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STRONG APPROXIMATION THEOREMS FOR GEOMETRICALLY
WEIGHTED RANDOM SERIES AND THEIR APPLICATIONS1

By Li-Xin Zhang

Hangzhou University

Let �Xn�n ≥ 0� be a sequence of random variables. We consider its
geometrically weighted series ξ�β� = ∑∞

n=0 β
nXn for 0 < β < 1. This paper

proves that ξ�β� can be approximated by
∑∞

n=0 β
nYn under some suitable

conditions, where �Yn� n ≥ 0� is a sequence of independent normal random
variables. Applications to the law of the iterated logarithm for ξ�β� are also
discussed.

1. Introduction and main results. Let �Xn� n ≥ 0� be a sequence of
random variables; one can consider its geometrically weighted series ξ�β� =∑∞

n=0 β
nXn, 0 < β < 1. The following type of the law of the iterated logarithm

(LIL) was obtained by Bovier and Picco [1]:

�1�1� lim sup
β↗1

1
�2 Var ξ�β� log log Var ξ�β��1/2


ξ�β�
 = 1 a.s.	

where �Xn� n ≥ 0� is a sequence of independent and identically distributed
(i.i.d.) random variables with mean zero and variance one. Recently, in a long
paper, Picco and Vares [9] proved this kind of LIL for a stationary ergodic
martingale difference sequence with finite second moments. If �Xn� n ≥ 0� is
not an i.i.d. stochastic sequence, for example, a mixing sequence or a sequence
of independent random variables satisfying the conditions of the Kolmogorov
LIL, to prove a LIL of the type (1.1) will be very complicated if we use the
methods of [1] and [9], and we don’t know whether their methods are effective
or not. It is the purpose of the present paper to look for a general and simple
way to get the LIL of type (1.1). Indeed, we will show that under some suit-
able conditions, ξ�β� can be approximated by

∑∞
n=0 β

nYn, where �Yn� n ≥ 0�
is a sequence of independent normal variables. Then we establish some re-
sults on the LIL of type (1.1) for �Xn�n ≥ 0� by proving the same results for
normal variables. The results we get on the LIL include not only those of [1]
and [9] with a simple proving method, but also the laws of the iterated log-
arithm for the geometrically weighted series of dependent random variables,
independent but not necessarily identically distributed random variables and
i.i.d. random variables with possibly infinite variances. This section discusses
strong approximations. The laws of the iterated logarithm will be presented
in Section 2. Throughout this paper, C	C0	C1	 c	 c0	 c1	 � � � will denote positive
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constants whose values are uninteresting and may vary from line to line. The
expression an ∼ bn means an/bn → 1 �n → ∞�; an ≈ bn means that there
exist C1	C2 > 0 such that C1 ≤ an/bn ≤ C2 for n large enough.

The following theorem gives a general result on strong approximations for
random geometric series.

Theorem 1.1. Let H�x� �x ≥ 0� be a monotone nondecreasing positive
function with H�x� → ∞ �x → ∞� and H�2n� ≤ CH�n�, �n ≥ 0� and
let �ξn� n ≥ 0�, �ηn� n ≥ 0� be two sequences of random variables with
E
ξn
p ≤ Cnq, E
ηn
p ≤ Cnq, �n ≥ 0� for some p	q > 0. If

�1�2�
∣∣∣∣

n∑
k=0

ξk −
n∑

k=0

ηk

∣∣∣∣ = O�H�n�� �or o�H�n��� a.s. �n → ∞�	

then

�1�3�

∣∣∣∣
∞∑
n=0

βnξn −
∞∑
n=0

βnηn

∣∣∣∣
= O

(
H

(
1

1 − β2

))(
or o

(
H

(
1

1 − β2

)))
a.s. �β ↗ 1��

The following corollary comes from Theorem 1.1 immediately.

Corollary 1.1. Suppose �Xn� n ≥ 0� is a sequence of i.i.d. random vari-
ables, or more generally, a stationary ergodic martingale difference with EX0 =
0, EX2

0 = σ2, 0 < σ < ∞. Then there exists a sequence of i.i.d. normal random
variables �Yn� n ≥ 0� with Yn =� N�0	 σ2� such that

�1�4� lim
β↗1

√
1 − β2√

2 log log�1/�1 − β2��

∣∣∣∣
∞∑
n=0

βnXn −
∞∑
n=0

βnYn

∣∣∣∣ = 0 a.s.

By Theorem 1.1 and Theorems 1.1, 1.2 of Shao [11], we have the following
corollary.

Corollary 1.2. Let �Xn� n ≥ 0� be a stationary stochastic sequence with
EX0 = 0, EX2

0 < ∞ and Bn = E�∑n
k=0 Xk�2 → ∞ �n → ∞� satisfying one of

the following conditions:

(i) �Xn� n ≥ 0� is ρ-mixing. The mixing coefficients satisfy

ρ�n� ≤ log−r n for some r > 1�
(ii) �Xn� n ≥ 0� is φ-mixing. The mixing coefficients satisfy

∞∑
n=0

φ1/2�2n� < ∞�

Then limn→∞�Bn/n� = σ2 for some 0 < σ < ∞, and the conclusion of Corollary
1.1. holds true.



GEOMETRICALLY WEIGHTED RANDOM SERIES 1623

When �Xn� n ≥ 0� is a sequence of i.i.d. random variables with higher than
second moments by Theorem 1.1, Theorem 1 of Zhang [14] and the results of
Komlos, Major and Tusnady [6, 7], we have the following conclusion.

Corollary 1.3. Suppose that �Xn� n ≥ 0� is a sequence of i.i.d. random
variables with EX0 = 0, EX2

0 = 1. Let H�x� �x ≥ 0� be a nondecreasing positive
continuous function such that for some γ > 0, x0 > 0, x−2−γH�x� �x ≥ x0� is
nondecreasing and x−1 log H�x� �x ≥ x0� is nonincreasing.

(a) If EH�
X0
� < ∞, then there exists a sequence of i.i.d. standard normal
random variables �Yn� n ≥ 0� such that

∞∑
n=0

βnXn −
∞∑
n=0

βnYn = O

(
invH

(
1

1 − β2

))
a.s. �β ↗ 1��

(b) If x−1 log H�x� → 0 �x → ∞� and EH�t
X0
� < ∞ for any t > 0, then
there exists a sequence of i.i.d. standard normal random variables �Yn� n ≥ 0�
such that

∞∑
n=0

βnXn −
∞∑
n=0

βnYn = o

(
invH

(
1

1 − β2

))
a.s. �β ↗ 1��

The following theorem deals with the sequence of independent but not nec-
essarily identically distributed random variables.

Theorem 1.2. Let �Xn� n ≥ 0� be a sequence of independent random
variables with EXn = 0 and EX2

n < ∞ �n ≥ 0�. Set Bn = ∑n
k=0 EX

2
k and

τ�β� = ∑∞
n=0 β

2nEX2
n. Suppose Bn → ∞ �n → ∞�, lim supn→∞ B2n/Bn < ∞

and for some p ≥ 2,

�1�5�
∞∑
n=0

E
Xn
pI�
Xn
 > ε�Bn/ log log Bn�1/2�
�Bn log log Bn�p/2

< ∞ for any ε > 0�

Then there exists a sequence of independent normal random variables �Yn� n ≥
0� with Yn =� N�0	EX2

n� such that

�1�6� lim
β↗1


∑∞
n=0 β

nXn −∑∞
n=0 β

nYn

�2τ�β� log log τ�β��1/2

= 0 a.s.

If (1.5) is replaced by

�1�5′�
∞∑
n=0

E
Xn
pI�
Xn
 > ε�Bn/ log log Bn�1/2�
�Bn log log Bn�p/2

< ∞ for some ε > 0	

then there exists a sequence of independent normal random variables �Yn� n ≥
0� with Yn =� N�0	EX2

n� such that

�1�6′� lim sup
β↗1


∑∞
n=0 β

nXn −∑∞
n=0 β

nYn

�2τ�β� log log τ�β��1/2

≤ #ε a.s.	

where # is a numerical constant.



1624 L.-X. ZHANG

Proof of Theorem 1.1. Without loss of generality, we can assume 0 <
p ≤ 1. Note that for any 0 < β < 1,

E

( ∞∑
n=0

βn
ξn

)p

≤
∞∑
n=0

βnpE
ξn
p ≤ C
∞∑
n=0

βnpnq < ∞�

We know that
∑∞

n=0 β
nξn is a.s. absolutely convergent for any 0 < β < 1.

Similarly, so is
∑∞

n=0 β
nηn. Let N�β� = �1/�1 − β2��. (We keep this in mind

in the remainder of this paper.) Note that H�2n� ≤ CH�n� �n ≥ 0� implies
H�kn�/H�n� ≤ C0k

Q �n ≥ 0	 k ≥ 1� for some C0	Q > 0; we have proved
Theorem 1.1 by the following lemma immediately.

Lemma 1.1. Let �an� n ≥ 0� be a sequence of real numbers, �An� n ≥ 0� a
sequence of monotonous nondecreasing positive numbers satisfying 
∑n

k=0 ak
 ≤
An for n large enough and Akn/An ≤ C0k

Q �k ≥ 1	 n ≥ 0�. Then for any
r > 0	 N0 ≥ 1, we have

�1�7� lim sup
β↗1

A−1
N�β�

∣∣∣∣
∞∑
n=0

βnran

∣∣∣∣ ≤ r

2
+ rC0

2

∫ ∞

1
exp

(
−rx

2

)
xQ dx	

�1�8�
lim sup

β↗1
A−1

N�β�

∣∣∣∣
∞∑

n=N0N�β�
βnran

∣∣∣∣

≤ rC0

2

∫ ∞

N0

exp
(
−rx

2

)
xQ dx+C0 exp

(
− rN0

2

)
N

Q
0 �

Proof. The proof is based on Abel’s partial summation formula. An anal-
ogous idea was used by Horvath [5]. Let Sn = ∑n

k=0 ak �n ≥ 0�, S−1 = 0. By
the Abel lemma we have

�1�9�
p∑

n=l

βnran = �1 − βr�
p∑

n=l

βnrSn − βlrSl−1 + βr�p+1�Sp�

Note An ≤ C0A1n
Q �n ≥ 1�, we know that

∞∑
n=0

βnrAn ≤ A0 +C0A1

∞∑
n=0

βnrnQ < ∞�

It follows that
∑∞

n=0 β
nrSn is absolutely convergent. So,

∑∞
n=0 β

nran is also
absolutely convergent. Hence, by letting p → ∞ in (1.9), we have, for any
l ≥ 0,

∞∑
n=l

βnran = �1 − βr�
∞∑
n=l

βnrSn − βlrSl−1�
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Then, note that for β near enough to 1,

�1 − βr�A−1
N�β�

∞∑
n=0

βnr
Sn


= �1 − βr�A−1
N�β�

N�β�∑
n=0

βnr
Sn
 + �1 − βr�A−1
N�β�

∞∑
n=N�β�+1

βnr
Sn


≤ �1 − βr��N�β� + 1�

+ �1 − βr�N�β� 1
N�β�

∞∑
n=N�β�+1

exp
(
− nr

2N�β�
)

An

AN�β�


Sn

An

≤ �1 − βr��N�β� + 1�

+ �1 − βr�N�β� 1
N�β�

∞∑
n=N�β�+1

exp
(
− nr

2N�β�
)
C0

(
n

N�β�
)Q

→ r

2
+ rC0

2

∫ ∞

1
exp

(
−rx

2

)
xQ dx	 as β ↗ 1�

We have proved (1.7). The proof of (1.8) is similar.

Proof of Theorem 1.2. If lim supn→∞ B2n/Bn < ∞ then B2n/Bn ≤ C for
some C > 0. Then there exist C0	Q > 0 such that Bkn/Bn ≤ C0k

Q	 Bn ≤
C0n

Q �n ≥ 0	 k ≥ 1�. Hence EX2
n ≤ C0n

Q �n ≥ 0�. By Theorem 1.1, we need
only to show that

�1�10� τ�β� ≈ BN�β�	 β ↗ 1	

that there exists a sequence of independent normal random variables �Yn� n ≥
0� with Yn =� N�0	EX2

n� such that

�1�11�
∣∣∣∣

n∑
k=0

Xk −
n∑

k=0

Yk

∣∣∣∣ = o
(�Bn log log Bn�1/2) a.s. �n → ∞�

whenever (1.5) holds, and that there exists a sequence of independent normal
random variables �Yn� n ≥ 0� with Yn =� N�0	EX2

n� such that for some
numerical constant #,

�1�11′� lim sup
n→∞


∑n
k=0 Xk −

∑n
k=0 Yk


�Bn log log Bn�1/2
≤ #ε a.s.

whenever (1.5) is replaced by (1.5′).
We prove (1.10) first. First, τ�β� ≥ ∑N�β�

n=0 β2nEX2
n ≥ β2N�β�BN�β� implies

�1�12� lim inf
β↗1

τ�β�/BN�β� ≥ e−1�
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On the other hand, it follows from Lemma 1.1 that

�1�13� lim sup
β↗1

τ�β�
BN�β�

≤ 1 +C0

∫ ∞

1
exp�−x�xQ dx < ∞�

Hence we have proved (1.10).
Now we will prove (1.11). If (1.5) holds, then there exists a sequence

of nonincreasing positive numbers �εn�n ≥ 0� satisfying 1 > εn → 0,
ε
p−2
n log log Bn ↗ ∞, εn�Bn/ log log Bn�1/2 ↗ ∞ �n → ∞� such that

�1�14�
∞∑
n=0

E
Xn
pI�
Xn
 > εn�Bn/ log log Bn�1/2�
�Bn log log Bn�p/2

< ∞�

Let

�1�15�

ξn = XnI

{

Xn
 ≤ εn

(
Bn

log log Bn

)1/2}

−EXnI

{

Xn
 ≤ εn

(
Bn

log log Bn

)1/2}
	

ξ̃n = Xn − ξn�

Then ξnI�
ξn
 ≤ �Bn/ log log Bn�1/2� = ξn and
∞∑
n=0

P�
ξn
 > ε�Bn/ log log Bn�1/2� < ∞

for any ε > 0. By Theorem 1.1 of Shao [12] (see also [10]), there exists a
sequence of i.i.d. normal random variables �ηn� n ≥ 0� with ηn =� N�0	1�
such that

n∑
i=0

ξi −
n∑

i=0

ηi�Var ξi�1/2

= o

((
Bn

log log Bn

)1/2

log
n∑

i=0

�log log Bi�Eξ2
i

Bi

)
a.s. �n → ∞�	

which together with
n∑

i=0

�log log Bi�Eξ2
i

Bi

≤ C log Bn log log Bn

implies that

�1�16�
n∑

i=0

ξi −
n∑

i=0

ηi�Var ξi�1/2 = o
(�Bn log log Bn�1/2) a.s. �n → ∞��

Set Yn = �VarXn�1/2ηn �n ≥ 0�. According to (1.15) and (1.16), in order to
prove (1.11) we need only to show that

�1�17�
n∑

i=0

ξ̃i = o
(�Bn log log Bn�1/2) a.s. �n → ∞�
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and

�1�18�
n∑

i=0

(�VarXi�1/2 −�Var ξi�1/2)ηi = o
(�Bn log log Bn�1/2) a.s. �n → ∞��

First, we apply Proposition 2.2. of [2] to prove (1.17). Let Sn = ∑n
k=0 ξ̃k,

an = �2Bn log log Bn�1/2. It is easy to see that hypothesis (2.9) of [2] is fulfilled,
since

P

( 
Sn

an

≥ ε

)
≤ 1

ε2

ES2
n

a2
n

≤ 1
ε2

1
2 log log Bn

�

From (1.14), it follows that hypothesis (2.3) of [2] is fulfilled. Now, let �nk�
satisfy (2.2) of [2]. That is,

λank
≤ ank+1

≤ λ3ank+1

for some λ > 1. Let I�k� = �nk + 1	 � � � 	 nk+1� and

N1 =
{
k ∈ N� ∑

j∈I�k�

E
Xj
pI�
Xj
 > εj�Bj/ log log Bj�1/2�
a
p
j

≤ �2 log log Bnk+1
�−p

}
�

For each k ∈ N1, we have

1
Bnk+1

∑
j∈I�k�

EX2
jI�
Xj
 > εj�Bj/ log log Bj�1/2�

≤ ∑
j∈I�k�

2p/2 Bj

Bnk+1

�log log Bj�p
ε
p−2
j log log Bj

EX2
jI�
Xj
 > εj�Bj/ log log Bj�1/2�/ap

j

≤ 2p/2�log log Bnk+1
�p

ε
p−2
nk

log log Bnk

∑
j∈I�k�

EX2
jI�
Xj
 > εj�Bj/ log log Bj�1/2�/ap

j

≤ 2−p/2

ε
p−2
nk

log log Bnk

→ 0	

which together with (1.14) implies (see [2])

�1�19�

∑
k

exp
{
−

δa2
nk+1∑

j∈I�k� Eξ̃2
j

}

≤ ∑
k

exp
{
−

δa2
nk+1∑

j∈I�k� EX
2
jI�
Xj
 > εj�Bj/ log log Bj�1/2�

}
< ∞

for every δ > 0�
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It follows that hypothesis (2.8) of [2] is fulfilled. Thus, by Proposition 2.2 of
[2] we have proved (1.17).

Now, note that
(�VarXj�1/2 − �Var ξj�1/2)2 ≤ VarXj − Var ξj

≤ 3EX2
jI�
Xj
 > εj�Bj/ log log Bj�1/2��

We have

�1�20�

P

(
max
i∈I�k�



i∑

j=nk+1

(�VarXj�1/2 − �Var ξj�1/2)ηj
 ≥ δank+1

)

≤ 2P
(∣∣∣∣

∑
j∈I�k�

(�VarXj�1/2 − �Var ξj�1/2)ηj

∣∣∣∣ ≥ δank+1

)

≤ 2 exp
{
−

δ2a2
nk+1

2
∑

j∈I�k�
(�VarXj�1/2 − �Var ξj�1/2

)2

}

≤ 2 exp
{
−

δ2a2
nk+1

6
∑

j∈I�k� EX
2
jI�
Xj
 > εj�Bj/ log log Bj�1/2�

}
�

It follows from (1.19), (1.20) and the Borel–Cantelli lemma that

lim
k→∞

max
i∈I�k�


∑i
j=nk+1

(�VarXj�1/2 − �Var ξj�1/2
)
ηj


ank+1

= 0 a.s.

which implies (1.18) by the standard methods (cf. [8], page 181, or [13], page
158).

If (1.5′) holds, we define �ξn� and �ξ̃n� by (1.15) with ε instead of εn. By
Remark 2.1 of [12], �ηn� can be constructed such that for some numerical
constant #,

�1�16′� lim sup
n→∞


∑n
i=0 ξi −

∑n
i=0 ηi�Var ξi�1/2


�Bn log log Bn�1/2
≤ #ε a.s.

And we also have (1.17) and (1.18). Then (1.11′) holds true. The proof of The-
orem 1.2 is complete. ✷

2. Applications to the law of the iterated logarithm. Using theorems
in Section 1, we can establish some results on the law of the iterated logarithm
for the geometrically weighted random series.

We start with a preliminary proposition, the proof of which will be stated
in the Appendix.

Proposition 2.1. Let �Yn� n ≥ 0� be a sequence of independent normal
random variables with EYn = 0, Bn =� ∑n

i=0 EY2
i → ∞ �n → ∞� and
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lim supn→∞ B2n/Bn < ∞. Set

τ�β� =
∞∑
n=0

β2nEY2
n	 0 < β < 1	

ξ̃�β� =
∑∞

n=0 β
nYn

�2τ�β� log log τ�β��1/2
	 0 < β < 1�

Then:

(i) � ��ξ̃�β��� = �−1	1� a.s.;

(ii) lim
β↗1

d�ξ̃�β�	 �−1	1�� = 0 a.s.	

where � ��ξ̃�β��� denotes the cluster set (set of all limit points) of ξ̃�β� as β
tends to one and d�x	A� = infy∈A 
x− y
.

From Corollary 1.1, Corollary 1.2 and Proposition 2.1 the following theorem
follows immediately.

Theorem 2.1. Let �Xn�n ≥ 0� satisfy the conditions in Corollary 1.1 or
Corollary 1.2. Set

ξ̃�β� =
√

1 − β2√
2 log log�1/�1 − β2��

∞∑
n=0

βnXn	 0 < β < 1�

Then

� ��ξ̃�β��� = �−σ	σ� a.s.	

lim
β↗1

d�ξ̃�β�	 �−σ	σ�� = 0 a.s.

By Theorem 1.2 and Proposition 2.1, we have the following theorem.

Theorem 2.2. Let �Xn�n ≥ 0� be a sequence of independent random vari-
ables with EXn = 0 and EX2

n < ∞ �n ≥ 0�. Set Bn = ∑n
k=0 EX

2
k and

τ�β� = ∑∞
n=0 β

2nEX2
n. Suppose Bn → ∞ �n → ∞�, lim supn→∞ B2n/Bn < ∞

and for each ε > 0 there exists p ≥ 2 such that

∞∑
n=0

E
Xn
pI�
Xn
 > ε�Bn/ log log Bn�1/2�
�Bn log log Bn�p/2

< ∞�

Let

ξ̃�β� =
∑∞

n=0 β
nXn

�2τ�β� log log τ�β��1/2
	 0 < β < 1�

Then (i) and (ii) in Proposition 2.1 hold true.
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In particular, we have the following Kolmogorov type law of the iterated
logarithm.

Corollary 2.1. Let �Xn� n ≥ 0� be a sequence of independent random
variables with EXn = 0 and EX2

n < ∞ �n ≥ 0�. Suppose Bn = ∑n
i=0 EX

2
i → ∞

�n → ∞� and lim supn→∞ B2n/Bn < ∞. Let τ�β� and ξ̃�β� be defined as in
Theorem 2.2. If there exists a sequence of positive numbers �kn� n ≥ 0� with
kn → 0 �n → ∞� such that 
Xn
 ≤ kn�Bn/ log log Bn�1/2, then (i) and (ii) in
Proposition 2.1 hold true.

For the sequence of i.i.d. random variables with possible infinite variance,
we have the following results on the law of the iterated logarithm correspond-
ing to those of Feller [4] (see also [3]).

Theorem 2.3. Let �Xn� n ≥ 0� be a sequence of i.i.d. symmetric random
variables. Suppose the function H�λ� = E�X2

0I�
X0
 < λ�� �λ ≥ 0� satisfies

�2�1� lim sup
λ→∞

H�2λ�
H�λ� < ∞�

For any n ≥ 1, let an be the largest solution of the equation

�2�2� λ2 = nH�λ� log log λ

satisfying an ↑ ∞. Set τ�β� = ∑∞
n=0 β

2nE�X2
0I�
X0
 ≤ an�� �0 < β < 1� and

�2�3� ξ̃�β� =
∑∞

n=0 β
nXn

�2τ�β� log log τ�β��1/2
	 0 < β < 1�

If

�2�4�
∫ ∞

0

d H�λ�
H�λ� log log λ

< ∞	

then (i) and (ii) in Proposition 2.1 hold true.

Proof. Let Bn = ∑n
k=0 E�X2

0I�
X0
 ≤ ak��. From (2.1), it can be shown
that

�2�5� lim sup
n→∞

a2n/an < ∞�

It can be shown that (2.4) is equivalent to
∞∑
n=0

P�
X0
 ≥ εan� < ∞ for some ε > 0 (or equivalently for any ε > 0��

Note that X0 is symmetric. By Corollary 1.3 of [12] there exists a sequence
of independent normal variables �Yn� n ≥ 0� with Yn =� N�0	EX2

0I�
X0
 ≤
an�� such that

�2�6�
n∑

i=0

Xi −
n∑

i=0

Yi = o�an� a.s. �n → ∞��
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It can be also proved that an ≈ �Bn log log Bn�1/2. By (2.5), it follows that

�2�7� lim sup
n→∞

B2n

Bn

< ∞�

Hence, by Theorem 1.1 we have

�2�8� lim
β↗1


∑∞
n=0 β

nXn −∑∞
n=0 β

nYn

�2τ�β� log log τ�β��1/2

= 0 a.s.

And so, by Proposition 2.1 and (2.8) we have proved Theorem 2.3. ✷

APPENDIX

Proof of Proposition 2.1. To prove Proposition 2.1, we need a lemma as
follows.

Lemma A.1. Let �un� n ≥ 0� be a nonincreasing sequence of positive num-
bers and �ζn� n ≥ 0� be a sequence of real numbers. Then for each n ≥ 0,

∣∣∣∣
n∑

i=0

uiζi

∣∣∣∣ ≤ u0 max
i≤n

∣∣∣∣
i∑

j=0

ζj

∣∣∣∣�

The proof follows from the usual Abel transformation and so is omitted
here.

To prove Proposition 2.1, we need only to prove that

�A�1� lim sup
β↗1


ξ̃�β�
 ≤ 1 a.s.

and

�A�2� � ��ξ̃�β��� ⊇ �−1	1� a.s.

We prove (A.1) first. First, lim supn→∞ B2n/Bn < ∞ implies that Bkn/Bn ≤
C0k

Q, Bn ≤ C0n
Q �n ≥ 0	 k ≥ 1� for some C0	Q > 0. It is easy to show that

τ�β� = ∑∞
n=0 β

2nEY2
n is a monotonous increasing function of β and τ�β� → ∞

�β ↗ 1�. Let

�A�3� βk = sup�β�0 < β < 1	 τ�β� ≤ exp�k/ log log k��	 k = 1	2	 � � � �

Then βk ↗ 1. Note that EY2
n ≤ Bn ≤ C0n

Q. We have for any 0 < β0 < 1 and
0 ≤ β ≤ β0,

∑∞
n=0 β

2nEY2
n ≤ C0

∑∞
n=0 β

2n
0 nQ < ∞. It follows that the series∑∞

n=0 β
2nEY2

n is uniformly convergent on �0	 β0�. And so, τ�β� is a continuous
function on �0	1�. This implies τ�βk� = exp�k/ log log k�. Then

�A�4� τ�βk�/τ�βk−1� → 1	 k → ∞�

Note that for βk−1 ≤ β ≤ βk we have


ξ̃�β�
 ≤ sup0≤β≤βk

∑∞

n=0 β
nYn


�2τ�βk−1� log log τ�βk−1��1/2
�
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To prove (A.1), we need only to show

�A�5� lim sup
k→∞

sup0≤β≤βk

∑∞

n=0 β
nYn


�2τ�βk� log log τ�βk��1/2
≤ 1 a.s.

From Lemma A.1, it follows that for any 0 ≤ β ≤ βk,

�A�6�

∣∣∣∣
∞∑
n=0

βnYn

∣∣∣∣ =
∣∣∣∣
∞∑
n=0

(
β

βk

)n

βn
kYn

∣∣∣∣

≤
(

β

βk

)0

sup
0≤m≤∞

∣∣∣∣
m∑

n=0

βn
kYn

∣∣∣∣ ≤ sup
0≤m≤∞

∣∣∣∣
m∑

n=0

βn
kYn

∣∣∣∣�

This implies

sup
0≤β≤βk

∣∣∣∣
∞∑
n=0

βnYn

∣∣∣∣ ≤ sup
0≤m≤∞

∣∣∣∣
m∑

n=0

βn
kYn

∣∣∣∣�

Then

�A�7�

P

( sup0≤β≤βk

∑∞

n=0 β
nYn


�2τ�βk� log log τ�βk��1/2
≥ 1 + ε

)

≤ P

(
sup

0≤m≤∞

∣∣∣∣
m∑

n=0

βn
kYn

∣∣∣∣ ≥ �1 + ε��2τ�βk� log log τ�βk��1/2
)

≤ 2P
(∣∣∣∣

∞∑
n=0

βn
kYn

∣∣∣∣ ≥ �1 + ε��2τ�βk� log log τ�βk��1/2
)

= 2P�
N�0	1�
 ≥ �1 + ε��2 log log τ�βk��1/2�

≤ 2 exp
(−�1 + ε� log log τ�βk�

) = 2
(

k

log log k

)−�1+ε�
	

which together with the Borel–Cantelli lemma implies (A.5). We have proved
(A.1).

Now, we show (A.2). Set Sn = ∑n
k=0 Yk �n ≥ 1�, S−1 = 0. We have

�A�8�
lim sup
n→∞


Sn
√
2Bn log log Bn

≤ lim sup
n→∞


W�Bn�
√
2Bn log log Bn

≤ lim sup
t→∞


W�t�
√
2t log log t

≤ 1 a.s.

where �W�t�� t ≥ 0� is a standard Wiener process.
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From (A.8) and Lemma 1.1, it follows that for any N0 ≥ 1,

�A�9�

lim sup
β↗1


∑∞
n=N0N�β�+1 β

nYn

�2τ�β� log log τ�β��1/2

≤ e lim sup
β↗1


∑∞
n=N0N�β�+1 β

nYn

�2BN�β� log log BN�β��1/2

≤ eC0

2

∫ ∞

N0

exp
(
−x

2

)
xQ dx+ eC0 exp

(
−N0

2

)
N

Q
0 → 0 �N0 → ∞��

Similarly, we have

�A�10�

lim sup
β↗1

∑∞
n=N0N�β�+1 β

2nEY2
n

τ�β�

≤ e lim sup
β↗1

∑∞
n=N0N�β�+1 β

2nEY2
n

BN�β�

≤ eC0

∫ ∞

N0

exp�−x�xQ dx+ eC0 exp�−N0�NQ
0 → 0 �N0 → ∞��

To prove (A.2), we need only to show that for any b ∈ �−1	1� and any δ > 0
small enough, there exists a subsequent βk ↗ 1 such that

�A�11� P�ξ̃�βk� ∈ �b− 2δ	 b+ 2δ� i.o.� = 1�

Set τN0
�β� = ∑N0N�β�

n=0 β2nEY2
n. Choose βk such that 1−β2

k = exp�−k log log k�.
Then N�βk−1�/N�βk�→0 �k→∞�. Define τ∗N0

�βk�=
∑N0N�βk�

n=N0N�βk−1�+1 β
2n
k EY2

n.
Noting (A.9) and (A.10), we need only to show that for N0 large enough,

�A�12� P

( ∑N0N�βk�
n=0 βn

kYn

�2τN0
�βk� log log τN0

�βk��1/2
∈ �b− δ	 b+ δ� i.o.

)
= 1�

From e−1BN�β� ≤ τN0
�β� ≤ τ�β� ≤ CBN�β�, it follows that

∑N0N�βk−1�
n=0 β2n

k EY2
n

τN0
�βk�

≤ e
BN0N�βk−1�
BN�βk�

≤ C0e

(
N0N�βk−1�

N�βk�
)Q

→ 0	 k → ∞�

Then
τ∗N0

�βk�
τN0

�βk�
→ 1 �k → ∞�	

lim sup
β↗1


∑N0N�βk−1�
n=0 βn

kYn

�2τN0

�βk� log log τN0
�βk��1/2

= 0 a.s.

Hence, we need only to show that for N0 large enough,

�A�13� P

( ∑N0N�βk�
n=N0N�βk−1�+1 β

n
kYn

�2τ∗N0
�βk� log log BN�βk��1/2

∈ �b− δ	 b+ δ� i.o.
)
= 1�
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Note the independence. By the Borel–Cantelli lemma, we need only to prove

�A�14�
∞∑
k=1

P

( ∑N0N�βk�
n=N0N�βk−1�+1 β

n
kYn

�2τ∗N0
�βk� log log BN�βk��1/2

∈ �b− δ	 b+ δ�
)
= ∞�

Now, it can be shown that for k large enough

P

( ∑N0N�βk�
n=N0N�βk−1�+1 β

n
kYn

�2τ∗N0
�βk� log log BN�βk��1/2

∈ �b− δ	 b+ δ�
)

= P
(
N�0	1� ∈ ��b− δ��2 log log BN�βk��1/2	 �b+ δ��2 log log BN�βk��1/2�)

≥ exp
(−b2 log log BN�βk�

) 1√
2π

∫ δ�2 log log BN�βk��1/2

−δ�2 log log BN�βk��1/2
e−x2/2 dx

≥ 1
2

exp
(−b2 log log C0�N�βk��Q

)

≥ 1
2

exp
(−b2�1 + ε� log k

) = 1
2
k−b2�1+ε�	

which implies (A.14) immediately, where ε satisfies b2�1 + ε� < 1. Hence we
have proved (A.2). The proof of Proposition 2.1 is complete. ✷
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