LIMIT THEOREMS FOR THE NONATTRACTIVE DOMANY-KINZEL MODEL

BY MAKOTO KATORI, NORIO KONNO AND HIDEKI TANEMURA

Chuo University, Yokohama National University and Chiba University

We study the Domany-Kinzel model, which is a class of discrete time Markov processes with two parameters $(p_1, p_2) \in [0, 1]^2$ and whose states are subsets of **Z**, the set of integers. When $p_1 = \alpha\beta$ and $p_2 = \alpha(2\beta - \beta^2)$ with $(\alpha, \beta) \in [0, 1]^2$, the process can be identified with the mixed site-bond oriented percolation model on a square lattice with the probabilities of open site α and of open bond β . For the attractive case, $0 \le p_1 \le p_2 \le 1$, the complete convergence theorem is easily obtained. On the other hand, the case $(p_1, p_2) = (1, 0)$ realizes the rule 90 cellular automaton of Wolfram in which, starting from the Bernoulli measure with density θ , the distribution converges weakly only if $\theta \in \{0, 1/2, 1\}$. Using our new construction of processes based on signed measures, we prove limit theorems which are also valid for nonattractive cases with $(p_1, p_2) \neq (1, 0)$. In particular, when $p_2 \in [0, 1]$ and p_1 is close to 1, the complete convergence theorem is obtained as a corollary of the limit theorems.

1. Introduction. The Domany-Kinzel model is a two parameter family of discrete time Markov processes whose states are subsets of Z, the set of integers, which was introduced by Domany and Kinzel (1984) and Kinzel (1985). Let $\xi_n^A \subset \mathbf{Z}$ be the state of the process with parameters $(p_1, p_2) \in [0, 1]^2$ at time n which starts from $A \subset 2\mathbb{Z}$. Its evolution satisfies the following:

(i) $P(x \in \xi_{n+1}^{A} | \xi_{n}^{A}) = f(|\xi_{n}^{A} \cap \{x - 1, x + 1\}|);$ (ii) given ξ_{n}^{A} , the events $\{x \in \xi_{n+1}^{A}\}$ are independent, where f(0) = 0, $f(1) = p_{1}$ and $f(2) = p_{2}$.

If we write $\xi(x, n) = 1$ for $x \in \xi_n^A$ and $\xi(x, n) = 0$ otherwise, each realization of the process is identified with a configuration $\xi \in \{0, 1\}^{\mathbf{S}} = X$ with $\mathbf{S} = \{s = x\}$ $(x, n) \in \mathbb{Z} \times \mathbb{Z}_+ : x + n = \text{even}$, where $\mathbb{Z}_+ = \{0, 1, 2, ...\}$. As special cases the Domany-Kinzel model is equivalent to the oriented bond percolation model $(p_1 = p, p_2 = 2p - p^2)$ and the oriented site percolation model $(p_1 = p_2 = p)$ on a square lattice. The two-dimensional mixed site-bond oriented percolation model with α the probability of an open site and with β the probability of an open bond corresponds to the case of $p_1 = \alpha\beta$ and $p_2 = \alpha(2\beta - \beta^2)$. When $(p_1, p_2) = (1, 0)$, Wolfram's (1983, 1984) rule 90 cellular automaton is realized. See Durrett [(1988), pages 90-98] for details.

Received April 2000; revised January 2001.

AMS 2000 subject classifications. 60K35, 82B43, 82C22.

Key words and phrases. The Domany-Kinzel model, nonattractive process, limit theorem, complete convergence theorem.

For any $p_1, p_2 \in [0, 1]$ and $A \subset 2\mathbb{Z}$, $\lim_{n \to \infty} P(\xi_{2n}^A \neq \emptyset)$ exists, since \emptyset is an absorbing set. Let $Y = \{A \subset 2\mathbb{Z} : 0 < |A| < \infty\}$, where |A| is the cardinality of A, and we write the connectedness from $A \subset 2\mathbb{Z}$ to $B \subset 2\mathbb{Z}$ as

$$\sigma(A, B) = \lim_{n \to \infty} P(\xi_{2n}^A \cap B \neq \emptyset)$$

if the right-hand side exists.

When $0 \le p_1 \le p_2 \le 1$, this process has the following good property called *attractiveness*: if $\xi_n^A \subset \xi_n^B$, then we can guarantee that $\xi_{n+1}^A \subset \xi_{n+1}^B$ by using an appropriate coupling. For the attractive case, it is easy to prove the following:

(i) If $A \subset 2\mathbb{Z}$, $B \in Y$, then $\sigma(A, B)$ exists. In particular, $\sigma(2\mathbb{Z}, B)$ exists.

(ii) Let **0** (resp. 1) denote the configuration $\eta(x) = 0$ (resp. = 1) for any $x \in 2\mathbb{Z}$. For any $A \subset 2\mathbb{Z}$,

$$P(\xi_n^A \in \cdot) \Rightarrow (1 - P(\Omega_\infty^A))\delta_0 + P(\Omega_\infty^A)\mu_\infty \quad \text{as } n \to \infty,$$

where \Rightarrow means weak convergence, $\Omega_{\infty}^{A} = \{\xi_{n}^{A} \neq \emptyset \text{ for any } n \ge 0\}$, δ_{0} is the point mass on the configuration **0**, and a limit μ_{∞} is a stationary distribution of the process $\xi_{2n}^{2\mathbb{Z}}$. This complete convergence theorem can be obtained by similar arguments for the lemma in Griffeath (1978) [see also Durrett (1988), Section 5c] which treated a continuous time version. It should be remarked that the complete convergence theorem is equivalent to the equality

$$\sigma(A, B) = \sigma(A, 2\mathbf{Z})\sigma(2\mathbf{Z}, B)$$
 for any $A, B \in Y$.

It is easy to see that the process with $p_1 \in [0, 1/2]$ and $p_2 \in [0, 1]$ starting from a finite set dies out. That is,

(1.1)
$$\sigma(A, B) = 0$$
 if $p_1 \in [0, 1/2], p_2 \in [0, 1], A \in Y, B \subset 2\mathbb{Z}$.

It is concluded by comparison with a branching process.

The purpose of the present paper is to prove limit theorems which are valid also for the nonattractive cases except Wolfram's rule 90 cellular automaton $(p_1, p_2) =$ (1, 0). For this purpose we introduce $\sigma(v, B)$ for a probability distribution v on Xand $B \in Y$ defined by

$$\sigma(\nu, B) = \lim_{n \to \infty} P(\xi_{2n}^{\nu} \cap B \neq \emptyset),$$

if the right-hand side exists, where ξ_n^{ν} is the process with initial distribution ν . We first prove the following lemma.

LEMMA 1. We assume that $(p_1, p_2) \in [0, 1]^2$ with $(p_1, p_2) \neq (1, 0)$ and $p_2 < 2p_1$. Let v_{θ} be the Bernoulli measure with $\theta \in (0, 1]$ and $B \in Y$. Then we have

(1.2)
$$\sigma(\nu_{\theta}, B) = \begin{cases} \sum_{D \subset B, D \neq \emptyset} \alpha^{|D|} (1 - \alpha)^{|B \setminus D|} \sigma(D, 2\mathbf{Z}), \\ if \ p_2 \neq 0 \ or \ 0 < \theta < 1, \\ 0, \qquad if \ p_2 = 0 \ and \ \theta = 1, \end{cases}$$

where $\alpha = p_1^2/(2p_1 - p_2)$.

Remark that (1.1) implies $\sigma(v_{\theta}, B) = 0$, $B \in Y$ if $p_2 \ge 2p_1$ with $(p_1, p_2) \ne (\frac{1}{2}, 1)$. When $(p_1, p_2) = (\frac{1}{2}, 1)$, the model is the discrete time voter model and $\sigma(v_{\theta}, B) = \theta$ if $B \in Y$. In Theorem 1 of Katori, Konno and Tanemura (2000), (1.2) for $\sigma(2\mathbb{Z}, B)$ with $p_1 \in [0, 1)$, $p_2 \in (0, 1]$ was given. The present lemma is an extension of it which includes the interesting cases where $p_2 = 0$ or $p_1 = 1$. In the proof of Lemma 1, we use the new construction of the process using a signed measure with $\alpha = p_1^2/(2p_1 - p_2)$ and $\beta = 2 - p_2/p_1$ which was introduced in Katori, Konno and Tanemura (2000). From this lemma we can immediately get the next limit theorem. [The standard argument can be found in Durrett (1988), page 71.]

PROPOSITION 2. We assume that $(p_1, p_2) \in [0, 1]^2$ with $(p_1, p_2) \neq (1, 0)$ and $p_2 < 2p_1$. Then we have

$$P(\xi_{2n}^{\nu_{\theta}} \in \cdot) \Rightarrow \mu_{\infty} \qquad as \ n \to \infty$$

where μ_{∞} is the translation invariant probability measure such that

$$\mu_{\infty}(\xi \cap B \neq \emptyset) = \sum_{D \subset B, D \neq \emptyset} \alpha^{|D|} (1 - \alpha)^{|B \setminus D|} \sigma(D, 2\mathbf{Z}),$$

for any $B \in Y$.

We note that $P(\Omega_{\infty}^{\{0\}}) = \sigma(\{0\}, 2\mathbf{Z}) = 0$ (resp. = 1) is equivalent to $P(\Omega_{\infty}^{A}) = \sigma(A, 2\mathbf{Z}) = 0$ (resp. = 1) for any $A \in Y$. It is obvious that if $P(\Omega_{\infty}^{\{0\}}) = 0$, then $\mu_{\infty} = \delta_{\mathbf{0}}$. From this corollary, we obtain the following interesting result, since $\sigma(D, 2\mathbf{Z}) = 1$ for any $D \in Y$ if $p_1 = 1$.

COROLLARY 3. When $p_1 = 1$ and $p_2 \in (0, 1]$, μ_{∞} is the Bernoulli measure ν_{α} , where $\alpha = \frac{1}{2-p_2}$.

We should remark that when $(p_1, p_2) = (1, 0)$, that is, in the case of rule 90 of Wolfram's cellular automaton, Miyamoto (1979) and Lind (1984) proved that, starting from the Bernoulli measure v_{θ} , the distribution converges weakly only if $\theta \in \{0, 1/2, 1\}$.

Proposition 2 can be generalized as follows. Let $\mathbf{N} = \{1, 2, 3, ...\}, X = \{0, 1\}^{2\mathbf{Z}}$ and $\mathcal{P}(X)$ be the collection of probability measures on X. We introduce the following conditions (C.1) and (C.2) for $\nu \in \mathcal{P}(X)$:

(C.1) For any $\varepsilon > 0$ there exists $k \in 2\mathbf{N}$ such that

 $\nu(\xi \cap [x - k, x + k] = \emptyset) \le \varepsilon$ for any $x \in 2\mathbb{Z}$.

(C.2) For any $\varepsilon > 0$ there exists $k \in 2\mathbf{N}$ such that

$$\nu(\xi^c \cap [x-k, x+k] = \emptyset) \le \varepsilon$$
 for any $x \in 2\mathbb{Z}$.

THEOREM 4. (i) Suppose that $p_1 \in [0, 1], p_2 \in (0, 1]$ and $p_2 < 2p_1$. If ν satisfies (C.1), then

$$P(\xi_{2n}^{\nu} \in \cdot) \Rightarrow \mu_{\infty} \quad as \ n \to \infty.$$

(ii) Suppose that $p_1 \in [0, 1)$, $p_2 = 0$. If v satisfies (C.1) and (C.2), then

 $P(\xi_{2n}^{\nu} \in \cdot) \Rightarrow \mu_{\infty} \qquad as \ n \to \infty.$

Let $\delta(X) = \{v \in \mathcal{P}(X) : v \text{ is translation invariant}\}$. We remark that $v \in \delta(X)$ with $v(\{0\}) = 0$ [resp. $v(\{1\}) = 0$] satisfies (C.1) [resp. (C.2)]. Then we have the following corollary of Theorem 4.

COROLLARY 5. (i) Suppose that $v \in \mathscr{S}(X)$. If $p_1 \in [0, 1], p_2 \in (0, 1]$ and $p_2 < 2p_1$, then

$$P(\xi_{2n}^{\nu} \in \cdot) \Rightarrow \nu(\{\mathbf{0}\})\delta_{\mathbf{0}} + (1 - \nu(\{\mathbf{0}\}))\mu_{\infty} \qquad as \ n \to \infty.$$

Also, if $P(\Omega_{\infty}^{\{0\}}) > 0$, then $\mu_{\infty}(\{0\}) = 0$. (ii) Suppose that $\nu \in \mathscr{S}(X)$. If $p_1 \in [0, 1), p_2 = 0$, then

$$P(\xi_{2n}^{\nu} \in \cdot) \Rightarrow \nu(\{\mathbf{0}, \mathbf{1}\})\delta_{\mathbf{0}} + (1 - \nu(\{\mathbf{0}, \mathbf{1}\}))\mu_{\infty} \quad \text{as } n \to \infty.$$

Also, if $P(\Omega_{\infty}^{\{0\}}) > 0$, then $\mu_{\infty}(\{0, 1\}) = 0$.

We also obtain the following complete convergence theorem.

THEOREM 6. There exists
$$\hat{p}_1 \in (0, 1)$$
 such that, for any $A \subset 2\mathbb{Z}$,
 $P(\xi_{2n}^A \in \cdot) \Rightarrow (1 - P(\Omega_{\infty}^A))\delta_0 + P(\Omega_{\infty}^A)\mu_{\infty} \quad as \ n \to \infty,$
when $p_1 \in [\hat{p}_1, 1]$ and $p_2 \in [0, 1]$, but $(p_1, p_2) \neq (1, 0)$.

We conjecture that the complete convergence theorem holds for any $(p_1, p_2) \in [0, 1]^2$ except $(p_1, p_2) = (1, 0)$. In attractive particle systems, the block construction arguments have been used to prove the complete convergence theorem; see Durrett [(1984), Section 9] and Durrett [(1988), Section 5b]. One of the essential properties used in the proofs is that if $P(\Omega_{\infty}^0) > 0$, then the probability $P(\Omega_{\infty}^A)$ is close to 1 for any sufficiently large initial set *A*. In general it is unknown whether the property holds for nonattractive systems. Here we can show that it holds for the nonattractive Domany–Kinzel model.

PROPOSITION 7. (i) Suppose that $p_1 \in [0, 1], p_2 \in (0, 1]$ and $P(\Omega_{\infty}^{\{0\}}) > 0$. Then

(1.3)
$$\lim_{|A|\to\infty} P(\Omega^A_\infty) = 1.$$

(ii) Suppose that
$$p_1 \in [0, 1), p_2 = 0$$
 and $P(\Omega_{\infty}^{\{0\}}) > 0$. Then

(1.4)
$$\lim_{|\partial A| \to \infty} P(\Omega^A_{\infty}) = 1,$$

where $\partial A = (A+1) \triangle (A-1)$ for $A \subset 2\mathbb{Z}$.

The paper is organized as follows. Section 2 is devoted to the proof of Lemma 1. The proof of Theorem 4 is given in Section 3. We prove Theorem 6 and Proposition 7 in Section 4.

2. Proof of Lemma 1. First we introduce these spaces:

$$S = \{s = (x, n) \in \mathbb{Z} \times \mathbb{Z}_{+} : x + n = \text{even}\},\$$

$$B = \{b = ((x, n), (x + 1, n + 1)), ((x, n), (x - 1, n + 1)) : (x, n) \in \mathbb{S}\},\$$

$$\mathfrak{X}(S) = \{0, 1\}^{S}, \qquad \mathfrak{X}(B) = \{0, 1\}^{B}, \qquad \mathfrak{X} = \mathfrak{X}(S) \times \mathfrak{X}(B),\$$

where $\mathbb{Z}_+ = \{0, 1, 2, ...\}$. For given $\zeta = (\zeta_1, \zeta_2) \in \mathcal{X}$, we say that $s = (y, n + k) \in \mathbb{S}$ can be reached from $s' = (x, n) \in \mathbb{S}$ and write $s' \to s$, if there exists a sequence $s_0, s_1, ..., s_k$ of members of \mathbb{S} such that $s' = s_0, s = s_k$ and $\zeta_1(s_i) = 1$, i = 0, 1, ..., k, $\zeta_2((s_i, s_{i+1})) = 1$, i = 0, 1, ..., k - 1. We also say that $G \subset \mathbb{S}$ can be reached from $G' \subset \mathbb{S}$ and write $G' \to G$ (resp. $G' \to G$), if there exists $s \in G$ and $s' \in G'$ such that $s' \to s$ (resp. if not). Furthermore we define

$$\mathbf{S}^{(N)} = \{ s = (x, n) \in \mathbf{S} : |x|, n \le N \}$$
$$\mathbf{B}^{(N)} = \{ (s, s') \in \mathbf{B} : s, s' \in \mathbf{S}^{(N)} \}$$

and let $\mathcal{F}^{(N)}$ be the σ -field generated by the events of configurations depending on $\mathbf{S}^{(N)}$ and $\mathbf{B}^{(N)}$.

For given $\alpha, \beta \in \mathbf{R}$, we introduce the signed measure $m^{(N)}$ on $(\mathfrak{X}, \mathcal{F}^{(N)})$ defined by

$$m^{(N)}(\Lambda) = \alpha^{k_1} (1-\alpha)^{j_1} \beta^{k_2} (1-\beta)^{j_2},$$

for any cylinder set

$$\Lambda = \{ (\zeta_1, \zeta_2) \in \mathcal{X} : \zeta_1(s_i) = 1, \ i = 1, 2, \dots, k_1, \ \zeta_1(s_i') = 0, \ i = 1, 2, \dots, j_1, \\ \zeta_2(b_i) = 1, \ i = 1, 2, \dots, k_2, \ \zeta_2(b_i') = 0, \ i = 1, 2, \dots, j_2 \},$$

where $s_1, \ldots, s_{k_1}, s'_1, \ldots, s'_{j_1}$ are distinct elements of $\mathbf{S}^{(N)}$ and b_1, \ldots, b_{k_2} , b'_1, \ldots, b'_{j_2} are distinct elements of $\mathbf{B}^{(N)}$. We define the conditional signed measures on $(\mathcal{X}, \mathcal{F}^{(N)})$ as follows:

$$m_k^{(N)}(\cdot) = m^{(N)} (\cdot | \zeta_1(s) = 1, \ s \in \mathbf{S}_k^{(N)}),$$

$$m_{k,j}^{(N)}(\cdot) = m^{(N)} (\cdot | \zeta_1(s) = 1, \ s \in \mathbf{S}_k^{(N)} \cup \mathbf{S}_j^{(N)}),$$

where $\mathbf{S}_{k}^{(N)} = \{(x, n) \in \mathbf{S}^{(N)} : n = k\}$. We should remark that $\mathcal{F}^{(N)} \subset \mathcal{F}^{(N+1)}$ and, for any $\Lambda \in \mathcal{F}^{(N)}$,

$$m^{(N)}(\Lambda) = m^{(N+1)}(\Lambda),$$

$$m^{(N)}_{k}(\Lambda) = m^{(N+1)}_{k}(\Lambda),$$

$$m^{(N)}_{k,j}(\Lambda) = m^{(N+1)}_{k,j}(\Lambda).$$

From this consistency property, there exist the unique real-valued additive functions m, m_k and $m_{k,j}$ on $\bigcup_{N=1}^{\infty} \mathcal{F}^{(N)}$ such that, for any $\Lambda \in \mathcal{F}^{(N)}$,

$$m(\Lambda) = m^{(N)}(\Lambda),$$

$$m_k(\Lambda) = m_k^{(N)}(\Lambda),$$

$$m_{k,j}(\Lambda) = m_{k,j}^{(N)}(\Lambda).$$

See Figure 1. In this paper, we take $\alpha = p_1^2/(2p_1 - p_2)$ and $\beta = 2 - p_2/p_1$.

For $A, B \subset \mathbb{Z}, k, j \in \mathbb{Z}_+$ with $A \times \{k\}, B \times \{j\} \subset \mathbb{S}$ we write $A \times \{k\} \rightrightarrows B \times \{j\}$ if $A \times \{k\} \rightarrow (x, j)$ for any $x \in B$ and $A \times \{k\} \rightarrow B^c \times \{j\}$. Then the observation shown by Figure 2 and the Markov property of the Domany–Kinzel model give

$$P(\xi_{n+1}^A = B | \xi_n^A = D) = m_n (D \times \{n\} \rightrightarrows B \times \{n+1\})$$

and

$$P(\xi_n^A = B) = m_0(A \times \{0\} \Longrightarrow B \times \{n\}),$$

where *B* is finite. From the above equation, the following equations can be quickly derived:

(2.1)
$$P(\xi_n^A \ni y) = m_0 \big(A \times \{0\} \to (y, n) \big),$$

(2.2)
$$P(\xi_n^A \cap B \neq \emptyset) = m_0(A \times \{0\} \to B \times \{n\}).$$

If $p_2 < 2p_1$ and $p_2 > 2p_1 - p_1^2$, then $\alpha > 1$ and $\beta \in (0, 1)$. If $p_2 \le 2p_1 - p_1^2$ and $p_2 \ge p_1$, then $\alpha, \beta \in [0, 1]$. This case corresponds to the mixed site-bond oriented percolation with α the probability of an open site and with β the probability of an open bond, where $p_1 = \alpha\beta$ and $p_2 = \alpha(2\beta - \beta^2)$. That is why we choose $\alpha = p_1^2/(2p_1 - p_2)$ and $\beta = 2 - p_2/p_1$ in our construction. Moreover, if $p_2 < p_1$, then $\alpha \in (0, 1)$ and $\beta \in (1, 2]$.

For a fixed even nonnegative number k, we introduce the map r_k from **S** to **S** defined by

$$r_k(x,n) = \begin{cases} (x,k-n), & n = 0, 1, \dots, k, \\ (x,n), & \text{otherwise,} \end{cases}$$

and the map R_k from x to x defined by

$$R_k\zeta = ((R_k\zeta)_1, (R_k\zeta)_2),$$

where $(R_k\zeta)_1(s) = \zeta_1(r_ks)$ and $(R_k\zeta)_2((s, s')) = \zeta_2((r_ks', r_ks))$. Note that *m* is R_k -invariant. To prove Lemma 1 we use the following lemma.

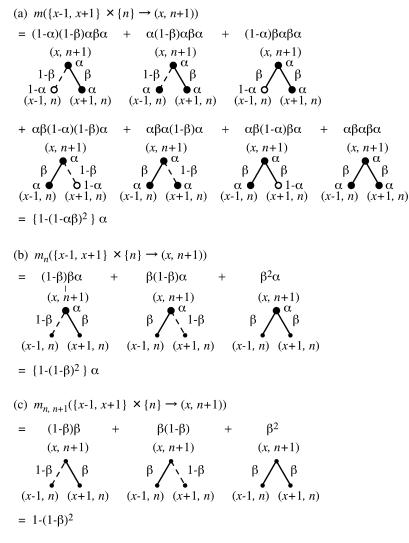


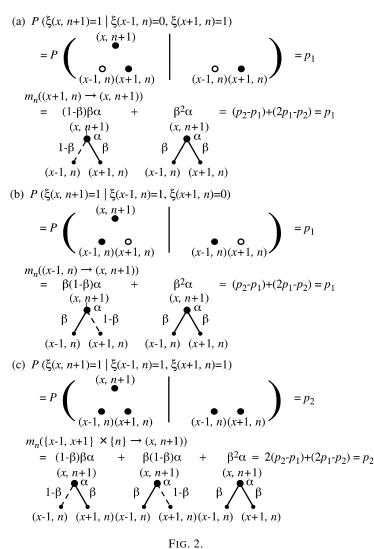
Fig. 1.

LEMMA 8. Suppose that $p_1, p_2 \in [0, 1]$ with $(p_1, p_2) \neq (1, 0)$. Then, for any positive integer ℓ and $A \subset 2\mathbb{Z}$, we have

$$\lim_{n \to \infty} P(1 \le |\xi_n^A| \le \ell, \Omega_\infty^A) = 0.$$

When $p_1 \neq 1$, the lemma was proved in Katori, Konno and Tanemura [(2000), Lemma 4]. When $p_1 = 1$, the lemma is derived from Lemma 10, which is given in Section 4.

Now we prove Lemma 1. Suppose that *n* is even. Let v be a probability measure on *X* and let A_v be a random variable with distribution v which is independent



of ξ_n^D , $D \subset 2\mathbb{Z}$. Then from (2.2) we can show that $P(\xi_n^v \cap B \neq \emptyset) = \int_X v(d\eta) P(\xi_n^\eta \cap B \neq \emptyset)$ $= \int_X v(d\eta) m_0(\eta \times \{0\} \to B \times \{n\})$ $= \int_X v(d\eta) \sum_{D \subset B, D \neq \emptyset} m_{0,n}(\eta \times \{0\} \to D \times \{n\}) \alpha^{|D|} (1-\alpha)^{|B \setminus D|}$ $= \int_X v(d\eta) \sum_{D \subset B, D \neq \emptyset} m_{0,n}(D \times \{0\} \to \eta \times \{n\}) \alpha^{|D|} (1-\alpha)^{|B \setminus D|}$ and

$$\begin{split} m_{0,n}(D \times \{0\} &\to \eta \times \{n\}) \\ &= \sum_{0 < |C| < \infty} m_0(D \times \{0\} \rightrightarrows C \times \{n-1\}) m_{n-1,n}(C \times \{n-1\} \to \eta \times \{n\}) \\ &= \sum_{0 < |C| < \infty} m_0(D \times \{0\} \rightrightarrows C \times \{n-1\}) [1 - (1 - \beta)^{|\eta \cap (C+1)| + |\eta \cap (C-1)|}] \\ &= P(\xi_{n-1}^D \neq \varnothing) - E[(1 - \beta)^{|\eta \cap (\xi_{n-1}^D + 1)| + |\eta \cap (\xi_{n-1}^D - 1)|}; \ \xi_{n-1}^D \neq \varnothing]. \end{split}$$

Then we have

$$P(\xi_n^{\nu} \cap B \neq \emptyset) = \sum_{D \subset B, D \neq \emptyset} P(\xi_{n-1}^D \neq \emptyset) \alpha^{|D|} (1-\alpha)^{|B \setminus D|}$$

$$(2.3) \qquad -\sum_{D \subset B, D \neq \emptyset} E[(1-\beta)^{|A_{\nu} \cap (\xi_{n-1}^D + 1)| + |A_{\nu} \cap (\xi_{n-1}^D - 1)|}; \ \xi_{n-1}^D \neq \emptyset]$$

$$\times \alpha^{|D|} (1-\alpha)^{|B \setminus D|}.$$

Then, to prove

$$\sigma(\nu, B) = \sum_{D \subset B, D \neq \varnothing} \sigma(D, 2\mathbf{Z}) \alpha^{|D|} (1 - \alpha)^{|B \setminus D|}$$

for $B \in Y$, it is enough to show that, for any $D \subset B$ with $D \neq \emptyset$,

(2.4)
$$\lim_{n \to \infty} E\left[(1-\beta)^{|A_{\nu} \cap (\xi_{n-1}^{D}+1)|+|A_{\nu} \cap (\xi_{n-1}^{D}-1)|}; \ \xi_{n-1}^{D} \neq \varnothing\right] = 0.$$

We show (2.4) for $\nu = \nu_{\theta}$ to prove Lemma 1. We set $A_{\theta} = A_{\nu_{\theta}}$. If $p_1 \in [0, 1]$ and $p_2 \in (0, 1]$, we see that $1 - \beta \in (-1, 1)$. So (2.4) is derived from Lemma 8. If $p_1 \in [0, 1)$ and $p_2 = 0$, then $1 - \beta = -1$. Since

$$|A_{\theta} \cap (\xi_{n-1}^{D} + 1)| + |A_{\theta} \cap (\xi_{n-1}^{D} - 1)| = |A_{\theta} \cap \partial \xi_{n-1}^{D}| \mod 2$$

and ξ_{n-1}^D and A_{θ} are independent, we have

$$E[(-1)^{|A_{\theta} \cap (\xi_{n-1}^{D}+1)|+|A_{\theta} \cap (\xi_{n-1}^{D}-1)|}; \ \xi_{n-1}^{D} \neq \varnothing] = E[(-1)^{|A_{\theta} \cap \partial \xi_{n-1}^{D}|}; \ \xi_{n-1}^{D} \neq \varnothing]$$
$$= E[(1-2\theta)^{|\partial \xi_{n-1}^{D}|}; \ \xi_{n-1}^{D} \neq \varnothing].$$

Noting that $1 - 2\theta \in (-1, 1)$ for $\theta \in (0, 1)$, and that $\partial \xi_{n-1}^D \supset \xi_n^D$, we obtain (2.4) from Lemma 8.

3. Proof of Theorem 4. In this section we show equation (2.4) under condition (C.1) if $p_2 \neq 0$, and under conditions (C.1) and (C.2) if $p_2 = 0$. Then, we obtain Theorem 4. Since $P(\xi_{n+k} \in \cdot) = P(\xi_n^{\widehat{\xi}_k^{\nu}} \in \cdot), k \in 2\mathbb{N}$, it is enough to show that for any $\varepsilon > 0$ there exists $k \in 2\mathbb{N}$ such that

(3.1)
$$\lim_{n \to \infty} E\left[(1-\beta)^{|\widehat{\xi}_k^{\nu} \cap (\xi_{n-1}^D+1)|+|\widehat{\xi}_k^{\nu} \cap (\xi_{n-1}^D-1)|}; \ \xi_{n-1}^D \neq \varnothing\right] \le \varepsilon,$$

for any $D \in Y$, where $\hat{\xi}_k^{\nu}$ is an independent copy of ξ_k^{ν} .

First we consider the case $p_2 \neq 0$. By (C.1), for any $\delta \in (0, 1)$ there exists $k = k(\delta) \in 2\mathbb{N}$ so that

$$\nu(\eta \cap [x - k, x + k] = \emptyset) \le \delta$$
 for any $x \in 2\mathbb{Z}$.

If $\eta \cap [x-k, x+k] \neq \emptyset$, then $P(\widehat{\xi}_k^{\eta}(x) = 1) \ge (p_1 \wedge p_2)^k$. Put $\gamma = 1 - (p_1 \wedge p_2)^k$. Then

$$\nu(\eta: P(\widehat{\xi}_k^{\eta}(x)=0) > \gamma) = \nu(\eta: P(\widehat{\xi}_k^{\eta}(x)=1) \le 1-\gamma) \le \delta, \qquad x \in 2\mathbb{Z}.$$

Put $h_k(\zeta) = P(\widehat{\xi}_k^{\nu} \cap \zeta = \emptyset)$ for $\zeta \subset 2\mathbb{Z}$ with $|\zeta| < \infty$. If ζ satisfies $\Delta(\zeta) = \min_{x, y \in \zeta, x \neq y} |x - y| \ge 2k$, then

$$h_k(\zeta) = \int_X \nu(d\eta) E\left[\prod_{x \in \zeta} (1 - \widehat{\xi}_k^{\eta}(x))\right]$$
$$= \int_X \nu(d\eta) \prod_{x \in \zeta} P(\widehat{\xi}_k^{\eta}(x) = 0).$$

Here we refer to Lemma 9.13 in Harris (1976).

LEMMA 9 (Harris). Let $X_1, X_2, ..., X_k$ be random variables with $0 \le X_i \le 1$ and $P(X_i > \gamma) \le \varepsilon$ for any $i \in \{1, 2, ..., k\}$. Then we have

$$E[X_1 X_2 \cdots X_k] \le \varepsilon + \gamma^k.$$

Applying Lemma 9 implies that if $\Delta(\zeta) \ge 2k$, then

$$h_k(\zeta) \leq \delta + \gamma^{|\zeta|}.$$

From the fact that, for $\zeta \subset 2\mathbb{Z}$ with $|\zeta| < \infty$, max $\{l \ge 1 : \{y_1, y_2, \dots, y_l\} \subset \zeta$, $y_i + 2k \le y_{i+1}$ $(i = 1, 2, \dots, l-1)\}$ is bounded from below by $|\zeta|/k$, we see that

$$P(\widehat{\xi}_k^{\nu} \cap \zeta = \emptyset) \le \delta + \gamma^{|\zeta|/k}.$$

Let $\ell \in \mathbf{N}$ and $\zeta_i \subset 2\mathbf{Z}$ with $|\zeta_i| < \infty$ $(i = 1, 2, ..., \ell)$ satisfying $\zeta = \bigcup_{i=1}^{\ell} \zeta_i$ and $\zeta_i \cap \zeta_j = \emptyset(i \neq j)$. Then

(3.2)
$$P(|\widehat{\xi}_{k}^{\nu} \cap \zeta| < \ell) \le \ell \delta + \sum_{i=1}^{\ell} \gamma^{|\zeta_{i}|/k}.$$

Since $1 - \beta \in (-1, 1)$ if $p_2 \neq 0$, for any $\varepsilon > 0$ we can take $\ell \in \mathbb{N}$ with $(1 - \beta)^{\ell} \leq \frac{\varepsilon}{2}$ and then take $k(\delta)$ such that $\ell \delta \leq \frac{\varepsilon}{2}$. Then,

(3.3)
$$\lim_{|\zeta| \to \infty} E\left[(1-\beta)^{|\widehat{\xi}_k^{\nu} \cap \zeta|}\right] \le \varepsilon.$$

Combining this with Lemma 8 gives (3.1).

Next, we consider the case $p_2 = 0$ and $p_1 \in (0, 1)$. In this case $\beta = 2$ and (3.1) is rewritten as

(3.4)
$$\lim_{n \to \infty} E\left[(-1)^{|\widehat{\xi}_k^{\nu} \cap \partial \xi_{n-1}^D|}; \ \xi_{n-1}^D \neq \varnothing\right] \le \varepsilon.$$

By (C.1) and (C.2), for any $\delta \in (0, 1)$ there exists $k = k(\delta) \in 2\mathbb{N}$ so that

$$\nu(\eta(y) = \eta(y+2), \ y \in [x-k, x+k-2] \cap 2\mathbf{Z}) \le \delta, \qquad x \in 2\mathbf{Z}.$$

If $\eta(y) \neq \eta(y+2)$ for some $y \in [x-k, x+k-2] \cap 2\mathbb{Z}$, then $P(\widehat{\xi}_k^{\eta}(x)=1) \ge p_1^k (1-p_1)^{2k}$. Put $\gamma = 1 - p_1^k (1-p_1)^{2k}$. Then

$$\nu(\eta: P(\widehat{\xi}_k^{\eta}(x)=0) > \gamma) = \nu(\eta: P(\widehat{\xi}_k^{\eta}(x)=1) \le 1-\gamma) \le \delta, \qquad x \in 2\mathbb{Z}.$$

Using the same argument as in the case of $p_2 \neq 0$, we obtain (3.2) in the present case. Since $\hat{\xi}_k^{\nu} \subset \partial \hat{\xi}_{k-1}^{\nu}$, we have

(3.5)
$$P(|\partial \widehat{\xi}_{k-1}^{\nu} \cap \zeta| < \ell) \le \ell \delta + \sum_{i=1}^{\ell} \gamma^{|\zeta_i|/k}.$$

By the Markov property we have

$$E[(-1)^{|\widehat{\xi}_{k}^{\nu}\cap\zeta|}] = E\left[\prod_{x\in\zeta}(-1)^{|\widehat{\xi}_{k}^{\nu}(x)|}\right]$$
$$= \sum_{S\subset(\zeta\pm1)} E\left[\prod_{x\in\zeta}(-1)^{|\widehat{\xi}_{k}^{\nu}(x)|} \left|\widehat{\xi}_{k-1}^{\nu}\cap(\zeta\pm1) = S\right]\right]$$
$$\times P\left(\widehat{\xi}_{k-1}^{\nu}\cap(\zeta\pm1) = S\right)$$
$$= \sum_{S\subset(\zeta\pm1)}(1-2p_{1})^{|\partial S\cap\zeta|} P\left(\widehat{\xi}_{k-1}^{\nu}\cap(\zeta\pm1) = S\right)$$
$$= \sum_{j=0}^{\infty}(1-2p_{1})^{j} P(|\partial\widehat{\xi}_{k-1}^{\nu}\cap\zeta| = j),$$

where $\zeta \pm 1 = (\zeta + 1) \cup (\zeta - 1)$. Then

(3.6)
$$E\left[(-1)^{|\xi_k^{\nu} \cap \zeta|}\right] \le P(|\partial \widehat{\xi}_{k-1}^{\nu} \cap \zeta| < \ell) + (1-2p_1)^{\ell}.$$

From (3.5) and (3.6), for any $\varepsilon > 0$ we can take $\ell \in \mathbb{N}$ and $k(\delta) \in 2\mathbb{N}$ such that

(3.7)
$$\lim_{|\zeta| \to \infty} E\left[(-1)^{|\widehat{\xi}_k^{\nu} \cap \zeta|}\right] \le \varepsilon$$

M. KATORI, N. KONNO AND H. TANEMURA

From Lemma 8 and the fact that $\partial \xi_{n-1}^D \supset \xi_n^D$ we have

(3.8)
$$\lim_{n \to \infty} P(|\partial \xi_{n-1}^D| \le \ell; \Omega_{\infty}^D) = 0, \qquad D \in Y.$$

Combining (3.7) and (3.8), we have the desired conclusion (3.4).

4. Proofs of Theorem 6 and Proposition 7. We consider a collection of random variables $\{w(x, n) : (x, n) \in \mathbf{S}\}$ with values in $\{0, 1\}$ having the following property: if any sequence $(x_j, n_j), 1 \le j \le \ell$, satisfies $|x_i - x_j| > 4$ whenever both $i \neq j$ and $n_i = n_j$, then $P(w(x_j, n_j) = 1$, for $1 \leq j \leq \ell$) = q^{ℓ} with $q \in [0, 1]$. Let $A \subset 2\mathbf{Z}$ and

 $W_k^A = \{z : \text{there is an open path from } (y, 0) \text{ to } (z, k) \text{ for some } y \in A\}.$

This is called a 2-dependent oriented site percolation. The following result can be obtained by a slight modification of argument in Durrett and Neuhauser [(1991), Appendix] for 1-dependent oriented site percolation. [See also Bramson and Neuhauser (1994), Lemma 2.3.] For any $\delta > 0$, there exists $\widehat{q}(\delta) \in [0, 1]$ such that if $q \in [\widehat{q}(\delta), 1]$, then

$$\liminf_{n \to \infty} \frac{|W_n^A|}{n} > 1 - \delta \qquad \text{a.s. on } \Omega_{\infty}^{A,W},$$

where $\Omega_{\infty}^{A,W} = \bigcap_{n=1}^{\infty} \{ W_n^A \neq \emptyset \}$. Now we prove Theorem 6. When $p_2 = 0$, Bramson and Neuhauser (1994) developed block construction method and compared the process with the 2-dependent oriented site percolation. Their technique and argument can be extended to the case $p_2 \neq 0$. Then we have the following.

LEMMA 10. For any $\delta > 0$, there exists $\widehat{p_1}(\delta) \in (0,1)$ such that if $p_1 \in$ $(\widehat{p_1}(\delta), 1]$ and $p_2 \in [0, 1]$ with $(p_1, p_2) \neq (1, 0)$, then there exists $k \in 2\mathbb{N}$ so that

(4.1)
$$\lim_{n \to \infty} \inf_{n} \frac{1}{n} \sharp \{ x \in 2k \mathbb{Z} \cap [-kn, kn) : \xi_{nk}^{A} \cap [x - k, x + k) \neq \emptyset \}$$
$$> 1 - \delta \qquad a.s. \text{ on } \Omega_{\infty}^{A},$$

for any $A \subset 2\mathbb{Z}$.

A sufficient condition for the proof of Theorem 6 is

$$\lim_{n \to \infty} P(\xi_{2n}^A \cap B \neq \emptyset) = \mu_{\infty}(\xi \cap B \neq \emptyset) P(\Omega_{\infty}^A), \qquad B \in Y.$$

Since $P(\xi_{2n} \in \cdot) = P(\xi_n^{\hat{\xi}_n^A} \in \cdot)$, by the same way we obtained (2.3) we have

$$P(\xi_{2n}^A \cap B \neq \emptyset) = P\left(\xi_n^{\widehat{\xi}_n^A} \cap B \neq \emptyset\right)$$
$$= E\left[m_0(\widehat{\xi}_n^A \times \{0\} \to B \times \{n\}); \ \widehat{\xi}_n^A \neq \emptyset\right]$$

NONATTRACTIVE DOMANY-KINZEL MODEL

$$= \sum_{D \subset B, D \neq \emptyset} P(\xi_{n-1}^D \neq \emptyset) \alpha^{|D|} (1-\alpha)^{|B \setminus D|} P(\widehat{\xi}_n^A \neq \emptyset)$$
$$- \sum_{D \subset B, D \neq \emptyset} E\Big[(1-\beta)^{|\widehat{\xi}_n^A \cap (\xi_{n-1}^D + 1)| + |\widehat{\xi}_n^A \cap (\xi_{n-1}^D - 1)|};$$
$$\widehat{\xi}_n^A \neq \emptyset, \ \xi_{n-1}^D \neq \emptyset \Big] \alpha^{|D|} (1-\alpha)^{|B \setminus D|}.$$

Then it is sufficient to show that

(4.2)
$$\lim_{n \to \infty} E \Big[(1-\beta)^{|\widehat{\xi}_n^A \cap (\xi_{n-1}^D + 1)| + |\widehat{\xi}_n^A \cap (\xi_{n-1}^D - 1)|}; \ \widehat{\xi}_n^A \neq \emptyset, \ \xi_{n-1}^D \neq \emptyset \Big] = 0,$$

for $D \subset B$. By Lemma 10 if $p_1 \in [\widehat{p_1}(\frac{2}{3}), 1]$ and $p_2 \in [0, 1]$ with $(p_1, p_2) \neq (1, 0)$, then

(4.3)

$$\liminf_{n \to \infty} \frac{1}{n} \sharp \{ x \in 2k \mathbb{Z} \cap [-kn, kn) : [x - k, x + k) \cap \widehat{\xi}_{nk}^{A} \neq \emptyset, \\
[x - k, x + k) \cap \xi_{nk}^{D} \neq \emptyset \} \\
> \frac{1}{3} \quad \text{a.s. on } \widehat{\Omega}_{\infty}^{A} \cap \Omega_{\infty}^{D},$$

where $\widehat{\Omega}^A_{\infty} = \bigcap_{n=1}^{\infty} \{\widehat{\xi}^A_n \neq \emptyset\}$. Suppose that $\eta, \zeta \subset 2\mathbb{Z}$ satisfy $[x_i - k, x_i + k) \cap \eta \neq \emptyset$ and $[x_i - k, x_i + k) \cap \zeta \neq \emptyset$ for some $x_i \in 2k\mathbb{Z}, i = 1, 2, ..., m$. Then

(4.4)
$$P(\widehat{\xi}_k^{\eta} \cap (\xi_{k-1}^{\zeta} + 1) \ni x_i) \ge (p_1 \wedge p_2)^{2k-1}, \quad i = 1, 2, \dots, m,$$

and

(4.5) $\{\widehat{\xi}_k^\eta \cap (\xi_{k-1}^\zeta + 1) \ni x_i\}, \quad i = 1, 2, \dots, m, \text{ are independent.}$

From (4.3), (4.4) and (4.5) we see that

$$\lim_{n \to \infty} P(|\widehat{\xi}_k^A \cap (\xi_{k-1}^D + 1)| \le \ell, \ \widehat{\Omega}_{\infty}^A \cap \Omega_{\infty}^D) = 0,$$

for any $\ell \in \mathbf{N}$. Hence we have (4.2) when $p_2 \neq 0$.

When $p_2 = 0$ and $p_1 \in (0, 1)$, (4.2) is rewritten as

(4.6)
$$\lim_{n \to \infty} E\left[(-1)^{|\widehat{\xi}_n^A \cap \partial \xi_{n-1}^D|}; \ \widehat{\xi}_n^A \neq \emptyset, \ \xi_{n-1}^D \neq \emptyset\right] = 0.$$

Suppose that $\eta, \zeta \subset 2\mathbb{Z}$ satisfy $(x_i - k, x_i + k) \cap \partial \eta \neq \emptyset$ and $(x_i - k, x_i + k) \cap \partial \zeta \neq \emptyset$ for some $x_i \in 2k\mathbb{Z}, i = 1, 2, ..., m$. Then

(4.7)
$$P(\partial \widehat{\xi}_{k-1}^{\eta} \cap \partial \xi_{k-1}^{\zeta} \ni x_i) \ge p_1^{2k-2}, \qquad i = 1, 2, \dots, m,$$

and

(4.8) $\{\partial \widehat{\xi}_{k-1}^{\eta} \cap \partial \xi_{k-1}^{\zeta} \ni x_i\}, \quad i = 1, 2, \dots, m, \text{ are independent.}$

From (4.3), (4.7) and (4.8) we see that

(4.9)
$$\lim_{n \to \infty} P\left(|\partial \widehat{\xi}_{n-1}^A \cap \partial \xi_{n-1}^D| \le \ell, \ \widehat{\Omega}_{\infty}^A \cap \Omega_{\infty}^D \right) = 0,$$

for any $\ell \in \mathbf{N}$. By the same procedure used to get (3.6), we have

$$E\Big[(-1)^{\left|\widehat{\xi}_{n}^{A}\cap\partial\xi_{n-1}^{D}\right|}; \ \widehat{\xi}_{n}^{A}\neq\varnothing, \ \partial\xi_{n-1}^{D}\neq\varnothing\Big]$$

$$\leq P\Big(\left|\partial\widehat{\xi}_{n-1}^{A}\cap\partial\xi_{n-1}^{D}\right|<\ell, \ \widehat{\xi}_{n}^{A}\neq\varnothing, \ \partial\xi_{n-1}^{D}\neq\varnothing\Big)+(1-2p_{1})^{\ell}.$$

Hence we obtain (4.6) from (4.9).

Next we prove Proposition 7:

$$P(\xi_{2n}^{A} \cap 2\mathbb{Z} \neq \emptyset) = m_{0}(A \times \{0\} \to 2\mathbb{Z} \times \{2n\})$$

$$= \int_{X} \nu_{\alpha}(d\eta)m_{0,2n}(A \times \{0\} \to \eta \times \{2n\})$$

$$= \int_{X} \nu_{\alpha}(d\eta)m_{0,2n}(\eta \times \{0\} \to A \times \{2n\})$$

$$= \int_{X} \nu_{\alpha}(d\eta)\sum_{D \subset (A \pm 1), D \neq \emptyset} m_{0}(\eta \times \{0\} \rightrightarrows D \times \{2n-1\})$$

$$\times m_{2n-1,2n}(D \times \{2n-1\} \to A \times \{2n\})$$

$$= P\left(\xi_{2n-1}^{A_{\alpha}} \cap (A \pm 1) \neq \varnothing\right)$$
$$- E\left[(1-\beta)^{|\xi_{2n-1}^{A_{\alpha}} \cap (A+1)| + |\xi_{2n-1}^{A_{\alpha}} \cap (A-1)|}; \xi_{2n-1}^{A_{\alpha}} \cap (A \pm 1) \neq \varnothing\right].$$

Taking $n \to \infty$, by Lemmas 1 and 2, we have

$$\sigma(A, 2\mathbf{Z}) = \mu_{\infty} \big(\eta : (\eta - 1) \cap (A \pm 1) \neq \emptyset \big)$$
$$- \int_{(\eta - 1) \cap (A \pm 1) \neq \emptyset} \mu_{\infty} (d\eta) (1 - \beta)^{|(\eta - 1) \cap (A + 1)| + |(\eta - 1) \cap (A - 1)|},$$

where we used the fact that

$$\lim_{n \to \infty} P(\xi_{2n-1}^{A_{\alpha}} \cap B \neq \emptyset) = \mu_{\infty} (\eta : (\eta - 1) \cap B \neq \emptyset), \qquad B \in Y.$$

It is obvious that

$$\lim_{|A|\to\infty}\mu_{\infty}\big(\eta:(\eta-1)\cap(A+1)\neq\varnothing\big) = \lim_{|A|\to\infty}\mu_{\infty}\big(\eta:\eta\cap(A+2)\neq\varnothing\big) = 1,$$
$$\lim_{|A|\to\infty}\mu_{\infty}\big(\eta:(\eta-1)\cap(A-1)\neq\varnothing\big) = \lim_{|A|\to\infty}\mu_{\infty}(\eta:\eta\cap A\neq\varnothing) = 1.$$

Then, to prove Proposition 7 it is sufficient to show that

(4.10)
$$\lim_{|A| \to \infty} \int_X \mu_{\infty}(d\eta) (1-\beta)^{|\eta \cap (A+2)| + |\eta \cap A|} = 0,$$

for the case of $p_2 \neq 0$, and

(4.11)
$$\lim_{|\partial A| \to \infty} \int_X \mu_{\infty}(d\eta)(-1)^{|\eta \cap \partial(A+1)|} = 0,$$

for the case of $p_2 = 0$. Note that μ_{∞} is an invariant probability distribution satisfying (C.1) and (C.2). Then we have

$$\int_{X} \mu_{\infty}(d\eta) (1-\beta)^{|\eta \cap (A+2)| + |\eta \cap A|} = E\left[(1-\beta)^{|\xi_{k}^{\mu_{\infty}} \cap (A+2)| + |\xi_{k}^{\mu_{\infty}} \cap A|}\right]$$

and

$$\int_X \mu_\infty(d\eta)(-1)^{|\eta \cap \partial(A+1)|} = E\big[(-1)^{|\xi_k^{\mu\infty} \cap \partial(A+1)|}\big],$$

for any $k \in 2\mathbb{Z}$, and (4.2) and (4.3) are derived from (3.3) and (3.7), respectively.

REFERENCES

- BRAMSON, M. and NEUHAUSER, C. (1994). Survival of one-dimensional cellular automata under random perturbations. *Ann. Probab.* **22** 244–263.
- DOMANY, E. and KINZEL, W. (1984). Equivalence of cellular automata to Ising models and directed percolation. *Phys. Rev. Lett.* **53** 311–314.
- DURRETT, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040.
- DURRETT, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont, CA.
- DURRETT, R. and NEUHAUSER, C. (1991). Epidemics with recover in D = 2. Ann. Appl. Probab. 1 189–206.
- GRIFFEATH, D. (1978). Limit theorems for nonergodic set-valued Markov processes. *Ann. Probab.* **6** 379–387.

HARRIS, T. E. (1976). On a class of set-valued processes. Ann. Probab. 4 175–194.

- KATORI, M., KONNO, N. and TANEMURA, H. (2000). Survival probabilities for discrete-time models in one dimension. J. Statist. Phys. **99** 603–612.
- KINZEL, W. (1985). Phase transitions of cellular automata. Z. Phys. B 58 229–244.
- LIND, D. A. (1984). Applications of ergodic theory and sofic systems to cellular automata. *Phys. D* **10** 36–44.
- MIYAMOTO, M. (1979). An equilibrium state for a one-dimensional life game. J. Math. Kyoto Univ. **19** 525–540.

WOLFRAM, S. (1983). Statistical mechanics of cellular automata. *Rev. Modern Phys.* **55** 601–644. WOLFRAM, S. (1984). Universality and complexity in cellular automata. *Phys. D* **10** 1–35.

M. KATORI DEPARTMENT OF PHYSICS FACULTY OF SCIENCE AND ENGINEERING CHUO UNIVERSITY KASUGA, BUNKYO-KU, TOKYO 112-8551 JAPAN E-MAIL: katori@phys.chuo-u.ac.jp N. KONNO DEPARTMENT OF APPLIED MATHEMATICS FACULTY OF ENGINEERING YOKOHAMA NATIONAL UNIVERSITY HODOGAYA-KU, YOKOHAMA 240-8501 JAPAN E-MAIL: norio@mathlab.sci.ynu.ac.jp

H. TANEMURA DEPARTMENT OF MATHEMATICS AND INFORMATICS FACULTY OF SCIENCE CHIBA UNIVERSITY YAYOI, INAGE-KU, CHIBA 263-8522 JAPAN E-MAIL: tanemura@math.s.chiba-u.ac.jp