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CHARACTERISTIC FUNCTIONS OF RANDOM VARIABLES
ATTRACTED TO 1-STABLE LAWS1

By Jon Aaronson and Manfred Denker

Tel Aviv University and Universität Göttingen

The domain of attraction of a 1-stable law on R
d is characterized by

the expansions of the characteristic functions of its elements.

0. Introduction. Let X1�X2� � � � be R
d-valued, independent, identically

distributed random variables. The distributional limits of �Sn −An�/Bn,
where An ∈ R

d, Bn > 0 are constants and Sn = ∑n
k=1Xk, are given by the

well-known stable laws. [Lévy (1954), Gnedenko and Kolmogorov (1954) and
Ibragimov and Linnik (1971)].

A probability distribution function F on R
d is called stable if for all a� b > 0

there are c > 0 and v ∈ R
d such that

Fa ∗Fb�x� = Fc�x− v�� x ∈ R
d�

whereFs�x�=F�x/s�, x∈R
d, s>0, and strictly stable if this is true with v=0.

In this case [Lévy (1954)] necessarily ap + bp = cp for some 0 < p ≤ 2, and
p is called the order of the stable law F.

A distribution G on R
d belongs to the domain of attraction of the stable

law F if there are constants An ∈ R
d and Bn > 0 such that the distributions

�Sn −An�/Bn converge weakly to F where Sn =X1+· · ·+Xn and X1�X2� � � �
are i.i.d. with distribution G.

For p ∈ �0�2
 and d ∈ N, we let DA�p�d� be the collection of distribution
functions in the domain of attraction of some stable law on R

d of order p.
In this paper, we obtain expansions of the characteristic functions of distri-

butions on R
d which are in the domain of attraction of a stable law.

In Section 1 we deal with the case d = 1. The first partial results are in
Gnedenko and Koroluk (1950). The expansions are given fully in Ibragimov
and Linnik (1971) in case p �= 1 (see Theorem 1).

Our main result is Theorem 2 giving the expansions in case p = 1.
In Section 2 we obtain as corollaries expansions in case d ≥ 2. Other results

in this case are to be found in Rvac̃eva (1962), Meerschaert (1986), Kuelbs and
Mandrekar (1974) and Araujo and Giné (1979, 1980).

A stable law of order p on R has a characteristic function ψ of the form

logψ�t� = itγ − c
t
p
[
1 − iβ sgn�t� tan

(
pπ

2

)]
� p �= 1�
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400 J. AARONSON AND M. DENKER

and

Re logψ�t� = −c
t
� Im logψ�t� = t
(
γ + 2βc

π
log

(
1

t


))
� p = 1�

where c > 0, β� γ ∈ R are constants [Lévy (1954)].
The form of the characteristic functions of stable laws on R

d was obtained
by Feldheim [see Feldheim (1937), Lévy (1954) and Samorodnitsky and Taqqu
(1994), Theorem 2.3.1]:

To each stable law of order p on R
d there corresponds a finite measure ν

on Sd−1 (called the spectral measure) and µ ∈ R
d (called the translate) so that

the characteristic function ψ has the form

�1a� logψ�u� = i�u�µ� −
∫
Sd−1


�u� s�
p
(

1 − i sgn��s� u�� tan
(
pπ

2

))
ν�ds�

for p �= 1 and

�1b� logψ�u� = i�u�µ� −
∫
Sd−1


�u� s�

(

1 + i 2
π

sgn��u� s�� log�
�u� s�
�
)
ν�ds�

for p = 1. Evidently a stable law on R
d has a density if and only if the

support of its spectral measure is not contained in a proper subspace of R
d,

and in this case we say that both the stable law and the spectral measure are
nondegenerate.

Clearly, the stability of an R
d-valued random variable Z implies that of its

inner products �Z�u�, u ∈ R
d.

An example of Marcus (1983) shows that the converse of this is false without
additional assumptions.

According to Theorems 2.1.2 and 2.1.5 in Samorodnitsky and Taqqu (1994),
the R

d-valued random variable Z is strictly stable (stable with index ≥ 1) if
its inner products �Z�u�, u ∈ R

d, are strictly stable on R (stable on R with
index ≥ 1).

The first characterizations of domains of attraction were in terms of the
tails of the distributions concerned.

In the unidimensional case [Gnedenko and Kolmogorov (1954)], for p < 2,
the (right continuous) distribution functionG ∈ DA�p�1� iff there is a function
L� R+ → R+, slowly varying at ∞ [see Feller (1971)], and constants c1� c2 ≥ 0,
c1 + c2 > 0 such that

�2�
L1�x� �= xp�1 −G�x�� = �c1 + o�1��L�x��
L2�x� �= xpG�−x� = �c2 + o�1��L�x� as x→ +∞�

The results of Gnedenko and Kolmogorov (1954) were generalized to R
d in

Rvac̃eva (1962) [see also Meerschaert (1986)], to Hilbert space in Kuelbs and
Mandrekar (1974), and to Banach space in Araujo and Giné (1979).
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1. Unidimensional characterization. The characteristic function ψ of
G ∈ DA�p�1� is considered in Gnedenko and Koroluk (1950) and Ibragimov
and Linnik (1971).

In Gnedenko and Koroluk (1950), DA�p�1� is characterized in terms of ψ�t�.
In Ibragimov and Linnik (1971), the asymptotic expansion of logψ�t�

around 0 is established with error small when compared to

Prob.
(

Z
 > 1


t

)
= 
t
p

(
L1

(
1

t


)
+L2

(
1

t


)
+
)
= 
t
p�c1 + c2 + o�1��L

(
1

t


)

as t → 0. Here, Z is a G-distributed random variable, and G ∈ DA�p�1�,
p �= 1, satisfies (2) with the slowly varying functions L�L1�L2 and constants
c1� c2 ≥ 0, c1 + c2 > 0. Specifically:

Theorem 1 [Ibragimov and Linnik (1971), Theorem 2.6.5]. Suppose that
G satisfies �2� with p �= 1. Then

logψ�t� = itγ − c
t
pL�
t
−1�
[
1 − iβ sgn�t� tan

(
pπ

2

)]
+ o�
t
pL�
t
−1���

where

β = c1 − c2

c1 + c2
� c = "�1 − p��c1 + c2� cos

(
pπ

2

)
�

γ =



0� 0 < p < 1�∫
xG�dx�� 1 < p ≤ 2�

The expansion of the characteristic function when p = 1 is also treated in
Ibragimov and Linnik (1971) for a limited class of slowly varying functions L,
namely those where ∫ λ

0

xL�x�dx
1 + x2

= L�λ��log λ+ o�1��
as λ → ∞ [cf. Theorem 2 here, Theorem 2.6.5 there and formula (2.6.34)
there]. As can be easily checked, the functions L�x� ∼ �log x�a, a ∈ R, and
L�x� ∼ exp��log x�a
, 0 < a < 1, are slowly varying functions not in this class.

Theorem 2. Suppose that G satisfies (2) with p = 1. Then

Re logψ�t� = −c
t
L�
t
−1� + o�
t
L�
t
−1���

Im logψ�t� = tγ + 2βc
π
CtL

(
1

t


)
+ t

(
H1

(
1

t


)
−H2

(
1

t


))
+ o�
t
L�
t
−1��

as t→ 0, where

Hj�λ� =
∫ λ

0

xLj�x�dx
1 + x2

� j = 1�2�

C =
∫ ∞

0

(
cosy− 1

1 + y2

)
dy

y
�
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and the constants c > 0, β� γ ∈ R are defined by

β = c1 − c2

c1 + c2
� c = �c1 + c2�π

2
�

γ =
∫ ∞

−∞

(
x

1 + x2
+ sgn�x�

∫ 
x


0

2u2

�1 + u2�2
du

)
G�dx��

Remark 1. Note that

H1�λ� =
∫ λ

0

x2P�Z > x�dx
1 + x2

�

whence

H1�λ� −H2�λ� = E
([
Z
 ∧ λ− tan−1�
Z
 ∧ λ�] sgn�Z�)

= E��
Z
 ∧ λ� sgn�Z�� +O�1�
as λ→ ∞, where Z is G-distributed and H1� H2 are as in Theorem 2.

Remark 2. From this representation of the characteristic function of dis-
tributions in DA�p�1�, one deduces the existence of a p-stable random vari-
able Y and constants An�Bn ∈ R, Bn > 0 so that �Sn −An�/Bn → Y in
distribution. These constants [unique up to o�Bn� as n→ ∞] are given by

nL�Bn� = Bpn� An =




0� 0 < p < 1�
γn� 1 < p ≤ 2�
γn+ n�H1�Bn� −H2�Bn��� p = 1�

To see this in case p = 1, write

logE
(

exp
[
it

(
Sn −An
Bn

)])
= −itAn

Bn
+ n logψ

(
t

Bn

)
�= αn�t� + iβn�t��

Then

αn�t� = −cn
t

Bn

L

(
Bn

t


)
+ o

(
n
t
L�Bn/
t
�

Bn

)
→ −c
t
 as n→ ∞

and

βn�t� =
t�H1�Bn/
t
� −H1�Bn��

L�Bn�
− t�H2�Bn/
t
� −H2�Bn��

L�Bn�

+ 2βctCL�Bn/
t
�
πL�Bn�

+ o
(
n
t
L�Bn/
t
�

Bn

)
�

Now, for j = 1�2 and k > 1 [see (5) in Lemma 3 below],

Hj�kλ� −Hj�λ� = cjL�λ� log k+ o�L�λ�� as λ→ ∞�
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Thus, with k = 1/
t
,

βn�t� → t�c1 − c2� log
1

t
 +

2βcCt
π

= 2βct
π

(
log

1

t
 +C

)
as n→ ∞�

Thus, the above representation is a characterization of DA�p�1�.

Remark 3. We note that the expansion of ψ�t� around 0 up to o�
t
pL�1/
t
��
is determined entirely by the asymptotic equivalence class of the slowly vary-
ing function L and the constants c1� c2 ≥ 0 for G satisfying (2) with p �= 1.

This is not the case when p = 1 as shown by the following examples.
There is a distribution G so that

L1�x� �= x�1 −G�x�� = �log x�2 + �log x�3/2 +O�1��
L2�x� �= xG�−x� = �log x�2 +O�1� as x→ +∞�

Here, L�λ� = �log λ�2, p = c1 = c2 = 1, and one calculates from Theorem 2
that

Im logψ�t� = 4t
5π
L

(
1

t


)5/4

+ o
(

t
L

(
1

t


))
as t→ 0�

On the other hand, there is a symmetric distribution satisfying

L1�x� = L2�x� = �log x�2 +O�1� as x→ +∞
for which also L�λ� = �log λ�2, and p = c1 = c2 = 1; but here (owing to
symmetry)

Im logψ�t� ≡ 0�

Proof of Theorem 2. Assume that G is represented in the form (2).
For x > 0 define distribution functions Gj, j = 1�2, on R+ by

G1�x� = G�x� −G�0� and G2�x� = G�0� −G�−x��
We have that

Gj�∞� −Gj�x� =
Lj�x�
x

= �cj + o�1��L�x�
x

�

Write∫ (
1 − exp�itx� + itx

1 + x2

)
G�dx� =

∫ ∞

0

(
1 − exp�itx� + itx

1 + x2

)
G1�dx�

+
∫ ∞

0

(
1 − itx

1 + x2
− exp�−itx�

)
G2�dx�

and let

γj =
∫ ∞

0

2x2

�1 + x2�2
�Gj�∞� −Gj�x��dx =

∫ ∞

0

2xLj�x�dx
�1 + x2�2

�
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Integration by parts gives

∫ ∞

0

(
1 − exp�−�−1�jitx
 − �−1�j itx

1 + x2

)
Gj�dx�

= �−1�jit
∫ ∞

0

(
exp�−�−1�jitx
 − 1 − x2

�1 + x2�2

)
Lj�x�dx

x

= 
t

∫ ∞

0
sin�
t
x�Lj�x�dx

x
+ �−1�jit

∫ ∞

0

(
cos�tx� − 1 − x2

�1 + x2�2

)
Lj�x�dx

x
�

Changing variables, we obtain that

∫ ∞

0
sin�
t
x�Lj�x�dx

x
=

∫ ∞

0
sin�x�Lj�x/
t
�dx

x
�

∫ ∞

0

(
cos�tx� − 1

1 + �tx�2

)
Lj�x�dx

x
=

∫ ∞

0

(
cos�x� − 1

1 + x2

)
Lj�x/
t
�dx

x
�

By Lemma 1, we see that

∫ ∞

0
sin�
t
x�Lj�x�dx

x
= �1 + o�1��Lj

(
1

t


)
π

2
�

Now

∫ ∞

0

(
cos�tx� − 1 − x2

�1 + x2�2

)
Lj�x�dx

x

=
∫ ∞

0

(
cos�tx� − 1

1 + �tx�2

)
Lj�x�dx

x
+

∫ ∞

0

x�1 − t2�Lj�x�dx
�1 + x2��1 + �tx�2�

+
∫ ∞

0

2xLj�x�dx
�1 + x2�2

=
∫ ∞

0

(
cos�tx� − 1

1 + �tx�2

)
Lj�x�dx

x
+

∫ ∞

0

x�1 − t2�Lj�x�dx
�1 + x2��1 + �tx�2� + γj�

By Lemma 2,

∫ ∞

0

(
cos�tx� − 1

1 + �tx�2

)
Lj�x�dx

x
= CLj

(
1

t


)
+ o

(
L

(
1

t


))
�

Set

H̃j�λ� �=
∫ ∞

0

xLj�x�dx
�1 + x2��1 + x2/λ2� �

By Lemma 3, H̃j�λ� =Hj�λ� + o�L�λ�� as λ→ ∞.
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Putting everything together, we obtain

∫ ∞

0

(
1 + itx

1 + x2
− exp�itx�

)
G1�dx� +

∫ ∞

0

(
1 − itx

1 + x2
− exp�−itx�

)
G2�dx�

= L
(

1

t


)

t
�c1 + c2�

π

2
− itL

(
1

t


)
�c1 − c2�C

− it
(
H̃1

(
1

t


)
− H̃2

(
1

t


))
− it�γ1 − γ2� + o

(

t
L

(
1

t


))

= L
(

1

t


)

t
�c1 + c2�

π

2
− itL

(
1

t


)
�c1 − c2�C

− it
(
H1

(
1

t


)
−H2

(
1

t


))
− it�γ1 − γ2� + o

(

t
L

(
1

t


))

and hence Theorem 2. ✷

We conclude this section by collecting the lemmas on slowly varying func-
tions needed for Theorem 2.

Assume that h� R+ → R+ is locally integrable, slowly varying at infinity
and such that u �→ h�u�/u is a nonincreasing function. Recall that h has a
representation

h�x� = η�x� exp
[∫ x

1

ε�s�
s
ds

]

for some functions η�s� →K ∈ R and ε�s� → 0 as s→ ∞ [see Feller (1971)].

Lemma 1.

∫ ∞

0

siny
y
h

(
y

t

)
dy = �1 + o�1��h

(
1
t

)
π

2
�

Proof. As the proof of Lemma 2.6.1 in Ibragimov and Linnik (1971). ✷

Lemma 2.

∫ ∞

0

[
cosy− 1

1 + y2

]
1
y
h

(
y

t

)
dy = �1 + o�1��h

(
1
t

) ∫ ∞

0

[
cosy− 1

1 + y2

]
1
y
dy�

Proof. We first split the region of integration into four parts: I1 = �21�∞�,
I2 = �δ�21�, I3 = �t22� δ� and I4 = �0� t22� where δ < 1 < 21 = �N − 1

2�π,
N ∈ N.

Since 
 ∫�21+nπ�21+�n+1�π
 cosy�h�y/t�dy/y

 decreases in n,

∣∣∣∣
∫
I1

cosy
h�y/t�dy

y

∣∣∣∣ ≤ πh�21/t�
21

∼ πh�1/t�
21

�
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Also,

∫
I1

1
1 + y2

h�y/t�dy
y

≤ h�21/t�
21

π ∼ πh�1/t�
21

�

Since, for x ∈ �22t� δ�,
h�x/t�
h�1/t� = �1 + o�1�� exp

[∫ 1/t

x/t

ε�s�
s
ds

]
= exp�o�− log x�
 ≤ x−1/2

for t small enough and 22 large enough,
∣∣∣∣
∫
I3

(
1

1 + y2
− cosy

)
h

(
y

t

)
dy

y

∣∣∣∣ = O
(
h

(
1
t

) ∫ δ
0

∣∣∣∣ 1
1 + y2

− cosy
∣∣∣∣y−3/2 dy

)

= O
(
h

(
1
t

)
δ3/2

)
�

Since the function h is locally integrable, it follows that for t small enough
∣∣∣∣
∫
I4

(
1

1 + y2
− cosy

)
h

(
y

t

)
dy

y

∣∣∣∣ =
∣∣∣∣
∫ 22

0

(
1

1 + t2z2
− cos tz

)
h�z�dz

z

∣∣∣∣
= O

(
t222

∫ 22

0

h�z�
dz

)

= O�t2� = o
(
h

(
1
t

))
�

For δ ≤ x ≤ 21 we have (uniformly in x), by the slow variation property of h,

lim
t→0

h�x/t�
h�1/t� = 1�

It follows that ∣∣∣∣
∫
I2

(
1

1 + y2
− cosy

)[
h

(
y

t

)
− h

(
1
t

)]
dy

y

∣∣∣∣
≤ 2h

(
1
t

)[
sup
δ≤x≤21

∣∣∣∣h�x/t�h�1/t� − 1
∣∣∣∣
] ∫ 21

δ

dy

y

= o
(
h

(
1
t

))
�

Applying the estimates for I1� I3 and I4 with h = 1, it follows that

∫ ∞

0

(
1

1 + y2
− cosy

)
h�y/t� − h�1/t�

y
dy = o

(
h

(
1
t

))
+O

(
h

(
1
t

)
�δ3/2 + 2−1

1 �
)
�

Letting 21 → ∞ and δ→ 0 as t→ 0, the lemma follows. ✷
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Lemma 3. Let

H�λ� �=
∫ λ

0

xh�x�dx
1 + x2

�

then H is slowly varying at ∞,

�3� h�λ�
H�λ� → 0 as λ→ ∞�

�4�
H̃�λ� �=

∫ ∞

0

xh�x�dx
�1 + x2��1 + x2/λ2�

= H�λ� + o�h�λ�� as λ→ ∞

and

�5� H�kλ� −H�λ� ∼ h�λ� · log k as λ→ ∞�

Remark. Slow variation of H, (3) and (5) are established in Lemma 1 of
Parameswaran (1961).

Proof. We first show (5):

H�kλ� −H�λ� =
∫ kλ
λ

xh�x�dx
1 + x2

∼
∫ kλ
λ

h�x�dx
x

=
∫ k

1

h�λx�dx
x

∼ log kh�λ��

Next, we see that (3) follows from (5) as ∀ M> 1,

H�λ�
h�λ� = H�eMe−Mλ�

h�λ�

≥ H�eMe−Mλ� −H�e−Mλ�
h�λ�

∼ h�e−Mλ�M
h�λ� →M as λ→ ∞�

It follows from (3) and (5) that H is slowly varying at ∞.
To continue, we claim that

�6� H̃�λ� =
∫ λ

0

xh�x�dx
�1 + x2��1 + x2/λ2� +

log 2
2
h�λ� + o�h�λ�� as λ→ ∞�
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To see this, note that

∫ ∞

λ

xh�x�dx
�1 + x2��1 + x2/λ2� =

∫ ∞

1

xh�λx�dx
�1/λ2 + x2��1 + x2�

= h�λ�
∫ ∞

1

xdx

�1/λ2 + x2��1 + x2�

+ h�λ�
∫ ∞

1

(
h�λx�
h�λ� − 1

)
xdx

�1/λ2 + x2��1 + x2�

= log 2
2
h�λ� + o�h�λ��

as λ→ ∞ by the dominated convergence theorem since 
h�λx�/h�λ�−1
 → 0 as
λ→ ∞ ∀ x > 1 and 
h�λx�/h�λ�−1
 ≤ x ∀ x large enough. This establishes (6).

To complete the proof of (4), we note that

xh�x�
�1 + x2��1 + x2/λ2� = λ2

λ2 − 1

(
xh�x�
x2 + 1

− xh�x�
x2 + λ2

)
�

whence, in view of (6),

H̃�λ� = λ2

λ2 − 1

∫ λ
0

xh�x�dx
x2 + 1

− λ2

λ2 − 1

∫ λ
0

xh�x�dx
x2 + λ2

+ log 2
2
h�λ� + o�h�λ���

Now

λ2

λ2 − 1

∫ λ
0

xh�x�dx
x2 + 1

=H�λ� +O
(
H�λ�
λ2

)

=H�λ� + o�h�λ�� as λ→ ∞�

because both h and H are slowly varying at ∞; and

λ2

λ2 − 1

∫ λ
0

xh�x�dx
x2 + λ2

∼
∫ λ

0

xh�x�dx
x2 + λ2

=
∫ 1

0

xh�λx�dx
x2 + 1

∼ log 2
2
h�λ� as λ→ ∞�

Thus,

H̃�λ� =H�λ� + o�h�λ�� as λ→ ∞�

which is (4). ✷
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2. Multidimensional characterization.

Corollary 1. Let 0 < p < 2, p �= 1 and G be a distribution function on
R
d. The following are equivalent:

(A) G belongs to the domain of attraction of the nondegenerate stable law
of order p, spectral measure ν and translate µ.

(B) The characteristic function ψ of G has the form

logψ�tu� =




−tpL
(

1
t

)
8�u� + it�u�µ� + o

(
tpL

(
1
t

))
� if p > 1�

−tpL
(

1
t

)
8�u� + o

(
tpL

(
1
t

))
� if p < 1

as t → 0+, ∀ u ∈ Sd−1, where µ ∈ R
d, L is slowly varying at ∞, ν is a

nondegenerate finite measure on Sd−1 and

8�u� �=
∫
Sd−1


�u� s�
p
(

1 − i sgn�s� u� tan
(
pπ

2

))
ν�ds��

Proof. �A� ⇒ �B�. Let X1�X2� � � � be i.i.d. with distribution G and An ∈
R
d, Bn > 0 such that �Sn −An�/Bn → Z weakly where Z is p-stable. Let
u ∈ R

d. It follows from Feldheim’s theorem that �u�Z� has a one-dimensional
p-stable distribution with parameters γ′u = �u�µ�, c′u = ∫

Sd−1 
�u� s�
pν�ds�
and

β′
u = 1

c′u

∫
Sd−1


�u� s�
p sgn��u� s��ν�ds��

The characteristic function ψ�tu� of �u�X1� has a form

logψ�tu� = itγu − 
t
pLu
(

1

t


)(
1 − iβu sgn�t� tan

(
πp

2

))

as in Theorem 1 with some slowly varying function Lu and parameters γu and
βu (we normalize Lu so that cu = 1). Hence,

it

(
nγu
Bn

− �u�An�
Bn

)
− 
t
p n

B
p
n

Lu

(
Bn

t


)(
1 − iβu sgn�t� tan

(
pπ

2

))

→ itγ′u − c′u
t
p
(

1 − iβ′
u sgn�t� tan

(
pπ

2

))
�

The parameter γu must be linear in u if p > 1, since �nγu − �u�An��/Bn →
�u�µ� and n/Bn → ∞. In case p < 1, γu can be arbitrary since n/Bn→0.
Moreover, �n/Bpn�Lu�Bn� converges to c′u and βu = β′

u. Setting L�t� =
�1/c′u�Lu�t� for some fixed u, we obtain, for v ∈ R

d,

lim
n→∞

L�Bn�
Lv�Bn�

= lim
n→∞

�n/Bpn�Lu�Bn�
c′u�n/Bpn�Lv�Bn�

= 1
c′v
�

Hence Lv�λ� ∼ c′vL�λ� as λ→ ∞.
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�B� ⇒ �A�. Conversely, if the characteristic function ψ of G is as in (B), then
for every u ∈ R

d the characteristic functions of Y�u�
n = B−1

n

∑n
k=1��u�Xk� −

�An�u�� converge, where X1�X2� � � � are i.i.d. with distribution G, where Bn
is defined by nL�Bn� = Bpn and where An = 0 if p < 1 and An = nµ if p > 1�

It follows that the characteristic functions of �Sn −An�/Bn converge (nec-
essarily to a characteristic function), such that the limit variable Z has all
distributions �u�Z�, u ∈ R

d, p-stable. Thus, Z is stable itself if p > 1. In case
p < 1, we note that Z has a characteristic function of the form (1a) with µ = 0
and is strictly stable. ✷

If G is a distribution function on R
d, we define Gu�·� to be the distribution

function of �u�Z�, where Z is a random variable with distribution G.

Corollary 2. (A) If a distribution function G on R
d belongs to the domain

of attraction of the nondegenerate stable law of order 1, spectral measure ν and
translate µ, then its characteristic function ψ has the form

Re logψ�tu� = −tL
(

1
t

) ∫
Sd−1


�u� s�
ν�ds� + o
(
tL

(
1
t

))
�

Im logψ�tu� = tHu

(
1
t

)
+ tL

(
1
t

)
2C
π

∫
Sd−1

�u� s�ν�ds� + tγu + o
(
tL

(
1
t

))(7)

as t→ 0+ ∀ u ∈ Sd−1, where L is slowly varying at ∞,

C =
∫ ∞

0

(
cosy− 1

1 + y2

)
dy

y

and

Hu�x� =
∫ x

0

v�1 −Gu�v� −Gu�−v��
1 + v2

dv

has a representation

�8� Hu�λ� = �u�"λ� −
2L�λ�
π

∫
Sd−1

�u� s� log�
�u� s�
�ν�ds� − γu + o�L�λ��

for some "λ ∈ R
d and satisfies

�9� Hu�kλ� −Hu�λ� ∼
2
π
L�λ�

∫
Sd−1

�u� s�ν�ds� log k

as λ→ ∞.
(B) Let the characteristic function ψ of a distribution G on R

d satisfy (7)
for some γu ∈ R, some finite measure ν on Sd−1, some slowly varying function
L and some functions Hu with representation (8) and satisfying (9). Then G
belongs to the domain of attraction of a nondegenerate stable law of order 1.
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Proof. (A) As before, let X1�X2� � � � be i.i.d. with distribution G and An ∈
R
d, Bn > 0 such that �Sn −An�/Bn → Z weakly, where Z is 1-stable. Let
u ∈ R

d. It follows from Feldheim’s theorem that �u�Z� has a one-dimensional
1-stable distribution with parameters

γ′u = �u�µ� − 2
π

∫
Sd−1

�u� s� log�
�u� s�
�ν�ds��

c′u =
∫
Sd−1


�u� s�
ν�ds�� β′
u = 1

c′u

∫
Sd−1

�u� s�ν�ds��

By Theorem 2, the characteristic function ψ�tu� of �u�X1� has a form

logψ�tu� = −
t
Lu
(

1

t


)
+ itγu + it

2βuC
π

Lu

(
1

t


)

+ it
(
H1u

(
1

t


)
−H2u

(
1

t


))
+ o

(

t
Lu

(
1

t


))
�

where

Hju�λ� =
∫ λ

0

xLju�x�
1 + x2

dx�

Lju�x� =
{
x�1 −Gu�x��� if j = 1�
xGu�−x�� if j = 2�

for some parameters γu, βu and slowly varying functions Lu (normalized so
that cu = 1), Lju. Also note that, by Theorem 2, Lju�x� = �cju + o�1��Lu�x�
with c1u + c2u = 2/π. Set Hu =H1u −H2u.

From the assumed convergence of characteristic functions, we have that

Ren logψ
(
tu

Bn

)
∼ nLu�Bn�
t


Bn
→ c′u
t
�

As in the proof of Corollary 1, there exists a function L so that c′vL ∼ Lv for
all v ∈ R

d. Moreover, using (5) ∀ t ∈ R, as n→ ∞,

Imn logψ
(
tu

Bn

)
− �An�u�

t

Bn

= nLu�Bn�
Bn

�c1u − c2u�t log
1

t


+ t
(
nγu
Bn

− �An�u�
Bn

+ nHu�Bn�
Bn

+ 2CnβuLu�Bn�
πBn

)
+ o�1�

→ tγ′u +
2β′

uc
′
ut

π
log

1

t
 �

Equating coefficients of t, and t log 1/
t
, we see that

nLu�Bn�
Bn

�c1u − c2u� →
2β′

uc
′
u

π
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and

n

Bn

(
Hu�Bn� +

2Cβu
π

Lu�Bn� + γu −
〈
u�
An
n

〉)
→ γ′u

as n→ ∞.
Hence, c′u�c1u − c2u� = c′uβu2/π = c′u2β′

u/π and βu = β′
u.

To conclude, we determine the conditions for Hu and γu. Since c′uL ∼ Lu
and since Lu is slowly varying,

Hu�Bn� +
2Cβ′

uc
′
u

π
L�Bn� + γu −

〈
u�
An
n

〉

−
〈
u�
Bnµ

n

〉
+ 2Bn
nπ

∫
Sd−1

�u� s� log�
�u� s�
�ν�ds� = o
(
Bn
n

)

or [because β′
uc

′
u is linear in u and nL�Bn� ∼ Bn]

Hu�Bn� = �u�"Bn� −
2L�Bn�
π

∫
Sd−1

�u� s� log�
�u� s�
�ν�ds� − γu + o�L�Bn���

where

"Bn =
An
n

+ µL�Bn� −
2CL�Bn�

π

∫
Sd−1

�·� s�ν�ds��

We obtain the expansion for Hu�λ� (Bn ≤ λ < Bn+1) from

Hu�λ� −Hu�Bn� =H1u�λ� −H1u�Bn� − �H2u�λ� −H2u�Bn�


∼ log
(
λ

Bn

)
�L1u�λ� −L2u�λ�� + o�L�λ�� = o�L�λ��

and

Hu�λ� =Hu�Bn� +Hu�λ� −Hu�Bn�

=Hu�Bn� + o�L�λ��

= �u�"Bn� −
2L�λ�
π

∫
Sd−1

�u� s� log�
�u� s�
�ν�ds� − γu + o�L�λ���

since

1 ≤ λ

Bn
≤ Bn+1

Bn
∼ �n+ 1�L�Bn+1�

nL�Bn�
→ 1�



ATTRACTION TO 1-STABLE LAWS 413

Equation (8) follows setting "λ = "Bn if Bn ≤ λ < Bn+1. Finally, (9) holds
because

Hu�kλ� −Hu�λ� ∼ log�k��L1u�λ� −L2u�λ��
∼ log�k��c1u − c2u�Lu�λ�
∼ log�k��c1u − c2u�c′uL�λ�

= 2
π
c′uβ

′
u log�k�L�λ��

(B) Conversely, if the characteristic function ψ of G is as in (B), then for
every u ∈ R

d the characteristic functions of

Y
�u�
n = B−1

n

n∑
k=1

��u�Xk� − �An�u��

converge, where X1�X2� � � � are i.i.d. with distribution G, where Bn is defined
by nL�Bn� = Bn and where

An = n"Bn +
2CnL�Bn�

π

∫
Sd−1

�·� s�ν�ds��

Let c′u = ∫
Sd−1 
�u� s�
ν�ds� be defined as before. We have that

log
(
ψ

(
tu

Bn

)n
exp

[
−it�u�An�

Bn

])

→ −
t
c′u − it
2
π

∫
Sd−1

�u� s� log 
�tu� s�
ν�ds�� ✷

Example. Let 0 < p < 2, ν ∈ � �Sd−1� be nondegenerate, and let L be
slowly varying at ∞.

If Y ∈ DA�p�1�, Y > 0 with tails given by P�Y > λ� = 2L�λ�/πλp and Z
is a ν-distributed random variable on Sd−1 independent of Y, then X �= YZ
is in the domain of attraction of a nondegenerate stable law of order p on R

d

and with spectral measure ν.
This follows from (and illustrates) Corollaries 1 and 2. Indeed, using the

notation ψU�u� �= − log�E�exp�i�U�u��
, we have that, for u ∈ Sd−1 and t > 0,

ψX�tu� = E�ψY��Z� tu�� +O�ψY��Z� tu��2��
= E�ψY��Z� tu��� + o�tpL�1/t��

as t→ 0, whence, by Ibragimov and Linnik (1971) for p �= 1,

ψX�tu� = itγ�u�E�Z��

− tpL
(

1
t

) ∫
Sd−1


�u� s�
p
(

1 − i sgn��s� u�� tan
(
pπ

2

))
ν�ds�

+ o
(
tpL

(
1
t

))
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as t→ 0, and, by Theorem 2 for p = 1,

ReψX�tu� = −tL
(

1
t

) ∫
Sd−1


�s� u�
dν�s� + o
(
tL

(
1
t

))
�

ImψX�tu� = tγ�u�E�Z�� + t
(
H

(
1
t

)
+ 2C
π
L

(
1
t

)) ∫
Sd−1

�s� u�dν�s�

+ tL
(

1
t

)
2
π

∫
Sd−1

�s� u� log
1


�s� u�
 dν�s� + o
(
tL

(
1
t

))

as t→ 0, where

H�λ� �=
∫ λ

0

2xL�x�dx
π�1 + x2�

and where

γ �= E
(

Y

1 +Y2
+

∫ Y
0

2u2

�1 + u2�2
du

)
�

If, in the example, Y was not chosen positive, but satisfying (2) with con-
stants c� c1� c2, then the spectral measure of X is given by

ν∗�A� = c1ν�A� + c2ν�−A�� A ∈ ��Sd−1��
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