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Let ¢, &, ... bei.i.d. real-valued random variablesand S, = &; +---+
&, In the case when the distribution of ¢ is close to a stable («) law for some
a € (0,1) U (1,2), we investigate the asymptotic behavior in distribution
of the maximum of normalized sums, max;_; _, k~/*S,. This completes
the Darling—Erdds limit theorem for the case a = 2.

1. Introduction. Let ¢, &,,... bei.i.d. real-valued random variables; we
write S, = &, +- - -+ &, for the partial sums. Darling and Erdés [6] have proven
the following limit theorem for the maximum of normalized sums: if E(£) = 0,
E(¢2) =1 and E(|£[®) < oo, then, for every x € R,

(1.1) lim P(kirllax kY28, < xa,(n) + bz(n)) — exp{—e~*},

,,,,,

with a,(n) = (2log log n)~%? and
by(n) = (2loglog n + % log log log n — £ log(4))ay(n).

Several extensions to cases when the assumption on the third moment is
weakened have been obtained since, culminating with Einmahl [9] who proved
that when ¢ is a centered variable with variance 1, (1.1) holds if and only if

E(&2, €] > t) = o(loglogt) ast— oc.

In the case when the foregoing condition fails, Einmahl also proved a general
Darling—Erd&s type theorem by slightly changing the normalization. We refer
to [10] for an extension of (1.1) to martingales and further references.

The finite-variance case being completely treated, it is interesting to con-
sider the infinite-variance case. Typically, we should like to obtain an analogue
of (1.1) in the situation where the variable ¢ belongs to the normal domain of
attraction of some (strictly) stable law of index a € (0, 2), that is, when the
normalized partial sums n=Y/%S, converge in distribution towards a nonde-
generate law which is then a strictly stable law of index «. Here is our first
result in this vein.

THEOREM 1. Suppose that, for some « € (0, 1)U(1, 2) and some real number
¢ > 0, the distribution function F(x) = P(¢ < x) fulfils

1-F(x)~cx® and F(—x)=0(x"9), X — 00,
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and that E(¢) =0 if & > 1. Then, for every x > 0, we have

lim ]P’(krrllax k~YeS, < x(log n)”‘“) =exp{—cx“}.

n—oo \ k=1,...,
Note that the hypotheses of Theorem 1 are strictly weaker than the require-
ment that ¢ belongs to the normal domain of attraction of a strictly stable
law of parameters (e, B) with « € (0,1) U (1,2) and B € (-1, 1]. Theorem 1
relies on a large deviation result a la Nagaev (see [13]). More precisely, the hy-
potheses of Theorem 1 ensure that the tail distribution of the normalized sum
n~Y/«S, is equivalent to that of the normalized extreme of the n first steps,
n~Y*max;_; _, &, uniformly as n — co. Loosely speaking, this entails that,
,,,,, . k%S, is close
to the extreme of the normalized n first steps, max;_;
totic behavior in distribution of the latter quantity is easily determined, and
this yields Theorem 1.

In comparison with (1.1), the asymptotic behavior of the maximum of nor-
malized sums stated in Theorem 1 is thus quite crude; and intuitively, this is
mainly due to the prevalence of the contribution of the large increments. The
next purpose of this work is to show that when the upper tail distribution of
the step is much smaller than the lower tail, the maximum of the normalized
sums has again a smooth asymptotic behavior as in (1.1). Here is the precise
statement.

THEOREM 2. Suppose that E(¢) = 0 and that there are a € (1,2) and ¢ > 0
such that the distribution function F(x) = P(¢ < x) fulfills

F(—x)=cx™+0(x*®) and 1- F(x)= O0(x7*9), x — 00

for some ¢ > 0. Then, for every x € R, we have

lim P(kn;ax k1S, < xa, (n)+ ba,c(n)) = exp{—e "},
with
(T2 ~a) 1/a
@a,e(n) = ( log log n )
and
a 1 1
b, (n)=a, C(n)( loglogn + = logloglogn — = |Og(2a77)>.
’ ’ a—1 2 2

The hypotheses of Theorem 2 ensure that n=/%S, converges in distribution
towards a completely asymmetric stable law of index «, but they are more re-
strictive than this. Presumably, they can be weakened; | have made no attempt
at obtaining the most general result.

Just as for the Darling—Erdds theorem, the proof of Theorem 2 is divided
into two parts. First, one establishes an analogue of Theorem 2 when the
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normalized sum is replaced by some completely asymmetric stable Ornstein—
Uhlenbeck process; see Theorem 3 below. Then one deduces Theorem 2 by
an argument involving strong approximation. More precisely, recall that a
(strictly) stable Lévy process is a cadlag process X = (X,: ¢ > 0) with sta-
tionary and independent increments, which has the scaling property: for some
real number « € (0, 2] known as the index, the variables X, and t/* X, have
the same law for every ¢ > 0. The scaling property enables us to introduce the
stationary process Y = (Y,: —oo <t < o0):

Yt = e_tXea:,

which will be referred to as the stable Ornstein—-Uhlenbeck process in the
sequel. One says that X (or Y) is completely asymmetric if it has either no
negative jumps or no positive jumps. More precisely, X (or Y) is called spec-
trally positive in the first case, and spectrally negative in the second case.
Our main task in this work will be to prove the following limit theorem for
extremes of spectrally negative stable Ornstein—Uhlenbeck processes.

THEOREM 3. Suppose that X is a spectrally negative stable Lévy process
of index « € (1, 2], with Laplace transform

E(exp(¢X,)) =exp{rq¢®}, ¢>0
for some A > 0. Then, for every x € R, we have

lim IP’( sup Y, < xa(t) +b(t) = exp( \/—e x)

t—>00 O<s<t

with

b(t) = (af

When one specializes Theorem 3 to the Brownian case « =2 and A = 1/2,
one of course recovers the original result of Darling and Erdds [6]. There
are two natural routes for trying to establish Theorem 3. First, one might
use directly extreme value theory for stationary processes (see [1]). Second,
one might invoke the expression of the stable Ornstein—Uhlenbeck process in
terms of moving averages and then use results of Rootzén [16, 17]. However,
neither of these approaches seems easy when working details, and we will
follow here an alternative path.

Recall that a spectrally positive stable Lévy process of index less than 1
is monotone increasing, and is simply called a subordinator. It is well known
that the first-passage process of a spectrally negative stable Lévy process of
index a € (1, 2] is a stable subordinator of index 1/«, and this enables us to
reduce Theorem 3 to the following companion for stable subordinators.

and

1
1 logt+ > log log t)a(t).
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THEOREM 4. Let X be a stable subordinator with Laplace transform

E(exp(—¢X1)) = exp{-Aq¢"},  ¢>0
for some a € (0,1) and A > 0. For every x € R, we have

: . a
i, . = et 00) =07
with
(@A =)\
a(t) = ( log ¢
and

b(t) = ( “ logt — 1 log log t)a(t).
l-« 2

The method for proving Theorem 4 can be viewed as a Markovian coun-
terpart of that of Berman [2] for extremes of stationary Gaussian processes.
Rootzén [18] has also used a closely related idea for stationary Markov chains.
More precisely, we exploit the fact that Y is a stationary Markov process which
hits points. Roughly speaking, we then decompose the path of the Ornstein—
Uhlenbeck process into i.i.d. excursions away a point, say 1. This reduces the
study to a usual extreme values problem involving the depth of each excur-
sion. Thus, the main technical issue is the estimation of the tail distribution
of the depth of the excursion of Y. This is done by investigating the occupation
time of the excursion near 0.

The rest of this paper is organized as follows. Theorem 1 is proven in Sec-
tion 2. Section 3 is divided into four subsections: the first is devoted to ele-
mentary properties of the Ornstein—Uhlenbeck process associated with a sta-
ble subordinator, which are used in the second subsection for studying the
excursions. Theorem 4 is proven in the third, and Theorem 3 is deduced from
Theorem 4 in the fourth subsection. Finally, Section 4 presents the strong
approximation result which enables us to derive Theorem 2 from Theorem 3;
and some comments and complements are presented in Section 5.

2. Proof of Theorem 1. Throughout this section, we suppose that the
hypotheses of Theorem 1 hold. To start with, we recall that they ensure that
the normalized partial sums are stochastically bounded, that is,

(2.2) lim maxP(n"'%|S,| > x) = 0.

X—>00 nzl

See, for instance, the compactness lemma ([12], page 309). We also observe
that

(2.3) IP( J_Lr;axkgj > yk”“) ~cy ™ asy — oo, uniformly in k € N.

The proof of Theorem 1 relies on a standard large deviation result for ran-
dom walks.
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LEMMA 1. We have, as (k, y) — oo,

cy * ~P(S), > yk'*) ~ IP’(

=L,

PrROOF. The first equivalence is mainly due to Tkachuk [21]; see [22],
Corollary 1.1.1, page 36, for an accessible reference, and also [8] for a re-
cent extension. The second is doubtless well known; we sketch its derivation
from the first for the sake of completeness. As S;, < max;_; _; S;, we only
need to consider the upper bound. Write T' = min{j: S; > vk}, so

IP’(jZlaxk S; > ykY*) =B(T < k).

.....

For every fixed ¢ > 0, we have, by an application of the Markov property,

k
P(S[(l+€)ak] > (1 - s)ykl/“) > Z IP(T = j)IP(S[(1+s)“k]—j > —Sykl/a).
J=1

Making use of (2.2), it is readily seen that, for every n > 0, provided that %
and y are large enough, one has

]P)(S[(lJrs)“k]fj > —8ykl/a) >1- ui for ] =1,..., k.
It now follows from the first part of the lemma that
limsupP(T < k)y* < (1 —n) te(1+&)*(1—&),

k, y—>o00

and the proof is now complete. O

To state the next consequence of Lemma 1, it will be convenient to use the
following notation. Given two families (4;),.; and (B;);.; of events, we write
A; ~ B; if P(A;AB;) = o(P(4;)) (as i goes to some limit point of I), where
AAB stands for the symmetric difference of A and B, namely, the set of points
lying in A or in B but not both.

COROLLARY 1. One has

=1,..., Jj=1,..,
as (y, k) — oo.

PrOOF. Because for every fixed £ > 0, S; > yk'/* as soon as both ¢; >
(14 &)ykt/*and S; ; > —eyk?/®, we have

........

A

k
P(¢: > (1+&)yk¥*, S, | < —eykY®
J J
1

J
< (1= F((1+ &)yk")) ,rqaxk]P’(Sj < —eykt).
J:

yeees
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Since
k(L —F((1+ &)yk"*)) ~c(1+&)*y ™™ as y — oo, uniformly in & > 1,

we can use (2.2) to conclude that

..........
..........

........

which entails our claim by an application of Lemma 1 and (2.3). O

LEMMA 2. Forevery x >0and r > 1,

}P’(krrl\ax kY28, > rx(log n)l/“, max EYeg, < x(log n)l/“)

tends to 0 as n — oc.

ProoF. Considering the partition of {1, ..., n} induced by the real num-
bers r¢, r?«, ..., rP% where p = [log n/alog r], we see that the probability in
the statement is bounded from above by

IP’( ,,Qo Am> < éo P(A,,),

A, = { max S, > rx(log n)¥*rm, _ max &, < x(log n)l/“r’”“}.
k=1, R

[r(m+D)a] [r(m+Da]

yeens

Then fix ¢ > 0 arbitrarily small. By Corollary 1, there are integers n, and
m, such that

P(A,,) < SIE”( max &, > x(log n)l/ozrm-ﬁ-l)’
k=1

[r(m+1)a)

=1,...,

provided that m > m_, and n > n,.. On the one hand, we have, according to
(2.3),

IP’( max &, > x(log n)l/“r’”*l) ~cx*(logn)~*
k=1

[r(m+1)a]

=1,...,

as n — oo, uniformly in m € N. On the other hand, it is plain that

lim Z P( max S, > rt/“x(log n)l/“r’”) =0.

n—>oo k=1,..., [r(m+1a]
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Putting the pieces together, we find that

lim supIP’(kann kY8, > rx(log n)'e, max kg, > x(log n)l/“>

n—-oo  NeR=L.,npn k=L,

< scx *(alogr)~t,
and our claim is proven. O

We are now able to proceed to the proof of Theorem 1. The final key lies in
the following elementary result on extreme values: for every x > 0, we have

(2.4) lim IE”( max kY&, < x(log n)l/“) = exp{—cx ).

n—00 k=1,...,

(1 — F((log n)"/*k*x))

n
=1

''''' k

~ exp{— Zn: ¢((log n)l/“kl/“x)_“}

k=1
~ exp{—cx~“}.

Then, using Lemma 2 and (2.4), we get, for every r > 1,

limsup ]P’( max k%S, > rx(log n)l/“) <1 —exp{—cx*},

n—oo k=1,...,

and hence,

liminf ]P’( max kS, < x(log n)l/"‘) > exp{—cx“}.

n—oo

.....

To establish the converse upper bound, we use a slight variation of the
argument that proves Corollary 1 to show that, for every & > 0,

,,,,,,,,,,

.....

and finally,

limsup ]P’( max k1«8, < x(log n)”‘“) < exp{—cx *}. O

n—oo  Mh=Lee,
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3. Extremes of stable Ornstein-Uhlenbeck processes.

3.1. Preliminaries. The framework throughout the first three subsections
is that of Theorem 4. The distribution of X, is absolutely continuous with a
continuous density denoted by p:

P(X, € dx) = p(x)dx, x > 0.
We will make use of the following estimate at the origin:
(3.5) p(x) ~ cpa 2@ 20 expl_cox=/1m0} (1 — 0+)
with
(/\a)l/(272a)
BN

See [23], equation (2.5.18).

Recall that the Ornstein—Uhlenbeck process has been defined as Y, =
e !X .. Breiman [5] proved that Y is a time-homogeneous Markov process.
For every y > 0, we write

PY=P(|Yo=9)=P(| X, =)

(36) Cy c3 = )\1/(1*&)(1 _ a)aa/(lfa)'

for the law of Y started from y at time 0. The semigroup of Y is specified by
the kernel P*(Y, € dy) = p,(x, y)dy (¢t > 0) with

@7 px,y)=e(e =1 Hp((e” — 1) (e'y —x)),  x,y>0.

Observe that lim,_, . p;(x, y) = p(y) for every x > 0, which entails the strong
mixing property, and a fortiori the ergodicity, of the semigroup. The reversed
process (Y_;: — oo < t < 00) is also a time-homogeneous Markov process; its
semigroup is given by

P¥(Y_, € dy) = p,(y, x)(p(x)/p(y)) dy.

It is immediately seen from (3.7) that both the direct and the reversed
Ornstein—Uhlenbeck processes are Feller processes; in particular, they enjoy
the strong Markov property.

We next recall the simple structure of the jumps of Y, which is immediately
seen from the 1t6 decomposition of the stable subordinator into a Poisson point
process and the scaling property.

LEMMA 3. The process AY = (AY,: ¢ > 0) given by
AYtZYt_Yt_a tZOa

is independent of Y. It has the law of a Poisson point process valued in (0, co)
with characteristic measure kx—%"1 dx for some & > 0.

We finally mention an elementary local property of the sample paths of Y.

LEMMA 4. We have lim,_ o (Y, —Y)/t =Y, P-as.
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PrRoOOF. According to a well-known result of Khintchine on the rate of
growth of stable processes, we have lim,_q, (X;,, — X;)/s = 0 a.s. (see,
e.g., [14]). This yields our statement in the case ¢ — 0+. As a time-reversed
Lévy process has the same distribution as its negative, the case ¢ — 0—
follows. O

3.2. Excursions. We use the notation
Hy =inf{t>0:Y,=y}

for the first-hitting time of ¥ > 0. It is plain from the ergodicity and the
absence of negative jumps that H, < oo a.s., and we first consider the sample
path behavior of Y in the neighborhood of H,. We know from Lemma 4 that
Y, < Yyand Y_, > Y, for every small enough ¢ > 0. As both the direct
and reversed processes have the strong Markov property, this shows that Y
remains above y immediately before time H, and below y immediately after
time H . In other words, the Ornstein—Uhlenbeck process hits y from above
and leaves y from below.
It will be convenient to write

g: HYO = |nf{t > 0: Yt = Yo}

for the first return time to the starting point; the piece of path (Y,: ¢ € [0, {])
will be referred to as the excursion of Y away from Y, and ¢ as the duration of
the excursion. It should be clear from the foregoing that the excursion remains
strictly below Y, until the instant when it jumps above Y,, and then stays
above Y, until time {. Note also that the range of the excursion is necessarily
a compact interval whose interior contains Y.

Our first task is to obtain precise information on the duration ¢ of the
excursion. In the classical theory of Markov processes, it is well known that
the distribution of { can be characterized in terms of the adequate version of
resolvent density of the Markov process; see, for example, [4] or [7]. In our
setting, the main difficulty when one uses this technique is to find the correct
version of the resolvent density. In order to circumvent this problem, we will
rather use an elementary approach which is based on the fact that, as the
Ornstein—Uhlenbeck process is ergodic, E*°({) < oo for every y, > 0, and
more importantly,

(3.9) g [ rvoar) =eeo) ([ repe d)

for every measurable function f > 0.
We now observe the following.

LEMMA 5. For every x, y > 0, we have
¢
R -1 -1 . —
lim & fo Ly clx—e.xy ds = x 7 Card{z € [0, {): ¥, = x}

both PY-a.s. and in L(P?).
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Proor. The almost sure convergence should be clear from Lemma 4, the
above description of the sample path behavior near a first-hitting time and the
strong Markov property. By an extension of Lebesgue’s theorem of dominated
convergence, the L*-convergence follows, provided that we can check that

g 2
(39) Ey<<-/0 1{Ys€[x—8, x]} dS) ) = 0(82).

Using the Markov property, we rewrite the left-hand side in (3.9) as

H
2B ( | Loy e E < L Lo dt) ds>.
On the other hand, the strong Markov property shows that
PY(H, < {E* </Hy Ly elxse, ]} dt) = E (/{ Ly efxse, ]} dt),
0 0
and since Y has no negative jumps,

inf  PY(H, <{)=P"(H, , <{)AP'(H, < ).

x'elx—e, x]

We thus see that, provided that ¢ > 0 is small enough, the left-hand side in
(3.9) is bounded from above by

Ie 2
k(Ey </O 1{YS€[JC—8, x]} dS))

for some constant £ < oo. Invoking (3.8) and the boundedness of the stable
density p, we conclude that (3.9) holds. O

Lemma 5 enables us to determine the distribution of the duration of the
excursion in terms of the stable density p.

COROLLARY 2. (i) For every y > 0, we have
1
(0 yp(y)-
(i) For every y > 0 and g > 0, we have
EY (%) * et
T_®(e %) y/o e ' p(y,y)dt,
where the kernel p,(y, z) is given by (3.7).

Proor. (i) By the continuity of the stable density and (3.8), we have

y
— lim &t
p(y) = lim & /yﬁp(z)dz

1
= ame E ( /O Ly, ely—e. 1) ds)-

According to Lemma 5, the right-hand side equals 1/(yE”({)).
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(if) Fix s > 0 and write d(s) = inf{¢ > s: Y, = Y4} for the first return to
Y, after time s. An argument closed to that in Lemma 5 shows that

—qd
Ey(e q (s)) _ ]Ey(efqd(s))(l 4 Ey(efql) + Ey(e*Q§)2 + - )

1-FEY(e~%)
i 1y > —qt
= lim ek (/ e 1y ey, y]}dt>
00 y
— L —qt -1
= Ellr&y/s e (s /ya Py, 2) dz> dt.

From the continuity of the stable density, we know that

) oy
lim e 1f p(y,2)dz = py(y, y)-
e—>0+ y—e

On the other hand, it is straightforward to check that sup,.; ,.o p;(y,2) < oo.
Hence Lebesgue’s theorem of dominated convergence applies and gives

EY(e~99(%))

=T yfs e " p(y, y)dt.

Plainly, d(s) tends to { as s — 0+, and we get the desired formula. O

The asymptotic behavior as y — 0+ of the quantity that appears in the
first part of Corollary 2 is given by (3.5). For the second part, we need the
following elementary result.

LEMMA 6. For every q > 1, we have

. o o
lim y/ e p(y, y)dt = ——.
0 11—«

y—0+
PrROOF. According to (3.7), we have
/0 e p(y,y)dt = /o e"el (e — 1)V p((e* — 1)V (e! — 1)y) dt.

Introduce the change of variables s(¢) = (e* —1)~1/*(e! — 1) and write #(s) for
the inverse function. Observe that s(¢) decreases from oo to 1 as ¢ increases

from O to co. Because

at __ ,t
ds(t) = et (e° — 1)1/6*(#)(#,

elat)t _ ot

the preceding integral can be expressed as

platDH(s) _ pt(s)

o0
—qts)( €T €
/1 ¢ ( et(s) _ pat(s) )p(ys) ds.
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We conclude the proof by recalling that p is a probability density and by
observing that the function

et(s) — pat(s)

(a+1)t(s) _ ,t(s)
e e
s — eqt(s)< >

is bounded on (1, co) and has limit ¢/(1 — @) at co. O

An intuitively obvious consequence of Corollary 2 and Lemma 6 is the fol-
lowing asymptotic result on the height of the excursion started from a small
point.

COROLLARY 3. One has
lim PP(H;<{)=1-a.
y—0+
ProOOF. Note first from a combination of Corollary 2 and Lemma 6 that
EY(e~%¢) tends to « as y goes to 0+, which shows that, for every ¢ > 0,
(3.10) lim PY({ <t) =a.
y—0+
Then, observe that we must have H; < { whenever Y has a jump of length
greater than 1 before time . Hence, for every ¢ > 0,
PY(H, < )= PY(AY, > 1 for some s € [0, £]) — PY({ < ¢©).

Since t can be chosen arbitrarily large, Lemma 3 and (3.10) give the lower
bound

liminfP"(H; <{)>1-«q.
y—0+

To establish the upper bound, we simply note that, for every ¢ > 0,
PY(Hy > () > PY({ <t)—P(e*X ., > 1 for some s € [0, ¢]| X; = y)
>PY({<t)—P(Xp_qg >1—1y).

Since ¢ can be chosen arbitrarily small, the upper bound follows from (3.10). O

We are now able to estimate the distribution of the depth of the excursion
started at 1, which is the crucial step to the proof of Theorem 4.

LEMMA 7. We have
c(l—a
Pl(Hy < g) ~ %y—a/(Z—ZQ) exp{_csy—a/(l—a)} (y — 0+),

where ¢, and ¢4 are given in (3.6).
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Proor. For every y > 0, consider the number of visits to the point y made
by Y before its first return to its starting point:
N, =Card{¢t€[0,{]: Y, = y}.

A standard application of the Markov property at the successive passage times
at y gives

EY(N,)=P"H, < )(1+P'(Hy> ) +P'(Hy > )% +-)
=P (H, < ))/P*(H, < 0),
so we deduce from Lemma 3 that
P'(H, <{)~ ({1 -a)EY(N,) (y— 0+).

To calculate the expectation in the right-hand side, we combine Lemma 5,
(3.8) and the continuity of the stable density to obtain

EY(N,) = yp(»)E*({) = yp(y)/p(1),
where the ultimate equality stems from Corollary 2(i). We conclude with
(3.5). O
REMARK. We point out that essentially the same result appears in [5].
More precisely, Theorem 3 in [5] states that
PYH, < {) ~ y /%72 exp{—csy /"},
but a perusal of Breiman'’s proof shows that what is really proven there is
PYH, < ) ~ ky /%2 exp{—cyy /")

for some constant k£ > 0. Presumably, it should be possible to refine Breiman'’s
calculation and get 2 = ¢,(1 — @)/ p(1), but this does not seem easy and the
purely probabilistic argument of the proof of Lemma 7 looks simpler.

PrOOF OF THEOREM 4. The last key to Theorem 4 is a simple lemma of
extreme values theory (see, e.g., [15], exercise 1.1.4).

LEMMA 8. Let &, &, ... be a sequence of i.i.d. nonnegative random vari-
ables with distribution function F': [0, co) — [0, co) such that, for some positive
real numbers k4, u, ky, v,

F(t) ~ kit " exp{—kt™"} (¢t — 0+4).

Put, for every integer n > 3,

1 /1 —1=i 1 —iw wlog log n
_ (L b(n) = (=1 p_ mloglogn
o) k2v<k2 °g”> ) <k2 09”) ( /2109 n )

For every x € R and r > 0, we have

lim ]P( min ¢, < xa(n) +b(n)) = exp{—rk, k""" e*).

n—o0o 1l<t¢<rn
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PROOF. Note first that
1 —iw vx — ulog log n
which entails

(xa(n) + b(n)) ™" = '0132” (1 _ _V’Tc')ggn'og ”) +o(1)

= i<Iog n—x4 log log n> +o(1).
k2 14
This yields

exp{—ky(xa(n) +b(n)) "} ~ n~te*(log n) ",

and as

_ 1 m/v
(xa(n) +b(n)) ™" ~ <k_2 log n) ,
we conclude that
lim nF(xa(n) +b(n)) = koky"" et
Our claim now follows from the fact that
P(,min & < xa(n)+b(n)) = (1~ Fxa(n) + b(n))". :

1<t<rn

We are now able to establish Theorem 4.

PROOF. Consider the succession of the excursions away from 1 made by Y
after time H,, and denote by &, the minimum of the nth excursion. The re-
generative property entails that the sequence &;, &,, ... isi.i.d., and Lemma 7
that it satisfies the condition of Lemma 8 with

c(l—a) b — ¢ o« a
p(1) ~ 2T M_Z—Za, l—a

This incites us to introduce the functions

1—a(1 ~1/a
a(t) = i log ¢ ,
acy C3

1 1=/ 1—a)log log ¢

klz

Using (3.6), we get p(1)k. k""" = /a2,
— 1/
a = (o)

log ¢

(@ —a)tea\Y" 1l-a
b(t) = < log 7 alogt > loglog ¢ ).
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Recall from Corollary 2(i) that the expected duration of an excursion is
1/p(1), so by the law of large numbers, the number of excursions accomplished
by Y up to time ¢ is equivalent to p(1)¢t as ¢ — oo. It is then easily checked
that

B(L, < xa(t) + b(e) ~ B(_min & < xa(t) + (1)),
so Theorem 4 follows from Lemma 8. O

Proor or THEOREM 3. Theorem 3 is essentially a consequence of Theorem
4 and the well-known fact that the first-passage process of a stable Lévy pro-
cess with no positive jumps is a stable subordinator.

Let (X,: t > 0) be as in Theorem 3 and introduce the first passage of X,

X, =inf{s>0: X,>1t}, t>0.

~ ~

Then X = (X,: ¢ > 0) is a stable subordinator, and more precisely, one has
]E(exp(—le)) = exp{-Aq?},

with X =AY and & = 1/a. See, for example, [3], equation (8.1). We write
Y,=e" Xexp{as} for the Ornstein—-Uhlenbeck process corresponding to X.
Almlng at applying Theorem 4 to X, we introduce the functions

a(t) = <M)1/“ =2ta%(a—1)*(logt)™

log ¢
and

. Vl_vl—d 1/a 1—¢&
b(t) = (%) (o?logt— ? log log t)

1
= Ata(a —1)**(log t)“(log t— 2" loglog t).

An easy calculation shows that when the functions a(¢) and b(¢) are given as
in Theorem 3, then for every x € R,

(xa(t) + b(t)) " = —xd(t) + b(t) + o(1)a(t) (£ — o0).

It then follows from Theorem 4 that

exp<—\/zze‘x> — lim ]P’( inf ¥, > —xd(t) +13(t))

s t—o00 O<s<t

— lim IP’( inf ¥, > (xa(t)+b(t))*“).

t—o00 O<s<t
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Using the stationarity of Y, we note that

P(Y, > (xa(t)+b(¢)) “forall 0 <s <t

=P(Y E (xa(t) +b(2)) “ forall 0 < s < ¢t)

stalog (xa(t)+b(t)

= ]P)(Xexp{ds+log(xa(t)+b(t))} > e® for all O <s=< t)

Then, using the fact that X is the first-passage process of X, we deduce that
the latter quantity is equivalent to

P(X, <e**(xa(t)+b(¢)) forall 0 < s < ¢)

- IP( sup Y, < xa(t) + b(t)).

0<s<t/a

(Beware that equality does not hold, as we have to take into account the event
that the supremum of X on the time interval [0, e’] occurs before time 1. Since
the probability of this event tends to 0 as ¢ — oo, the stated equivalence does
hold.) Putting the pieces together, we have thus proven that

(3.11) tILTo IP’( sup Y, < xa(t)+ b(t)) = exp(—\/ge‘x)

0<s<t/a
It is immediately checked that
xa(at) + b(at) = (x + log a + o(1))a(t) + b(¢),

so that we can rephrase (3.11) as

lim IF’( sup Y, < xa(t)+ b(t)) = exp(— /ie‘x),
t—00 0<s<t 2
which is our statement. O

4. Proof of Theorem 2. We now suppose that the distribution function
F fulfils the hypotheses of Theorem 2, that is, that for some ¢ > 0,

F(—x)=cx™+0(x*°) and 1— F(x)=0(x"""%), x — oo.
Let X = (X,: t = 0) be a spectrally negative stable Lévy process with index

a € (1,2)asin Theorem 3, that is, E(exp(¢g X)) = exp(Ag®) for ¢ > 0. We write
F x for the distribution function of X; and choose the parameter A in such a
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way that F and F yx have the same asymptotic behavior at —co. Specifically,
(4.12) Fx(—x)~cx™™ as x — oo, with ¢ = AMa—1)/I'(2 — @).

See, for instance, [19], Property 1.2.15.
Write ¢(y) = inf{x: F(x) > y} for the right-continuous inverse of F. Then
the variables

gnzgooFX(Xn_Xn—l)a n=1,2,...

are independent and have all the distribution F. We put, as usual, S, =
&+---+¢&,and R, =S, — X,,. Introduce for every ¢ > 1,

MX = max X,, M5 = max S, X, = sup X,.
k=1,..., [t] k=1,..., [t] 1<s<t

LEMMA 9. For every B8 > 1/(a + ), we have almost surely

lim ¢ #| M7 - X,| =0.

t—o00

Proor. Note that R = (R,: n € N) is a centered random walk, and because
@O Fx(—x)=—x+4 0(x*7%), x — 00,
it is immediately seen that
P(|Ry| > x) = O(x~*°), x — oo.
According to [11] (see also [14]), we have, for every B > 1/(a + &),
(4.13) limn PR, =0 as.

n—oo

This entails

|M¥ - M?| < kmax[]|Rk| =o(tP) as.
=1,..., t

On the other hand, we have

0<X,-MF< max Z,,  where Z, = sup (X, — X;).
k=1,...,[t] O<s<1

The variables Z,, ... are independent and have all a Mittag—-Leffler distribu-
tion; in particular,

P(Z, > x)=o0(e™™), X — 00
[see, e.g., [3], equation (8.8)]. A straightforward application of the Borel-

Cantelli lemma shows that max,_; [, Z; = o(¢®) a.s., which completes the
proof. O

,,,,,

LEMMA 10. We have both
lim IP’( sup s Y*X, > (loglog n)l‘l/“) =0

1<s<logn
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and

lim IP( sup s Y*MS > (log log n)lfl/a) —0.

=00 M<s<logn

Proor. Recall that there is some « > 0 such that, for all x large enough
and all ¢ > 0,

(4.14) P(Yt > tYex) <exp| — Kxa/(a—l)}‘

See again [3], equation (8.8). As a consequence, we have, for every n > 0,
provided that the integer m is large enough,

m—1
IP’( sup sVeX, > an/a> < Y P(X i > n2Hemi-be)
l<s<2m k=0

<m exp{ —K(nz_l/“ml—l/a)a/(a—l)}
=m exp{—K’m},

for some «’ > 0. This entails our first assertion; the second follows, thanks to
(4.13) and the inequality

.....

This completes the proof of the lemma. O

We are now able to proceed to the derivation of Theorem 2 from Theorem 3.
It is clear that we may replace X, by X, in Theorem 3. By a slight variation of
the argument of [20], Lemmas 9 and 10 then imply that sup, _,_, s~/*M¥ and

SUP; s« s~Y/“X have the same asymptotic behavior, so that by Theorem 3,

lim JP’( sup e *M5, < xa(t) + b(t)) = exp(—\/ie’c)

t—>00 N\ g<s<t 27
with

Mo — 1)\
t)=\——7-—7"
“o ( log ¢ )

and

b(t) = ( = clog i+ % log log t)a(t).

o

Plainly, we may replace M3, by S|e) In the foregoing, which yields

lim IE”( max k V%S, < xa(a"tlogn)+ b(a ! log n)) = exp(—\/%e‘x).

n—o0o \k=1,.,n
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Recall (4.12). A few lines of calculations shows that, in the notation of The-
orem 2,

xa(e tlogn) +b(atlogn) = (x —log a + 1 log(2am) + n(n))a, (n) + b, (1),

where n(n) tends to 0 as n goes to co. This completes the proof of Theorem 2. O

5. Complements. (i) Darling and Erd&s have also proven an analogue of
(1.1) for the absolute maximum of normalized sums, namely,

(515)  lim P(kirllaxn}k‘l/zsk\ < xay(n) + bz(n)> — exp{—2e~*},

.....

provided that E(¢) = 0, E(£2) = 1 and E(|£]°®) < oo; see [9] for the definitive
result in the finite-variance case. Here we state the companion of Theorem
1 for the absolute maximum: suppose that, for some «a € (0,1) U (1, 2) and
some real numbers c,, c_ > 0 with ¢, + c_ > 0, the distribution function
F(x) =P(¢ < x) fulfils

1-F(x)~cx™® and F(—x)~c_x7 x — 00,

and that E(¢) = 0 if a > 1. (It is well known that these hypotheses are equiv-
alent to the convergence in distribution of n=%/%S, towards a nondegenerate
law.) Then, for every x > 0, we have

lim IP’(kErl]ax |k~1*S,| < x(log n)””‘) =exp{—(c; +c_)x*}.

n—o0o

.....

The proof is similar to that of Theorem 1 and therefore is omitted.

(ii) In order to complete Theorems 3 and 4, we mention the following limit
theorem for the extremes of non-completely asymmetric stable Ornstein—
Uhlenbeck processes, which can be viewed as a continuous analogue of
Theorem 1. We refer to [16] for a closely related result.

THEOREM 5. Let X be a stable Lévy process with characteristic function
E(exp(igX 1)) = exp{—A|q|*(1 — iBsgn(q) tan(ma/2))}
for some A > 0, @ € (0,1)U(1,2) and B € (—1, 1]. Then, for every x > 0,

 Aa(l-a)(1+p) }
2I'(2 — a) cos(mar/2) '

H —s 1/
tILToP(OSSl:gt(e X)) <tV x) = exp{

(iii) Theorem 4 also has a counterpart for the minima of the normalized
partial sums of nonnegative i.i.d. variables, which we now state without proof
(the arguments are close to those developed in Section 4). Suppose that £ > 0
a.s. and that there are « € (0, 1) and ¢ > 0 such that the distribution function
F(x)=P(£ < x) fulfils 1 - F(x) = cx™*+ O(x™%¢) as x — oo, for some ¢ > 0.
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Then, for every x € R, we have

lim P( min kEY*S), > xa, [(n)+ ba,c(n)> = exp{—e*},

n—oo k=1,...,n
with
AR
@a,e(n) = ( log log n >
and
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by o(n) = aa)c(n)(1 " loglogn — > loglog log n — > |Og(20m')).
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