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THE ADJOINT PROCESS OF KILLED REFLECTED BROWNIAN
MOTION IN A CONE AND APPLICATIONS

By R. Dante DeBlassie

Texas A&M University

Let Xt be reflected Brownian motion (RBM) in a cone with radially
homogeneous reflection, killed upon reaching the vertex of the cone. We
determine the adjoint process and use it to find the Martin boundary of
the killed RBM together with all the corresponding positive harmonic func-
tions. Then we can identify and prove uniqueness (up to positive scalar mul-
tiples) of the invariant measure for killed RBM and RBM without killing.
Along the way, we prove the strong Feller property of the resolvent of RBM
(no killing).

1. Introduction. Denote by Sd−1 �d ≥ 3� the unit sphere in �d. Let
� ⊆ Sd−1 be a domain such that Sd−1\� is nonempty and the boundary
∂� of � in Sd−1 is C∞. Suppose G = 	rω
 r > 0�ω ∈ �� is an open cone
with closure G and boundary ∂G. Consider a d-dimensional vector field v on
∂G\	0� that is C∞ with v ·n = 1 for the unit inward normal n to ∂G\	0�. We
call v the reflection field and throughout this article we take v to be radially
homogeneous:

�1
1� v�rω� = v�ω�� r > 0� ω ∈ ∂�


Kwon and Williams (1991) have completely answered the question of exis-
tence and uniqueness of reflected Brownian motion (RBM) in G with radially
homogeneous reflection v at ∂G. One of many interesting properties is the pos-
sibility of the process hitting the vertex of the cone with positive probability.
In this article we determine the adjoint process of killed RBM. Here we mean
that RBM is killed upon first reaching the vertex of the cone. It turns out the
adjoint is more or less another killed RBM with drift of order 1/r and the re-
flection field is obtained by reflecting the original field across the normal. See
Theorem 4.1 below. Under certain circumstances the adjoint is a conditioned
RBM; see Remark 3.3 below.

In the case d = 2 (a wedge with constant reflection on each side) it is
possible to show the adjoint of killed RBM is another killed RBM where the
reflection field is the original field reflected across the normal. The point is
that no additional drift appears in the adjoint process as it does for higher
dimensions.

The determination of the adjoint process is nontrivial because the state
space is unbounded, the vertex is a singularity of the state space and the re-
flection field is singular at the vertex. There is an old paper of Nagasawa (1961)
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on adjoints of processes with reflection, where the state space is bounded with
smooth boundary and the reflection is normal. He also provides some suffi-
cient conditions for a candidate process to be the adjoint process in the case of
smooth oblique reflection. While not directly applicable, we make use of these
results together with deep results of Taira (1988) connecting pseudodifferen-
tial operators to processes with reflection.

One feature in our proof of existence of the adjoint process is the novel use
of Bessel processes. The rest of our results are applications. First we compute
the Martin boundary of killed RBM and identify the corresponding minimal
harmonic functions. It turns out the cone of positive functions harmonic for
killed RBM is two-dimensional. We obtain analogous results for the adjoint
process. Our computation relies on the Martin boundary theory of Kunita and
Watanabe (1965). In order to apply their theory, we prove that the resolvent of
killed RBM has the strong Feller property in the transient case. As a corollary
we prove (with one exceptional case) that the resolvent of RBM itself (no
killing) is also strong Feller. This result is new and of interest in its own right.
See Theorems 5.6 and 5.7 below. We are unable to handle the case where the
RBM is not transient and does not hit 0.

In our next application we prove existence and uniqueness (up to positive
scalar multiples) of invariant measures for RBM and killed RBM. We also
identify the invariant measures. Williams (1985) and DeBlassie (1994) have
proved the analogs of those results for RBM in a wedge with constant reflection
at the sides. Our extension is nontrivial. The case in which RBM is killed
more or less follows from our identification of the adjoint process and the
Martin boundary theory for the adjoint process. When no killing occurs and the
process is recurrent, matters are much more difficult. In the two-dimensional
case, Williams (1985) gives a highly nontrivial argument that relies heavily
on the dimension being two. Unfortunately, it is not clear how to extend this
argument to the higher dimensional case. Intuitively, one expects the invariant
measure to have a density (with respect to Lebesgue measure) and this density
ought to be harmonic for the adjoint process. Using our determination of the
minimal positive harmonic functions for the adjoint process, we can restrict
attention to two possibilities. One of the candidates is the invariant density for
the killed process so we can throw it out, and we are done. The major sticking
point is showing that the density for the invariant measure is harmonic for
the adjoint process. We overcome this problem by first showing the density is
excessive for the adjoint process. Then we can use the Martin representation
theorem to show that it is actually harmonic.

The paper is organized as follows. In Section 2 we introduce notation and
collect known properties of RBM. We define our candidate adjoint process in
Section 3 and show that it exists uniquely as the solution of a submartingale
problem. In Section 4 we verify that this candidate is indeed the adjoint pro-
cess. We also present the adjoint process explicitly for the case of a “circular
cone.” The hypotheses required by the Kunita–Watanabe theory of the Mar-
tin boundary are verified in Section 5, along with the strong Feller property
of the resolvent of RBM. The Martin boundary and corresponding minimal
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harmonic functions for killed RBM are identified in Section 6. In Sections 7
and 8 we identify the invariant measures of killed RBM and RBM (and prove
uniqueness up to positive scalar multiples). Finally, in the Appendix we collect
facts about Bessel processes that we use in the paper.

2. Preliminaries. Throughout this article we will assume that the radi-
ally homogeneous reflection field has the form

v = vrer + q + n on ∂G\	0��
where vr ∈ C∞�∂G\	0��, q ∈ C∞�∂G\	0��, er is the radial unit vector in �d

and n is the inward unit normal to ∂G\	0�. By radial homogeneity, q�rω� =
q�ω� and vr�rω� = vr�ω�.

Let D ⊆ �d be a domain such that either 0 /∈ D and ∂D is C∞ or 0 ∈ ∂D
and ∂D\	0� is C∞. Define �D = C��0�∞��D�, where D is the closure of D in
�d and denote the coordinate mapping ω ∈ �D → ω�t� by Xt�ω�. Let

�t = σ�Xs
 0 ≤ s ≤ t��
� = σ�Xs
 s ≥ 0�


Suppose � and � are second- and first-order differential operators on C2�D�
and C1�∂D\	0��, respectively. A probability measure �x on ��D�� � solves the
�� �� �-submartingale problem on �D, starting from x ∈ D, if

�2
1� �x�X0 = x� = 1�
for each f ∈ C2

b�D\	0�� that is constant on a neighborhood of 0 with � f ≥ 0
on ∂D\	0�,

�2
2� f�Xt� −
∫ t

0
�� f��Xs�ds

is a �x-submartingale;

�2
3� E�x

[∫ ∞

0
I	0��Xs�ds

]
= 0


Note that in the case when 0 /∈ D, we take the constancy requirement in
(2.2) to be vacuous; also, in this case (2.3) is automatic. If D = G, � = 1

2�
and � = v ·∇, then we call the process X under �x reflected Brownian motion
(RBM) with reflection field v.

When 0 ∈ ∂D, we will often need to consider the absorbed process, defined
as follows. Let

τ0 = τ0�ω� 
= inf	t ≥ 0
 ω�t� = 0�

A probability measure �x on ��D�� � solves the �� �� �-submartingale prob-
lem (starting at x) with absorption if

�2
4� �x�X0 = x� = 1�
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for each f ∈ C2
b�D� constant on a neighborhood of 0 with � f ≥ 0 on ∂D\	0�,

�2
5� f�X�t ∧ τ0�� −
∫ t∧τ0

0
�� f��Xs�ds

is a �x-submartingale and

�2
6� �x�Xt = 0 for t ≥ τ0� = 1


We call X under �x the absorbed process.
In the case of RBM, Kwon and Williams (1991) have obtained the following

results.

Theorem 2.1. (a) There is a parameter α such that RBM exists uniquely
if α < 2. If α ≥ 2 then RBM does not exist and the absorbed process exists
uniquely.

(b) If 0 < α < 2, then RBM hits the vertex in finite time almost surely. If
α ≤ 0, then starting away from the vertex, RBM almost surely does not hit the
vertex in finite time.

In the terminology of Kwon (1992), α is called, the coefficient of obliqueness.
Kwon and Williams (1991) also show existence of the following functions. For
each α there is a function ψα ∈ C2��� such that ψα > 0 on � for α �= 0, and
the function � ∈ C2�G\	0�� defined for r > 0 and ω ∈ � by

�2
7� ��rω� =
{
rαψα�ω�� α �= 0�
ln r+ ψα�ω�� α = 0

satisfies

�2
8� �� = 0 in G\	0��

�2
9� v · ∇� = 0 on ∂G\	0�

Define

�2
10� � =
{
�� α > 0,
e�� α = 0,
�−1� α < 0

on G\	0� and ��0� = 0. Then � is continuous on G� � > 0 on G\	0�� � ∈
C2�G\	0�� and v · ∇� = 0 on ∂G\	0�. Since ��rω� = rβh�ω� where

β =
{ �α�� α �= 0,

1� α = 0

and h > 0 on �, we see � can be used to measure distance to the vertex.
One can argue much like Williams (1985) and obtain the next theorem.

Theorem 2.2. If α < 0, RBM is transient to ∞, and if 0 ≤ α < 2, RBM is
recurrent.
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The next result is from DeBlassie, Hobson, Housworth and Toby (1995).

Theorem 2.3. Define

D =
{
�1/α� if α �= 0,
e�� if α = 0

on G\	0� and set D�0� = 0. If α < 2, X is RBM and

ηt =
∫ t

0
I�Xs �= 0��∇D�Xs��2 ds�

then the process D�X�η−1
t �� is a Bessel process with parameter 2 − α.

If α ≥ 2 and X is the absorbed process, then D�X�η−1
t ��, t ≤ η�τ0� is a

Bessel process with parameter 2 − α, absorbed at 0 at the first hitting time
η�τ0−� of 	0� by the Bessel process.
Moreover, for some positive constants c1 and c2,

c1�x� ≤ D�x� ≤ c2�x��
c1 ≤ inf �∇D�2 < sup �∇D�2 ≤ c2�

c1t ≤ ηt ≤ c2t

and a similar inequality holds for η−1
t .

Corollary 2.4. Let α < 2 and supposeQx is the law of RBM starting from

x ∈ G. Denote its resolvent by Rλ. Let Yt be a Bessel process with parameter
γ = 2 − α and Ey expectation associated with Y0 = y. Then for some positive
constants c1� c2� c3� c4, for each λ ≥ 0 and function f on �0�∞�,

c1Ey

[∫ ∞

0
exp �−c2λt�f�Yt�dt

]
≤ Rλ�f ◦D��x�
≤ c3Ey

[∫ ∞

0
exp �−c4λt�f�Yt�dt

]
� y = D�x��

where D is from Theorem 2.3. The constants are independent of λ and f.

Proof. By Theorem 2.3,

Rλ�f ◦D��x� = EQx

[∫ ∞

0
e−λtf ◦D�Xt�dt

]
= EQx

[∫ ∞

0
exp �−λη−1

u �f ◦D�X�η−1
u ��

× �∇D�X�η−1
u ���−2I�X�η−1

u � �= 0�du
]

≤ c3Ey

[∫ ∞

0
exp �−λc4u�f�Yu�du

]



A similar argument gives the lower inequality. ✷
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3. The adjoint of killed RBM: definition. In this section we prove exis-
tence and uniqueness of a process which, upon being killed at the vertex of G,
is shown in Section 4 to be the adjoint of killed RBM. By killed RBM we mean
the absorbed process killed upon first reaching the vertex. Our proof starts out
mimicking the proof of Kwon and Williams (1991) for absorbed RBM. They use
results of Lions and Sznitman (1984) to get existence and uniqueness up to
the first exit time of larger and larger compact subsets of G\	0�. The next
part of the proof is the hardest. One needs to show, more or less, that the exit
point of the sets converges to 0. This is a subtle and difficult point. While we
could use a proof like that of Kwon and Williams, we introduce a new proof
using Bessel processes that is a bit shorter. Define

�3
1� L0f = ∂f

∂n
− div∂G�f�vrer + q���

where div∂G is the divergence on the manifold ∂G\	0�.

Remark. Recall � = G∩Sd−1. The inward unit normal to ∂G\	0� on ∂� is
also the inward unit normal to ∂� in Sd−1. Hence we will abuse the notation
n, using it as a vector in �n or in the tangent space to Sd−1. From context the
meaning will be clear.

Lemma 3.1. There is a unique positive function ψ0 ∈ C2��� such that
�Sd−1ψ0 = 0 in ��(3.2)

�n− q�∇Sd−1ψ0 − �div∂�q�ψ0 = 0 on∂��(3.3) ∫
�
ψ0 d. = 1�(3.4)

where �Sd−1 is the Laplace–Beltrami operator on Sd−1, ∇Sd−1 is the tangential
gradient on Sd−1, div∂� is the divergence operator on the manifold ∂� and d.
is surface measure on Sd−1.
In particular, the function defined for r > 0 and ω ∈ � by

�0�rω� = r2−dψ0�ω�
is a solution in C2�G\	0�� of

��0 = 0 in G�(3.5)

L0�0 = 0 on ∂G\	0�
(3.6)

Proof. The function ψ0 satisfying (3.2), (3.3) is from Lemma 2.5 in Kwon
and Williams (1991). That �0 satisfies (3.5) is routine to check. In spherical
coordinates �r�ω� ∈ �0�∞� ×Sd−1,

∇∂G = er
∂

∂r
+ 1

r
∇∂��
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where ∇∂� is the gradient on the manifold ∂�, and

div∂G�vrer + q� = r2−d ∂

∂r
�rd−2vr� +

1
r

div∂�q

= d− 2
r

vr + 1
r

div∂�q

[cf. Helgason (1962), pages 386, 387]. We always use the Riemannian structure
inherited from �d. It is now routine to check the condition (3.6) using that

div∂G�f�vrer + q�� = �vrer + q�∇∂Gf+ f div∂G�vrer + q�
 ✷

Now we can define the operator and boundary operator associated with the
adjoint. Define

A∗ = 1
2�+ ��0�−1∇�0 · ∇�(3.7)

v∗ = −vrer + n− q(3.8)

and

L∗ = v∗ · ∇
(3.9)

Then in spherical coordinates �r�ω�,

A∗ = 1
2

[
∂2

∂r2
+ 3 − d

r

∂

∂r
+ 1

r2
�b�ω� · ∇Sd−1 + �Sd−1�

]
�(3.10)

where

b�ω� = �ψ0�ω��−12∇Sd−1ψ0�ω�(3.11)

is bounded on �. The next theorem gives existence and uniqueness of the
absorbed process associated with �A∗�L∗�.

Theorem 3.2. For each x ∈ G there is a unique probability measure P∗
x

on ��G�� � that solves the �A∗�L∗�-submartingale problem with absorption,
starting from x.

Remark 3.3. (i) If L∗�0 ≤ 0 [which is equivalent to �d−2�vr+div∂�q ≤ 0]
then �0 is superharmonic for the

( 1
2��L

∗�-process, which is merely RBM with
radially homogeneous reflection field v*. Thus in this case, the �A∗�L∗� process
killed at 	0� is a conditioning of RBM with reflection v*, killed at 	0�.

(ii) By uniqueness, P∗
x has the strong Markov property.

(iii) By uniqueness and the form (3.10) of A∗�P∗
x satisfies the following

scaling property:

P∗
x�A� = P∗

rx�r−1ω�r2·� ∈ A�� x ∈ G� r > 0� A ∈ � 


The proof is much like that of Lemma 2.3 in Kwon and Williams (1991).
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To prove the theorem, we need the following lemma.

Lemma 3.4. There is a real number α∗ and a function ψ∗ ∈ C2��� with
ψ∗ > 0 on � such that the function �∗ ∈ C2�G\	0�� defined for r > 0 and
ω ∈ � by

�∗�rω� =
{
rα∗

ψ∗�ω�� α∗ �= 0,
ln r+ ψ∗�ω�� α∗ = 0

satisfies

A∗�∗ = 0 in G\	0��(3.12)

L∗�∗ = 0 on ∂G\	0�
(3.13)

Moreover,

α∗ < 0 if
∫
∂�

vrψ
0 dσ < 2 − d�

α∗ = 0 if
∫
∂�

vrψ
0 dσ = 2 − d

and

α∗ > 0 if
∫
∂�

vrψ
0 dσ > 2 − d�

where ψ0 is from Lemma 3.1 and dσ is surface measure on ∂�.

Proof. Because of the form (3.10) of A∗, we can use the argument proving
Lemma 2.4 in Kwon and Williams (1991) to obtain the following analogue:

For each a ∈ � there is a unique pair �λ̃�a�� ψ̃a� ∈ � × C2��� such that
ψ̃a > 0 on �,

∫
� ψ̃a d. = 1,

�Sd−1ψ̃a + b · ∇Sd−1ψ̃a + λ̃�a�ψ̃a = 0 in ��(3.14)

�n− q� · ∇Sd−1ψ̃a − avrψ̃a = 0 on ∂�
(3.15)

The functions a → λ̃�a� ∈ � and a → ψ̃a ∈ C2��� are real analytic. Also,
λ̃�a� is a concave function of a that is bounded above by the first eigenvalue
of �Sd−1 + b · ∇Sd−1 on � with Dirichlet boundary conditions.

Then exactly as in the proof of Lemma 2.7 in Kwon and Williams (1991), if
λ̃′�0� �= 2 − d there is a unique α∗ �= 0 such that λ̃�α∗� = α∗�α∗ + 2 − d� with
α∗ > 0 if λ̃′�0� > 2−d and α∗ < 0 if λ̃′�0� < 2−d. For λ̃′�0� = 2−d, set α∗ = 0.
Define ψ∗ = ψ̃α∗ to get the desired function ψ∗.

All that remains is the characterization of the sign of α∗. First we show

λ̃�a� = a
∫
∂� vrψ̃aψ

0 dσ∫
� ψ̃aψ

0 d.
�(3.16)
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where ψ0 is from Lemma 3.1. Now

λ̃�a�
∫
�
ψ̃aψ

0 d. = −
∫
�
�Sd−1�ψ0ψ̃a�d. [by (3.2) and (3.14)]

=
∫
∂�

∂

∂n
�ψ0ψ̃a�dσ (divergence theorem)

=
∫
∂�

[
ψ0 ∂ψ̃a

∂n
+ ψ̃a

∂ψ0

∂n

]
dσ


By (3.3) and (3.15) the latter is∫
∂�

�ψ0�q · ∇Sd−1ψ̃a + avrψ̃a� + ψ̃a�q · ∇Sd−1ψ0 + ψ0 div∂�q��dσ

=
∫
∂�

�avrψ̃aψ
0 + div∂��qψ0ψ̃a��dσ

= a
∫
∂�

vrψ̃aψ
0 dσ

by the divergence theorem on the manifold ∂�. Thus we get (3.16). By differ-
entiability properties of ψ̃a,

λ̃′�0� =
∫
∂� vrψ̃0ψ

0 dσ∫
� ψ̃0ψ

0 d.

(3.17)

However, by uniqueness, �λ̃�0�� ψ̃0� = (
0�

[ ∫
� d.

]−1); hence by (3.4),

λ̃′�0� =
∫
∂�

vrψ
0 dσ
(3.18)

The statement about the sign of α∗ follows. ✷

Remark. Recall that α is the coefficient of obliqueness for RBM. Kwon and
Williams (1991) show

α > 0 if −
∫
∂�

vrψ
0 dσ > d− 2�

α = 0 if −
∫
∂�

vrψ
0 dσ = d− 2�

α < 0 if −
∫
∂�

vrψ
0 dσ < d− 2

(see their Lemmas 2.7 and 2.6). Hence we see α = 0 iff α∗ = 0, α∗ < 0 iff α > 0
and α∗ > 0 iff α < 0.

Proof of Theorem 3.2. The proof of uniqueness is like that in Theorem
2.1 of Kwon and Williams (1991). We concentrate on existence. With α∗ and
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�∗ from Lemma 3.4, set

�∗ =


�∗� α∗ > 0,
e�

∗
� α∗ = 0,

��∗�−1� α∗ < 0

on G\	0� and set �∗�0� = 0. Then �∗ ∈ C�G� ∩ C2�G\	0�� and �∗ > 0 on
G\	0�. Also, �∗�rω� is of the form rβh�ω� where β = �α∗� if α∗ �= 0, β = 1 if
α∗ = 0 and h > 0 on �. We use �∗ to measure distance to the origin. Define

σm�ω� = inf	t ≥ 0
 �∗�ω�t�� /∈ �m−1�m��

By work of Lions and Sznitman (1984), on some filtered space ���� � 	�t��P�,
there is a unique pair �X∗� 3∗� such that for some explosion time e,

X∗�t� = x+B�t� +
∫ t

0

∇�0

�0
�X∗�s��ds+

∫ t

0
v*�X∗�s��d3∗�s�� t < e�

where X∗�t� ∈ G\	0� for t < e, 3∗�·� is a nondecreasing real valued process
with

3∗�t� =
∫ t

0
I∂G\	0��X∗�s��d3∗�s�� t < e

and B�·� is two-dimensional Brownian motion. Moreover,

e = lim
m→∞σm�X∗�


This is precisely the argument given in Kwon and Williams (1991). As there,
existence follows once we show

lim
t↑e

X∗�t� = 0 on 	e < ∞�
(3.19)

Here we depart from their approach and prove (3.19) in a new way.
Define

D∗ =
{ ��∗�1/α∗

� α∗ �= 0�
exp��∗�� α∗ = 0

(3.20)

on G\	0� and D∗�0� = 0. Then

�∇D∗�rω��2 = h̃�ω��(3.21)

where

h̃�ω� =
{ �α∗�−2��α∗�2�ψ∗�2 + �∇Sd−1ψ∗�2��ψ∗�2/α∗−2� α∗ �= 0,
�1 + �∇Sd−1ψ∗�2�e2ψ∗

� α∗ = 0
(3.22)

and

0 < inf h̃ ≤ sup h̃ < ∞
(3.23)
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Also,

v*∇D∗ = 0 on ∂G\	0��

A∗D∗ = 1 − α∗

2D∗ h̃ on G


Define

η̃t =
∫ t

0
h̃�X∗

s/�X∗
s��ds� t < e
(3.24)

Then t ∈ �0� e� → η̃t is continuous and strictly increasing with a continuous
strictly increasing inverse η̃−1

t 
 �0� ηe−� → �0� e�. By Itô’s formula, for t ≤ σm,

dD∗�X∗
t � = dMt + �A∗D��X∗

t �dt�
where

Mt =
∫ t

0
∇D∗�X∗

s�dBs� t < e


Since for t < e,

�M�M t =
∫ t

0
�∇D∗�X∗

s��2 ds

=
∫ t

0
h̃�X∗

s/�X∗
s��ds

= η̃t�

it follows for some one-dimensional Brownian motion B�t�, for t ≤ η̃�σm�,

D∗�X∗�η̃−1
t �� = D∗�x� +Bt +

∫ η̃−1�t�

0
�A∗D∗��X∗

s�ds

= D∗�x� +Bt +
∫ η̃−1�t�

0

1 − α∗

2D∗�X∗
s�
h̃�X∗

s/�X∗
s��ds

= D∗�x� +Bt +
∫ t

0

1 − α∗

2D∗�X∗�η̃−1�u��� du


(3.25)

Hence for t < η̃�e−�,
Yt = D∗�X∗�η̃−1

t ��(3.26)

is a Bessel process with parameter 2 − α∗.
By definition of σm and that D∗ = ��∗�1/�α∗� for α∗ �= 0 and D∗ = �∗ for

α∗ = 0,

η̃�σm� =
{

inf	t ≥ 0
 Yt /∈ �m−1/�α∗��m1/�α∗���� α∗ �= 0,
inf	t ≥ 0
 Yt /∈ �m−1�m��� α∗ = 0.
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Thus η̃�σm� converges to the first time T0 that Yt hits 0, whence η̃�e−� is the
latter. We end up with

η̃�e−� = lim
m→∞ η̃�σm� = T0�(3.27)

lim
u→η̃�e−�

Yu = 0 on 	η̃�e−� < ∞�(3.28)

and this is equivalent to (3.19). ✷

We collect some facts to use below from the last proof.

Lemma 3.5. Let D∗ and α∗ be from (3.20) and Lemma 3.4, respectively. For
h̃ = �∇D∗�2 from (3.21) define

η̃t =
∫ t

0
h̃�Xs/�Xs��ds� t < τ0�X�


Then for any x ∈ G\	0�, under P∗
x,

Yt = D∗�X�η̃−1
t ��� t ≤ η̃�τ0�X�−�

is a Bessel process with parameter 2 − α∗ up to time T0 = inf	t ≥ 0
 Yt = 0�
and

η̃�τ0�X�−� = T0


Moreover, for some positive constants c1 and c2,

c1t ≤ η̃t ≤ c2t� t ≤ τ0�X�
(3.29)

Note. Our convention henceforth is to let Ey denote expectation associ-
ated with Y0 = y.

Corollary 3.6. (a) Let D∗ and α∗ be from (3.20) and Lemma 3.4, respec-
tively. Let Yt be a Bessel process with parameter γ = 2 − α∗ (absorbed at 0
if γ ≤ 0) and Ey expectation associated with Y0 = y. Then for some positive
constants c1� c2� c3 and c4, for each λ ≥ 0 and nonnegative f on �0�∞�, with
y = D∗�x�,

c1Ey

[∫ T0

0
exp �−c2λt�f�Yt�dt

]
≤ EP∗

x

[∫ τ0

0
e−λtf ◦D∗�Xt�dt

]
≤ c3Ey

[∫ T0

0
exp �−c4λt�f�Yt�dt

]



The constants c1 − c4 are independent of d and f.
(b) The same conclusion holds with P∗

x, α
∗ and D∗ replaced by Px� α and

D, respectively, D from Theorem 2.3.
(c) P∗

x�τ0 < ∞� = 0 if α∗ ≤ 0 and = 1 if α∗ > 0.

The proof is exactly like the proof of Corollary 2.4, using Lemma 3.5 in
place of Theorem 2.3.
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4. The adjoint of killed RBM: Proof. In this section we prove the pro-
cess defined in Section 3 when killed upon reaching 	0� is the adjoint of killed
RBM (again, killed upon reaching 	0�). The plan of action is as follows. By the
deep results of Taira (1988) on diffusions in smooth bounded domains with
reflection, a theorem of Nagasawa (1961) yields the adjoint of RBM in such
a domain. We apply this to smooth domains D increasing to G such that the
reflection field on ∂D ∩ ∂G coincides with v. We kill the RBM and its adjoint
at ∂D\�∂D ∩ ∂G� and show they are adjoint to one another. One then wants
to let D ↑ G.

The big problem is the fact that the killed RBM and its adjoint on D are
adjoint to one another with respect to a measure that depends on D, and
the adjoint itself depends on D. Our way around this is to use conditioned
diffusions.

For each x ∈ G, let Px and P∗
x denote the unique solutions of the

( 1
2��v · ∇)

and �A∗�L∗�-submartingale problems with absorption, respectively, starting
from x. The existence and uniqueness of the former is from Kwon and Williams
(1991), the latter from Theorem 3.2. Define the corresponding semigroups for
the killed processes as follows. For x ∈ G\	0�,

Ttf�x� = EPx�f�Xt�Iτ0>t��(4.1)

T∗
tf�x� = EP∗

x�f�Xt�Iτ0>t��(4.2)

where f is measurable with compact support in G\	0�. Note the state space
of the killed processes is G\	0�.

Theorem 4.1. The
( 1

2��v · ∇�- and �A∗�L∗�-processes killed upon reaching
	0� are adjoint to one another with respect to the measure �0�x�dx on G\	0�,
where �0 is from Lemma 3.1. More precisely, for bounded measurable f and
g with compact support in G\	0�,

∫
g�Ttf��0 dx =

∫
f�T∗

tg��0 dx


The proof is given through a sequence of lemmas. Consider any set D with
smooth boundary and compact closure D such that

D ⊆ D ⊆ G\	0�� ∂D ∩ ∂G �= 0


One should view D as a truncation of G by two concentric balls centered at 0,
then “smoothed” at the “edges.” Set

τD 
= inf	t ≥ 0
 Xt ∈ ∂D\∂D ∩ ∂G�
and consider the killed semigroups

TD
t f�x� = EPx�f�Xt�IτD>t��

T∗D
t f�x� = EP∗

x�f�Xt�IτD>t�
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Clearly, once we show that

�4
3a�
∫
D
g�TD

t f��0 dx =
∫
D
f�T∗D

t g��0 dx

for f and g continuous with compact support in D\�G ∩ ∂D�, upon letting
D ↑ G we get the conclusion of Theorem 4.1.

Let vD be a smooth nontangential vector field on ∂D that coincides with v
on ∂D ∩ ∂G. Write

vD = nD + qD�

where nD is the unit inward normal to ∂D and qD is a vector field in the
tangent bundle to ∂D. Writing ∂/∂n for the normal derivative nD · ∇, ∇∂D for
the tangential gradient operator on ∂D and div∂D for the divergence operator
on the manifold ∂D, on C1�∂D� set

�4
3b�
LD = vD · ∇

= ∂

∂n
+ qD · ∇∂D

and

L0
D = ∂

∂n
− qD · ∇∂D − div∂DqD
(4.4)

The next lemma can be proved like Lemma 2.5 in Kwon and Williams (1991).

Lemma 4.2. There is a function ϕD ∈ C2�D� such that ϕD > 0 on D,∫
D ϕD dx = 1 and

�ϕD = 0 in D�(4.5)

L0
DϕD = 0 on ∂D
(4.6)

Next define

A∗
D = 1

2
�+ ∇ϕD

ϕD

· ∇ on C2�D��

L∗
D = ∂

∂n
− qD · ∇∂D on C1�∂D�


Let Qx and Q∗
x be the unique solutions to the

( 1
2��LD

)
- and �A∗

D�L
∗
D�-sub-

martingale problems, respectively, on ��D�� �, starting from x ∈ D. Existence
and uniqueness follows from the work of Stroock and Varadhan (1971). Denote
by Jt and J∗

t the corresponding semigroups. For x ∈ D,

Jtf�x� = EQxf�Xt��
J∗

tf�x� = EQ∗
xf�Xt��

where f is bounded and measurable on D.
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Lemma 4.3. The semigroups Jt and J∗
t are Feller [i.e., map C�D� into

C�D�] and are adjoint to one another with respect to the measure ϕD dx,∫
D
g�Jtf�ϕD dx =

∫
D
f�J∗

tg�ϕD dx

for all bounded measurable f and g on D.

Proof. By Theorem 10.1.1 in Taira (1988), there exist Feller semigroups
�t and � ∗

t on C�D� whose infinitesimal generators � and �∗, respectively,
are characterized as follows.

(i) The domains of � and �∗ are, respectively,

	 ��� = 	u ∈ C�D�
 �u ∈ C�D�� LDu = 0 on ∂D��
	 ��∗� = 	u ∈ C�D�
 A∗

Du ∈ C�D�� L∗
Du = 0 on ∂D�


(ii) � = 1
2� on 	 ��� and �∗ = A∗

D on 	 ��∗�.
Here �u, LDu, A∗

Du and L∗
D are defined in the weak sense described by

Taira. Moreover, the generator � coincides with the minimal closed extension
in C�D� of the restriction of 1

2� to 	u ∈ C2�D�
 LDu = 0 on ∂D�. An analogous
statement holds for �∗. The corresponding resolvents map C∞�D� into itself.

Hence by Section 5 in Nagasawa (1961), �t and � ∗
t are adjoint to one an-

other with respect to the measure ϕD dx. To prove the lemma, it suffices to
show Jt = �t and J∗

t = � ∗
t . We verify the former, omitting the similar proof

of the latter.
Denote the resolvents of Jt and �t by Rα and 
α respectively. It is enough

to check Rα = 
α on C∞�D�. Since 
αf ∈ C∞�D� for f ∈ C∞�D�, ��
αf� =
1
2�
αf and LD�
αf� = 0 on ∂D. By the submartingale property,

EQx��
αf��Xt�� = 
αf�x� +EQx

[∫ t

0

1
2��
αf��Xs�ds

]



Integration of both sides against e−αt dt from 0 to ∞ gives

Rα�
αf� = 1
α

αf+ 1

α
Rα

(
1
2
��
αf�

)
= 1

α

αf+ 1

α
Rα���
αf��

= 1
α

αf+ 1

α
Rα�α
αf− f�

= 1
α

αf+Rα�
αf� −

1
α
Rαf


Hence 
αf = Rαf for f ∈ C∞�D�, as desired. ✷
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For typographical convenience, define

C0 
= C0�D\∂D\∂D ∩ ∂G�

Form the killed semigroups as follows. For f ∈ C0,

JD
t f�x� = EQx�f�Xt�IτD>t��

J∗D
t f�x� = EQ∗

x�f�Xt�IτD>t��
where τD = inf	t ≥ 0
 Xt ∈ ∂D\∂D ∩ ∂G� as above. Clearly, since the reflec-
tion fields agree on ∂D ∩ ∂G,

JD
t f = TD

t f� f ∈ C0
(4.7)

Lemma 4.4. The killed semigroups JD
t and J∗D

t are adjoint to one another
with respect to the measure ϕD dx. For all f�g ∈ C0,∫

D
g�JD

t f�ϕD dx =
∫
D
f�J∗D

t g�ϕD dx
(4.8)

Proof. [After Port and Stone (1978), proof of Theorem 4.3 on page 37.]
It is enough to prove (4.8) for f = IA, g = IB where A and B are sets
whose closures are subsets of D\�∂D\�∂D ∩ ∂G��. Set In = 	2−n mt
 m =
1� 
 
 
 �2n� and W = D\∂D\∂D ∩ ∂G. Consider any open set H in D containing
∂D\∂D ∩ ∂G with A ∩H = ∅ = B ∩H and let

TH = inf	t ≥ 0
 Xt ∈ H�

Then by the strong Markov property, Lemma 4.3 and that IHcIA = IA�
IHcIB = IB,∫

B
Qx�TH > t� Xt ∈ A�ϕD�x�dx

=
∫
B
Qx�Xs /∈ H for 0 < s ≤ t� Xt ∈ A�ϕD�x�dx

= lim
n→∞

∫
B
Qx�Xs /∈ H for s ∈ In�Xt ∈ A�ϕD�x�dx

= lim
n→∞

∫
D
IB�x�IHc�x���Jt/2nIHc�2n

IA��x�ϕD�x�dx

= lim
n→∞

∫
D
IA�x�IHc�x���J∗

t/2nIHc�2n

IB��x�ϕD�x�dx

=
∫
A
Q∗

x�TH > t�Xt ∈ B�ϕD�x�dx


Here the 2n power is of the operator Jt/2nIHc . Letting H ↓ ∂D\∂D ∩ ∂G we
have 	TH > t� ↑ 	τD > t� a.s. Q∗

x for x ∈ A and a.s. Qx for x ∈ B and
consequently,∫

B
Qx�τD > t� Xt ∈ A�ϕD�x�dx =

∫
A
Q∗

x�τD > t� Xt ∈ B�ϕD�x�dx


This is (4.8) with f = IA and g = IB. ✷



BROWNIAN MOTION IN A CONE 1695

The key step in our proof of (4.3a) is the following lemma.

Lemma 4.5. For any f ∈ C0, for ψ = �0ϕ−1
D , where �0 is from Lemma 3.1

and ϕD is from Lemma 4.2,

ψ−1J∗D
t �ψf� = T∗D

t f


Before proving this, we show how it yields (4.3a) (which in turn yields Theorem
4.1). Let f and g be continuous with compact support in G\	0�. By choosing
D as above with supp f ∪ supp g ⊆ D, we have f�g ∈ C0 and∫

D
g�TD

t f��0dx =
∫
D
g�JD

t f��0 dx [by (4.7)]

=
∫
D
�gψ��JD

t f�ϕD dx

=
∫
D
f�J∗D

t �gψ��ϕD dx (Lemma 4.4)

=
∫
D
�ψf��T∗D

t g�ϕD dx (Lemma 4.5)

=
∫
D
f�T∗D

t g��0 dx�

which is (4.3a).

Proof of Lemma 4.5. Using (3.5), (3.6), (4.5), (4.6) and that v = vD on
∂G ∩ ∂D, it is routine to check

A∗
Dψ = 0 on D�(4.9)

L∗
Dψ = 0 on ∂G ∩ ∂D
(4.10)

Then by the submartingale property and optional stopping,

EQ∗
x�ψ�X�t ∧ τD��� = ψ�x�
(4.11)

We now show ψ is excessive for the process with state space S=D\
∂D\∂G ∩ ∂D and transition function J∗D

t ,

J∗D
t ψ ≤ ψ on S�

lim
t→0

J∗D
t ψ = ψ on S


Indeed, by (4.11), for x ∈ S,

J∗D
t ψ�x� = EQ∗

x�ψ�Xt�Iτ0>t�
= EQ∗

x�ψ�Xt∧τD�IτD>t�
≤ EQ∗

x�ψ�Xt∧τD��
= ψ�x�
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By path continuity and dominated convergence, for x ∈ S,

lim
t→0

J∗D
t ψ�x� = lim

t→0
EQ∗

x�ψ�Xt�IτD>t�

= ψ�x�Q∗
x�τD > 0�

= ψ�x�

Hence ψ−1J∗D

t �ψ·� can be viewed as the transition function of a conditioned
process, the ψ-path of the process with transition function J∗D

t . As such, it is
continuous up to its lifetime and its law �x on ��D�� � is characterized by

�x�A� = ψ−1�x�EQ∗
x�ψ�Xt�IτD>tIA�� A ∈ �t(4.12)

[see Doob (1984), 2.VI.13].
Let Dn = {

x ∈ D
 d�x� ∂D\∂D ∩ ∂G� > 1/n
}
. We show the law of X�· ∧ τDn

�
under �x solves the �A∗�L∗�-submartingale problem stopped at τDn

. The latter
problem is to find a probability measure �x on ��D�� � such that

�x�X0 = x� = 1�(4.13)

for each f ∈ C2
0�Dn\∂Dn\∂G ∩ ∂Dn� with L∗f ≥ 0 on ∂G ∩ ∂Dn,

f�X�t ∧ τDn
�� −

∫ t∧τDn

0
�A∗f��Xs�ds(4.14)

is a �x-submartingale;

�x�Xt = X�τDn
� for t ≥ τDn

� = 1
(4.15)

Since (4.13) and (4.15) are obvious when �x is the law of X�· ∧ τDn
� under

�x, we concentrate on (4.14). For this, by (4.12), for any 0 ≤ s ≤ u, B ∈ �s

and g ∈ C0�Dn\∂Dn\∂G ∩ ∂Dn�, we have

E�x�g�Xu�Iu<τDn
IB� = ψ−1�x�EQ∗

x��ψg��Xu�Iu<τDn
IB�
(4.16)

Then for f as in (4.14), 0 ≤ s < t and B ∈ �s,

E�x

[
f�X�t ∧ τDn

�� − f�X�s ∧ τDn
�� −

∫ t∧τDn

s∧τDn

�A∗f��Xu�du
]
IB

= E�x

[
f�Xt�IτDn

>t − f�Xs�IτDn
>s −

∫ t

s
�A∗f��Xu�IτDn

>u du

]
IB

= ψ−1�x�EQ∗
x��ψf��Xt�IτDn

>t − �ψf��Xs�IτDn
>s�IB

−
∫ t

s
ψ−1�x�EQ∗

x��ψA∗f��Xu�IτDn
>uIB�du

= ψ−1�x�EQ∗
x

[
�ψf��X�t ∧ τDn

�� − �ψf��X�s ∧ τDn
��

−
∫ t∧τDn

s∧τDn

�ψA∗f��Xu�du
]
IB


(4.17)
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Routine computations using (4.9) and (4.10) yield

A∗
D�ψf� = ψA∗f in D�

L∗
D�ψf� = ψL∗

Df on ∂G ∩ ∂Dn


Also, since v and vD agree on ∂G ∩ ∂D,

L∗
D�ψf� = ψL∗

Df = ψL∗f ≥ 0 on ∂G ∩ ∂Dn


Thus the right-hand side of (4.17) is equal to

ψ−1�x�EQ∗
x

[
�ψf��X�t ∧ τDn

�� − �ψf��X�s ∧ τDn
��

−
∫ t∧τDn

s∧τDn

�A∗
D�ψf���Xu�du

]
IB ≥ 0�

by the submartingale property of Q∗
x and optional stopping. We have proved

(4.14) for �x being the law of X�· ∧ τDn
� under �x.

On the other hand, P∗
x is the unique solution of the �A∗�L∗�-submartingale

problem with absorption. Hence the �A∗�L∗�-submartingale problem stopped
at τDn

has a unique solution, namely the law of X�· ∧ τDn
� under P∗

x. Hence
for any f ∈ C0, for n so large that f = 0 on ∂Dn\∂G ∩ ∂Dn, we have

EP∗
x�f�Xt�IτDn

>t� = EP∗
x�f�Xt∧τDn

��
= E�x�f�Xt∧τDn

��
= E�x�f�Xt�IτDn

>t�
= ψ−1�x�EQ∗

x��ψf��Xt�IτDn
>t�

[
by �4
12�]


Upon letting n → ∞ we get

T∗D
t f�x� = EP∗

x�f�Xt�IτD>t�
= ψ−1�x�EQ∗

x��ψf��Xt�IτD>t�
= ψ−1�x�J∗D

t �ψf��x��
precisely the conclusion of Lemma 4.5. ✷

Example 4.6. Let G be the circular cone with angle ξ ∈ �0� π�. More pre-
cisely,

G = 	x ∈ �d\	0�
 ϕ�x� < ξ��
where ϕ�x� is the colatitude, namely the angle between x and the positive
xd-axis. Assume the reflection field takes the form

v = βer + n�
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where β ∈ �. In this situation, it is known [Kwon and Williams (1991)] that

α > 0 iff β < �2 − d��sin ξ�2−d
∫ ξ

0
�sin θ�d−2 dθ

and

α ≥ 2 iff ξ < cos−1
(

1√
d

)
and β ≤ −d sin ξ cos ξ

d cos2 ξ − 1



It is easy to see ψ0 from Lemma 3.1 is simply a constant and so �0 there is

�0�rω� = cr2−d


Then in spherical coordinates,

A∗ = 1
2

[
∂2

∂r2
+ 3 − d

r

∂

∂r
+ 1

r2
�Sd−1

]
�

L∗ = r−1n · ∇Sd−1 − β
∂

∂r



5. The strong Feller property for the resolvents. Let α be the coeffi-
cient of obliqueness associated with the reflection field v. By Theorems 2.1(b)
and 2.2, killed RBM is transient when α �= 0 (if α < 0 it is transient to ∞
whereas if α > 0 it is transient to 0). In this section we prove the strong Feller
property for the resolvents of killed RBM and its adjoint when α �= 0. As a
corollary, we obtain the strong Feller property for the resolvent of RBM in the
case α �= 0—no killing.

The strong Feller property for the resolvents of killed RBM and its ad-
joint is required in order to apply the Martin boundary theory of Kunita and
Watanabe (1965), as done in the next section.

Our proof requires the existence of the 0-resolvent (equivalently, Green’s
function). In the case α = 0, the latter does not exist and our proof breaks
down. Hence the restriction α �= 0.

Write the resolvents for killed RBM and its adjoint as

R0
λf�x� = EPx

[∫ τ0

0
e−λtf�Xt�dt

]
�(5.1)

R0∗
λ f�x� = EP∗

x

[∫ τ0

0
e−λtf�Xt�dt

]

(5.2)

The key result to obtaining the strong Feller property is the next theorem.

Theorem 5.1. Assume the coefficient of obliqueness α �= 0. Then for each
bounded measurable function f with compact support in G\	0� and λ ≥ 0,
R0

λf and R0∗
λ f are continuous on G\	0�. ✷

We will concentrate on R0∗
λ f, the proof for R0

λf being similar. First we derive
some preliminary results for the proof. Recall from the remark after the proof
of Lemma 3.4 that α �= 0 iff α∗ �= 0.
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Lemma 5.2. Let α∗ be from Lemma 3.4 and D∗ from (3.20). If α �= 0, then
for any bounded nonnegative measurable f with compact support in G\	0�,

EP∗
x

[∫ τ0

0
f�Xt�dt

]
is bounded on x ∈ G\	0��

EP∗
x

[∫ τ0

0
f�Xt�dt

]
≤ c�D∗�x��α∗

� x ∈ G\	0�


Proof. Given f bounded, nonnegative and measurable with compact sup-
port in G\	0�, choose 0 < a < b such that f�x� = 0 for D∗�x� /∈ �a� b�. Then
for some constant c > 0,

f�x� ≤ cI�a� b� ◦D∗�x�


Writing y = D∗�x�, by Corollary 3.6(a),

EP∗
x

[∫ τ0

0
f�Xt�dt

]
≤ c̃Ey

[∫ T0

0
I�a� b��Yt�dt

]

(5.3)

Using this and Lemma A.1 (a) from the Appendix, we get the desired conclu-
sion. ✷

Remark 5.3. By Corollary 3.4(b), the analog of Lemma 5.2 for D, Px and
α is valid.

The proof of the next result is deferred to the end of the section. Here

τε 
= inf	t ≥ 0
 D∗�Xt� = ε�
(5.4)

Theorem 5.4. For any bounded measurable f with compact support in
G\	0�,

EP∗
x

[∫ τε

0
f�Xt�dt

]

is continuous on G ∩ 	x
 D∗�x� > ε� if α∗ > 0, on G ∩ 	x
 0 < D∗�x� < ε� if
α∗ < 0.

By the resolvent equation and Lemma 5.2,

R0∗
λ = R0∗

0 − λR0∗
λ R0∗

0(5.5)

on the set of bounded measurable functions with compact support in G\	0�.
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Lemma 5.5. Let H be bounded and continuous on G\	0�. If α∗ > 0 and
limx→0 H�x� = 0, then for any λ > 0, R0∗

λ H is continuous on G\	0�. If α∗ < 0,
then for any λ > 0, R0∗

λ H is continuous on G\	0�.

Proof. By uniqueness, the law P∗
x of the absorbed process has the Feller

property,

EP∗
x�F�ω�� is continuous as a function of x ∈ G

for any bounded continuous F on �G.
If α∗ > 0, then for any λ > 0 and H ∈ Cb�G\	0�� with limx→0 H�x� = 0,

the function

ω ∈ �G →
∫ ∞

0
e−λtH�ωt�dt

is bounded and continuous. Hence, setting H�0� = 0 (under P∗
x there is ab-

sorption at the origin),

R0∗
λ H�x� = EP∗

x

[∫ τ0

0
e−λtH�Xt�dt

]
= EP∗

x

[∫ ∞

0
e−λtH�Xt�dt

]

is continuous on G\	0�.
If α∗ < 0, then for any λ > 0 and H ∈ Cb�G\	0��,

ω ∈ �G →
∫ ∞

0
e−λtH�ωt�dt

is continuous on the set S0 = 	ω ∈ �G
 ω never hits 	0��. But P∗
x�S0� = 1 for

x �= 0, so by an extension of the continuous mapping theorem [see Theorem
5.1 in Billingsley (1968)],

R0∗
λ H�x� = EP∗

x

[∫ ∞

0
e−λtH�Xt�dt

]

is continuous on G\	0�. ✷

By Lemma 5.2, for any bounded measurable f with compact support in
G\	0�, R0∗

0 f is bounded on G\	0�, and if α∗ > 0, R0∗
0 f�x� → 0 as x → 0

in G\	0�. Hence once we show R0∗
0 f is continuous on G\	0�, by (5.5) and

Lemma 5.5, it follows that R0∗
λ f is continuous on G\	0� for any λ > 0. This

gives Theorem 5.1.
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To this end, by the strong Markov property, for 0 < D∗�x� < ε if α∗ < 0 and
for ε < D∗�x� if α∗ > 0,∣∣∣∣R0∗

0 f�x� −EP∗
x

[∫ τε

0
f�Xt�dt

]∣∣∣∣ =
∣∣∣∣EP∗

x

[∫ τ0

τε

f�Xt�dt
]∣∣∣∣

=
∣∣∣∣EP∗

x

[
EP∗

X�τε�

[∫ τ0

0
f�Xt�dt

]]∣∣∣∣
≤ cEP∗

x�D∗�X�τε��α
∗ � (by Lemma 5.2)

= cεα∗
[by (5.4)].

It follows that

EP∗
x

[∫ τε

0
f�Xt�dt

]
→ R0∗

0 f�x�

uniformly on compact sets in G\	0� as

ε → 0 if α∗ > 0�

ε → ∞ if α∗ < 0


Then by Theorem 5.4, R0∗
0 f is continuous on G\	0�, as desired. This completes

the proof of Theorem 5.1. ✷

Now we extend Theorem 5.1 to bounded measurable functions for λ > 0.

Theorem 5.6. Let α �= 0. Then for each λ > 0 the resolvents R0∗
λ and R0

λ are

strong Feller: Both map bounded measurable functions on G\	0� into bounded
continuous functions on G\	0�.

Proof. Again, we concentrate on R0∗
λ , the proof for R0

λ being similar. Let
f be bounded and measurable on G\	0�. Clearly R0∗

λ f is bounded on G\	0�,
so we need only verify continuity. For this, consider any 0 < a < b and recall
α �= 0 iff α∗ �= 0.

With D∗ from (3.20), by Corollary 3.6 there are positive constants c3 and c4
such that∣∣R0∗

λ �f�I�a� b� ◦D∗���x� −R0∗
λ f�x�∣∣

≤ �sup �f��EP∗
x

[∫ τ0

0
e−λt�I�0� a��D∗�Xt�� + I�b�∞��D∗�Xt���dt

]
≤ �sup �f��c3Ey

[∫ T0

0
exp �−c4λu��I�0� a��Yu� + I�b�∞��Yu��du

]
�

where y = D∗�x�. By Lemma A.3 of the Appendix, the latter expectation
converges to 0 uniformly in y on compact subsets of �0�∞� as a → 0 and
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b → ∞. In particular,

R0∗
λ

(
f�I�a� b� ◦D∗�) → R0∗

λ f

uniformly on compact subsets of G\	0� as a → 0 and b → ∞. The support of
fI�a� b� ◦ D∗ is compact, so by Theorem 5.1, R0∗

λ �fI�a� b� ◦ D∗� is continuous on
G\	0�. Hence by the uniform convergence above, R0∗

λ f is continuous on G\	0�
as claimed. ✷

Finally, we derive the strong Feller property of the resolvent of RBM (no
killing).

Theorem 5.7. For λ > 0 letRλ denote the resolvent for RBMwith coefficient

of obliqueness 0 �= α < 2. For any bounded measurable function f on G, Rλf

is continuous on G.

Remark. Recall by the results of Kwon and Williams (1991) that RBM
does not exist if α ≥ 2.

Proof. First assume 0 < α < 2. As before, denote by Qx the law of RBM
starting from x ∈ G. Then for any bounded measurable f on G, by the strong
Markov property,

Rλf�x� = EQx

[∫ ∞

0
e−λtf�Xt�dt

]
= EQx

[(∫ τ0

0
+
∫ ∞

τ0

)
�e−λtf�Xt�dt�

]
= EPx

[∫ τ0

0
e−λtf�Xt�dt

]
+EQx

[
exp �−λτ0�EQ0

[∫ ∞

0
e−λtf�Xt�dt

]]
= R0

λf�x� +Rλf�0�EPx�exp �−λτ0��
= R0

λf�x� +Rλf�0��1 − λR0
λ1�x���

(5.6)

since

λR0
λ1�x� = λEPx

[∫ τ0

0
e−λt dt

]
= 1 −EPx�exp �−λτ0��
(5.7)

Hence by Theorem 5.6, Rλf is continuous on G\	0�. To finish, we need to show
continuity at 0. Since �R0

λf� ≤ �sup �f��R0
λ1, by (5.6) it is enough to show that

R0
λ1�x� → 0 as x → 0� x ∈ G\	0�
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But this is easy. We have for y = D�x�, by Corollary 3.6(b),

R0
λ1�x� = EPx

[∫ τ0

0
e−λt dt

]

≤ c5Ey

[∫ T0

0
exp �−λc6u�du

]
→ 0 as y → 0 (hence as x → 0��

by Lemma A.4, since the parameter of the Bessel process Y is γ = 2−α ∈ �0�2�.
Next consider α < 0. For x ∈ G\	0�, since α < 0, Px = Qx and τ0 = ∞ a.s.

Hence Rλf = R0
λf is continuous on G\	0� for any bounded measurable f on

G, by Theorem 5.6.
For the moment, assume for any bounded measurable h on G with compact

support in G\	0�,

lim
x→0

Rλh�x� = Rλh�0�
(5.8)

Then Rλh is continuous on G. In particular, for bounded measurable f on G

and 0 < a < b, Rλ�f�I�a� b� ◦ D�� is continuous on G. Moreover, for y = D�x�,
using Corollary 2.4,

∣∣Rλf�x� −Rλ�f�I�a� b� ◦D���x�∣∣
≤ �sup �f��EQx

[∫ ∞

0
e−λt�I�0� a� ◦D�Xt� + I�b�∞� ◦D�Xt��dt

]

≤ c7�sup �f��Ey

[∫ ∞

0
exp �−λc8t��I�0� a��Yt� + I�b�∞��Yt��dt

]



Since α < 0, the parameter of Yt is γ = 2 − α > 2, so by the last part of
Lemma A.3, the latter goes to 0 as a → 0, b → ∞ uniformly for y in sets of
the form �0�A�. Hence the continuous functions Rλ�f�I�a� b�◦D�� on G converge
uniformly to Rλf as a → 0, b → ∞ uniformly on compact sets in G. This gives
the conclusion of the theorem when α < 0.

All that remains is verification of (5.8). For D as in Theorem 2.3, write

τ′
δ = inf	t ≥ 0
 D�Xt� = δ��

where δ > 0 is chosen to satisfy

	x
 D�x� < δ� ∩ supp h = ∅
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Then by the strong Markov property, since h vanishes on 	x
 D�x� < δ�, for
D�x� < δ we have

Rλh�x� = EQx

[(∫ τ′
δ

0
+
∫ ∞

τ′
δ

)
�e−λth�Xt�dt�

]
= 0 +EQx

[
exp �−λτ′

δ�EQX�τ′
δ
�
[∫ ∞

0
e−λth�Xt�dt

]]

= EQx�exp �−λτ′
δ��R0

λh��Xτ′
δ
���

once again using that Qx = Px for x ∈ G\	0�. Now by Theorem 5.6, R0
λh is

continuous on G\	0�, and it is a simple matter to show the set of discontinu-
ities of the functional

ω ∈ �G → exp	−λτ′
δ�ω���R0

λh��ω�τ′
δ�ω���

has Q0 measure 0. By an extension of the continuous mapping theorem [Bill-
ingsley (1968), Theorem 5.1], since Qx → Q0 in law as x → 0,

lim
x→0

Rλh�x� = lim
x→0

EQx�exp �−λτ′
δ��R0

λh��Xτ′
δ
��

= EQ0�exp �−λτ′
δ��R0

λh��Xτ′
δ
��

= Rλh�0�

This gives (5.8) and completes the proof of Theorem 5.7. ✷

We close this section with the promised proof of Theorem 5.4.

Proof of Theorem 5.4. Let f be bounded and measurable with compact
support in G\	0�. Write

h�x� = EP∗
x

[∫ τε

0
f�Xt�dt

]
�

where x ∈ G ∩ 	x
 D∗�x� > ε� if α∗ > 0 and x ∈ G ∩ 	x
 0 < D∗�x� < ε� if
α∗ < 0. Fix x0 ∈ domain �h�. It suffices to show h is continuous at x0. The key
observation is for r > 0 small enough, say 0 < r < r0, and

ηr = inf	t ≥ 0
 �Xt − x0� ≥ r��
by the strong Markov property,

h�x�=EP∗
x�h�X�ηr���+EP∗

x

[∫ ηr

0
f�Xt�dt

]
� �x−x0�<r/4� x∈G
(5.9)

By making r0 smaller if necessary, the coefficients of A∗ on G∩	x
 �x−x0� <
r0/4� are well behaved and bounded. Since A∗ is half the Laplacian plus a drift
term, by the Cameron–Martin–Girsanov Theorem [see Stroock and Varadhan
(1971)], the analog of Lemma 3.3 in Kwon and Williams (1991) is true for P∗

x.
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In particular, there is κ > 0 (independent of r) and γ ∈ �0� r0� such that for
0 < r ≤ γ,

P∗
x�X�ηr� ∈ A� > κ� x ∈ G� �x− x0� ≤ r/4

whenever A ⊆ G ∩ ∂Br�x0� such that �A� ≥ 1
2 �G ∩ ∂Br�x0��. Here Br�x0� =

	x
 �x − x0� < r� and � · � is surface measure on ∂Br�x0�. Then much like the
first part of the proof of Theorem 3.2 in Kwon and Williams (1991), for

osc�r� = sup	�h�x� − h�y��
 x�y ∈ G ∩Br�x0��
and

g�x� = EP∗
x

[∫ ηr

0
f�Xt�dt

]
�

(5.9) leads to

osc
(
r

4

)
≤

(
1 − κ

2

)
osc�r� + sup	�g�x� − g�y��
 x�y ∈ G ∩Br/4�x0���

0 < r ≤ γ


Moreover, for x�y ∈ G ∩Br/4�x0�,
�g�x� − g�y�� ≤ �sup �f���EP∗

xηr +EP∗
yηr�

≤ 2�sup �f��σ�r�
where

σ�r� = sup	EP∗
xηr
 x ∈ G ∩Br/4�x0��

is nondecreasing for r ∈ �0� γ�. Hence for C = 2 sup �f�,

osc
(
r

4

)
≤

(
1 − κ

2

)
osc�r� +Cσ�r�� 0 < r ≤ γ


By Lemma 8.23 in Gilbarg and Trudinger (1983), for any 0 < µ < 1 there are
positive constants c1 and a such that

osc�r� ≤ c1

[(
r

γ

)a

osc�γ� + σ�rµγ1−µ�
]
� 0 < r ≤ γ


Continuity of h at x0 will follow once we show σ�r� → 0 as r → 0.
To this end, first assume x0 ∈ G. By (3.7) we can choose r1 > 0 so small

that Br1
�x0� ⊆ G and

A∗�x− x0�2 ≥ d

2
if x ∈ Br1

�x0�


Then by the submartingale property and optional stopping, for r < r1,

EP∗
x��X�t ∧ ηr� − x0�2� ≥

d

2
EP∗

x�ηr ∧ t�� x ∈ Br/4�x0�
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Letting t → ∞,

r2 ≥ d

2
EP∗

x�ηr�� x ∈ Br/4�x0�

Clearly in this case, σ�r� → 0 as r → 0.

For x0 ∈ ∂G\	0�, by Lemma 2.7 in Stroock and Varadhan (1971), for some
constants C and r1 both independent of x and r,

EP∗
x�ηr� ≤ Cr� r < r1� x ∈ Br/4�x0�


That σ�r� → 0 as r → 0 is an immediate consequence. ✷

6. The Martin boundary for killed RBM. In this section we apply the
Martin boundary theory developed in Kunita and Watanabe (1965). Verifica-
tion of their hypotheses is mostly routine with the exception of the requirement
that both R0

λ and R0∗
λ for λ ≥ 0 map bounded measurable functions with com-

pact support in G\	0� to continuous functions on G\	0�. However, we have
done this in Theorem 5.1. Here is a synopsis of the consequences of the Martin
boundary theory relevant to us.

For λ ≥ 0, the resolvents R0
λ and R0∗

λ have kernels (with respect to the
measure �0�x�dx, �0 from Lemma 3.1) we denote by Gλ�x�y� and G∗

λ�x�y�,
respectively, and

Gλ�x�y� = G∗
λ�y�x�


When λ = 0 we will drop the subscript in G0 or G∗
0. Fix g ∈ C∞

0 �G\	0�� and
define the measure

ν�dx� = g�x�dx
on the Borel sets of G\	0�. Since the function

�νG��y� 
=
∫
G�x�y�ν�dx�

=
∫
G∗�y�x�g�x�dx

= R0∗
0 g�y�

is positive and continuous on G\	0� (by Theorem 5.1), ν is a reference measure.
The Martin kernel is

κ�x�y� = G�x�y�
νG�y� � x� y ∈ G\	0�


The Martin boundary of G\	0�, written �G\	0��′ is characterized by the follow-
ing four properties [Theorem 3 on page 509 of Kunita and Watanabe (1965)].
Writing S = G\	0�:
1. S ∪S′ is a compact metric space.
2. S is dense and open in S ∪ S′ and its relative topology coincides with its

original topology.
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3. To each η ∈ S′ corresponds an excessive function κ�·� η� on S, and if η �= η′,
then for some x ∈ S, κ�x�η� �= κ�x�η′�.

4. If η ∈ S′ and y → η in the topology of S ∪ S′ with y ∈ S, then for each
f ∈ C0�S�, ∫

f�x�κ�x�y�dx →
∫
f�x�κ�x�η�dx


Theorem 6.1. Suppose the coefficient of obliqueness α is not 0. Then the
Martin boundary of G\	0� (with respect to RBM) consists of two points 	0�∞�.

Remark. If α = 0 the RBM is recurrent and started away from 0, never
hits 0. Hence the transience required for the Kunita–Watanabe theory does
not hold. It is possible to show the cone of positive harmonic functions in this
case is one-dimensional. See Theorem 6.5 below.

Proof. Consider any f ∈ C0�S�. We must examine∫
f�x�κ�x�y�dx(6.1)

as y → 0 or y → ∞ and show in either case that the limit exists independent
of the means of approach. We concentrate on y → ∞ since the case y → 0 is
similar (and easier!).

Our main tool is a technique of Bass and Pardoux (1987) which involves
the Krein–Rutman theorem. By definition,∫

f�x�κ�x�y�dx =
∫
G�x�y�f�x�dx

νG�y�

= R0∗
0 f�y�

R0∗
0 g�y� 


(6.2)

For any γ > 0 and ε > 0, define

σε = σε�ω� 
= inf	t ≥ 0
 �ωt� = ε��
�γ�x�dy� 
= P∗

x�γ−1X�σγ� ∈ dy� σγ < ∞�� x� y ∈ �

(recall � = G ∩Sd−1). By Remark 3.3, parts (ii) and (iii), exactly as in Propo-
sition 5.3 and formula (5.4) of Bass and Pardoux (1987),

�n
γ

(
x

�x� � dy
)

= P∗
x��rγn�−1X�σrγn� ∈ dy�σ�rγn� < ∞�� �x� = r
(6.3)

Moreover, the proofs of Theorems 3.2 and 3.3 in Kwon and Williams (1991)
show �γ
 C��� → C��� is compact and strongly positive on K = 	f ∈
C���
 f ≥ 0 on ��. The only source of concern is the use of their Lemma
3.3 and Theorem 3.1. But these results are essentially “local away from 0”
properties of RBM in G\	0�. Since the process associated with �A∗�L∗� (i.e.,
the coordinate process under P∗

x) is locally RBM with locally bounded drift,
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by the Cameron–Martin–Girsanov theorem [cf. Stroock and Varadhan (1971)],
the results hold in the present context too.

Then we can apply the Krein–Rutman theorem [as in Bass and Pardoux
(1987), page 566] to get the following. There is an eigenvalue ρ�γ� = ργ ∈
�0�∞�, an associated eigenfunction ϕγ continuous and positive on �, and a
positive linear functional �γ
 C��� → � such that for each c > 0,

sup
{
sup
�

�ρ−n
γ �n

γ F−�γ�F�ϕγ�
 F ∈ C���� sup
�

�F� ≤ C
}
→ 0(6.4)

as n → ∞.
By the Riesz representation theorem, there is a finite measure µγ on � such

that

�γ�F� =
∫
F�y�µγ�dy�� F ∈ C���
(6.5)

Setting

µ̃γ = µγ���−1µγ�(6.6)

by compactness of �, the family of probability measures 	µ̃γ
 γ = 1 − 1/n�
n = 2�3� 
 
 
� is tight. Let µ̃γn

be a convergent subsequence and call the limit
µ,

µ̃γn
→� µ� where γn ↑ 1
(6.7)

Choose M > 0 so large that

supp f ∪ supp g ⊆ 	x
 �x� ≤ M�

For each y ∈ S, define

h�y� = R0∗
0 f�y��(6.8)

j�y� = R0∗
0 g�y�
(6.9)

By (6.2), ∫
f�x�κ�x�y�dx = h�y�

j�y� 
(6.10)

Consider any sequence of points ym ∈ S with �ym� → ∞ as m → ∞.
Let ε > 0 be given. By continuity of h and j (Theorem 5.1), choose δ =

δ�ε� > 0 such that

�h�x� − h�y�� < ε for �x�� �y� ∈ �M�2M�� �x− y� < δM and x�y ∈ S(6.11)

with a similar statement holding for j. Then choose N�ε� such that

γn ∈
(

1
2

∨ 1
1 + δ

�1
)
� n ≥ N�ε�
(6.12)

For n ≥ N�ε� and m ≥ 1 choose integers pm = pm�n� such that

�ym� ∈ �γ−pm
n M�γ−1−pm

n M�
(6.13)
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Then pm → ∞ as m → ∞ and for any y ∈ �,∣∣h��ym�γpm
n y� − h�My�∣∣ < ε� m ≥ 1� n ≥ N�ε�(6.14)

by (6.11)–(6.13). A similar statement holds for j.
Given �y� ≥ M̃ > M, by the strong Markov property and choice of M,

h�y� = EP∗
y

[∫ τ0

0
f�Xt�dt

]
= EP∗

y

[∫ τ0

0
f�Xt�dtIσ�M̃�<∞

]
= EP∗

y

[∫ τ0

σ�M̃�
f�Xt�dtIσ�M̃�<∞

]
= EP∗

y�h�X�σ�M̃���Iσ�M̃�<∞�


(6.15)

Write

Hm�n�y� = h��ym�γpm
n y��

Jm�n�y� = j��ym�γpm
n y�


(6.16)

Then since γ
−pm
n M < �ym�, by (6.15) with M̃ = �ym�γpm

n < �ym�,
h�ym� = EP∗

ym �h�X�σ��ym�γpm
n ���I�σ��ym�γpm

n � < ∞��
= �pm

γn
Hm�n�ym/�ym�� [using (6.3)].

(6.17)

Similarly,

j�ym� = �pm
γn

Jm�n�ym/�ym��(6.18)

By (6.10) and (6.4) we get∫
f�x�κ�x�ym�dx = h�ym�

j�ym�

= �ρ�γn��−pm�
pm
γn

Hm�n�ym/�ym��
�ρ�γn��−pm�

pm
γn

Jm�n�ym/�ym��

= �γn
�Hm�n�ϕγn

�ym/�ym�� + εm

�γn
�Jm�n�ϕγn

�ym/�ym�� + ε̃m

�

(6.19)

where εm and ε̃m → 0 as m → ∞, using that

sup
n�m��

�Hm�n� ≤ sup
�

�h� < ∞ and sup
n�m��

�Im�n� ≤ sup
�

�j� < ∞�

using Lemma 5.2.
Since inf ϕγn

> 0, supm �γn
�Jm�n� < ∞ and supm �γn

�Hm�n� < ∞, once we
know

inf
m

�γn
�Jm�n� > 0�(6.20)
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we can divide the numerator and denominator of (6.19) by ϕγn
�ym/�ym�� and

let m → ∞ to get

lim sup
m→∞

∫
f�x�κ�x�ym�dx

= lim sup
m→∞

�γn
�Hm�n�

�γn
�Im�n�

� n ≥ N�ε��

= lim sup
m→∞

∫
Hm�n�y�µ̃γn

�dy�∫
Jm�n�y�µ̃γn

�dy� [by (6.5), (6.6)]),

(6.21)

with a similar statement holding for lim infm→∞. To this end, by the support
theorem [cf. Kwon and Williams (1991), Theorem 3.1], which holds for us by
the Cameron–Martin–Girsanov theorem [Stroock and Varadhan (1971)],

inf
m≥1� y∈�

j��ym�γpm
n y� ≥ inf	j�z�
 M ≤ �z� ≤ γ−1

n M�

= inf	R0∗
0 g�z�
 M ≤ �z� ≤ γ−1

n M�
> 0


Hence by (6.5) and (6.16),

inf
m

�γn
�Jm�n� = inf

m

∫
Jm�n�y�µγn

�dy�

= inf
m

∫
j��ym�γpm

n y�µγn
�dy�

> 0�

giving (6.20).
Now consider the right-hand side of (6.21). Writing

H�y� = h�My��
J�y� = y�My��

by (6.14) and (6.16),

sup
y∈�

�Hm�n�y� −H�y�� < ε� m ≥ 1� n ≥ N�ε�


Hence∫
Hm�n�y�µ̃γn

�dy� =
∫
H�y�µ̃γn

�dy� +O�ε�� m ≥ 1� n ≥ N�ε��

where the constant in the O�ε� can be chosen independent of m ≥ 1 and
n ≥ N�ε�. A similar statement holds with Hm�n and H replaced by Jm�n and
J, respectively.

Using this and (6.7),

lim
ε→0

lim
n→∞ lim sup

m→∞

∫
Hm�n�y�µ̃γn

�dy�∫
Jm�n�y�µ̃γn

�dy� =
∫
H�y�µ�dy�∫
J�y�µ�dy� �
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with a similar statement holding for lim infm→∞. Now the left-hand side of
(6.21) and its lim inf analog are independent of ε and n ≥ N�ε�, so we end up
with

lim
m→∞

∫
f�x�κ�x�ym�dx =

∫
H�y�µ�dy�∫
J�y�µ�dy� �(6.22)

independent of ym → ∞. Thus the Martin boundary at ∞ consists of a single
point, as claimed. ✷

Remark. In (6.22) we have shown the limit on the left-hand side exists
independent of the choice of ym → ∞. It appears that the limit depends on
the choice of the sequence γn ↑ 1 (through the measure µ). However, from
(6.2), we know

∫
f�x�κ�x�ym�dx does not depend on γn. In particular, the

existence of the limit in (6.22) shows in fact that the limit does not depend on
γn.

The next theorem is the Martin representation theorem for functions that
are excessive for killed RBM. A function h on G\	0� is said to be excessive for
killed RBM if it is measurable and nonnegative (allowing the value ∞),

EPx�h�Xt�It<τ0
� ≤ h�x�� x ∈ G\	0�� t ≥ 0�

and

lim
t→0

EPx�h�Xt�It<τ0
� = h�x�


We say h is harmonic for killed RBM if for each bounded open set D ⊆ G\	0�
and

ηD 
= inf	t ≥ 0
 Xt /∈ D��
we have

h�x� = EPx�h�XηD
�IηD<τ0

�� x ∈ G\	0�

Recall ν�dx� is the measure g�x�dx from the beginning of the section and
S = G\	0�.

Theorem 6.2. For α �= 0, the class of excessive functions u in L1�ν� is in
one-to-one correspondence with the class of finite (Radon) measures µ on S∪S′

through the integral formula

u =
∫
S∪S′

κ�·� η�µ�dη�


The total mass of µ lies on S′ if and only if u is harmonic.

Proof. A nonnegative function u harmonic for killed RBM is said to be
minimal (or extreme) if whenever v is nonnegative and harmonic for killed
RBM and v ≤ u, then v = cu for some constant c > 0. Let S′

1 be the set of points
η ∈ S′ such that κ�·� η� is minimal harmonic and such that

∫
κ�x�η�ν�dx� = 1.

Since νG�y� < ∞ for all y ∈ S [which amounts to Sr = S in Kunita and
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Watanabe (1965)] by Proposition 13.1, Theorem 4 on page 513, and the note
at the end of Section 11 in that reference, the conclusion of the present theorem
is valid for S′ replaced by S′

1. Then by Theorem 6.1 and definition of ν, once
we show there are two linearly independent nonnegative harmonic functions
(for killed RBM), it will follow that S′

1 = S′ and the conclusion of the theorem
holds. By the submartingale property and optional stopping, 1 and � from
(2.7) are nonnegative and harmonic for killed RBM. Clearly, they are linearly
independent. ✷

If m is a Radon measure on G\	0�, define

R0
0m�x� =

∫
G�x�y�m�dy��(6.23)

R0∗
0 m�x� =

∫
G∗�x�y�m�dy��(6.24)

where G�x�y� and G∗�x�y� are the 0-resolvent kernels defined at the begin-
ning of the section. From the definition of the Martin kernel on �G\	0�� ×
�G\	0�� we get the following corollary of Theorem 6.2.

Corollary 6.3. For α �= 0, any excessive function u ∈ L1�ν� can be written
in the form

u = c1 + c2�+R0
0m

for nonnegative constants c1 and c2 and a Radon measure m on G\	0�. More-
over, c1� c2 and m are uniquely determined. Here � is from (2.7) and R0

0 is the
0-resolvent of the killed process.

Remark 6.4. Theorem 6.2 and Corollary 6.3 are true for the adjoint of
killed RBM, where �� α and R0

0 are replaced by �∗� α∗ and R0∗
0 .

The next theorem concerns the case α = 0.

Theorem 6.5. Let α = 0. The cone of positive harmonic functions for killed
RBM consists of all positive constants.

Proof. Let h be positive and harmonic for killed RBM. Then by the proof
of Theorem 3.2 in Kwon and Williams (1991), h is continuous on G\	0�. To
get a contradiction, assume h is not constant. Then without loss of generality
we can assume for some x and z in G\	0�,

0 < ε = h�z� < h�x� = 1
(6.25)

Choose bounded open neighborhoods N and M (in G\	0�) of z and x, respec-
tively, such that N ∩ M = ∅, h ≤ ε + �1 − ε�/4 on N and h ≥ 1 − �1 − ε�/4
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on M. Define the sequence of stopping times

T0 = 0�






T2n+1 = inf	t ≥ T2n
 Xt ∈ N��
T2n+2 = inf	t ≥ T2n+1
 Xt ∈ M�


For a closed set B ⊆ G\	0�, define the hitting time of B by

TB = inf	t ≥ 0
 Xt ∈ B�

For m sufficiently large, so that M ∪N ⊆ Bm�0�, set

Gm = Bm�0�c

Then by the averaging property,

h�z� = EPz�h�X�TM ∧TGm
���

≥ EPz�h�X�TM��ITM<TGm
�


Letting m → ∞ and using recurrence,

h�z� ≥ EPz�h�X�TM���

Similarly, h�x� ≥ EPx�h�X�TN���. Then by the strong Markov property,

Yn 
= h�X�Tn��
is a nonnegative L1-bounded Px-supermartingale, and as such converges al-
most surely. But clearly by the choice of M and N,

lim inf
n→∞ Yn ≤ ε+ 1 − ε

4
< 1 − 1 − ε

4
≤ lim sup

n→∞
Yn


Hence h must be constant. ✷

7. Invariant measure for killed RBM. A nontrivial σ-finite measure µ
on �G\	0�, Borels) is an invariant measure for killed RBM if for each nonneg-
ative bounded measurable function h on G\	0�,∫

Tth�x�µ�dx� =
∫
h�x�µ�dx� for all t ≥ 0


Here Tt is the semigroup for killed RBM,

Tth�x� = EPx�h�Xt�Iτ0>t�

An invariant measure for killed RBM is unique iff its positive scalar multiples
are the only invariant measures for killed RBM.
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The main result of this section is the next theorem.

Theorem 7.1. Killed RBM has a unique invariant measure µ. If α < 0 then
µ�dx� = �∗�x��0�x�dx, where �∗ is from Lemma 3.4 and �0 is from Lemma
3.1. If α ≥ 0 then µ�dx� = �0�x�dx.

Before giving the proof, we establish some preliminary results. As in Sec-
tion 5, let R0

λ and R0∗
λ denote the resolvents of killed RBM and its adjoint,

respectively. See (5.1) and (5.2). Recall α∗ is from Lemma 3.4.

Lemma 7.2. (a) If α∗ > 0 then for each λ > 0,

λR0∗
λ �∗ = �∗

λR0∗
λ 1 < 1


(b) If α∗ < 0, then for each λ > 0,

λR0∗
λ �∗ < �∗

λR0∗
λ 1 = 1


Proof. Recall τε from (5.4) and D∗ from (3.20). By the submartingale prop-
erty, (3.12), (3.13), stochastic calculus and optional stopping, for ε < D∗�x� <
M,

EP∗
x
[
exp

(−λ�t ∧ τε ∧ τM
)��∗�X�t ∧ τε ∧ τM��]

= �∗�x� − λEP∗
x

[∫ t∧τε∧τM

0
e−λs�∗�Xs�ds

]



Hence upon letting t → ∞ and collecting expectations, using �∗ = �D∗�α∗
�

�∗�x� = EP∗
x�exp �−λτε��∗�X�τε��Iτε<τM

�
+EP∗

x�exp �−λτM��∗�XτM
�IτM<τε

�

+λEP∗
x

[∫ τε∧τM

0
e−λs�∗�Xs�ds

]
= εα∗

EP∗
x�exp �−λτε�Iτε<τM

� +Mα∗
EP∗

x�exp �−λτM�IτM<τε
�

+λEP∗
x

[∫ τε∧τM

0
e−λs�∗�Xs�ds

]



(7.1)

If α∗ > 0, let ε → 0 to get for 0 < D∗�x� < M,

�∗�x� = Mα∗
EP∗

x�exp �−λτM�IτM<τ0
� + λEP∗

x

[∫ τ0∧τM

0
e−λs�∗�Xs�ds

]



That λR0∗
λ �∗ = �∗ will follow once we show that

lim
M→∞

Mα∗
EP∗

x�exp �−λτM�IτM<τ0
� = 0
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By Lemma 3.5, for y = D∗�x� ∈ �0�M�, Yt a Bessel process (absorbed upon
hitting 0) with parameter γ = 2 − α∗ < 2 and TM 
= inf	t ≥ 0
 Yt ≥ M�, for
some c > 0,

Mα∗
EP∗

x�exp �−λτM�IτM<τ0
� ≤ M2−γEy�exp �−λcTM�ITM<T0

�

= M2−γ
y1−γ/2I1−γ/2�

√
2λcy�

M1−γ/2I1−γ/2�
√

2λcM� (by Lemma A.5)

→ 0 as M → ∞
by the asymptotic (A.8).

On the other hand, if α∗ < 0, then let M → ∞ in (7.1) to get for ε < D∗�x�,

�∗�x� = εα∗
EP∗

x�exp �−λτε�Iτε<∞� + λEP∗
x

[∫ τε

0
e−λs�∗�Xs�ds

]



Then λR0∗
λ �∗ < �∗ follows once we show that

lim
ε→0

εα∗
EP∗

x�exp �−λτε�� > 0


Using Lemma 3.5 and Lemma A.6, for y = D∗�x� > ε and γ = 2 − α∗ > 2, for
some c > 0,

εα∗
EP∗

x�exp �−λτε�� ≥ y1−γ/2Kγ/2−1�
√

2λcy�
εγ/2−1Kγ/2−1�

√
2λcε�

→ C�λ� γ�y1−γ/2Kγ/2−1�
√

2λcy� > 0 as ε → 0

by the asymptotic (A.7).
Thus we have verified the first halves of (a) and (b). Now for the second

halves. We have

λR0∗
λ 1�x� = λEP∗

x

[∫ τ0

0
e−λtdt

]
= EP∗

x�1 − exp �−λτ0��
and the desired conclusions follow immediately from Corollary 3.6 (c).

Remark 7.3. The analogue Lemma 7.2 holds when α∗ and �∗ are replaced
by α and �, respectively.

We will need the following version of the resolvent equation below.

Proposition 7.4. Let α �= 0. For any λ > 0 and Radon measure m on
G\	0�,

R0
0m− λR0

λR
0
0m = R0

λm on G\	0�
and the analogue holds for R0∗

0 and R0∗
λ when α∗ �= 0.
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Proof. By Theorem 1 on page 496 in Kunita and Watanabe (1965), the
following resolvent equation holds for the resolvent kernels (recall R0

λh�x� =∫
G\	0� Gλ�x�y�h�y��0�y�dy). For λ > β ≥ 0,

Gβ�x�y� = Gλ�x�y� + �λ− β�
∫
G\	0�

Gβ�x� z�Gλ�z� y��0�z�dz

= Gλ�x�y� + �λ− β�
∫
G\	0�

Gλ�x� z�Gβ�z� y��0�z�dz


The proposition follows from this. The details are left to the reader. ✷

The next proposition describes a scaling property of the 0-resolvent kernel
of the adjoint process.

Proposition 7.5. Let α∗ �= 0. For any λ > 0 and x�y ∈ G\	0�,
G∗�λx�y� = G∗�x�y/λ�


Proof. For any bounded measurable f with compact support in G\	0�,∫
G∗�λx�y�f�y��0�y�dy = R0∗

0 f�λx�

= EP∗
λx

[∫ τ0

0
f�Xt�dt

]
= EP∗

x

[∫ λ2τ0

0
f�λXt/λ2�dt

]
(by scaling; see Remark 3.3)

= λ2EP∗
x

[∫ τ0

0
f�λXu�du

]
= λ2

∫
G∗�x�y�f�λy��0�y�dy

= λ2
∫
G∗

(
x�

z

λ

)
f�z��0

(
z

λ

)
λ−d dz


The latter is ∫
G∗

(
x�

z

λ

)
f�z��0�z�dz�

since �0�z/λ� = λd−2�0�z� by Lemma 3.1. Hence for each x ∈ G\	0� and
λ > 0,

G∗�λx�y� = G∗�x�y/λ� a.e. (in y�

Here a.e. is with respect to Lebesgue measure. The extension to all y follows
from a standard argument [cf. top of page 496 in Kunita and Watanabe (1965)].



BROWNIAN MOTION IN A CONE 1717

The final preliminary result we need is the next proposition. Here and in
the sequel, “a.e.” means a.e. with respect to Lebesgue measure

Proposition 7.6. Let α �= 0. Suppose f is nonnegative and measurable,
and for all λ > 0,

λR0
λf ≤ f a.e. on G\	0�


Then λR0
λf is increasing in λ and the limit is excessive for killed RBM. The

analogue holds for R0∗
λ and the adjoint of killed RBM when α∗ �= 0.

Proof. For β ≤ λ, by the resolvent equation,

βR0
βf = β�R0

λf− �β− λ�R0
βR

0
λf�

= λR0
λf+ �β− λ��R0

λf− βR0
βR

0
λf�

= λR0
λf+ �β− λ��R0

λf−R0
λ�βR0

βf��
= λR0

λf+ �β− λ�R0
λ�f− βR0

βf�
≤ λR0

λf�

since f− βR0
βf ≥ 0 a.e., by hypothesis.

Now we prove Theorem 7.1. By the Remark after the proof of Lemma 3.4,
we can replace α < 0 by α∗ > 0 and α ≥ 0 by α∗ ≤ 0. First consider existence.
For convenience, on G\	0�, define

F =
{

1� if α∗ ≤ 0,
�∗� if α∗ > 0

(7.2)

and define F�0� = 0. If α∗ = 0 then by Corollary 3.6(c), λR0∗
λ 1 = 1 on G\	0�.

Then combined with Lemma 7.2 we have for any α∗,

λR0∗
λ F = F on G\	0�
(7.3)

To show that

µ�dx� = F�x��0�x�dx

is an invariant measure for killed RBM, it is enough to check for each λ > 0
and bounded measurable h with compact support in G\	0�,∫

λR0
λh�x�µ�dx� =

∫
hµ�dx�
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However, by Theorem 4.1 and (7.3),∫
λR0

λh�x�µ�dx� =
∫
λR0

λh�x�F�x��0�x�dx

=
∫
λR0∗

λ F�x�h�x��0�x�dx

=
∫
F�x�h�x��0�x�dx

=
∫
h�x�µ�dx��

as desired.
Now we prove uniqueness. Let µ̃ be any invariant measure for killed RBM.

It is a simple matter to check that µ̃ is absolutely continuous with respect to
Lebesgue measure on G\	0�; hence we can write

µ̃�dx� = ϕ�x��0�x�dx
for some nonnegative measurable function ϕ.

Lemma 7.7. It is no loss to assume ϕ is excessive for the adjoint process of
killed RBM and for each λ > 0,

λR0∗
λ ϕ = ϕ a.e. on G\	0�


Proof. For any bounded measurable f with compact support in G\	0�, by
Theorem 4.1, ∫

fϕ�0 dx =
∫
λ�R0

λf�ϕ�0 dx

=
∫
λ�R0∗

λ ϕ�f�0 dx


Consequently,

λR0∗
λ ϕ = ϕ a.e. on G\	0�(7.4)

Define

ϕ1 = lim
λ→∞

λR0∗
λ ϕ�

an excessive function for the adjoint of killed RBM by Proposition 7.6. In
particular,

λR0∗
λ ϕ1 ≤ ϕ1 a.e.

Then a.e. on G\	0�,
ϕ = λR0∗

λ ϕ

= λR0∗
λ ϕ1 since ϕ = ϕ1 a.e.

≤ ϕ1
= ϕ
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Hence

λR0∗
λ ϕ1 = ϕ1 a.e. on G\	0�


To get the lemma, just replace ϕ by ϕ1. ✷

First assume α∗ �= 0. By Remark 6.4 there are nonnegative constants c1
and c2 together with a Radon measure m on G\	0� such that

ϕ = c1 + c2�
∗ +R0∗

0 m
(7.5)

Then a.e. on G\	0� we have

ϕ = λR0∗
λ ϕ = c1λR

0∗
λ 1 + c2λR

0∗
λ �∗ + λR0∗

λ R0∗
0 m
(7.6)

Equating (7.5) and (7.6) and collecting

c1�1 − λR0∗
λ 1� + c2��∗ − λR0∗

λ �∗� = λR0∗
λ R0∗

0 m−R0∗
0 m

= −R0∗
λ m by Proposition 7.4.

(7.7)

By Lemma 7.2, both terms on the left-hand side of (7.7) are nonnegative,
whereas the right-hand side is nonpositive. Therefore all the terms must be 0
(a.e. on G\	0�):

c1�1 − λR0∗
λ 1� = 0�(7.8)

c2��∗ − λR0∗
λ �∗� = 0�(7.9)

R0∗
λ m = 0
(7.10)

By (7.10) and Proposition 7.4 on page 500 in Kunita and Watanabe (1965),
m = 0. Thus

ϕ = c1 + c2�
∗


If α∗ < 0, then by Lemma 7.2 and (7.9), c2 = 0, yielding ϕ = c1 as desired. If
α∗ > 0 then by Lemma 7.2 and (7.8), c1 = 0, giving ϕ = c2�

∗ as needed. Thus
the invariant measure for killed RBM is unique when α∗ �= 0.

If α∗ = 0 then by the remark after the proof of Lemma 3.4, α = 0 and in
this case killed RBM is recurrent. By Azema, Kaplan-Duflo and Revuz (1967),
there is a unique invariant measure and we are done. ✷

8. Invariant measure for RBM. An invariant measure for RBM is de-
fined analogously to that for killed RBM, where now the measure is σ-finite
on G equipped with its Borel sets.

Theorem 8.1. Assume α < 2. Then RBM has a unique invariant measure
µ. Moreover,

µ�A� =


∫
A\	0�

�∗�0dx� α �= 0,∫
A\	0�

�0dx� α = 0,

where �∗ and �0 are from Lemmas 3.4 and 3.1, respectively.
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We break the proof into several parts. First note it is easy to show if an in-
variant measure for RBM exists, then it is absolutely continuous with respect
to Lebesgue measure on G. Hence we can write the invariant measure in the
form

ϕ�x��0�x�dx(8.1)

for some measurable ϕ on G, where we take �0�0� = 0. As in Section 5, we
use Rλ to denote the resolvent of RBM.

Case 1. α < 0. Then RBM started away from 0 never hits 0 (Theorem 2.1)
and we see killed RBM is RBM when started away from 0. Then for F = �∗

(since α∗ > 0) from (7.2) and any bounded measurable h with compact support
in G, ∫

G
λ�Rλh�F�0 dx =

∫
G\	0�

λ�Rλh�F�0 dx

=
∫
G\	0�

λ�R0
λh�F�0 dx

=
∫
G\	0�

λ�R0∗
λ F�h�0 dx

=
∫
G\	0�

hF�0 dx [by (7.3)]


This will yield existence of an invariant measure for RBM once we verify that
for any compact K ⊆ G, ∫

K\	0�
F�0 dx < ∞(8.2)

(this is to verify σ-finiteness of F�0 dx on G). But by (7.2) F is bounded on
compact subsets of G and by Lemma 3.1, �0�x� ≤ C�x�2−d, hence (8.2) holds.

As for uniqueness, let µ�dx� be an invariant measure for RBM. Then µ has
the form (8.1) and for any bounded measurable h with compact support in G,∫

G\	0�
λ�R0

λh�ϕ�0dx =
∫
G\	0�

λ�Rλh�ϕ�0dx

=
∫
G
λ�Rλh�µ�dx�

=
∫
G
hµ�dx�

=
∫
G\	0�

hϕ�0 dx


In particular, ϕ�0 dx on �G\	0�, Borels) is an invariant measure for killed
RBM. By Theorem 7.1 we must have ϕ = F a.e., and µ has the asserted form.
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Case 2. α = 0. In this case, by Theorem 2.2, RBM is recurrent. Hence by
Azema, Kaplan-Duflo and Revuz (1967), RBM has a unique invariant measure
µ. The argument above giving uniqueness can be used in this case to identify
µ. Again, the key is starting away from 0, RBM and killed RBM coincide.

Case 3. α > 0. In this case RBM and killed RBM no longer coincide and
the matter of identification is much trickier. Existence and uniqueness of an
invariant measure µ follow from the work of Azema, Kaplan-Duflo and Revuz
(1967) cited above, since in this case RBM is recurrent (Theorem 2.2). So what
remains is identification. As pointed out above, we can assume µ has the form
(8.1). Hence it suffices to show on G\	0�, for some constant c > 0,

ϕ = c�∗
(8.3)

Lemma 8.2. For any bounded measurable h with compact support in G,

Rλh�x� = R0
λh�x� +Rλh�0��1 − λR0

λ1�x��� x ∈ G\	0�


Proof. As in section 5, denote the law of RBM starting from x ∈ G by Qx.
For x ∈ G\	0�, by the strong Markov property,

Rλh�x� = EQx

[∫ ∞

0
e−λth�Xt�dt

]
= EQx

[∫ τ0

0
e−λth�Xt�dt

]
+EQx

[∫ ∞

τ0

e−λth�Xt�dt
]

= R0
λh�x� +EQx

[
exp�−λτ0�EQ0

[∫ ∞

0
e−λuh�Xu�du

]]
= R0

λh�x� +Rλh�0�EQx�exp �−λτ0��


(8.4)

But

λR0
λ1�x� = λEQx

[∫ τ0

0
e−λt1dt

]
= EQx�1 − exp �−λτ0��


Thus EQx�exp �−λτ0�� = 1 − λR0
λ1�x�, and using this in (8.4) yields the asser-

tion of the lemma.

Lemma 8.3. For λ > 0,

λR0∗
λ ϕ ≤ ϕ a.e.(8.5) ∫

G\	0�
�ϕ− λR0∗

λ ϕ��0 dx =
∫
G\	0�

�1 − λR0
λ1�ϕ�0 dx < ∞
(8.6)

Remark 1. Here and throughout “a.e.” means almost everywhere with re-
spect to Lebesgue measure.
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Remark 2. Formula (8.5) is the source of difficulty. We do not know a priori
that equality holds as we did in the killed case.

Proof. By Lemma 8.2, for bounded measurable h with compact support
in G,

∞ >
∫
G\	0�

hϕ�0dx =
∫
G
hµ�dx�

=
∫
G
λ�Rλh�µ�dx�

=
∫
G\	0�

λ�Rλh�ϕ�0dx

=
∫
G\	0�

λ�R0
λh�ϕ�0 dx+ λRλh�0�

×
∫
G\	0�

�1 − λR0
λ1�ϕ�0dx


(8.7)

In particular, ∫
G\	0�

�1 − λR0
λ1�ϕ�0dx < ∞


This gives half of (8.6). Also, for bounded measurable f with compact support
in G\	0�, ∫

G\	0�
λ�R0

λh�ϕf�0 dx =
∫
G\	0�

λ�R0∗
λ �ϕf��h�0dx


Letting f ↑ 1 on G\	0� gives∫
G\	0�

λ�R0
λh�ϕ�0 dx =

∫
G\	0�

λ�R0∗
λ ϕ�h�0dx


Using this in (8.7) and collecting terms gives∫
G\	0�

�ϕ− λR0∗
λ ϕ�h�0 dx = λRλh�0�

∫
G\	0�

�1 − λR0
λ1�ϕ�0 dx
(8.8)

By Remark 7.3, 1 − λR0
λ1 ≥ 0 a.e., and so (8.8) yields (8.5). Letting h ↑ 1 in

(8.8) and noting

λRλ1�0� = λEQ0

[∫ ∞

0
e−λtdt

]
= 1�

we also get the other half of (8.6).
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Lemma 8.4. It is no loss to assume ϕ is excessive for the adjoint of the killed
RBM.

Proof. By Proposition 7.6,

ϕ1 = lim
λ→∞

λR0∗
λ ϕ

is excessive for the adjoint of the killed RBM and by (8.5),

ϕ1 ≤ ϕ a.e.(8.9)

Letting λ → ∞ in (8.8) gives∫
G\	0�

�ϕ− ϕ1�h�0 dx = lim
λ→∞

λRλh�0�
[∫

G\	0�
�1 − λR0

λ1�ϕ�0 dx

]

(8.10)

Now by dominated convergence,

λRλh�0� = EQ0

[∫ ∞

0
λe−λth�Xt�dt

]
= EQ0

[∫ ∞

0
e−uh�Xu/λ�du

]
→ h�0� as λ → ∞


(8.11)

Also, by Remark 7.3 and Proposition 7.6, 1 − λR0
λ1 is decreasing in λ. Hence

by Lemma 8.3,

lim
λ→∞

∫
G\	0�

�1 − λR0
λ1�ϕ�0dx ≤

∫
G\	0�

�1 −R0
11�ϕ�0dx < ∞


Then for continuous h with compact support in G\	0�, using this and (8.11),
we see (8.10) gives ∫

G\	0�
�ϕ− ϕ1�h�0dx = 0


Combined with (8.9), ϕ = ϕ1 a.e. Hence we can replace ϕ by ϕ1, and so it is
no loss to assume ϕ is excessive for the adjoint of the killed RBM. ✷

By Lemma 8.4 and Remark 6.4, there are unique nonnegative constants c1
and c2 and a unique Radon measure on G\	0� such that

ϕ = c1 + c2�
∗ +R0∗

0 m
(8.12)

We will show m = 0 and then c1 = 0.

Lemma 8.5. For some real number ρ, for some unbounded countable set
N ⊆ �1�∞� and for some null (with respect to Lebesgue measure) set N,

ϕ�λx� = λρϕ�x�� λ ∈ N�x ∈ G\N
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Proof. For any λ > 0 and bounded measurable f with compact support
in G,∫

G\	0�
EQx�f�Xt��ϕ�λx��0�x�dx =

∫
G\	0�

[
EQz/λ�f�Xt��

]
ϕ�z��0�z�λ−2 dz

[by Lemma 3.1, �0�cz� = c2−d�0�z� for c �= 0� z �= 0]

=
∫
G\	0�

�EQz�f�λ−1Xλ2t���ϕ�z��0�z�λ−2 dz

[by scaling–cf. Lemma 2.3 in Kwon and Williams (1991)]

=
∫
G\	0�

f�λ−1z�ϕ�z��0�z�λ−2 dz

=
∫
G\	0�

f�x�ϕ�λx��0�x�dx


Hence ϕ�λx��0�x�dx is an invariant measure. By uniqueness, for some
c�λ� > 0,

ϕ�λx� = c�λ�ϕ�x� a.e.�(8.13)

where the null set depends on λ.
Given any λ�µ > 0, we have a.e.,

c�µλ�ϕ�x� = ϕ�µλx� = c�µ�ϕ�λx� = c�µ�c�λ�ϕ�x��
where the null set depends on µ and λ. Then

c�µλ� = c�µ�c�λ�

Define

c̃�t� = ln c�et�

Then c̃�t + s� = c̃�t� + c̃�s�. Hence for each positive integer n, c̃�nt� = nc̃�t�.
Fix t1 > 0 and set ρ = c̃�t1�/t1. Notice nc̃

(
t1/n

) = c̃�t1� = ρt1, and this yields

c̃

(
t1
n

)
= ρ

t1
n



It follows that for any positive integer m,

c̃

(
m

n
t1

)
= m

n
ρt1


In particular,

c̃�t� = ρt for t ∈ t1Q
+�

where Q+ is the set of positive rational numbers. From this we get

c�λ� = exp�c̃�lnλ��
= exp�ρ lnλ�� lnλ ∈ t1Q

+

= λρ� λ ∈ et1Q
+
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The desired conclusion follows from this and (8.13).

For any λ > 0, by Proposition 7.5, for m̃λ�A� = m�λA�,

R0∗
0 m�λx� =

∫
G\	0�

G∗�λx�y�m�dy�

=
∫
G\	0�

G∗�x�y/λ�m�dy�
=

∫
G\	0�

G∗�x�y�m̃λ�dy�

= R0∗
0 m̃λ�x�


Using this in (8.12),

ϕ�λx� = c1 + c2�
∗�λx� +R0∗

0 m�λx�
= c1 + c2λ

α∗
�∗�x� +R0∗

0 m̃λ�x��
(8.14)

where we have also used that �∗�λx� = λα∗
�∗�x�. But (8.12) also gives

λρϕ�x� = λρc1 + c2λ
ρ�∗�x� + λρR0∗

0 m�x�
(8.15)

By Lemma 8.5 and the uniqueness of the representation (8.12), comparing
(8.14) with (8.15), we must have for λ ∈ N,

c1 = c1λ
ρ�(8.16)

c2λ
α∗ = c2λ

ρ�(8.17)

m̃λ = λρm
(8.18)

Then (8.18) implies

m�λA� = λρm�A�� λ ∈ N
(8.19)

Lemma 8.6. m ≡ 0.

Proof. By Proposition 7.4, for any bounded measurable h with compact
support in G (recall G∗

λ is the resolvent kernel with respect to �0 dx defined
at the beginning of Section 6),∫
G\	0�

�R0∗
0 m−λR0∗

λ R0∗
0 m�h�0 dx =

∫
G\	0�

�R0∗
λ m�h�0 dx

=
∫
G\	0�

[∫
G\	0�

G∗
λ�x�y�m�dy�

]
h�x��0�x�dx

=
∫
G\	0�

[∫
G\	0�

Gλ�y�x�h�x��0�x�dx
]
m�dy�

=
∫
G\	0�

R0
λh�y�m�dy�
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Hence by (8.8) and (8.12),

λRλh�0�
[∫

G\	0�
�1 − λR0

λ1�ϕ�0 dx

]
=

∫
�ϕ− λR0∗

λ ϕ�h�0 dx

= c1

∫
�1 − λR0∗

λ 1�h�0 dx+ c2

∫
��∗ − λR0∗

λ �∗�h�0 dx

+
∫
G\	0�

�R0∗
0 m− λR0∗

λ R0∗
0 m�h�0 dx

= c1

∫
G\	0�

�1 − λR0∗
λ 1�h�0 dx+ c2

∫
G\	0�

��∗ − λR0∗
λ �∗�h�0 dx

+
∫
G\	0�

�R0
λh��y�m�dy�

(8.20)

To get a contradiction, assume m �= 0. By Lemma 7.2, the first two terms
on the right-hand side of (8.20) are nonnegative, hence

λRλh�0�
∫
G\	0�

�1 − λR0
λ1�ϕ�0dx ≥

∫
G\	0�

R0
λh�y�m�dy�
(8.21)

By Remark 7.3, 1 − λR0
λ1 ≥ 0, and so by Proposition 7.6,

1 − λR0
λ1 ≤ 1 −R0

11 for λ ≥ 1


Using this in (8.21) gives (after multiplying by λp/2)

λ1+p/2Rλh�0�
∫
G\	0�

�1 −R0
11�ϕ�0 dx

≥ λp/2
∫
G\	0�

R0
λh�y�m�dy�� λ ≥ 1


(8.22)

By monotone convergence, we can assume h is nonnegative with unbounded
support. The plan is to pick h such that as λ → ∞, the left-hand side of (8.22)
is finite and the right-hand side is not. This contradiction will establish that
m ≡ 0, as claimed.

To this end, choose R > 0 such that

m��x� > R� > 0


By Lemma A.7 in the Appendix and Corollary 3.6(b), for

h�x� = D�x�p



BROWNIAN MOTION IN A CONE 1727

with p > �α− 1�/2 ∧ 0 such that 3p/2 + ρ− 1 > 0, for λ ∈ N we have for some
constant c independent of λ ≥ 1,∫

G\	0�
R0

λh�x�m�dx� ≥ cλ−1
∫
I��x� > λR�D�x�pm�dx�

≥ cλ−1
∫
I��x� > λR��x�pm�dx�

�since c1�x� ≤ D�x� ≤ c2�x��

= cλ−1
∫
I

(∣∣∣∣xλ
∣∣∣∣ > R

)∣∣∣∣xλ
∣∣∣∣pλpm�dx�

≥ cRpλp−1m��x� > λR�
= cRpλp−1λρm��x� > R� �by �8
19��


Multiplying by λp/2 and letting λ → ∞, λ ∈ N gives

lim inf
λ→∞�λ∈N

λp/2
∫
G\	0�

R0
λh�x�m�dx� = ∞ since

3p
2

+ ρ− 1 > 0
(8.23)

On the other hand, for λ ≥ 1,

Rλh�0� ≤ c3E0

[∫ ∞

0
exp �−c4λt�Yp

t dt

]
(Corollary 2.4)

≤ cλ−p/2−1 (Lemma A.8)�

where c3� c4 and c are independent of λ ≥ 1. Multiplying by λ1+p/2 and letting
λ → ∞, λ ∈ N gives

lim sup
λ→∞�λ∈N

λ1+p/2Rλh�0� < ∞


Using this, (8.23) and (8.6), we see (8.22) yields a contradiction. Thus m ≡ 0.

Now we complete the proof of Theorem 8.1. Recall that this reduces to
checking (8.3). By Lemma 8.6 and (8.12), ϕ = c1 +c2�

∗. Since c1 and c2 cannot
be 0 simultaneously, by (8.16), (8.17) either

c1 = 0� c2 �= 0 or(8.24)

c1 �= 0� c2 = 0 or(8.25)

c1 �= 0� c2 �= 0� 1 − λρ = 0� λα∗ − λρ = 0 for λ ∈ N
(8.26)

If (8.25) holds, then ϕ = c1 and (8.20) becomes

λRλh�0�
[∫

G\	0�
�1 − λR0

λ1�c1�
0 dx

]
= c1

∫
G\	0�

�1 − λR0∗
λ 1�h�0 dx


Since α > 0, by Remark 7.3 the left-hand side is nonzero. On the other hand,
by the remark after the proof of Lemma 3.4, α∗ < 0. Then by Lemma 7.2, the
right-hand side of the last equation is 0. Thus (8.25) cannot hold.
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If (8.26) holds, then α∗ = ρ = 0 and by the remark after the proof of Lemma
3.4, α = 0, a contradiction. Hence (8.26) does not hold either.

Thus we have shown (8.24) holds and so ϕ = c1�
∗, giving (8.3) as needed.

✷

Remark 8.7. In either case of RBM or killed RBM, by Theorems 7.1 and
8.1 and Example 4.6, explicit knowledge of the invariant measure in the case
of the circular cone reduces to explicit determination of �∗ from Lemma 3.4.
However, this requires explicit solution of the problem

�Sd−1ψ∗ + α∗�α∗ + 2 − d�ψ∗ = 0 in ��

n · ∇Sd−1ψ∗ − α∗βψ∗ = 0 on ∂��

where ψ∗ and α∗ are to be found. Only in very special cases of this special case
can this be done. See the last paragraph on page 752 in Kwon and Williams
(1991).

APPENDIX

Bessel processes. For γ > 0 let

Lγ = 1
2

[
d2

dx2
+ γ − 1

x

d

dx

]
with domain 	 �Lγ� consisting of all f ∈ C2

b��0�∞�� such that for some con-
stants c and 0 < a1 < a2,

f�x� = cx2 for x ∈ �0� a1�� f�x� = 0 for x ∈ �a2�∞� and

Lγf�0� = c�γ − 1�

There exists a unique conservative diffusion process Yt generated by Lγ which
is called the Bessel process with parameter γ.

A more useful characterization of Yt is the following: Y2
t is the (pathwise)

unique solution of

dUt = 2�Ut ∨ 0�1/2 dBt + γdt�

U0 = Y2
0�

(A.1)

where Bt is one-dimensional Brownian motion.
The transition density pγ�t� x� y� of Yt is known,

pγ�t� x� y� = exp�−�x2 + y2�/2t�
t�xy�γ/2−1

yγ−1Iγ/2−1

(
xy

t

)
where

Iν�x� =
(
x

2

)ν ∞∑
n=0

�x/2�2n

n!P�ν + n+ 1�
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is the modified Bessel function. All this can be found in Ikeda and Watanabe
(1989) pages 237–240.

Using (A.1) is easy to see that a Bessel process Yt is well-defined for any
γ ∈ � up to the first time 	0� is hit, and Yt has the following semimartingale
representation up to T0 = inf	t ≥ 0
 Yt = 0�. For some one-dimensional
Brownian motion βt,

dYt = dβt +
γ − 1
2Yt

dt� t < T0
(A.2)

It is routine to show that starting away from 0 (i.e., Y0 �= 0),

T0 < ∞ a.s. if γ < 2�
T0 = ∞ a.s. if γ ≥ 2
(A.3)

In what follows, Ey will denote expectation associated with Y0 = y.

Lemma A.1. (a) Assume the parameter of Yt is γ �= 2. For 0 < a < b there
is C�a� b� > 0 such that

Ey

[∫ T0

0
I�a�b��Yu�du

]
is bounded for y > 0(A.4)

and

�A
5� Ey

[∫ T0

0
I�a�b��Yu�du

]
≤ C�a� b�y2−γ� y > 0


(b) If γ = 2, the latter expectation is infinite for all y > 0.
(c) If 0 < γ �= 2, then I�a� b� can be replaced by I�0� b� in (A.4) and (A.5).

Proof. Let 	L�t� x�
 t ≥ 0� x ≥ 0� be the local time process of Yt,∫ t

0
f�Yu�du =

∫ ∞

0
f�x�L�t� x�m�x�dx�

where m�x� is the density of the speed measure with respect to Lebesgue
measure,

m�x� =
 2xγ−1

�γ − 2� � γ �= 2

2x� γ = 2.

[see Borodin and Salminen (1996), pages 20 and 114].
For Tδ = inf	t ≥ 0
 Yt = δ�, the distribution of m�x�L�Tε ∧ Tm�x� is

known. See Borodin and Salminen (1996), formula 3.3.2 on page 395 (for γ > 2)
and formula 3.3.2 on page 303 (for γ = 2). The former is also valid for γ < 2
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(using similar methods). Computing the expectation Ey of m�x�L�Tε∧Tm�x�
and then letting M → ∞ and δ → 0 in these formulas yields for y > 0,

If γ < 2 then m�x�Ey�L�T0� x�� =


2x

2 − γ
� x ≤ y

2
2 − γ

xγ−1y2−γ y < x;

If γ = 2 then m�x�Ey�L�∞� x�� = ∞ and

If γ > 2 then m�x�Ey�L�∞� x�� =


2

γ − 2
xγ−1y2−γ� x ≤ y

2x
γ − 2

� y < x.

Using the occupation formula given above, the desired conclusions follow
easily. ✷

The differential equation

z2d
2w

dz2
+ z

dw

dz
− �z2 + ν2�w = 0

has the modified Bessel functions Iν�z� and Kν�z� as linearly independent
solutions [see Abramowitz and Stegun (1972) page 374 ff]. Also, Iν�z� and
Kν�z� are positive when z > 0 and ν > −1. The following asymptotics will be
used below.

Iν�z� ∼
(
z

2

)ν

P�ν + 1� as z → 0 �ν �= −1�−2� 
 
 
��(A.6)

Kν�z� ∼ 1
2
P�ν�

(
z

2

)−ν

as z → 0 �Re ν > 0��(A.7)

Iν�z� ∼ ez√
2πz

as z → ∞�(A.8)

Kν�z� ∼
√

π

2z
e−z as z → ∞
(A.9)

Here f ∼ g means f/g → 1.

Lemma A.2. Let h ≥ 0 be bounded on �0�∞� and piecewise continuous on
�0�∞�. Then for ν = ∣∣γ

2 − 1
∣∣ �= 0 and

f�y� =
[∫ ∞

y
uγ/2h�u�Kν�

√
2λu�du

]
y1−γ/2Iν�

√
2λy�

+
[∫ y

0
uγ/2h�u�Iν�

√
2λu�du

]
y1−γ/2Kν�

√
2λy��

(A.10)

Ey

[∫ T0

0
e−λth�Yt�dt

]
= 2f�y�� y > 0
(A.11)
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Proof. First assume h is bounded and continuous on �0�∞�. By (A.9),
(A.6) and the growth conditions on h, the integrals in f are well defined.
The Wronskian W�Kν�z�� Iν�z�� is 1/z, so it is a routine matter to verify that
f ∈ C2��0�∞�� and satisfies

f′′�y� + γ − 1
y

f′�y� − 2λf�y� = −h�y�� y > 0


By Itô’s formula, stochastic calculus and optional stopping, for 0 < ε < y < M,

Ey�exp �−λ�t ∧Tε ∧TM��f�Y�t ∧Tε ∧TM���

= f�y� − 1
2Ey

[∫ t∧Tε∧TM

0
e−λuh�Yu�du

]



Letting t → ∞ yields

Ey�exp−λTεf�ε�ITε<TM
� +Ey�exp�−λTM�f�M�ITM<Tε

�

= f�y� − 1
2Ey

[∫ Tε∧TM

0
e−λuh�Yu�du

]



By the asymptotics (A.6)–(A.9), f is bounded on �0�∞� and

lim
y→0

f�y� = 0 if γ < 2
(A.12)

As ε → 0, Tε → T0 and T0 is ∞ if γ > 2, by (A.3). Then we can let ε → 0 to
get

Ey�exp−λTMf�M�ITM<T0
�

= f�y� − 1
2Ey

[∫ T0∧TM

0
e−λuh�Yu�du

]



Since TM → ∞ as M → ∞, in either case γ < 2 or γ > 2, we get

f�y� = 1
2Ey

[∫ T0

0
e−λuh�Yu�du

]
�

as desired.
Next assume h is bounded on �0�∞� and piecewise continuous on �0�∞�.

The only trouble is when we use Itô’s formula above. However, f ∈ C1�0�∞�
and the second derivative is piecewise continuous on �0�∞� and bounded near
its discontinuities. Since Yt spends zero Lebesgue time at singletons in �0�∞�,
a simple approximation argument shows our formula above obtained from Itô’s
formula is valid in this case too. The rest of the proof goes through. ✷

Lemma A.3. Assume the parameter γ of Yt satisfies γ < 2 and let λ > 0.
Then as a → 0,

Ey

[∫ T0

0
e−λtI�0� a��Yt�dt

]
→ 0(A.13)
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uniformly for y in sets of the form �0�A�. Also, as b → ∞,

Ey

[∫ T0

0
e−λtI�b�∞��Yt�dt

]
→ 0(A.14)

uniformly for y in sets of the form �0�A�.
If γ > 2 we can replace T0 by ∞ and �0�A� by �0�A�.

Proof. We prove (A.13) for γ �= 2, then specialize to γ > 2. For a > 0 let

h = 2I�0� a�
in (A.10). Then by Lemma A.2,

Ey

[∫ T0

0
e−λuI�0� a��Yu�du

]
= f�y�
(A.15)

Given A > 0, let a < A ∧ 1. Then for y ∈ �0� a�,

f�y� = 2
[∫ a

y
uγ/2Kν�

√
2λu�du

]
y1−γ/2Iν�

√
2λy�

+ 2
[∫ y

0
uγ/2Iν�

√
2λu�du

]
y1−γ/2Kν�

√
2λy�


(A.16)

By making a smaller if necessary, by the asymptotics (A.6)–(A.7) we get

Kν�
√

2λy� ≤ Cy−ν� y ≤ a�(A.17)

Iν�
√

2λy� ≤ Cyν� y ≤ a
(A.18)

Here and in what follows C can change from line to line but is independent
of a. Then

sup
0<y≤a

f�y� ≤ sup
0<y≤a

C

[(∫ a

0
uγ/2u−ν du

)
y1−γ/2yν

+
(∫ y

0
uγ/2uνdu

)
y1−γ/2y−ν

]
≤ Ca3/2


(A.19)

On the other hand, for y ∈ �a�A�,

f�y� = 2
[∫ a

0
uγ/2Iν�

√
2λu�du

]
y1−γ/2Kν�

√
2λy�

≤ 2
[∫ a

0
uγ/2Iν�

√
2λu�du

]
y1−γ/2Cy−ν�

where we have used that Kν�
√

2λy�/y−ν is bounded on �0�A�. If γ < 2 then
ν = 1 − γ/2 and by (A.18) for y ∈ �a�A� we get

f�y� ≤ C

[∫ a

0
uγ/2u1−γ/2du

]
y1−γ/2y−1+γ/2

= Ca2
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If γ > 2 then ν = γ/2 − 1 and by (A.18) for y ∈ �a�A�,

f�y� ≤ C

[∫ a

0
uγ/2uγ/2−1 du

]
y1−γ/2y−γ/2+1

≤ Ca2


In any case,

sup
a<y≤A

f�y� ≤ Ca2
(A.20)

Combining this with (A.19),

sup
0<y≤A

f�y� ≤ Ca3/2


The limit in (A.13) for γ �= 2 is an immediate consequence, using (A.15).
Now specialize to γ > 2. Then T0 ≡ ∞ and for y > 0, (A.15) becomes

Ey

[∫ ∞

0
e−λuI�0� a��Yu�du

]
= f�y�
(A.21)

It is a routine matter to show the functional

ω →
∫ ∞

0
e−λuI�0� a��ωu�du

is continuous on the set{
ω: �0�∞� → �0�∞�:ω is continuous and

∫ ∞

0
I	a��ωu�du = 0

}



The law of Y with Y0 = 0 is supported on this set, so by an extension of the
continuous mapping theorem [Billingsley (1968), Theorem 5.1],

lim
y→0

f�y� = lim
y→0

Ey

[∫ ∞

0
e−λuI�0� a��Yu�du

]
= E0

[∫ ∞

0
e−λuI�0� a��Yu�du

]
�

where we also use the fact that the law of Y with Y0 = y ≥ 0 being uniquely
determined implies that the law of Y with Y0 = y converges to the law of Y
with Y0 = 0 if y → 0. Hence by (A.16) and the asymptotics (A.6), (A.7),

E0

[∫ ∞

0
e−λuI�0� a��Yu�du

]
= C

∫ a

0
uγ/2Kν�

√
2λu�du

≤ Ca2


Then we can replace T0 and �0�A� in (A.13) by ∞ and �0�A�, respectively.
The proof of (A.14) and its extension for γ > 2 can be handled similarly. ✷

Lemma A.4. Assume the parameter γ of Yt satisfies 0 < γ < 2. Then for
λ > 0,

Ey

[∫ T0

0
e−λu du

]
→ 0 as y → 0
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Proof. Taking h ≡ 2 in Lemma A.2, for the corresponding f in (A.10),

Ey

[∫ T0

0
e−λu du

]
= f�y� → 0 as y → 0

by (A.12). ✷

Lemma A.5. Assume the parameter γ of Yt satisfies γ < 2. Then for any
λ > 0 and M > 0,

Ey

[
exp �−λTM�ITM<T0

] = y1−�γ/2�I1−�γ/2��
√

2λy�
M1−�γ/2�I1−�γ/2��

√
2λM� � 0 < y < M


Proof. Direct substitution and the fact that

z2I′′
ν�z� + zI′

ν�z� − �z2 + ν2�Iν�z� = 0


shows h�y� = y1−�γ/2�I1−�γ/2��
√

2λy� satisfies

1
2
h′′�y� + γ − 1

2y
h′�y� = λh�y�


Since γ < 2, h�0� = 0 and it is clear that h > 0 on �0�∞�. Hence by Itô’s
formula, stochastic calculus and optional stopping, for ε < y < M,

h�y�
h�M� = Ey�exp �−λ�t ∧Tε ∧TM��h�Y�t ∧Tε ∧TM��/h�M��


Letting t → ∞, then ε → 0, using h�0� = 0, we get

h�y�
h�M� = Ey�exp �−λ�T0 ∧TM��I�TM < T0��

= Ey�exp�−λTM�ITM<T0
��

as desired. ✷

Lemma A.6. Assume the parameter of Yt is γ > 2. Then for any λ > 0 and
ε > 0,

Ey�exp �−λTε�� =
y1−�γ/2�Kγ/2−1�

√
2λy�

ε1−�γ/2�Kγ/2−1�
√

2λε� � y > ε


For the proof, see formula 2.0.1 on page 387 of Borodin and Salminen (1996).

Lemma A.7. Assume the parameter of Yt is γ > 0. Given k > 0 and p >
�1 − γ�/2 ∧ 0 there is a constant c > 0 such that

Ey

[∫ T0

0
e−λt�Yt�pdt

]
≥ cλ−1yp� λ ≥ k�y ≥ 1




BROWNIAN MOTION IN A CONE 1735

Proof. By applying Lemma A.2 to truncations �y�p ∧M and letting M →
∞, we have

Ey

[∫ T0

0
e−λtY

p
t dt

]
= 2f�y��(A.22)

where

f�y� =
[∫ ∞

y
uγ/2+pKν�

√
2λu�du

]
y1−γ/2Iν�

√
2λy�

+
[∫ y

0
uγ/2+pIν�

√
2λu�du

]
y1−γ/2Kν�

√
2λy��

all integrals being finite by the asymptotics (A.6)–(A.9). Changing variables
s = √

2λu and using (A.8), (A.9), for some positive constants c1 and c2, for
λ ≥ k and y ≥ 1,

f�y� = �
√

2λ�−γ/2−p−1
[[∫ ∞

√
2λy

sγ/2+pKν�s�ds
]
y1−γ/2Iν�

√
2λy�

+
[∫ √

2λy

0
sγ/2+pIν�s�ds

]
y1−γ/2Kν�

√
2λy�

]
= �

√
2λ�−2−p

[[∫ ∞
√

2λy
sγ/2+pKν�s�ds

]
�
√

2λy�1−γ/2Iν�
√

2λy�

+
[∫ √

2λy

0
sγ/2+pIν�s�ds

]
�
√

2λy�1−γ/2Kν�
√

2λy�
]

≥ �
√

2λ�−1−p

[
c1

[∫ ∞
√

2λy
sγ/2+p−1/2e−s ds

]
�
√

2λy��1−γ�/2 exp�
√

2λy�

+c2

[∫ √
2λy

0
sγ/2+p−1/2es ds

]
�
√

2λy��1−γ�/2 exp�−
√

2λ�y
]



Since

lim
z→∞

∫∞
z sγ/2+p−1/2e−s ds

zγ/2+p−1/2e−z
= 1 and

lim
z→∞

∫ z
0 sγ/2+p−1/2es ds

zγ/2+p−1/2ez
= 1�

we end up with

f�y� ≥ cλ−1yp for λ ≥ k and y ≥ 1�

where c is independent of such λ and y. Combined with (A.22), the conclusion
of the lemma follows. ✷

Lemma A.8. Let γ > 0 and p > 0. Then for some constant c > 0,

E0

[∫ ∞

0
e−λtY

p
t dt

]
= cλ−1−p/2 for λ ≥ 1
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Proof. From the expression at the beginning of this section for the tran-
sition density of the Bessel process and the asymptotic (A.6)

pγ�t�0� y� = c�γ�t−γ/2yγ−1 exp �−y2/2t�
where c�γ� is independent of y and t. Then by Fubini’s theorem,

E0

[∫ ∞

0
e−λtY

p
t dt

]
=

∫ ∞

0
e−λt

[∫ ∞

0
c�γ�t−γ/2yγ−1 exp �−y2/2t�yp dy

]
dt

= c�γ�
∫ ∞

0
tp/2e−λt

[∫ ∞

0
uγ−1+p exp �−u2�du

]
dt

= c�γ�
∫ ∞

0
tp/2e−λt dt

= c�γ�λ−1−p/2�

where c�γ� can change from line to line, but is independent of y and t.
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