 	d² : � � � �6.4 sup � , S � � A � B ll .Ž . Ž .x t ll

dx�� ll

2 	2 dŽ � �	1 � �	1 .2 Ž .Note that � � ll A � B . Hence 6.1 is dominated byll

2	1 	1	2 d 2 d d 	d2 2 � � � �4� ll  ll �  ll �  A � B llŽ .Ž .ll

2	1 	1	d 	d2 � � � ��  � T ll ll � A � B � ll ll � 0 as ll � �.Ž . Ž .Ž .ll

6.5Ž .

Ž . Ž .If we replace T ll by T � ll , this convergence is uniform in all sequences
1Ž . Ž . Ž . Ž .T � ll such that T ll � T � ll � T ll . Thus we can find a sequence2

Ž . Ž Ž .. Ž . 2 Ž . Ž .N ll ��, log N ll �log ll � 0 as ll � �, and define L ll � ll �N ll , T � ll
Ž . Ž .� T ll 	 L ll such that

d 	1 d	2 d M Ž  . dll �ll E � � 	 N ll � 0, N ll llŽ . Ž .Ž . ž /ll , T �Ž ll . ll ll , T �Ž ll .
6.6Ž .

	 � � 0 as ll � �.ll

Ž .Step 2 Coupling . We continue arguing as in the proof of Theorem 2. We
Ž 1 2 . Ž d . Ž d .let � , � be the local coupling of BBM � or SBM � according toll , t ll , t t � 0 ll ll



CLUSTERS IN SPATIAL BRANCHING MODELS 1709

Ž . Ž .Corollary 3.6 with R � R ll � ll�N ll . The initial configuration shall be
1 � 2 1 � Ž 	2 1Ž d ..� � � and LL � 
 � � M ll � � . By Corollary 3.6, we get forll , 0 ll , T �Ž ll . 0 0 ll 0 ll

Ž d .B � BB � bounded:
M Ž  . 1 2ll �E � 	 �Ž . Bll , LŽ ll . ll , LŽ ll .

	d 	1�2'� � '� B � � 2 R ll � 2 d�� , N ll � 0 as ll � �.Ž . Ž .ll

6.7Ž .

Ž . Ž .Step 3 Comparison . We apply the comparison lemma Lemma 3.8 to
Ž 3. � 3 1 � Ž 	dŽ d .. Ž 2 .� with LL � 
 � � M ll � and � and with A � B to ob-t t � 0 0 0 ll ll , t ll

tain
2 36.8 E � B 	 � B � 0 as ll � �.Ž . Ž . Ž .ll , LŽ ll . LŽ ll .

Thus
1 36.9 E � B 	 � B � 0 as ll � �.Ž . Ž . Ž .ll , LŽ ll . LŽ ll .

Ž . Ž d . Ž .Step 4 Conclusion . Fix f � C � and F � C � . Thenc b

M Ž  . 1ll ² : ² :E F � , f � E F � , fŽ . Ž .ll , T Ž ll . ll , LŽ ll .

2² :� E F � , f � o 1Ž .Ž .ll , LŽ ll .

3² :� E F � , f � o 1Ž .Ž .ll , LŽ ll .
6.10Ž .

�
 ² :� P Z � d� F � , f � o 1 .Ž .Ž .H � �2  �

0

Ž . Ž .The last equality holds because of 1.13 and 2.9 . �

6.2. Proof of Theorems 4 and 5. The proofs are similar to that of Theo-
Ž . 2 Ž .rem 3. Hence we give only an outline. Recall that � ll � ll log ll . By 2.9

we know that

8�˜ 	2M Ž � Ž ll .. 1ll � �6.11 LL ll � � LL Z as ll � �.Ž . ll , T �Ž ll . 2��log � llŽ .
Ž . 2Choose L ll � ll such that

log L ll log L llŽ . Ž .
lim � lim � 1.2log � llŽ .ll�� ll�� log ll

Now we can proceed as in the proof of Theorem 3. We couple locally with the
configuration

� log � llŽ .
1� �6.12 P Z � d M Ž . H 2�� ll ž /8�0

and compare this with the infinite system started in

� log � llŽ .
1� �6.13 P Z � d M  .Ž . H 2�� ž /8�0

Now we apply Theorem 1, respectively, 2, to obtain the conclusions. �
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