LIMIT THEOREMS FOR THE NONATTRACTIVE DOMANY-KINZEL MODEL

By Makoto Katori, Norio Konno and Hideki Tanemura

Chuo University, Yokohama National University and Chiba University

Abstract

We study the Domany-Kinzel model, which is a class of discrete time Markov processes with two parameters $\left(p_{1}, p_{2}\right) \in[0,1]^{2}$ and whose states are subsets of \mathbf{Z}, the set of integers. When $p_{1}=\alpha \beta$ and $p_{2}=\alpha\left(2 \beta-\beta^{2}\right)$ with $(\alpha, \beta) \in[0,1]^{2}$, the process can be identified with the mixed site-bond oriented percolation model on a square lattice with the probabilities of open site α and of open bond β. For the attractive case, $0 \leq p_{1} \leq p_{2} \leq 1$, the complete convergence theorem is easily obtained. On the other hand, the case $\left(p_{1}, p_{2}\right)=(1,0)$ realizes the rule 90 cellular automaton of Wolfram in which, starting from the Bernoulli measure with density θ, the distribution converges weakly only if $\theta \in\{0,1 / 2,1\}$. Using our new construction of processes based on signed measures, we prove limit theorems which are also valid for nonattractive cases with $\left(p_{1}, p_{2}\right) \neq(1,0)$. In particular, when $p_{2} \in[0,1]$ and p_{1} is close to 1 , the complete convergence theorem is obtained as a corollary of the limit theorems.

1. Introduction. The Domany-Kinzel model is a two parameter family of discrete time Markov processes whose states are subsets of \mathbf{Z}, the set of integers, which was introduced by Domany and Kinzel (1984) and Kinzel (1985). Let $\xi_{n}^{A} \subset \mathbf{Z}$ be the state of the process with parameters $\left(p_{1}, p_{2}\right) \in[0,1]^{2}$ at time n which starts from $A \subset 2 \mathbf{Z}$. Its evolution satisfies the following:
(i) $P\left(x \in \xi_{n+1}^{A} \mid \xi_{n}^{A}\right)=f\left(\left|\xi_{n}^{A} \cap\{x-1, x+1\}\right|\right)$;
(ii) given ξ_{n}^{A}, the events $\left\{x \in \xi_{n+1}^{A}\right\}$ are independent, where $f(0)=0$, $f(1)=p_{1}$ and $f(2)=p_{2}$.
If we write $\xi(x, n)=1$ for $x \in \xi_{n}^{A}$ and $\xi(x, n)=0$ otherwise, each realization of the process is identified with a configuration $\xi \in\{0,1\}^{\mathbf{S}}=X$ with $\mathbf{S}=\{s=$ $(x, n) \in \mathbf{Z} \times \mathbf{Z}_{+}: x+n=$ even $\}$, where $\mathbf{Z}_{+}=\{0,1,2, \ldots\}$. As special cases the Domany-Kinzel model is equivalent to the oriented bond percolation model $\left(p_{1}=p, p_{2}=2 p-p^{2}\right)$ and the oriented site percolation $\operatorname{model}\left(p_{1}=p_{2}=p\right)$ on a square lattice. The two-dimensional mixed site-bond oriented percolation model with α the probability of an open site and with β the probability of an open bond corresponds to the case of $p_{1}=\alpha \beta$ and $p_{2}=\alpha\left(2 \beta-\beta^{2}\right)$. When $\left(p_{1}, p_{2}\right)=(1,0)$, Wolfram's $(1983,1984)$ rule 90 cellular automaton is realized. See Durrett [(1988), pages 90-98] for details.
[^0]For any $p_{1}, p_{2} \in[0,1]$ and $A \subset 2 \mathbf{Z}, \lim _{n \rightarrow \infty} P\left(\xi_{2 n}^{A} \neq \varnothing\right)$ exists, since \varnothing is an absorbing set. Let $Y=\{A \subset 2 \mathbf{Z}: 0<|A|<\infty\}$, where $|A|$ is the cardinality of A, and we write the connectedness from $A \subset 2 \mathbf{Z}$ to $B \subset 2 \mathbf{Z}$ as

$$
\sigma(A, B)=\lim _{n \rightarrow \infty} P\left(\xi_{2 n}^{A} \cap B \neq \varnothing\right)
$$

if the right-hand side exists.
When $0 \leq p_{1} \leq p_{2} \leq 1$, this process has the following good property called attractiveness: if $\bar{\xi}_{n}^{A} \subset \bar{\xi}_{n}^{B}$, then we can guarantee that $\xi_{n+1}^{A} \subset \xi_{n+1}^{B}$ by using an appropriate coupling. For the attractive case, it is easy to prove the following:
(i) If $A \subset 2 \mathbf{Z}, B \in Y$, then $\sigma(A, B)$ exists. In particular, $\sigma(2 \mathbf{Z}, B)$ exists.
(ii) Let $\mathbf{0}$ (resp. 1) denote the configuration $\eta(x)=0$ (resp. $=1$) for any $x \in 2 \mathbf{Z}$. For any $A \subset 2 \mathbf{Z}$,

$$
P\left(\xi_{n}^{A} \in \cdot\right) \Rightarrow\left(1-P\left(\Omega_{\infty}^{A}\right)\right) \delta_{\mathbf{0}}+P\left(\Omega_{\infty}^{A}\right) \mu_{\infty} \quad \text { as } n \rightarrow \infty
$$

where \Rightarrow means weak convergence, $\Omega_{\infty}^{A}=\left\{\xi_{n}^{A} \neq \varnothing\right.$ for any $\left.n \geq 0\right\}, \delta_{0}$ is the point mass on the configuration $\mathbf{0}$, and a limit μ_{∞} is a stationary distribution of the process $\xi_{2 n}^{2 \mathrm{Z}}$. This complete convergence theorem can be obtained by similar arguments for the lemma in Griffeath (1978) [see also Durrett (1988), Section 5c] which treated a continuous time version. It should be remarked that the complete convergence theorem is equivalent to the equality

$$
\sigma(A, B)=\sigma(A, 2 \mathbf{Z}) \sigma(2 \mathbf{Z}, B) \quad \text { for any } A, B \in Y
$$

It is easy to see that the process with $p_{1} \in[0,1 / 2]$ and $p_{2} \in[0,1]$ starting from a finite set dies out. That is,

$$
\begin{equation*}
\sigma(A, B)=0 \quad \text { if } p_{1} \in[0,1 / 2], p_{2} \in[0,1], A \in Y, B \subset 2 \mathbf{Z} \tag{1.1}
\end{equation*}
$$

It is concluded by comparison with a branching process.
The purpose of the present paper is to prove limit theorems which are valid also for the nonattractive cases except Wolfram's rule 90 cellular automaton $\left(p_{1}, p_{2}\right)=$ $(1,0)$. For this purpose we introduce $\sigma(\nu, B)$ for a probability distribution v on X and $B \in Y$ defined by

$$
\sigma(v, B)=\lim _{n \rightarrow \infty} P\left(\xi_{2 n}^{\nu} \cap B \neq \varnothing\right),
$$

if the right-hand side exists, where ξ_{n}^{v} is the process with initial distribution v. We first prove the following lemma.

Lemma 1. We assume that $\left(p_{1}, p_{2}\right) \in[0,1]^{2}$ with $\left(p_{1}, p_{2}\right) \neq(1,0)$ and $p_{2}<2 p_{1}$. Let v_{θ} be the Bernoulli measure with $\theta \in(0,1]$ and $B \in Y$. Then we have

$$
\sigma\left(v_{\theta}, B\right)= \begin{cases}\sum_{D \subset B, D \neq \varnothing} \alpha^{|D|}(1-\alpha)^{|B \backslash D|} \sigma(D, 2 \mathbf{Z}), \tag{1.2}\\ 0, & \text { if } p_{2} \neq 0 \text { or } 0<\theta<1, \\ \text { if } p_{2}=0 \text { and } \theta=1,\end{cases}
$$

where $\alpha=p_{1}^{2} /\left(2 p_{1}-p_{2}\right)$.

Remark that (1.1) implies $\sigma\left(v_{\theta}, B\right)=0, B \in Y$ if $p_{2} \geq 2 p_{1}$ with $\left(p_{1}, p_{2}\right) \neq$ $\left(\frac{1}{2}, 1\right)$. When $\left(p_{1}, p_{2}\right)=\left(\frac{1}{2}, 1\right)$, the model is the discrete time voter model and $\sigma\left(v_{\theta}, B\right)=\theta$ if $B \in Y$. In Theorem 1 of Katori, Konno and Tanemura (2000), (1.2) for $\sigma(2 \mathbf{Z}, B)$ with $p_{1} \in[0,1), p_{2} \in(0,1]$ was given. The present lemma is an extension of it which includes the interesting cases where $p_{2}=0$ or $p_{1}=1$. In the proof of Lemma 1 , we use the new construction of the process using a signed measure with $\alpha=p_{1}^{2} /\left(2 p_{1}-p_{2}\right)$ and $\beta=2-p_{2} / p_{1}$ which was introduced in Katori, Konno and Tanemura (2000). From this lemma we can immediately get the next limit theorem. [The standard argument can be found in Durrett (1988), page 71.]

PROPOSITION 2. We assume that $\left(p_{1}, p_{2}\right) \in[0,1]^{2}$ with $\left(p_{1}, p_{2}\right) \neq(1,0)$ and $p_{2}<2 p_{1}$. Then we have

$$
P\left(\xi_{2 n}^{v_{\theta}} \in \cdot\right) \Rightarrow \mu_{\infty} \quad \text { as } n \rightarrow \infty
$$

where μ_{∞} is the translation invariant probability measure such that

$$
\mu_{\infty}(\xi \cap B \neq \varnothing)=\sum_{D \subset B, D \neq \varnothing} \alpha^{|D|}(1-\alpha)^{|B \backslash D|} \sigma(D, 2 \mathbf{Z})
$$

for any $B \in Y$.
We note that $P\left(\Omega_{\infty}^{\{0\}}\right)=\sigma(\{0\}, 2 \mathbf{Z})=0$ (resp. $=1$) is equivalent to $P\left(\Omega_{\infty}^{A}\right)=$ $\sigma(A, 2 \mathbf{Z})=0($ resp. $=1)$ for any $A \in Y$. It is obvious that if $P\left(\Omega_{\infty}^{\{0\}}\right)=0$, then $\mu_{\infty}=\delta_{\mathbf{0}}$. From this corollary, we obtain the following interesting result, since $\sigma(D, 2 \mathbf{Z})=1$ for any $D \in Y$ if $p_{1}=1$.

Corollary 3. When $p_{1}=1$ and $p_{2} \in(0,1], \mu_{\infty}$ is the Bernoulli measure ν_{α}, where $\alpha=\frac{1}{2-p_{2}}$.

We should remark that when $\left(p_{1}, p_{2}\right)=(1,0)$, that is, in the case of rule 90 of Wolfram's cellular automaton, Miyamoto (1979) and Lind (1984) proved that, starting from the Bernoulli measure v_{θ}, the distribution converges weakly only if $\theta \in\{0,1 / 2,1\}$.

Proposition 2 can be generalized as follows. Let $\mathbf{N}=\{1,2,3, \ldots\}, X=\{0,1\}^{2 \mathbf{Z}}$ and $\mathscr{P}(X)$ be the collection of probability measures on X. We introduce the following conditions (C.1) and (C.2) for $v \in \mathscr{P}(X)$:
(C.1) For any $\varepsilon>0$ there exists $k \in 2 \mathbf{N}$ such that

$$
v(\xi \cap[x-k, x+k]=\varnothing) \leq \varepsilon \quad \text { for any } x \in 2 \mathbf{Z}
$$

(C.2) For any $\varepsilon>0$ there exists $k \in 2 \mathbf{N}$ such that

$$
v\left(\xi^{c} \cap[x-k, x+k]=\varnothing\right) \leq \varepsilon \quad \text { for any } x \in 2 \mathbf{Z}
$$

Theorem 4. (i) Suppose that $p_{1} \in[0,1], p_{2} \in(0,1]$ and $p_{2}<2 p_{1}$. If v satisfies (C.1), then

$$
P\left(\xi_{2 n}^{v} \in \cdot\right) \Rightarrow \mu_{\infty} \quad \text { as } n \rightarrow \infty
$$

(ii) Suppose that $p_{1} \in[0,1), p_{2}=0$. If v satisfies (C.1) and (C.2), then

$$
P\left(\xi_{2 n}^{\nu} \in \cdot\right) \Rightarrow \mu_{\infty} \quad \text { as } n \rightarrow \infty
$$

Let $f(X)=\{v \in \mathcal{P}(X): v$ is translation invariant $\}$. We remark that $v \in \mathcal{f}(X)$ with $v(\{\mathbf{0}\})=0$ [resp. $v(\{\mathbf{1}\})=0$] satisfies (C.1) [resp. (C.2)]. Then we have the following corollary of Theorem 4.

Corollary 5. (i) Suppose that $v \in f(X)$. If $p_{1} \in[0,1], p_{2} \in(0,1]$ and $p_{2}<2 p_{1}$, then

$$
P\left(\xi_{2 n}^{v} \in \cdot\right) \Rightarrow v(\{\mathbf{0}\}) \delta_{\mathbf{0}}+(1-v(\{\mathbf{0}\})) \mu_{\infty} \quad \text { as } n \rightarrow \infty .
$$

Also, if $P\left(\Omega_{\infty}^{\{0\}}\right)>0$, then $\mu_{\infty}(\{\mathbf{0}\})=0$.
(ii) Suppose that $v \in f(X)$. If $p_{1} \in[0,1), p_{2}=0$, then

$$
P\left(\xi_{2 n}^{v} \in \cdot\right) \Rightarrow v(\{\mathbf{0}, \mathbf{1}\}) \delta_{\mathbf{0}}+(1-v(\{\mathbf{0}, \mathbf{1}\})) \mu_{\infty} \quad \text { as } n \rightarrow \infty
$$

Also, if $P\left(\Omega_{\infty}^{\{0\}}\right)>0$, then $\mu_{\infty}(\{\mathbf{0}, \mathbf{1}\})=0$.
We also obtain the following complete convergence theorem.
THEOREM 6. There exists $\widehat{p}_{1} \in(0,1)$ such that, for any $A \subset 2 \mathbf{Z}$,

$$
P\left(\xi_{2 n}^{A} \in \cdot\right) \Rightarrow\left(1-P\left(\Omega_{\infty}^{A}\right)\right) \delta_{\mathbf{0}}+P\left(\Omega_{\infty}^{A}\right) \mu_{\infty} \quad \text { as } n \rightarrow \infty,
$$

when $p_{1} \in\left[\widehat{p}_{1}, 1\right]$ and $p_{2} \in[0,1]$, but $\left(p_{1}, p_{2}\right) \neq(1,0)$.
We conjecture that the complete convergence theorem holds for any $\left(p_{1}, p_{2}\right) \in$ $[0,1]^{2}$ except $\left(p_{1}, p_{2}\right)=(1,0)$. In attractive particle systems, the block construction arguments have been used to prove the complete convergence theorem; see Durrett [(1984), Section 9] and Durrett [(1988), Section 5b]. One of the essential properties used in the proofs is that if $P\left(\Omega_{\infty}^{0}\right)>0$, then the probability $P\left(\Omega_{\infty}^{A}\right)$ is close to 1 for any sufficiently large initial set A. In general it is unknown whether the property holds for nonattractive systems. Here we can show that it holds for the nonattractive Domany-Kinzel model.

Proposition 7. (i) Suppose that $p_{1} \in[0,1], p_{2} \in(0,1]$ and $P\left(\Omega_{\infty}^{\{0\}}\right)>0$. Then

$$
\begin{equation*}
\lim _{|A| \rightarrow \infty} P\left(\Omega_{\infty}^{A}\right)=1 \tag{1.3}
\end{equation*}
$$

(ii) Suppose that $p_{1} \in[0,1), p_{2}=0$ and $P\left(\Omega_{\infty}^{\{0\}}\right)>0$. Then

$$
\begin{equation*}
\lim _{|\partial A| \rightarrow \infty} P\left(\Omega_{\infty}^{A}\right)=1 \tag{1.4}
\end{equation*}
$$

where $\partial A=(A+1) \triangle(A-1)$ for $A \subset 2 \mathbf{Z}$.
The paper is organized as follows. Section 2 is devoted to the proof of Lemma 1. The proof of Theorem 4 is given in Section 3. We prove Theorem 6 and Proposition 7 in Section 4.
2. Proof of Lemma 1. First we introduce these spaces:

$$
\begin{aligned}
\mathbf{S} & =\left\{s=(x, n) \in \mathbf{Z} \times \mathbf{Z}_{+}: x+n=\text { even }\right\}, \\
\mathbf{B} & =\{b=((x, n),(x+1, n+1)),((x, n),(x-1, n+1)):(x, n) \in \mathbf{S}\}, \\
\mathcal{X}(\mathbf{S}) & =\{0,1\}^{\mathbf{S}}, \quad \mathcal{X}(\mathbf{B})=\{0,1\}^{\mathbf{B}}, \quad \mathcal{X}=\mathcal{X}(\mathbf{S}) \times \mathcal{X}(\mathbf{B}),
\end{aligned}
$$

where $\mathbf{Z}_{+}=\{0,1,2, \ldots\}$. For given $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \mathcal{X}$, we say that $s=(y, n+k)$ $\in \mathbf{S}$ can be reached from $s^{\prime}=(x, n) \in \mathbf{S}$ and write $s^{\prime} \rightarrow s$, if there exists a sequence $s_{0}, s_{1}, \ldots, s_{k}$ of members of \mathbf{S} such that $s^{\prime}=s_{0}, s=s_{k}$ and $\zeta_{1}\left(s_{i}\right)=1, i=$ $0,1, \ldots, k, \zeta_{2}\left(\left(s_{i}, s_{i+1}\right)\right)=1, i=0,1, \ldots, k-1$. We also say that $G \subset \mathbf{S}$ can be reached from $G^{\prime} \subset \mathbf{S}$ and write $G^{\prime} \rightarrow G$ (resp. $G^{\prime} \nrightarrow G$), if there exist $s \in G$ and $s^{\prime} \in G^{\prime}$ such that $s^{\prime} \rightarrow s$ (resp. if not). Furthermore we define

$$
\begin{aligned}
\mathbf{S}^{(N)} & =\{s=(x, n) \in \mathbf{S}:|x|, n \leq N\} \\
\mathbf{B}^{(N)} & =\left\{\left(s, s^{\prime}\right) \in \mathbf{B}: s, s^{\prime} \in \mathbf{S}^{(N)}\right\}
\end{aligned}
$$

and let $\mathcal{F}^{(N)}$ be the σ-field generated by the events of configurations depending on $\mathbf{S}^{(N)}$ and $\mathbf{B}^{(N)}$.

For given $\alpha, \beta \in \mathbf{R}$, we introduce the signed measure $m^{(N)}$ on $\left(\mathcal{X}, \mathcal{F}^{(N)}\right)$ defined by

$$
m^{(N)}(\Lambda)=\alpha^{k_{1}}(1-\alpha)^{j_{1}} \beta^{k_{2}}(1-\beta)^{j_{2}}
$$

for any cylinder set

$$
\begin{array}{r}
\Lambda=\left\{\left(\zeta_{1}, \zeta_{2}\right) \in \mathcal{X}: \zeta_{1}\left(s_{i}\right)=1, i=1,2, \ldots, k_{1}, \zeta_{1}\left(s_{i}^{\prime}\right)=0, i=1,2, \ldots, j_{1}\right. \\
\left.\zeta_{2}\left(b_{i}\right)=1, i=1,2, \ldots, k_{2}, \zeta_{2}\left(b_{i}^{\prime}\right)=0, i=1,2, \ldots, j_{2}\right\}
\end{array}
$$

where $s_{1}, \ldots, s_{k_{1}}, s_{1}^{\prime}, \ldots, s_{j_{1}}^{\prime}$ are distinct elements of $\mathbf{S}^{(N)}$ and $b_{1}, \ldots, b_{k_{2}}$, $b_{1}^{\prime}, \ldots, b_{j_{2}}^{\prime}$ are distinct elements of $\mathbf{B}^{(N)}$. We define the conditional signed measures on $\left(\mathcal{X}, \mathcal{F}^{(N)}\right)$ as follows:

$$
\begin{aligned}
& m_{k}^{(N)}(\cdot)=m^{(N)}\left(\cdot \mid \zeta_{1}(s)=1, s \in \mathbf{S}_{k}^{(N)}\right) \\
& m_{k, j}^{(N)}(\cdot)=m^{(N)}\left(\cdot \mid \zeta_{1}(s)=1, s \in \mathbf{S}_{k}^{(N)} \cup \mathbf{S}_{j}^{(N)}\right)
\end{aligned}
$$

where $\mathbf{S}_{k}^{(N)}=\left\{(x, n) \in \mathbf{S}^{(N)}: n=k\right\}$. We should remark that $\mathcal{F}^{(N)} \subset \mathcal{F}^{(N+1)}$ and, for any $\Lambda \in \mathcal{F}^{(N)}$,

$$
\begin{aligned}
& m^{(N)}(\Lambda)=m^{(N+1)}(\Lambda), \\
& m_{k}^{(N)}(\Lambda)=m_{k}^{(N+1)}(\Lambda), \\
& m_{k, j}^{(N)}(\Lambda)=m_{k, j}^{(N+1)}(\Lambda)
\end{aligned}
$$

From this consistency property, there exist the unique real-valued additive functions m, m_{k} and $m_{k, j}$ on $\bigcup_{N=1}^{\infty} \mathcal{F}^{(N)}$ such that, for any $\Lambda \in \mathcal{F}^{(N)}$,

$$
\begin{aligned}
m(\Lambda) & =m^{(N)}(\Lambda), \\
m_{k}(\Lambda) & =m_{k}^{(N)}(\Lambda), \\
m_{k, j}(\Lambda) & =m_{k, j}^{(N)}(\Lambda)
\end{aligned}
$$

See Figure 1. In this paper, we take $\alpha=p_{1}^{2} /\left(2 p_{1}-p_{2}\right)$ and $\beta=2-p_{2} / p_{1}$.
For $A, B \subset \mathbf{Z}, k, j \in \mathbf{Z}_{+}$with $A \times\{k\}, B \times\{j\} \subset \mathbf{S}$ we write $A \times\{k\} \rightrightarrows B \times\{j\}$ if $A \times\{k\} \rightarrow(x, j)$ for any $x \in B$ and $A \times\{k\} \nrightarrow B^{c} \times\{j\}$. Then the observation shown by Figure 2 and the Markov property of the Domany-Kinzel model give

$$
P\left(\xi_{n+1}^{A}=B \mid \xi_{n}^{A}=D\right)=m_{n}(D \times\{n\} \rightrightarrows B \times\{n+1\})
$$

and

$$
P\left(\xi_{n}^{A}=B\right)=m_{0}(A \times\{0\} \rightrightarrows B \times\{n\}),
$$

where B is finite. From the above equation, the following equations can be quickly derived:

$$
\begin{align*}
P\left(\xi_{n}^{A} \ni y\right) & =m_{0}(A \times\{0\} \rightarrow(y, n)), \tag{2.1}\\
P\left(\xi_{n}^{A} \cap B \neq \varnothing\right) & =m_{0}(A \times\{0\} \rightarrow B \times\{n\}) . \tag{2.2}
\end{align*}
$$

If $p_{2}<2 p_{1}$ and $p_{2}>2 p_{1}-p_{1}^{2}$, then $\alpha>1$ and $\beta \in(0,1)$. If $p_{2} \leq 2 p_{1}-p_{1}^{2}$ and $p_{2} \geq p_{1}$, then $\alpha, \beta \in[0,1]$. This case corresponds to the mixed site-bond oriented percolation with α the probability of an open site and with β the probability of an open bond, where $p_{1}=\alpha \beta$ and $p_{2}=\alpha\left(2 \beta-\beta^{2}\right)$. That is why we choose $\alpha=p_{1}^{2} /\left(2 p_{1}-p_{2}\right)$ and $\beta=2-p_{2} / p_{1}$ in our construction. Moreover, if $p_{2}<p_{1}$, then $\alpha \in(0,1)$ and $\beta \in(1,2]$.

For a fixed even nonnegative number k, we introduce the map r_{k} from \mathbf{S} to \mathbf{S} defined by

$$
r_{k}(x, n)= \begin{cases}(x, k-n), & n=0,1, \ldots, k \\ (x, n), & \text { otherwise }\end{cases}
$$

and the map R_{k} from x to x defined by

$$
R_{k} \zeta=\left(\left(R_{k} \zeta\right)_{1},\left(R_{k} \zeta\right)_{2}\right)
$$

where $\left(R_{k} \zeta\right)_{1}(s)=\zeta_{1}\left(r_{k} s\right)$ and $\left(R_{k} \zeta\right)_{2}\left(\left(s, s^{\prime}\right)\right)=\zeta_{2}\left(\left(r_{k} s^{\prime}, r_{k} s\right)\right)$. Note that m is R_{k}-invariant. To prove Lemma 1 we use the following lemma.
(a) $m(\{x-1, x+1\} \times\{n\} \rightarrow(x, n+1))$ $=(1-\alpha)(1-\beta) \alpha \beta \alpha+\alpha(1-\beta) \alpha \beta \alpha+(1-\alpha) \beta \alpha \beta \alpha$

$(x, n+1)$	$(x, n+1)$	$(x, n+1)$
8^{α}	\wedge^{α}	8^{α}
,	,	$\beta \rho$
O	α ¢	- α O
$(x-1, n) \quad(x+1, n)$	$(x-1, n) \quad(x+1, n)$	$(x-1, n) \quad(x+1, n)$

$$
+\alpha \beta(1-\alpha)(1-\beta) \alpha+\alpha \beta \alpha(1-\beta) \alpha+\alpha \beta(1-\alpha) \beta \alpha+\alpha \beta \alpha \beta \alpha
$$

$$
(x, n+1) \quad(x, n+1) \quad(x, n+1) \quad(x, n+1)
$$

$$
=\left\{1-(1-\alpha \beta)^{2}\right\} \alpha
$$

(b) $m_{n}(\{x-1, x+1\} \times\{n\} \rightarrow(x, n+1))$

$=\left\{1-(1-\beta)^{2}\right\} \alpha$
(c) $m_{n, n+1}(\{x-1, x+1\} \times\{n\} \rightarrow(x, n+1))$
$=(1-\beta) \beta+\beta(1-\beta)+\beta^{2}$

$$
(x, n+1) \quad(x, n+1) \quad(x, n+1)
$$

$=1-(1-\beta)^{2}$

Fig. 1.

Lemma 8. Suppose that $p_{1}, p_{2} \in[0,1]$ with $\left(p_{1}, p_{2}\right) \neq(1,0)$. Then, for any positive integer ℓ and $A \subset 2 \mathbf{Z}$, we have

$$
\lim _{n \rightarrow \infty} P\left(1 \leq\left|\xi_{n}^{A}\right| \leq \ell, \Omega_{\infty}^{A}\right)=0 .
$$

When $p_{1} \neq 1$, the lemma was proved in Katori, Konno and Tanemura [(2000), Lemma 4]. When $p_{1}=1$, the lemma is derived from Lemma 10 , which is given in Section 4.

Now we prove Lemma 1. Suppose that n is even. Let v be a probability measure on X and let A_{v} be a random variable with distribtion v which is independent
(a) $P(\xi(x, n+1)=1 \mid \xi(x-1, n)=0, \xi(x+1, n)=1)$

(b) $P(\xi(x, n+1)=1 \mid \xi(x-1, n)=1, \xi(x+1, n)=0)$

$$
\begin{aligned}
& m_{n}((x-1, n) \rightarrow(x, n+1)) \\
& =\beta(1-\beta) \alpha+\quad \beta^{2} \alpha \quad=\left(p_{2}-p_{1}\right)+\left(2 p_{1}-p_{2}\right)=p_{1} \\
& \beta \underbrace{(x, n+1)}_{0}{ }_{\alpha}^{\alpha} \\
& (x-1, n) \quad(x+1, n) \quad(x-1, n) \quad(x+1, n)
\end{aligned}
$$

(c) $P(\xi(x, n+1)=1 \mid \xi(x-1, n)=1, \xi(x+1, n)=1)$

$$
\underset{(x-1, n)(x+1, n)}{\bullet})=p_{2}
$$

$$
m_{n}(\{x-1, x+1\} \times\{n\} \rightarrow(x, n+1))
$$

$$
\begin{gathered}
=(1-\beta) \beta \alpha+\beta(1-\beta) \alpha+\beta^{2} \alpha=2\left(p_{2}-p_{1}\right)+\left(2 p_{1}-p_{2}\right)=p_{2} \text { (x,n+1)}+(x, n+1)+(x+1)
\end{gathered}
$$

$$
\begin{array}{ccc}
(x, n+1) & (x, n+1) & (x, n+1) \\
1-\beta, \gamma^{\alpha} \beta & \beta
\end{array}
$$

$(x-1, n)(x+1, n)(x-1, n)(x+1, n)(x-1, n)(x+1, n)$

FIG. 2.
of $\xi_{n}^{D}, D \subset 2 \mathbf{Z}$. Then from (2.2) we can show that

$$
\begin{aligned}
P\left(\xi_{n}^{v} \cap B \neq \varnothing\right) & =\int_{X} v(d \eta) P\left(\xi_{n}^{\eta} \cap B \neq \varnothing\right) \\
& =\int_{X} v(d \eta) m_{0}(\eta \times\{0\} \rightarrow B \times\{n\}) \\
& =\int_{X} v(d \eta) \sum_{D \subset B, D \neq \varnothing} m_{0, n}(\eta \times\{0\} \rightarrow D \times\{n\}) \alpha^{|D|}(1-\alpha)^{|B \backslash D|} \\
& =\int_{X} v(d \eta) \sum_{D \subset B, D \neq \varnothing} m_{0, n}(D \times\{0\} \rightarrow \eta \times\{n\}) \alpha^{|D|}(1-\alpha)^{|B \backslash D|}
\end{aligned}
$$

and

$$
\begin{aligned}
m_{0, n} & (D \times\{0\} \rightarrow \eta \times\{n\}) \\
& =\sum_{0<|C|<\infty} m_{0}(D \times\{0\} \rightrightarrows C \times\{n-1\}) m_{n-1, n}(C \times\{n-1\} \rightarrow \eta \times\{n\}) \\
& =\sum_{0<|C|<\infty} m_{0}(D \times\{0\} \rightrightarrows C \times\{n-1\})\left[1-(1-\beta)^{|\eta \cap(C+1)|+|\eta \cap(C-1)|}\right] \\
& =P\left(\xi_{n-1}^{D} \neq \varnothing\right)-E\left[(1-\beta)^{\left|\eta \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|\eta \cap\left(\xi_{n-1}^{D}-1\right)\right|} ; \xi_{n-1}^{D} \neq \varnothing\right] .
\end{aligned}
$$

Then we have

$$
\begin{align*}
P\left(\xi_{n}^{\nu} \cap B \neq \varnothing\right)= & \sum_{D \subset B, D \neq \varnothing} P\left(\xi_{n-1}^{D} \neq \varnothing\right) \alpha^{|D|}(1-\alpha)^{|B \backslash D|} \\
(2.3) & -\sum_{D \subset B, D \neq \varnothing} E\left[(1-\beta)^{\left|A_{n} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|A_{n} \cap\left(\xi_{n-1}^{D}-1\right)\right|} ; \xi_{n-1}^{D} \neq \varnothing\right] \tag{2.3}\\
& \times \alpha^{|D|}(1-\alpha)^{|B \backslash D|} .
\end{align*}
$$

Then, to prove

$$
\sigma(v, B)=\sum_{D \subset B, D \neq \varnothing} \sigma(D, 2 \mathbf{Z}) \alpha^{|D|}(1-\alpha)^{|B \backslash D|}
$$

for $B \in Y$, it is enough to show that, for any $D \subset B$ with $D \neq \varnothing$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[(1-\beta)^{\left|A_{\nu} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|A_{\nu} \cap\left(\xi_{n-1}^{D}-1\right)\right|} ; \quad \xi_{n-1}^{D} \neq \varnothing\right]=0 \tag{2.4}
\end{equation*}
$$

We show (2.4) for $v=v_{\theta}$ to prove Lemma 1 . We set $A_{\theta}=A_{v_{\theta}}$. If $p_{1} \in[0,1]$ and $p_{2} \in(0,1]$, we see that $1-\beta \in(-1,1)$. So (2.4) is derived from Lemma 8 . If $p_{1} \in[0,1)$ and $p_{2}=0$, then $1-\beta=-1$. Since

$$
\left|A_{\theta} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|A_{\theta} \cap\left(\xi_{n-1}^{D}-1\right)\right|=\left|A_{\theta} \cap \partial \xi_{n-1}^{D}\right| \quad \bmod 2
$$

and ξ_{n-1}^{D} and A_{θ} are independent, we have

$$
\begin{aligned}
E\left[(-1)^{\left|A_{\theta} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|A_{\theta} \cap\left(\xi_{n-1}^{D}-1\right)\right|} ; \xi_{n-1}^{D} \neq \varnothing\right] & =E\left[(-1)^{\left|A_{\theta} \cap \partial \xi_{n-1}^{D}\right|} ; \xi_{n-1}^{D} \neq \varnothing\right] \\
& =E\left[(1-2 \theta)^{\left|\partial \xi_{n-1}^{D}\right|} ; \xi_{n-1}^{D} \neq \varnothing\right]
\end{aligned}
$$

Noting that $1-2 \theta \in(-1,1)$ for $\theta \in(0,1)$, and that $\partial \xi_{n-1}^{D} \supset \xi_{n}^{D}$, we obtain (2.4) from Lemma 8.
3. Proof of Theorem 4. In this section we show equation (2.4) under condition (C.1) if $p_{2} \neq 0$, and under conditions (C.1) and (C.2) if $p_{2}=0$. Then, we obtain Theorem 4. Since $P\left(\xi_{n+k} \in \cdot\right)=P\left(\xi_{n}^{\widehat{\xi}_{k}^{v}} \in \cdot\right), k \in 2 \mathbf{N}$, it is enough to show that for any $\varepsilon>0$ there exists $k \in 2 \mathbf{N}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[(1-\beta)^{\left|\widehat{\xi}_{k}^{v} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|\widehat{\xi}_{k}^{v} \cap\left(\xi_{n-1}^{D}-1\right)\right|} ; \quad \xi_{n-1}^{D} \neq \varnothing\right] \leq \varepsilon \tag{3.1}
\end{equation*}
$$

for any $D \in Y$, where $\widehat{\xi}_{k}^{v}$ is an independent copy of ξ_{k}^{v}.
First we consider the case $p_{2} \neq 0$. By (C.1), for any $\delta \in(0,1)$ there exists $k=k(\delta) \in 2 \mathbf{N}$ so that

$$
v(\eta \cap[x-k, x+k]=\varnothing) \leq \delta \quad \text { for any } x \in 2 \mathbf{Z}
$$

If $\eta \cap[x-k, x+k] \neq \varnothing$, then $P\left(\widehat{\xi}_{k}^{\eta}(x)=1\right) \geq\left(p_{1} \wedge p_{2}\right)^{k}$. Put $\gamma=1-\left(p_{1} \wedge p_{2}\right)^{k}$. Then

$$
v\left(\eta: P\left(\widehat{\xi}_{k}^{\eta}(x)=0\right)>\gamma\right)=v\left(\eta: P\left(\widehat{\xi}_{k}^{\eta}(x)=1\right) \leq 1-\gamma\right) \leq \delta, \quad x \in 2 \mathbf{Z}
$$

Put $h_{k}(\zeta)=P\left(\widehat{\xi}_{k}^{v} \cap \zeta=\varnothing\right)$ for $\zeta \subset 2 \mathbf{Z}$ with $|\zeta|<\infty$. If ζ satisfies $\Delta(\zeta)=$ $\min _{x, y \in \zeta, x \neq y}|x-y| \geq 2 k$, then

$$
\begin{aligned}
h_{k}(\zeta) & =\int_{X} v(d \eta) E\left[\prod_{x \in \zeta}\left(1-\widehat{\xi}_{k}^{\eta}(x)\right)\right] \\
& =\int_{X} v(d \eta) \prod_{x \in \zeta} P\left(\widehat{\xi}_{k}^{\eta}(x)=0\right)
\end{aligned}
$$

Here we refer to Lemma 9.13 in Harris (1976).
Lemma 9 (Harris). Let $X_{1}, X_{2}, \ldots, X_{k}$ be random variables with $0 \leq X_{i} \leq 1$ and $P\left(X_{i}>\gamma\right) \leq \varepsilon$ for any $i \in\{1,2, \ldots, k\}$. Then we have

$$
E\left[X_{1} X_{2} \cdots X_{k}\right] \leq \varepsilon+\gamma^{k}
$$

Applying Lemma 9 implies that if $\triangle(\zeta) \geq 2 k$, then

$$
h_{k}(\zeta) \leq \delta+\gamma^{|\zeta|}
$$

From the fact that, for $\zeta \subset 2 \mathbf{Z}$ with $|\zeta|<\infty, \max \left\{l \geq 1:\left\{y_{1}, y_{2}, \ldots, y_{l}\right\} \subset \zeta\right.$, $\left.y_{i}+2 k \leq y_{i+1}(i=1,2, \ldots, l-1)\right\}$ is bounded from below by $|\zeta| / k$, we see that

$$
P\left(\widehat{\xi}_{k}^{v} \cap \zeta=\varnothing\right) \leq \delta+\gamma^{|\zeta| / k}
$$

Let $\ell \in \mathbf{N}$ and $\zeta_{i} \subset 2 \mathbf{Z}$ with $\left|\zeta_{i}\right|<\infty(i=1,2, \ldots, \ell)$ satisfying $\zeta=\bigcup_{i=1}^{\ell} \zeta_{i}$ and $\zeta_{i} \cap \zeta_{j}=\varnothing(i \neq j)$. Then

$$
\begin{equation*}
P\left(\left|\widehat{\xi}_{k}^{v} \cap \zeta\right|<\ell\right) \leq \ell \delta+\sum_{i=1}^{\ell} \gamma^{\left|\zeta_{i}\right| / k} \tag{3.2}
\end{equation*}
$$

Since $1-\beta \in(-1,1)$ if $p_{2} \neq 0$, for any $\varepsilon>0$ we can take $\ell \in \mathbf{N}$ with $(1-\beta)^{\ell} \leq \frac{\varepsilon}{2}$ and then take $k(\delta)$ such that $\ell \delta \leq \frac{\varepsilon}{2}$. Then,

$$
\begin{equation*}
\lim _{|\zeta| \rightarrow \infty} E\left[(1-\beta)^{\left|\widehat{\xi}_{k}^{\nu} \cap \zeta\right|}\right] \leq \varepsilon \tag{3.3}
\end{equation*}
$$

Combining this with Lemma 8 gives (3.1).
Next, we consider the case $p_{2}=0$ and $p_{1} \in(0,1)$. In this case $\beta=2$ and (3.1) is rewritten as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[(-1)^{\left|\widehat{\xi}_{k}^{\nu} \cap \partial \xi_{n-1}^{D}\right|} ; \xi_{n-1}^{D} \neq \varnothing\right] \leq \varepsilon \tag{3.4}
\end{equation*}
$$

By (C.1) and (C.2), for any $\delta \in(0,1)$ there exists $k=k(\delta) \in 2 \mathbf{N}$ so that

$$
v(\eta(y)=\eta(y+2), \quad y \in[x-k, x+k-2] \cap 2 \mathbf{Z}) \leq \delta, \quad x \in 2 \mathbf{Z}
$$

If $\eta(y) \neq \eta(y+2)$ for some $y \in[x-k, x+k-2] \cap 2 \mathbf{Z}$, then $P\left(\widehat{\xi}_{k}^{\eta}(x)=1\right) \geq$ $p_{1}^{k}\left(1-p_{1}\right)^{2 k}$. Put $\gamma=1-p_{1}^{k}\left(1-p_{1}\right)^{2 k}$. Then

$$
v\left(\eta: P\left(\widehat{\xi}_{k}^{\eta}(x)=0\right)>\gamma\right)=v\left(\eta: P\left(\widehat{\xi}_{k}^{\eta}(x)=1\right) \leq 1-\gamma\right) \leq \delta, \quad x \in 2 \mathbf{Z}
$$

Using the same argument as in the case of $p_{2} \neq 0$, we obtain (3.2) in the present case. Since $\widehat{\xi}_{k}^{v} \subset \partial \widehat{\xi}_{k-1}^{v}$, we have

$$
\begin{equation*}
P\left(\left|\partial \widehat{\xi}_{k-1}^{v} \cap \zeta\right|<\ell\right) \leq \ell \delta+\sum_{i=1}^{\ell} \gamma^{\left|\zeta_{i}\right| / k} \tag{3.5}
\end{equation*}
$$

By the Markov property we have

$$
\begin{aligned}
E\left[(-1)^{\left|\widehat{\xi}_{k}^{v} \cap \zeta\right|}\right]= & E\left[\prod_{x \in \zeta}(-1)^{\left|\widehat{\xi}_{k}^{v}(x)\right|}\right] \\
= & \sum_{S \subset(\zeta \pm 1)} E\left[\prod_{x \in \zeta}(-1)^{\left|\widehat{\xi}_{k}^{v}(x)\right|} \mid \widehat{\xi}_{k-1}^{v} \cap(\zeta \pm 1)=S\right] \\
& \times P\left(\widehat{\xi}_{k-1}^{v} \cap(\zeta \pm 1)=S\right) \\
= & \sum_{S \subset(\zeta \pm 1)}\left(1-2 p_{1}\right)^{|\partial S \cap \zeta|} P\left(\widehat{\xi}_{k-1}^{v} \cap(\zeta \pm 1)=S\right) \\
= & \sum_{j=0}^{\infty}\left(1-2 p_{1}\right)^{j} P\left(\left|\partial \widehat{\xi}_{k-1}^{v} \cap \zeta\right|=j\right)
\end{aligned}
$$

where $\zeta \pm 1=(\zeta+1) \cup(\zeta-1)$. Then

$$
\begin{equation*}
E\left[(-1)^{\left|\widehat{\xi}_{k}^{v} \cap \zeta\right|}\right] \leq P\left(\left|\partial \widehat{\xi}_{k-1}^{v} \cap \zeta\right|<\ell\right)+\left(1-2 p_{1}\right)^{\ell} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6), for any $\varepsilon>0$ we can take $\ell \in \mathbf{N}$ and $k(\delta) \in 2 \mathbf{N}$ such that

$$
\begin{equation*}
\lim _{|\zeta| \rightarrow \infty} E\left[(-1)^{\left|\widehat{\xi}_{k}^{\nu} \cap \zeta\right|}\right] \leq \varepsilon \tag{3.7}
\end{equation*}
$$

From Lemma 8 and the fact that $\partial \xi_{n-1}^{D} \supset \xi_{n}^{D}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|\partial \xi_{n-1}^{D}\right| \leq \ell ; \Omega_{\infty}^{D}\right)=0, \quad D \in Y \tag{3.8}
\end{equation*}
$$

Combining (3.7) and (3.8), we have the desired conclusion (3.4).
4. Proofs of Theorem 6 and Proposition 7. We consider a collection of random variables $\{w(x, n):(x, n) \in \mathbf{S}\}$ with values in $\{0,1\}$ having the following property: if any sequence $\left(x_{j}, n_{j}\right), 1 \leq j \leq \ell$, satisfies $\left|x_{i}-x_{j}\right|>4$ whenever both $i \neq j$ and $n_{i}=n_{j}$, then $P\left(w\left(x_{j}, n_{j}\right)=1\right.$, for $\left.1 \leq j \leq \ell\right)=q^{\ell}$ with $q \in[0,1]$. Let $A \subset 2 \mathbf{Z}$ and

$$
W_{k}^{A}=\{z: \text { there is an open path from }(y, 0) \text { to }(z, k) \text { for some } y \in A\} .
$$

This is called a 2 -dependent oriented site percolation. The following result can be obtained by a slight modification of argument in Durrett and Neuhauser [(1991), Appendix] for 1-dependent oriented site percolation. [See also Bramson and Neuhauser (1994), Lemma 2.3.] For any $\delta>0$, there exists $\widehat{q}(\delta) \in[0,1]$ such that if $q \in[\widehat{q}(\delta), 1]$, then

$$
\liminf _{n \rightarrow \infty} \frac{\left|W_{n}^{A}\right|}{n}>1-\delta \quad \text { a.s. on } \Omega_{\infty}^{A, W},
$$

where $\Omega_{\infty}^{A, W}=\bigcap_{n=1}^{\infty}\left\{W_{n}^{A} \neq \varnothing\right\}$.
Now we prove Theorem 6. When $p_{2}=0$, Bramson and Neuhauser (1994) developed block construction method and compared the process with the 2-dependent oriented site percolation. Their technique and argument can be extended to the case $p_{2} \neq 0$. Then we have the following.

Lemma 10. For any $\delta>0$, there exists $\widehat{p_{1}}(\delta) \in(0,1)$ such that if $p_{1} \in$ $\left(\widehat{p_{1}}(\delta), 1\right]$ and $p_{2} \in[0,1]$ with $\left(p_{1}, p_{2}\right) \neq(1,0)$, then there exists $k \in 2 \mathbf{N}$ so that

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \sharp\left\{x \in 2 k \mathbf{Z} \cap[-k n, k n): \xi_{n k}^{A} \cap[x-k, x+k) \neq \varnothing\right\} \tag{4.1}\\
& \quad>1-\delta \quad \text { a.s. on } \Omega_{\infty}^{A},
\end{align*}
$$

for any $A \subset 2 \mathbf{Z}$.
A sufficient condition for the proof of Theorem 6 is

$$
\lim _{n \rightarrow \infty} P\left(\xi_{2 n}^{A} \cap B \neq \varnothing\right)=\mu_{\infty}(\xi \cap B \neq \varnothing) P\left(\Omega_{\infty}^{A}\right), \quad B \in Y
$$

Since $P\left(\xi_{2 n} \in \cdot\right)=P\left(\xi_{n}^{\widehat{\xi}_{n}^{A}} \in \cdot\right)$, by the same way we obtained (2.3) we have

$$
\begin{aligned}
P\left(\xi_{2 n}^{A} \cap B \neq \varnothing\right) & =P\left(\xi_{n}^{\widehat{\xi}_{n}^{A}} \cap B \neq \varnothing\right) \\
& =E\left[m_{0}\left(\widehat{\xi}_{n}^{A} \times\{0\} \rightarrow B \times\{n\}\right) ; \widehat{\xi}_{n}^{A} \neq \varnothing\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{D \subset B, D \neq \varnothing} P\left(\xi_{n-1}^{D} \neq \varnothing\right) \alpha^{|D|}(1-\alpha)^{|B \backslash D|} P\left(\widehat{\xi}_{n}^{A} \neq \varnothing\right) \\
& -\sum_{D \subset B, D \neq \varnothing} E\left[(1-\beta)^{\left|\widehat{\xi}_{n}^{A} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|\widehat{\xi}_{n}^{A} \cap\left(\xi_{n-1}^{D}-1\right)\right|}\right. \\
& \\
& \left.\quad \widehat{\xi}_{n}^{A} \neq \varnothing, \xi_{n-1}^{D} \neq \varnothing\right] \alpha^{|D|}(1-\alpha)^{|B \backslash D|} .
\end{aligned}
$$

Then it is sufficient to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[(1-\beta)^{\left|\widehat{\xi}_{n}^{A} \cap\left(\xi_{n-1}^{D}+1\right)\right|+\left|\widehat{\xi}_{n}^{A} \cap\left(\xi_{n-1}^{D}-1\right)\right|} ; \widehat{\xi}_{n}^{A} \neq \varnothing, \xi_{n-1}^{D} \neq \varnothing\right]=0, \tag{4.2}
\end{equation*}
$$

for $D \subset B$. By Lemma 10 if $p_{1} \in\left[\widehat{p_{1}}\left(\frac{2}{3}\right), 1\right]$ and $p_{2} \in[0,1]$ with $\left(p_{1}, p_{2}\right) \neq(1,0)$, then

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \sharp\left\{x \in 2 k \mathbf{Z} \cap[-k n, k n):[x-k, x+k) \cap \widehat{\xi}_{n k}^{A} \neq \varnothing,\right. \\
& \left.\quad[x-k, x+k) \cap \xi_{n k}^{D} \neq \varnothing\right\} \tag{4.3}\\
& \quad>\frac{1}{3} \text { a.s. on } \widehat{\Omega}_{\infty}^{A} \cap \Omega_{\infty}^{D},
\end{align*}
$$

where $\widehat{\Omega}_{\infty}^{A}=\bigcap_{n=1}^{\infty}\left\{\widehat{\xi}_{n}^{A} \neq \varnothing\right\}$. Suppose that $\eta, \zeta \subset 2 \mathbf{Z}$ satisfy $\left[x_{i}-k, x_{i}+k\right) \cap$ $\eta \neq \varnothing$ and $\left[x_{i}-k, x_{i}+k\right) \cap \zeta \neq \varnothing$ for some $x_{i} \in 2 k \mathbf{Z}, i=1,2, \ldots, m$. Then

$$
\begin{equation*}
P\left(\widehat{\xi}_{k}^{\eta} \cap\left(\xi_{k-1}^{\zeta}+1\right) \ni x_{i}\right) \geq\left(p_{1} \wedge p_{2}\right)^{2 k-1}, \quad i=1,2, \ldots, m \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\widehat{\xi}_{k}^{\eta} \cap\left(\xi_{k-1}^{\zeta}+1\right) \ni x_{i}\right\}, \quad i=1,2, \ldots, m, \text { are independent. } \tag{4.5}
\end{equation*}
$$

From (4.3), (4.4) and (4.5) we see that

$$
\lim _{n \rightarrow \infty} P\left(\left(\widehat{\xi}_{k}^{A} \cap\left(\xi_{k-1}^{D}+1\right) \mid \leq \ell, \widehat{\Omega}_{\infty}^{A} \cap \Omega_{\infty}^{D}\right)=0\right.
$$

for any $\ell \in \mathbf{N}$. Hence we have (4.2) when $p_{2} \neq 0$.
When $p_{2}=0$ and $p_{1} \in(0,1),(4.2)$ is rewritten as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[(-1)^{\left|\widehat{\xi}_{n}^{A} \cap \partial \xi_{n-1}^{D}\right|} ; \widehat{\xi}_{n}^{A} \neq \varnothing, \xi_{n-1}^{D} \neq \varnothing\right]=0 . \tag{4.6}
\end{equation*}
$$

Suppose that $\eta, \zeta \subset 2 \mathbf{Z}$ satisfy $\left(x_{i}-k, x_{i}+k\right) \cap \partial \eta \neq \varnothing$ and $\left(x_{i}-k, x_{i}+k\right) \cap$ $\partial \zeta \neq \varnothing$ for some $x_{i} \in 2 k \mathbf{Z}, i=1,2, \ldots, m$. Then

$$
\begin{equation*}
P\left(\partial \widehat{\xi}_{k-1}^{\eta} \cap \partial \xi_{k-1}^{\zeta} \ni x_{i}\right) \geq p_{1}^{2 k-2}, \quad i=1,2, \ldots, m \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\partial \hat{\xi}_{k-1}^{\eta} \cap \partial \xi_{k-1}^{\zeta} \ni x_{i}\right\}, \quad i=1,2, \ldots, m, \text { are independent. } \tag{4.8}
\end{equation*}
$$

From (4.3), (4.7) and (4.8) we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|\partial \widehat{\xi}_{n-1}^{A} \cap \partial \xi_{n-1}^{D}\right| \leq \ell, \widehat{\Omega}_{\infty}^{A} \cap \Omega_{\infty}^{D}\right)=0, \tag{4.9}
\end{equation*}
$$

for any $\ell \in \mathbf{N}$. By the same procedure used to get (3.6), we have

$$
\begin{aligned}
& E\left[(-1)^{\left|\widehat{\xi}_{n}^{A} \cap \partial \xi_{n-1}^{D}\right|} ; \widehat{\xi}_{n}^{A} \neq \varnothing, \partial \xi_{n-1}^{D} \neq \varnothing\right] \\
& \quad \leq P\left(\left|\partial \widehat{\xi}_{n-1}^{A} \cap \partial \xi_{n-1}^{D}\right|<\ell, \widehat{\xi}_{n}^{A} \neq \varnothing, \partial \xi_{n-1}^{D} \neq \varnothing\right)+\left(1-2 p_{1}\right)^{\ell}
\end{aligned}
$$

Hence we obtain (4.6) from (4.9).
Next we prove Proposition 7:

$$
\begin{aligned}
& P\left(\xi_{2 n}^{A} \cap 2 \mathbf{Z} \neq \varnothing\right)= m_{0}(A \times\{0\} \rightarrow 2 \mathbf{Z} \times\{2 n\}) \\
&= \int_{X} v_{\alpha}(d \eta) m_{0,2 n}(A \times\{0\} \rightarrow \eta \times\{2 n\}) \\
&= \int_{X} v_{\alpha}(d \eta) m_{0,2 n}(\eta \times\{0\} \rightarrow A \times\{2 n\}) \\
&= \int_{X} v_{\alpha}(d \eta) \sum_{D \subset(A \pm 1), D \neq \varnothing} m_{0}(\eta \times\{0\} \rightrightarrows D \times\{2 n-1\}) \\
& \quad \times m_{2 n-1,2 n}(D \times\{2 n-1\} \rightarrow A \times\{2 n\}) \\
&= P\left(\xi_{2 n-1}^{A_{\alpha}} \cap(A \pm 1) \neq \varnothing\right) \\
&-E\left[(1-\beta)^{\left.\mid \xi_{2 n-1}^{A_{\alpha} \cap(A+1)\left|+\left|\xi_{2 n-1}^{A_{\alpha}} \cap(A-1)\right|\right.} ; \xi_{2 n-1}^{A_{\alpha}} \cap(A \pm 1) \neq \varnothing\right] .}\right.
\end{aligned}
$$

Taking $n \rightarrow \infty$, by Lemmas 1 and 2 , we have

$$
\begin{aligned}
\sigma(A, 2 \mathbf{Z})= & \mu_{\infty}(\eta:(\eta-1) \cap(A \pm 1) \neq \varnothing) \\
& -\int_{(\eta-1) \cap(A \pm 1) \neq \varnothing} \mu_{\infty}(d \eta)(1-\beta)^{|(\eta-1) \cap(A+1)|+|(\eta-1) \cap(A-1)|},
\end{aligned}
$$

where we used the fact that

$$
\lim _{n \rightarrow \infty} P\left(\xi_{2 n-1}^{A_{\alpha}} \cap B \neq \varnothing\right)=\mu_{\infty}(\eta:(\eta-1) \cap B \neq \varnothing), \quad B \in Y
$$

It is obvious that

$$
\begin{aligned}
& \lim _{|A| \rightarrow \infty} \mu_{\infty}(\eta:(\eta-1) \cap(A+1) \neq \varnothing)=\lim _{|A| \rightarrow \infty} \mu_{\infty}(\eta: \eta \cap(A+2) \neq \varnothing)=1, \\
& \lim _{|A| \rightarrow \infty} \mu_{\infty}(\eta:(\eta-1) \cap(A-1) \neq \varnothing)=\lim _{|A| \rightarrow \infty} \mu_{\infty}(\eta: \eta \cap A \neq \varnothing)=1 .
\end{aligned}
$$

Then, to prove Proposition 7 it is sufficient to show that

$$
\begin{equation*}
\lim _{|A| \rightarrow \infty} \int_{X} \mu_{\infty}(d \eta)(1-\beta)^{|\eta \cap(A+2)|+|\eta \cap A|}=0 \tag{4.10}
\end{equation*}
$$

for the case of $p_{2} \neq 0$, and

$$
\begin{equation*}
\lim _{|\partial A| \rightarrow \infty} \int_{X} \mu_{\infty}(d \eta)(-1)^{|\eta \cap \partial(A+1)|}=0 \tag{4.11}
\end{equation*}
$$

for the case of $p_{2}=0$. Note that μ_{∞} is an invariant probability distribution satisfying (C.1) and (C.2). Then we have

$$
\int_{X} \mu_{\infty}(d \eta)(1-\beta)^{|\eta \cap(A+2)|+|\eta \cap A|}=E\left[(1-\beta)^{\left|\xi_{k}^{\mu \infty} \cap(A+2)\right|+\left|\xi_{k}^{\mu \infty} \cap A\right|}\right]
$$

and

$$
\int_{X} \mu_{\infty}(d \eta)(-1)^{|\eta \cap \partial(A+1)|}=E\left[(-1)^{\left|\xi_{k}^{\mu \infty} \cap \partial(A+1)\right|}\right]
$$

for any $k \in 2 \mathbf{Z}$, and (4.2) and (4.3) are derived from (3.3) and (3.7), respectively.

REFERENCES

Bramson, M. and Neuhauser, C. (1994). Survival of one-dimensional cellular automata under random perturbations. Ann. Probab. 22 244-263.
Domany, E. and KinZel, W. (1984). Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53 311-314.
Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040.
Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont, CA.
Durrett, R. and Neuhauser, C. (1991). Epidemics with recover in $D=2$. Ann. Appl. Probab. 1 189-206.
Griffeath, D. (1978). Limit theorems for nonergodic set-valued Markov processes. Ann. Probab. 6 379-387.
Harris, T. E. (1976). On a class of set-valued processes. Ann. Probab. 4 175-194.
Katori, M., Konno, N. and Tanemura, H. (2000). Survival probabilities for discrete-time models in one dimension. J. Statist. Phys. 99 603-612.
Kinzel, W. (1985). Phase transitions of cellular automata. Z. Phys. B 58 229-244.
Lind, D. A. (1984). Applications of ergodic theory and sofic systems to cellular automata. Phys. D 10 36-44.
Miyamoto, M. (1979). An equilibrium state for a one-dimensional life game. J. Math. Kyoto Univ. 19 525-540.
Wolfram, S. (1983). Statistical mechanics of cellular automata. Rev. Modern Phys. 55 601-644.
Wolfram, S. (1984). Universality and complexity in cellular automata. Phys. D 10 1-35.

M. KATORI	N. KONNO
DEPARTMENT OF PHYSICS	DEPARTMENT OF APPLIED MATHEMATICS
FACULTY OF SCIENCE AND ENGINEERING	FACULTY OF ENGINEERING
CHUO UNIVERSITY	YOKOHAMA NATIONAL UNIVERSITY
KASUGA, BUNKYO-KU, TOKYO 112-8551	HODOGAYA-KU, YOKOHAMA 240-8501
JAPAN	JAPAN
E-MAIL: katori@phys.chuo-u.ac.jp	E-MAIL: norio@mathlab.sci.ynu.ac.jp
H. TANEMURA	
DEPARTMENT OF MATHEMATICS AND INFORMATICS	
FACULTY OF SCIENCE	
CHIBA UNIVERSITY	
YAYOI, INAGE-KU, CHIBA 263-8522	
JAPAN	
E-MAIL: tanemura@math.s.chiba-u.ac.jp	

[^0]: Received April 2000; revised January 2001.
 AMS 2000 subject classifications. 60K35, 82B43, 82C22.
 Key words and phrases. The Domany-Kinzel model, nonattractive process, limit theorem, complete convergence theorem.

