CROSSINGS AND OCCUPATION MEASURES FOR A CLASS OF SEMIMARTINGALES ${ }^{1}$

By Gonzalo Perera and Mario Wschebor

Université de Paris-Sud and Universidad de la República
We show that

$$
\frac{1}{\sqrt{\varepsilon}}\left\{\int_{-\infty}^{\infty} f(u) k_{\varepsilon} N_{\tau}^{X_{\varepsilon}}(u) d u-\int_{0}^{\tau} f\left(X_{t}\right) a_{t} d t\right\}
$$

converges in law (as a continuous process) to $c_{\psi} \int_{0}^{\tau} f\left(X_{t}\right) a_{t} d B_{t}$, where $X_{t}=\int_{0}^{t} a_{s} d W_{s}+\int_{0}^{t} b_{s} d s$, with W a standard Brownian motion, a and b regular and adapted processes, $X_{\varepsilon}(t)=\int_{-\infty}^{\infty}(1 / \varepsilon) \psi((t-u) / \varepsilon) X_{u} d u, \psi$ a smooth kernel, $N_{t}^{g}(u)$ the number of roots of the equation $g(s)=u, s \in$ $(0, t], k_{\varepsilon}=\sqrt{\pi \varepsilon / 2} /\|\psi\|_{2}, f$ a smooth function, B a standard Brownian motion independent of W and c_{ψ} a constant depending only on ψ.

1. Introduction. Let $X=\left\{X_{t}: t \geq 0\right\}$ be a real-valued continuous semimartingale of the form

$$
\begin{equation*}
X_{t}=\int_{0}^{t} a_{s} d W_{s}+\int_{0}^{t} b_{s} d s \tag{1}
\end{equation*}
$$

where $W=\left\{W_{t}: t \geq 0\right\}$ is a standard Brownian motion (BM for short) adapted to a filtration $F=\left\{F_{t}: t \geq 0\right\}$, where $F_{t} \perp \sigma\left\{W_{r}-W_{s}: t \leq s \leq r\right\} \forall t \geq 0$. Here $a=\left\{a_{t}: t \geq 0\right\}$ and $b=\left\{b_{t}: t \geq 0\right\}$ are F-adapted processes verifying a certain number of regularity and boundedness conditions to be precised later on. We shall also assume that $a_{t}>0$.

The purpose of this paper is to compute the speed of convergence of the normalized number of crossings of regularizations of X to the local time of X.

More precisely, let ψ be a C^{∞} kernel, $\psi: \mathbb{R} \rightarrow \mathbb{R}^{+}$, with compact support (say supp $\psi \subset[-1,1]$), and $\int_{-1}^{1} \psi(u) d u=1$.

Define

$$
\begin{equation*}
X_{\varepsilon}(t)=\int_{-\infty}^{\infty} \frac{1}{\varepsilon} \psi\left(\frac{t-u}{\varepsilon}\right) X_{u} d u=\int_{-1}^{1} \psi(-u) X_{t+\varepsilon u} d u \tag{2}
\end{equation*}
$$

where we have extended X by means of $X_{t}=0$ if $t<0$.
A comment on notation: the symbol " $\xrightarrow[\varepsilon \rightarrow 0^{+}]{ }$" denotes convergence of real numbers in the ordinary sense, and $\underset{\varepsilon \rightarrow 0^{+}}{\sim}$ " indicates weak convergence of processes or measures.

Received October 1996; revised May 1997.
${ }^{1}$ Research partially supported by Universidad Central de Venezuela and Proyecto CONICYT 91/94.

AMS 1991 subject classifications. 60F 05, 60G44, 60J 55.
Key words and phrases. Crossings, local time, occupation measure, semimartingales, smoothing of paths.

In Azaïs and Wschebor (1995) it is proved that if M is a real-valued and continuous local martingale with bracket $A=\left\{A_{t}: t \geq 0\right\}$ then, almost surely, for any bounded interval I contained in $[0, \infty)$ and any continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
k_{\varepsilon} \int_{-\infty}^{\infty} f(u) N_{I}^{M_{\varepsilon}}(u) d u \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} \int_{I} f\left(M_{t}\right)\left(\dot{A}_{t}\right)^{1 / 2} d t ; \tag{3}
\end{equation*}
$$

$N_{I}^{g}(u)$ is the number of roots of the equation $g(t)=u, t \in I ; \dot{A}=\left\{\dot{A}_{t}: t \geq 0\right\}$ is the (almost everywhere) derivative of A, and

$$
k=\frac{1}{\|\psi\|_{2}} \sqrt{\frac{\pi}{2}}, \quad k_{\varepsilon}=k \sqrt{\varepsilon}, \quad\|\psi\|_{2}=\left(\int_{-1}^{1} \psi(u)^{2} d u\right)^{1 / 2} .
$$

We will also denote $N_{t}^{g}(u)=N_{(0, t]}^{g}(u)$.
Theorem 1 gives a speed of convergence in (3) for semimartingales of the form (1). Note that in the statement of Theorem 1 neither the centering nor the limit distribution depend on the drift term in (1). The constant c_{ψ} depends only on the regularizing kernel ψ and not on the process.

Theorem 1 can be used to make inference on the martingale part of X. It also allows measuring the local time of X from the observation of the number of crossings of X_{ε}. In fact, introduce the modified local time:

$$
\hat{L}_{I}^{X}(u)=\int_{I} \frac{1}{a_{t}} L_{d t}^{X}(u),
$$

where $L_{J}^{X}(u)$ is the value at $u \in \mathbb{R}$ of the canonical bicontinuous local time of the continuous martingale M on the interval J [see Revuz and Yor (1991), page 209, (1.6)].

Taking into account that in this case $\dot{A}_{t}^{1 / 2}=a_{t}$, we can rewrite the righthand term of (3) as

$$
\int_{I} f\left(X_{t}\right) a_{t} d t=\int_{-\infty}^{\infty} f(u) \hat{L}_{J}^{X}(u) d u .
$$

To see this, argue as follows:

$$
\int_{I} f\left(X_{t}\right) a_{t} d t=\int_{I} f\left(X_{t}\right) a_{t}^{2} \frac{1}{a_{t}} d t .
$$

If f is nonnegative, consider the measure defined by

$$
\nu(J)=\int_{-\infty}^{\infty} f(u) L_{J}^{X}(u) d u=\int_{J} f\left(X_{t}\right) a_{t}^{2} d t ;
$$

then

$$
\begin{aligned}
\int_{I} f\left(X_{t}\right) a_{t} d t & =\int_{I} \frac{1}{a_{t}} \nu(d t)=\int_{I} \frac{1}{a_{t}} \int_{-\infty}^{\infty} f(u) L_{d t}^{X}(u) d u \\
& =\int_{-\infty}^{\infty} f(u)\left(\int_{I} \frac{1}{a_{t}} L_{d t}^{X}(u)\right) d u=\int_{-\infty}^{\infty} f(u) \hat{L}_{J}^{X}(u) d u .
\end{aligned}
$$

Then (3) means that, almost surely,
$k_{\varepsilon} N_{I}^{X_{\varepsilon}}(u) d u \rightarrow_{\varepsilon \rightarrow 0^{+}} \hat{L}_{I}^{X}(u) d u$, where convergence takes place as weak convergence of measures on \mathbb{R}.
Theorem 1 refers to the speed of convergence in (4) enabling measuring the discrepancy between the approximation and its limit.

Extensions of Theorem 1 to \mathbb{R}^{d}-valued semimartingales will be considered elsewhere. In fact, the general setting consists of the study of the asymptotic behavior (as ε goes to zero) of functionals defined on the smoothed paths $X_{\varepsilon}(\cdot)$ having the form

$$
\int_{I} F\left(X_{\varepsilon}(t), \sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right) d t
$$

for suitable choices of the function F. Theorem 1 corresponds to $d=1$ and $F(x, y)=f(x)|y|$.

In the case X is BM, a proof of Theorem 1, based on convergence of moments, has been given in Berzin and León (1994).
2. Main results and examples. In what follows, a and b will be \mathbb{R}-valued adapted and continuous processes, with $a>0$, and such that the following hold:
(A) For every $T, p>0, \sup _{t \in[0, T]} E\left\{\left|b_{t}\right|^{p}\right\}<\infty$.
(B) $\forall \varepsilon>0,\left(a_{s+\varepsilon}-a_{s}\right) / \sqrt{\varepsilon}=a_{s}^{*} Z_{s, \varepsilon}+r_{s, \varepsilon}$, where we have the following:
(i) a^{*} adapted, $Z_{\bullet, \varepsilon}$ and $r_{\bullet, \varepsilon} F_{\bullet+\varepsilon}$-predictable, $Z_{s, \varepsilon} \perp F_{s}$.
(ii) For almost every pair $s, t \geq 0, t \neq s$, we have the following weak convergence (in $\mathbb{R}^{2} \times \mathbb{C}([0, \infty))^{2}$):

$$
\left(Z_{t, \varepsilon}, Z_{s, \varepsilon}, W_{\bullet}^{\varepsilon, t}, W_{\bullet}^{\varepsilon, s}\right) \underset{\varepsilon \rightarrow 0}{w}\left(Z_{t}, Z_{s}, W_{\bullet}^{t}, W_{\bullet}^{s}\right),
$$

where

$$
W_{\gamma}^{\varepsilon, t}=\frac{W_{t+\varepsilon \gamma}-W_{t}}{\sqrt{\varepsilon}} ;
$$

$\left\{W^{t}: t \geq 0\right\}$ is a collection of independent Brownian motions, $V_{.}(t, s)=$ $\left(Z_{t}, Z_{s}, W_{\bullet}^{t}, W_{\bullet}^{s}\right) \perp F_{\infty} ; V_{\bullet}(t, s)$ has a symmetric distribution $\left[i . e ., V_{\bullet}(t, s)\right.$ and $-V_{0}(t, s)$ have the same distribution] and if $\{s, t\}$ and $\left\{s^{\prime}, t^{\prime}\right\}$ are disjoint, $V_{.}(s, t) \perp V_{\mathbf{0}}\left(s^{\prime}, t^{\prime}\right)$.
(iii) For every $p>0, T>0$, and some $\delta>0$,

$$
\begin{aligned}
& \sup _{s \in[0, T], \varepsilon \in[0, \delta]} E\left(\left|Z_{s, \varepsilon}\right|^{p}\right)<\infty, \\
& \sup _{s \in[0, T]} E\left(\left|r_{s, \varepsilon}\right|^{p}\right) \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} 0, \\
& \sup _{s \in[0, T]} E\left(\left|a_{s}^{*}\right|^{p}\right)<\infty .
\end{aligned}
$$

We will consider Brownian semimartingales defined by (1) with a and b as before. In addition, we set

$$
\begin{align*}
\Delta_{\varepsilon}(t) & =X_{\varepsilon}(t)-X_{t} \tag{5}\\
X_{u}^{\varepsilon, t} & =\frac{X_{t+\varepsilon u}-X_{t}}{\sqrt{\varepsilon}} \tag{6}
\end{align*}
$$

Observe that if $\operatorname{supp} \psi \subset[-1,0], X_{u}^{\varepsilon, t}=\int_{0}^{u} a_{t+\varepsilon v} d_{v} W_{v}^{\varepsilon, t}+\sqrt{\varepsilon} \int_{0}^{u} b_{t+\varepsilon v} d v$. Hence, $X_{\bullet}^{\varepsilon, t}$ is the solution of the SDE:

$$
\begin{equation*}
\mathrm{d}_{u} X_{u}^{\varepsilon, t}=a_{t+\varepsilon u} d_{u} W_{u}^{\varepsilon, t}+\sqrt{\varepsilon} b_{t+\varepsilon u} d u, \quad u \geq 0, X_{0}^{\varepsilon, t}=0 \tag{7}
\end{equation*}
$$

Let us denote by C_{b}^{2} the set of real-valued functions with bounded continuous second derivative and set

$$
E_{\varepsilon}(\tau):=\frac{1}{\sqrt{\varepsilon}}\left\{\int_{-\infty}^{\infty} f(u) k_{\varepsilon} N_{\tau}^{X_{\varepsilon}}(u) d u-\int_{o}^{\tau} f\left(X_{t}\right) a_{t} d t\right\}
$$

Our main result is the following theorem.
Theorem 1. If X is as in (1), $f \in C_{b}^{2}$ then

$$
\left(W_{\tau}, E_{\varepsilon}(\tau)\right) \underset{\varepsilon \rightarrow 0}{w}\left(W_{\tau}, c_{\psi} \int_{0}^{\tau} f\left(X_{t}\right) a_{t} d B_{t}\right) \quad \text { in } \mathbb{C}([0, \infty))^{2}
$$

where B is a $B M, B \perp W$, and c_{ψ} is the constant

$$
c_{\psi}^{2}=\int_{-1}^{1} \int_{-1}^{1} E\left\{\prod_{i=1}^{i=2} H\left(R_{\gamma_{i}}, \beta^{2}\left(\gamma_{i}\right)\right) \psi\left(-\gamma_{i}\right)\right\} d \gamma_{2} d \gamma_{1}
$$

where $H(x, \theta):=k[2 \Phi(x / \theta)-1]$, Φ is the standard normal distribution, $R_{\gamma}:=$ $\int_{0}^{\gamma} \psi(-u) d W_{u}$ and $\beta^{2}(\gamma):=\int_{\gamma}^{1} \psi^{2}(-u) d u$.

Example 1 (Diffusions). Consider the diffusion process

$$
\begin{equation*}
X_{t}=\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}+\int_{0}^{t} b\left(X_{s}\right) d s \tag{8}
\end{equation*}
$$

where $\sigma>0$ and assume

$$
\begin{align*}
& \sigma(x)^{2}+b(x)^{2} \leq K\left(1+x^{2}\right) \quad \forall x \in \mathbb{R} \tag{9}\\
&|b(x)-b(y)|+|\sigma(x)-\sigma(y)| \leq L_{N}|x-y| \\
& \forall|x|,|y| \leq N, \quad \forall N \in \mathbb{N}
\end{align*}
$$

in which case existence and uniqueness of a strong solution of (8) are guaranteed, with all its moments uniformly bounded over compact intervals. Furthermore, assume that σ belongs to C_{b}^{2}.

Denote $a_{s}=\sigma\left(X_{s}\right), b_{s}=b\left(X_{s}\right)$. We have $(0<\theta<1)$

$$
\begin{aligned}
\frac{a_{s+\varepsilon}-a_{s}}{\sqrt{\varepsilon}}= & \sigma^{\prime}\left(X_{s}\right) \frac{\left(X_{s+\varepsilon}-X_{s}\right)}{\sqrt{\varepsilon}}+\sigma^{\prime \prime}\left(X_{s+\theta \varepsilon}\right) \frac{\left(X_{s+\varepsilon}-X_{s}\right)^{2}}{2 \sqrt{\varepsilon}} \\
= & \sigma^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) W_{1}^{\varepsilon, s}+\sigma^{\prime}\left(X_{s}\right) \int_{0}^{1}\left[\sigma\left(X_{s+\varepsilon v}\right)-\sigma\left(X_{s}\right)\right] d_{v} W_{v}^{\varepsilon, s} \\
& +\sigma^{\prime}\left(X_{s}\right) \sqrt{\varepsilon} \int_{0}^{1} b\left(X_{s+\varepsilon v}\right) d_{v} W_{v}^{\varepsilon, s}+\sigma^{\prime \prime}\left(X_{s+\theta \varepsilon}\right) \frac{\left(X_{s+\varepsilon}-X_{s}\right)^{2}}{2 \sqrt{\varepsilon}} .
\end{aligned}
$$

Thus, we have the representation (B) for a, with

$$
\begin{aligned}
a_{s}^{*}= & \sigma^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right), \\
Z_{s, \varepsilon}= & W_{1}^{\varepsilon, s}, \\
r_{s, \varepsilon}= & \sigma^{\prime}\left(X_{s}\right) \int_{0}^{1}\left[\sigma\left(X_{s+\varepsilon v}\right)-\sigma\left(X_{s}\right)\right] d_{v} W_{v}^{\varepsilon, s} \\
& +\sigma^{\prime}\left(X_{s}\right) \sqrt{\varepsilon} \int_{0}^{1} b\left(X_{s+\varepsilon v}\right) d_{v} W_{v}^{\varepsilon, s} \\
& +\sigma^{\prime \prime}\left(X_{s+\theta \varepsilon}\right) \frac{\left(X_{s+\varepsilon}-X_{s}\right)^{2}}{2 \sqrt{\varepsilon}},
\end{aligned}
$$

which clearly satisfy all the required conditions.
The statement of Theorem 1 can then be rewritten as
$\left(W_{\tau}, \frac{1}{\sqrt{\varepsilon}} \int_{-\infty}^{\infty} f(u)\left[k_{\varepsilon} N_{\tau}^{X_{\varepsilon}}(u)-\frac{L_{\tau}^{X}(u)}{\sigma(u)}\right] d u\right) \underset{\varepsilon \rightarrow 0}{\underset{~}{\Longrightarrow}}\left(W_{\tau}, c_{\psi} \int_{0}^{\tau} f\left(X_{t}\right) \sigma\left(X_{t}\right) d B_{t}\right)$
[in $\left.\mathbb{C}\left([0, \infty)^{2}\right)\right]$.
Example 2 (Non-Markovian martingales). Consider $X_{t}=\int_{0}^{t} f\left(W_{s}\right) d W_{s}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{3} function such that $\underline{f}=\inf \{f(x): x \in \mathbb{R}\}>0, f^{\prime \prime}$ and $f^{(3)}$ are bounded, $f^{\prime \prime}(0) \neq 0$ and $\left\|f^{\prime \prime}\right\|_{\infty}<2 f \overline{[}$.g., $f(x)=1+\mathbb{C} \exp \left(-x^{2}\right)$, with $0<\mathbb{C}<1$].

Then X verifies the hypothesis of Theorem 1 with $a_{s}=f\left(W_{s}\right), b_{s} \equiv 0$, $a_{s}^{*}=f^{\prime}\left(W_{s}\right), Z_{\varepsilon, s}=W_{1}^{\varepsilon, s}$. However, X is non-Markovian; hence it is not a diffusion [cf. Nualart and Wschebor (1991), page 106].

Example 3 (Smoother integrands). Suppose a satisfies a Hölder condition of the form

$$
\sup _{0 \leq t \leq T-\varepsilon}\left|a_{t+\varepsilon}(\omega)-a_{t}(\omega)\right| \leq C_{T}(\omega) \varepsilon^{\alpha}\left(\alpha>\frac{1}{2}\right)
$$

for each $T>0$ and $C_{T} \in L^{p}$ for all $p>0$. Then the process X is included in our framework with $a_{t}^{*}=0, Z_{s, \varepsilon}=0$.
3. Proof of the main result. With no loss of generality, we will restrict the parameter to vary in [0,1]. We also may suppose supp $\psi \subset[-1,0]$ (see Proof of Step 1) and a localization argument implies that we can assume a and b uniformly bounded by a (nonrandom) constant and a bounded away from zero (see Lemma 1).

Throughout the proof, \mathbb{C} will denote a generic positive constant that may change from line to line. We divide the proof into several steps, and include further a series of auxiliary lemmas.

STEP 1. Denote $Z_{\varepsilon}(\tau)=(1 / \sqrt{\varepsilon}) \int_{0}^{\tau} f\left(X_{t}\right) g^{t}\left(\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right) d t$, where $g^{t}(x):=$ $k|x|-a_{t}$; then we have the following:
(i) $E_{\varepsilon}(\tau)-Z_{\varepsilon}(\tau) \longrightarrow{ }_{\varepsilon \rightarrow 0^{+}} 0$ (in L^{2});
(ii) $\left\{E_{\varepsilon}-Z_{\varepsilon}: \varepsilon>0\right\}$ is $\mathbb{C}([0,1])$-tight.

Hence, E_{ε} has the same asymptotic distribution as Z_{ε}.
REMARK 1. It follows from the proof that

$$
E\left[\sup _{0 \leq \tau \leq 1}\left|E_{\varepsilon}(\tau)-Z_{\varepsilon}(\tau)\right|\right] \rightarrow_{\varepsilon \rightarrow 0^{+}} 0
$$

Step 2. We can decompose

$$
g^{t}\left(\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right)=a_{t} \int_{0}^{1} \Phi_{\varepsilon, t}(v) d_{v} W_{v}^{\varepsilon, t}+R_{\varepsilon}(t)
$$

where

$$
\begin{aligned}
\mathbb{R}_{\varepsilon}(\tau) & :=\frac{1}{\sqrt{\varepsilon}} \int_{0}^{\tau} f\left(X_{t}\right) R_{\varepsilon}(t) d t \underset{\varepsilon \rightarrow 0}{w} 0 \text { in } \mathbb{C}([0,1]) \\
\Phi_{\varepsilon, t}(v) & :=k\left[2 \Phi\left(\frac{Y_{v}^{\varepsilon, t}}{\beta(v) a_{t}}\right)-1\right] \\
Y_{v}^{\varepsilon, t} & :=\int_{0}^{v} \psi(-u) d_{u} X_{u}^{\varepsilon, t}
\end{aligned}
$$

Remark 2. As in Step 1, we obtain $E\left[\sup _{0 \leq \tau \leq 1}\left|\mathbb{R}_{\varepsilon}(\tau)\right|\right] \rightarrow_{\varepsilon \rightarrow 0^{+}} 0$.
Step 3. We can decompose: $Z_{\varepsilon}(\tau)=\int_{0}^{\tau} f\left(X_{t}\right) K_{\varepsilon}(t) a_{t} d W_{t}+\alpha_{\varepsilon}(\tau)$, where

$$
K_{\varepsilon}(t):=\int_{\max (0, t-\varepsilon)}^{t} \frac{\Phi_{\varepsilon, v}((t-v) / \varepsilon)}{\varepsilon} d v ; \quad \alpha_{\varepsilon} \underset{\varepsilon \rightarrow 0}{w} 0 \quad \text { in } \mathbb{C}([0,1])
$$

Step 4. Let $V=\left\{V_{t}: t \geq 0\right\}$ be an adapted process such that

$$
\sup _{s \in[0,1]} E\left(\left|V_{s}\right|^{p}\right)<\infty \quad \forall p>0
$$

Then if $V_{\varepsilon}^{*}(\tau):=\int_{0}^{\tau} V_{t} K_{\varepsilon}^{2}(t) d t, \hat{V}_{\varepsilon}(\tau):=\int_{0}^{\tau} V_{t} K_{\varepsilon}(t) d t$, we have

$$
V_{\varepsilon}^{*} \underset{\varepsilon \rightarrow 0}{w} c_{\psi} \int_{0}^{\tau} V_{t} d t \quad \text { in } \mathbb{C}([0,1]) ; \quad \hat{V}_{\varepsilon} \underset{\varepsilon \rightarrow 0}{w} 0 \quad \text { in } \mathbb{C}([0,1])
$$

STEP 5. If $S_{\varepsilon}(\tau):=\int_{0}^{\tau} K_{\varepsilon}(t) d W_{t}$, then $\left(W, S_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{w}\left(W, c_{\psi} B\right)\left[\right.$ in $\left.\mathbb{C}([0,1])^{2}\right]$, where B is a $\mathrm{BM}, B \perp W$.

STEP 6. If $\hat{Z}_{\varepsilon}(\tau):=\int_{0}^{\tau} f\left(X_{t}\right) a_{t} d S_{\varepsilon}(t)$, then $\left(W_{\bullet}, \hat{Z}_{\varepsilon}(\cdot)\right) \underset{\varepsilon \rightarrow 0}{w}\left(W_{\bullet}, c_{\psi} B_{\theta(\bullet)}\right)$ [in $\left.\mathbb{C}([0,1])^{2}\right]$, with $\theta(\tau):=\int_{0}^{\tau} f\left(X_{t}\right)^{2} a_{t}^{2} d t$.

Hence, from Step 3, $\left(W_{\bullet}, Z_{\varepsilon}(\cdot)\right) \underset{\varepsilon \rightarrow 0}{w}\left(W_{\bullet}, c_{\psi} B_{\theta(\bullet)}\right)$ [in $\left.\mathbb{C}([0,1])^{2}\right]$, with $\theta(\tau)=\int_{0}^{\tau} f\left(X_{t}\right)^{2} a_{t}^{2} d t$.

The theorem follows from Steps 1 and 6 , which we will prove, with the help of some auxiliary lemmas presented in Section 4.

Proof of Step 1. The formula $\int_{-\infty}^{\infty} u(x) N_{I}^{v}(x) d x=\int_{I} u(v(t))|\dot{v}(t)| d t$ can be easily checked for $u: \mathbb{R} \rightarrow \mathbb{R}$ continuous and $v: I \rightarrow \mathbb{R}$ of class C^{1}, and I a bounded interval in the line [see, e.g., Nualart and Wschebor (1991), page 88, (2.4)].

Hence,

$$
\begin{aligned}
E_{\varepsilon}(\tau) & =\frac{1}{\sqrt{\varepsilon}}\left[\int_{0}^{\tau} f\left(X_{\varepsilon}(t)\right) \sqrt{\frac{\pi}{2}} \frac{\left|\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right|}{\|\psi\|_{2}} d t-\int_{0}^{\tau} f\left(X_{t}\right) a_{t} d t\right] \\
& =Z_{\varepsilon}(\tau)+k \int_{0}^{\tau}\left[f\left(X_{\varepsilon}(t)\right)-f\left(X_{t}\right)\right]\left|\dot{X}_{\varepsilon}(t)\right| d t .
\end{aligned}
$$

Applying Lemma 3 c , we deduce that (i) and (ii) hold, which concludes the proof of this step.

Proof of Step 2. First we will prove tightness. Set

$$
G^{t}(x, \theta)=E\left\{g^{t}\left(x+\sqrt{\theta} a_{t} N\right) / F_{t}\right\}=k \int_{-\infty}^{\infty}\left|x+\sqrt{\theta} a_{t} s\right| \phi(s) d s-a_{t},
$$

where N is a standard normal random variable, $N \perp F_{\infty}, x \in \mathbb{R}, \theta>0$ and ϕ stands for the standard normal density.
G^{t} is the $\mathbb{C}^{\infty}(\mathbb{R} \times(0, \infty))$ solution of

$$
\begin{equation*}
D_{\theta} G^{t}=\frac{a_{t}^{2}}{2} D_{x x}^{2} G^{t} ; \quad G^{t}\left(x, 0^{+}\right)=g^{t}(x) \tag{11}
\end{equation*}
$$

Denoting by Φ, the standard normal distribution, we have

$$
\begin{align*}
D_{x} G^{t}(x, \theta) & =k\left[2 \Phi\left(\frac{x}{\sqrt{\theta} a_{t}}\right)-1\right], \tag{12}\\
D_{x x}^{2} G^{t}(x, \theta) & =\frac{2 k}{\sqrt{\theta}} \phi\left(\frac{x}{\sqrt{\theta} a_{t}}\right) . \tag{13}
\end{align*}
$$

Note that $D_{x} G^{t}(x, \theta)$ and $\sqrt{\theta} D_{x x}^{2} G^{t}(x, \theta)$ are continuous and bounded. In addition, $H(x, \theta):=D_{x}^{t}\left(a_{t} x, \theta\right)$ and $J(x, \theta):=a_{t} D_{x x}^{2} G^{t}\left(a_{t} x, \theta\right)$ do not depend on $t, H(\cdot, \theta)$ is odd and $J(\cdot, \theta)$ is even.

Define $Y_{\gamma}^{\varepsilon, t}=\int_{0}^{\gamma} \psi(-u) d_{u} X_{u}^{\varepsilon, t}$. Applying Itô's formula to

$$
\eta_{\gamma}^{\varepsilon, t}=G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right),
$$

and noting that $\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)=Y_{1}^{\varepsilon, t}$, we get

$$
\begin{align*}
g^{t}\left(\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right)= & \eta_{1}{ }^{\varepsilon, t}-\eta_{0}{ }^{\varepsilon, t} \\
= & \int_{0}^{1} D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) d_{\gamma} Y_{\gamma}^{\varepsilon, t} \\
& +\int_{0}^{1} D_{\theta} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right)\left(\frac{d \beta^{2}(\gamma)}{d \gamma}\right) d \gamma \tag{14}\\
& +\frac{1}{2} \int_{0}^{1} D_{x x}^{2} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) d_{\gamma}\left\langle Y^{\varepsilon, t}, Y^{\varepsilon, t}\right\rangle_{\gamma}
\end{align*}
$$

Using (7), (11) and (14) we obtain

$$
\begin{aligned}
g^{t}\left(\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right)= & \int_{0}^{1} D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma) a_{t} d_{\gamma} W_{\gamma}^{\varepsilon, t} \\
& +\int_{0}^{1} D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma)\left[a_{t+\varepsilon \gamma}-a_{t}\right] d_{\gamma} W_{\gamma}^{\varepsilon, t} \\
& +\frac{1}{2} \int_{0}^{1} D_{x x}^{2} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi^{2}(-\gamma)\left[a_{t+\varepsilon \gamma}-a_{t}\right]\left[a_{t+\varepsilon \gamma}+a_{t}\right] d \gamma \\
& +\sqrt{\varepsilon} \int_{0}^{1} D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma) b_{t+\varepsilon \gamma} d \gamma \\
= & a_{t} \int_{0}^{1} \Phi_{\varepsilon, t}(\gamma) d_{\gamma} W_{\gamma}^{\varepsilon, t}+R_{\varepsilon}(t)
\end{aligned}
$$

with

$$
\begin{gather*}
\Phi_{\varepsilon, t}(\gamma)=D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma) \tag{15}\\
R_{\varepsilon}(t)=\int_{0}^{1} D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma)\left[a_{t+\varepsilon \gamma}-a_{t}\right] d_{\gamma} W_{\gamma}^{\varepsilon, t} \\
+\frac{1}{2} \int_{0}^{1} D_{x x}^{2} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi^{2}(-\gamma)\left[a_{t+\varepsilon \gamma}-a_{t}\right]\left[a_{t+\varepsilon \gamma}+a_{t}\right] d \gamma \\
+\sqrt{\varepsilon} \int_{0}^{1} D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma) b_{t+\varepsilon \gamma} d \gamma
\end{gather*}
$$

We have

$$
\begin{equation*}
\mathbb{R}_{\varepsilon}(\tau)=A_{\varepsilon}^{1}(\tau)+A_{\varepsilon}^{2}(\tau)+A_{\varepsilon}^{3}(\tau) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\varepsilon}^{1}(\tau)=\int_{0}^{\tau} \int_{0}^{1} f\left(X_{t}\right) D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma) \frac{\left[a_{t+\varepsilon \gamma}-a_{t}\right]}{\sqrt{\varepsilon}} d_{\gamma} W_{\gamma}^{\varepsilon, t} d t \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& A_{\varepsilon}^{2}(\tau)= \frac{1}{2} \int_{0}^{\tau} \int_{0}^{1} f\left(X_{t}\right) D_{x x}^{2} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi^{2}(-\gamma) \\
& \times \frac{\left[a_{t+\varepsilon \gamma}-a_{t}\right]}{\sqrt{\varepsilon}}\left[a_{t+\varepsilon \gamma}+a_{t}\right] d \gamma d t \tag{19}\\
& A_{\varepsilon}^{3}(\tau)=\int_{0}^{\tau} \int_{0}^{1} f\left(X_{t}\right) D_{x} G^{t}\left(Y_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) \psi(-\gamma) b_{t+\varepsilon \gamma} d \gamma d t \tag{20}
\end{align*}
$$

We will prove in what follows that $\left\{A_{\varepsilon}^{i}: \varepsilon>0\right\}$ is $\mathbb{C}([0,1])$-tight for $i=1,2,3$.
Using Hölder's inequality and Lemma 2, we see that the integrand in (18) is bounded in L^{p} for each $p>0$; applying J ensen and the Burkholder-DavisGundy inequality [cf. Revuz and Yor (1991), page 152] we obtain

$$
\begin{equation*}
E\left\{\left[A_{\varepsilon}^{1}\left(\tau^{\prime}\right)-A_{\varepsilon}^{1}(\tau)\right]^{4}\right\} \leq \mathbb{C}\left|\tau^{\prime}-\tau\right|^{3}, \tag{21}
\end{equation*}
$$

which proves tightness for $i=1$. The case $i=3$ is even easier. For the case $i=2$, it suffices to remark that $D_{x x}^{2}\left(x, \beta^{2}(\gamma)\right) \psi^{2}(-\gamma)$ is bounded by $\mathbb{C}\left(\psi^{2}(-\gamma) / \beta(\gamma)\right)$ and that

$$
\int_{0}^{1} \frac{\psi^{2}(-\gamma)}{\beta(\gamma)} d \gamma=\int_{0}^{\|\psi\|_{2}^{2}} \frac{1}{\sqrt{u}} d u<\infty
$$

and tightness follows.
For the convergence to zero in L^{2}, note that

$$
\begin{aligned}
A_{\varepsilon}^{1}(\tau)= & \int_{0}^{\tau} \int_{t}^{t+\varepsilon} f\left(X_{t}\right) D_{x} G^{t}\left(Y_{((v-t) / \varepsilon)}^{\varepsilon, t}, \beta^{2}\left(\left(\frac{v-t}{\varepsilon}\right)\right)\right) \\
& \times \psi\left(-\left(\frac{v-t}{\varepsilon}\right)\right) \frac{\left[a_{v}-a_{t}\right]}{\varepsilon} d W_{v} d t \\
= & \int_{0}^{\tau} I_{\varepsilon}^{1}(t) d t .
\end{aligned}
$$

Because of the martingale property of the stochastic integral it is clear that $I_{\varepsilon}^{1}(t), I_{\varepsilon}^{1}(s)$ are uncorrelated for $|t-s|>\varepsilon$ and it follows that $E\left\{\left[A_{\varepsilon}^{1}(\tau)\right]^{2}\right\}=$ $O(\varepsilon)$.

Now

$$
\begin{equation*}
Y_{\gamma}^{\varepsilon, t}=a_{t} R_{\gamma}^{\varepsilon, t}+\sqrt{\varepsilon} O_{L^{p}}(1) \forall p>0, \tag{22}
\end{equation*}
$$

where $T(\varepsilon, t)=O_{L^{p}}$ means $\sup _{t \in[0,1], \varepsilon>0} E\left\{|T(\varepsilon, t)|^{p}\right\}<\infty$, and $R_{\gamma}^{\varepsilon, t}=$ $\int_{0}^{\gamma} \psi(-u) d_{u} W_{u}^{\varepsilon, t}$.

For almost every pair $s, t>0, s \neq t,\left(R_{\gamma}^{\varepsilon, s}, Z_{s, \varepsilon}, R_{\gamma}^{\varepsilon, t}, Z_{t, \varepsilon}\right) \underset{\varepsilon \rightarrow 0}{w}$ ($R_{\gamma}^{s}, Z_{s}, R_{\gamma}^{t}, Z_{s}$), where $\left\{R_{\bullet}^{s}: s \in[0,1]\right\}$ are independent copies of $R_{\text {. }}$ (defined in the statement of Theorem 1), ($R_{\bullet}^{s}, Z_{s}, R_{\bullet}^{t}$, $\left.Z_{t}\right) \perp W,\left(R_{\bullet}^{s}, Z_{s}\right) \perp\left(R_{\bullet}^{t}, Z_{t}\right),\left(R_{\bullet}^{s}, Z_{s}\right) \perp F_{s^{\prime}}\left(R_{\bullet}^{t}, Z_{t}\right)$ have symmetric distributions.

Equation (22) follows from (8), the definition of $Y_{\gamma}^{\varepsilon, t}, R_{\gamma}^{\varepsilon, t}$, and condition (B)(iii), (23) follows from condition (B)(ii).

Set $c_{t}=a_{t} a_{t}^{*}$. Since the integrands in (19), (20) are $O_{L^{p}}(1) \forall p>0$, applying dominated convergence and (22), our problem reduces to show that, for all $\gamma, \gamma^{\prime}>0$, and almost every pair $s, t>0, s \neq t$,

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} E\left\{f\left(X_{t}\right) f\left(X_{s}\right) J\left(R_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) J\left(R_{\gamma^{\prime}}^{\varepsilon, s}, \beta^{2}\left(\gamma^{\prime}\right)\right) c_{t} c_{s} Z_{t, \varepsilon} Z_{s, \varepsilon}\right\} & =0 \tag{24}\\
\lim _{\varepsilon \rightarrow 0} E\left\{f\left(X_{t}\right) f\left(X_{s}\right) H\left(R_{\gamma}^{\varepsilon, t}, \beta^{2}(\gamma)\right) H\left(R_{\gamma^{\prime}}^{\varepsilon, s}, \beta^{2}\left(\gamma^{\prime}\right)\right) b_{t} b_{s}\right\} & =0 \tag{25}
\end{align*}
$$

Assume that $s>t$ are such that (23) holds and take ε so that $0<\varepsilon<s-t$. Conditioning on F_{s} and using that $\left.\left(R_{\gamma^{\prime}}^{\varepsilon, s}, Z_{s, \varepsilon}\right\}\right) \perp F_{s}$, we reduce the problem to show that

$$
\lim _{\varepsilon \rightarrow 0} E\left\{J\left(R_{\gamma^{\prime}}^{\varepsilon, s}, \beta^{2}\left(\gamma^{\prime}\right)\right) Z_{s, \varepsilon}\right\}=0=\lim _{\varepsilon \rightarrow 0} E\left\{H\left(R_{\gamma^{\prime}}^{\varepsilon, s}, \beta^{2}\left(\gamma^{\prime}\right)\right)\right\}
$$

From (23) and uniform integrability it suffices to prove that

$$
E\left\{J\left(R_{\gamma}^{t}, \beta^{2}(\gamma)\right) Z_{t}\right\}=E\left\{H\left(R_{\gamma}^{t}, \beta^{2}(\gamma)\right)\right\}=0
$$

which is obvious by the symmetry of the distribution of $\left(R_{\gamma}^{t}, Z_{t}\right)$ and the fact that $J(\cdot, \theta)$ (resp. $H(\cdot, \theta)$) is even (resp. odd).

Proof of Step 3. Replacing $g^{t}\left(\sqrt{\varepsilon} \dot{X}_{\varepsilon}(t)\right)$ by the formula in Step 2 we obtain

$$
Z_{\varepsilon}^{\tau}=\int_{0}^{\tau} \int_{0}^{1} f\left(X_{t}\right) a_{t} \frac{\Phi_{\varepsilon, t}(v)}{\sqrt{\varepsilon}} d_{v} W_{v}^{\varepsilon, t} d t+\frac{1}{\sqrt{\varepsilon}} \int_{0}^{\tau} f\left(X_{t}\right) R_{\varepsilon}(t) d t
$$

For $\varepsilon>0$ fixed and every $p>0$, it is obvious that the integrand in the first term of the right-hand member is $O_{L^{p}}(1)$; hence the Fubini-type Lemma 4 shows that

$$
\begin{aligned}
& \int_{0}^{\tau} \int_{0}^{1} f\left(X_{t}\right) a_{t} \frac{\Phi_{\varepsilon, t}(v)}{\sqrt{\varepsilon}} d_{v} W_{v}^{\varepsilon, t} d t \\
&=\int_{0}^{\tau} \int_{t}^{t+\varepsilon u} f\left(X_{t}\right) a_{t} \frac{\Phi_{\varepsilon, t}((u-t) / \varepsilon)}{\varepsilon} d W_{u} d t \\
& \quad=\int_{0}^{\tau+\varepsilon} \int_{\max (0, u-\varepsilon)}^{\min (u, \tau)} f\left(X_{t}\right) a_{t} \frac{\Phi_{\varepsilon, t}((u-t) / \varepsilon)}{\varepsilon} d t d W_{u}
\end{aligned}
$$

Define

$$
\begin{align*}
Q_{\varepsilon}(u, \tau) & =\int_{\max (0, u-\varepsilon)}^{\min (u, \tau)} f\left(X_{t}\right) a_{t} \frac{\Phi_{\varepsilon, t}((u-t) / \varepsilon)}{\varepsilon} d t \tag{26}\\
K_{\varepsilon}(u) & =\int_{\max (0, u-\varepsilon)}^{u} \frac{\Phi_{\varepsilon, t}((u-t) / \varepsilon)}{\varepsilon} d t \tag{27}
\end{align*}
$$

By (15) and Lemma 2, it follows that

$$
\begin{equation*}
\sup _{u \in[0,1], \tau \in[0,1]} E\left\{\left|Q_{\varepsilon}(u, \tau)\right|^{p}\right\}<\infty, \sup _{u \in[0,1]} E\left\{\left|K_{\varepsilon}(u)\right|^{p}\right\}<\infty . \tag{28}
\end{equation*}
$$

From this, the continuity of X, a, the Burkholder-Davies-Gundy inequality and Lemma 2, we obtain

$$
\begin{equation*}
\int_{\max (0, u-\varepsilon)}^{\min (u, \tau)}\left[f\left(X_{u}\right) a_{u} K_{\varepsilon}(u)-Q_{\varepsilon}(u, \tau)\right] d W_{u}=o_{L^{p}}(1) \tag{29}
\end{equation*}
$$

[indeed, it is an $\left.O_{L^{p}}(\sqrt{\varepsilon})\right) \forall p>0$];

$$
\begin{equation*}
\int_{\tau}^{\tau+\varepsilon} Q_{\varepsilon}(u, \tau) d W_{u}=O_{L^{p}}(\varepsilon) \quad \forall p>0 . \tag{30}
\end{equation*}
$$

After Step 2, (29) and (30), Step 3 is proved.
Proof of Step 4. As a consequence of (28) and J ensen's inequality, both V^{*} and \hat{V} are tight. Equations (22),(23) also imply

$$
\begin{gather*}
E\left\{\hat{V}_{\varepsilon}(\tau)\right\} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} c_{\psi}^{2} \int_{0}^{\tau} E\left\{V_{t}\right\} d t, \tag{31}\\
E\left\{\hat{V}_{\varepsilon}^{2}(\tau)\right\} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} c_{\psi}^{4} E\left\{\left[\int_{0}^{\tau} V_{t} d t\right]^{2}\right\}, \tag{32}\\
E\left\{\hat{V}_{\varepsilon}(\tau) \int_{0}^{\tau} V_{t} d t\right\} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} c_{\psi}^{2} E\left\{\left[\int_{0}^{\tau} V_{t} d t\right]^{2}\right\}, \tag{33}\\
E\left\{V_{\varepsilon}^{*}(\tau)^{2}\right\} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} 0 ; \tag{34}
\end{gather*}
$$

and Step 4 follows.
Proof of Step 5. Apply Step 4 with $V=1$ and Rebolledo's theorem for convergence of martingales [cf. Revuz and Yor (1991), page 478].

Proof of Step 6. Consider $P_{t}:=f\left(X_{t}\right) a_{t}$ and

$$
P_{t}^{N}:=\sum_{i=0}^{i=N-1} f\left(X_{i \tau / N}\right) a_{i \tau / N} \mathbb{1}_{[i \tau / N,(i+1) \tau / N)}(t) .
$$

It follows from Step 5 that

$$
\begin{equation*}
\int_{0}^{\tau} P_{t}^{N} d S_{\varepsilon}(t) \underset{\varepsilon \rightarrow 0}{w} c_{\psi} \int_{0}^{\tau} P_{t}^{N} d B_{t} \quad \text { in } \mathbb{C}([0,1]) . \tag{35}
\end{equation*}
$$

Step 4 applied to $\left(P_{t}-P_{t}^{N}\right)^{2}$ shows that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{0}^{\tau}\left(P-P^{N}\right) d S_{\varepsilon}(t)=0 \quad \text { in } \mathbb{C}([0,1]) . \tag{36}
\end{equation*}
$$

Since

$$
\int_{0}^{\tau} P_{t}^{N} d B_{t} \underset{N \rightarrow \infty}{\underset{w}{\Longrightarrow}} \int_{0}^{\tau} P_{t} d B_{t}
$$

and by (35), (36), Step 6 follows and the theorem is proved.
4. Auxiliary lemmas.

Lemma 1. If a satisfies (A), (B) and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded C^{∞} function, then $\varphi \circ a$ satisfies (A), (B).

For the proof, use Taylor's expansion.
Lemma 2. Let X be as in (1), with a and b uniformly bounded by a (nonrandom) constant. Then, $\forall p \geq 2$ we have the following:
(a) $E\left\{\sup _{t \in[0,1]}\left|X_{t}\right|^{p}\right\}<\infty$.
(b) $E\left\{\sup _{t \in[0,1]}\left|X_{\varepsilon}(t)\right|^{p}\right\}<\infty$.
(c) $E\left\{\sup _{t \in[0,1]}\left|\dot{X}_{\varepsilon}(t)\right|^{p}\right\}=O\left(\varepsilon^{-p / 2}\right)$.
(d) $E\left\{\sup _{t \in[0,1]}\left|\Delta_{\varepsilon}(t)\right|^{p}\right\}=O\left(\varepsilon^{p / 2}\right)$.

For the proof, use the Burkholder-Davis-Gundy inequality.
Lemma 3. Let $V=\left\{V_{t}: t \geq 0\right\}$ be a real-valued adapted process such that $\sup _{t \in[0,1]} E\left\{\left|V_{t}\right|^{p}\right\}<\infty \forall p>0$.

If X is as in (1), with a and b uniformly bounded by a (nonrandom) constant, we have, for $0<\varepsilon<1,0<h<1$,

$$
\begin{equation*}
\sup _{0 \leq t \leq 1-h} E\left[\left\{\int_{t}^{t+h} \Delta_{\varepsilon}^{2}(s)\left|\dot{X}_{\varepsilon}(s)\right| V_{s} d s\right]^{2}\right\} \leq \mathbb{C} h^{2} \varepsilon \tag{a}
\end{equation*}
$$

(b)

$$
\sup _{0 \leq t \leq 1-h} E\left[\left\{\int_{t}^{t+h} \Delta_{\varepsilon}(s)\left|\dot{X}_{\varepsilon}(s)\right| V_{s} d s\right]^{2}\right\} \leq \mathbb{C} \sqrt{\varepsilon} h^{3 / 2}
$$

(c) if $f \in C_{b}^{2}(\mathbb{R})$, then

$$
\left.\sup _{0 \leq t \leq 1-h} E\left\{\left[\int_{t}^{t+h} f\left(X_{\varepsilon}(s)\right)-f\left(X_{s}\right)\right)\left|\dot{X}_{\varepsilon}(s)\right| d s\right]^{2}\right\} \leq \mathbb{C} \sqrt{\varepsilon} h^{3 / 2}
$$

Proof. (a) Apply Lemma 2.
(b) Observe that

$$
\begin{align*}
\sqrt{\varepsilon} \dot{X}_{\varepsilon}(s) & =\int_{0}^{1} \psi(-u) a_{s+\varepsilon u} d_{u} W_{u}^{\varepsilon, s}+\sqrt{\varepsilon} \int \psi(-u) b_{s+\varepsilon u} d u \tag{37}\\
& =a_{s} \int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, s}+O_{L^{p}}(\varepsilon) \quad \forall p>0
\end{align*}
$$

$$
\begin{align*}
\frac{\Delta_{\varepsilon}(s)}{\sqrt{\varepsilon}} & =\int_{0}^{1} \psi(-u) \int_{0}^{u} a_{s+\varepsilon v} d_{v} W_{v}^{\varepsilon, s} d u+\sqrt{\varepsilon} \int_{0}^{1} \psi(-u) \int_{0}^{u} b_{s+\varepsilon v} d_{v} d u \tag{38}\\
& =a_{s} \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, s} d u+O_{L^{p}}(\varepsilon) \quad \forall p>0 .
\end{align*}
$$

Set $H_{\varepsilon}(s, r)=E\left\{\Delta_{\varepsilon}(s)\left|\dot{X}_{\varepsilon}(s)\right| V_{s} \Delta_{\varepsilon}(r)\left|\dot{X}_{\varepsilon}(r)\right| V_{r}\right\}$.
Compute the second moment as follows:

$$
\begin{aligned}
& E\left\{\left[\int_{t}^{t+h} \Delta_{\varepsilon}(s)\left|\dot{X}_{\varepsilon}(s)\right| V_{s} d s\right]^{2}\right\} \\
& \\
& \quad=\int_{t}^{t+h} \int_{t}^{t+h} E\left\{\Delta_{\varepsilon}(s)\left|\dot{X}_{\varepsilon}(s)\right| V_{s} \Delta_{\varepsilon}(r)\left|\dot{X}_{\varepsilon}(r)\right| V_{r}\right\} d r d s \\
& \\
& \quad=\int_{\{t \leq r, s \leq t+h,|s-r|<\varepsilon\}} H_{\varepsilon}(s, r) d r d s+2 \int_{t}^{t+h} \int_{s+\varepsilon}^{t+h} H_{\varepsilon}(s, r) d r d s \\
& \\
& \quad=(I)+2(I I) .
\end{aligned}
$$

Taking into account that the integrand H_{ε} is bounded, it is trivial to observe that

$$
\begin{equation*}
(I) \leq \mathbb{C} h \min \{\varepsilon, h\} \leq \mathbb{C} \sqrt{\varepsilon} h^{3 / 2} . \tag{39}
\end{equation*}
$$

For the second term, $A_{s, r}=a_{s}^{2} V_{s} a_{r}^{2} V_{r}$, and using (37), we deduce

$$
\begin{align*}
H_{\varepsilon}(s, r)=E\{ & A_{s, r}\left|\int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, s}\right| \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, s} d u \tag{40}\\
& \left.\times\left|\int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, r}\right| \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, r} d u\right\}+O(\sqrt{\varepsilon}) .
\end{align*}
$$

Since $s+\varepsilon \leq r$, conditioning to F_{r} and using the independence of the Brownian increments, we get

$$
H_{\varepsilon}(s, r)=P(s, r)+O(\sqrt{\varepsilon})
$$

with

$$
\begin{align*}
P(s, r)= & E\left\{A_{s, r}\left|\int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, s}\right| \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, s} d u\right\} \tag{41}\\
& \times E\left\{\left|\int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, r}\right| \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, r} d u\right\} .
\end{align*}
$$

Since $\left(\int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, r}, \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, r} d u\right)$ is a centered Gaussian vector, it follows by symmetry that

$$
\begin{equation*}
E\left\{\left|\int_{0}^{1} \psi(-u) d_{u} W_{u}^{\varepsilon, r}\right| \int_{0}^{1} \psi(-u) W_{u}^{\varepsilon, r} d u\right\}=0 \tag{42}
\end{equation*}
$$

By (41) and (42) we deduce

$$
\begin{equation*}
(I I) \leq \mathbb{C} \sqrt{\varepsilon} h^{2} \leq \mathbb{C} \sqrt{\varepsilon} h^{3 / 2} . \tag{43}
\end{equation*}
$$

This concludes the proof of part (b).
(c) Use Taylor's formula, apply (b) to the linear term and (a) to the quadratic one.

Lemma 4. Let $\{K(t, s): t, s \in[0,1]\}$ be a real-valued random process such that

$$
\begin{equation*}
\sup _{t, s \in[0,1]} E\left\{|K(t, s)|^{p}\right\}<\infty \quad \forall p>0, \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{1} K(t, s) d s \text { is predictable, } \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{1} K(t, s) d W_{t} \text { is measurable } \tag{c}
\end{equation*}
$$

Then

$$
\int_{0}^{\tau} \int_{0}^{1} K(t, s) d s d W_{t}=\int_{0}^{1} \int_{0}^{\tau} K(t, s) d W_{t} d s
$$

The proof is an analogue to Lemma 1.4.1 of Ikeda and Watanabe (1981).
Acknowledgments. The authors thank ProfessorsJ -M. Azaïs and M. Yor for valuable discussions leading to a second proof in the case of BM, which has largely inspired the present proof of Theorem 1.

REFERENCES

Azaïs, J-M. and Wschebor, M. (1997). Oscillation presque sûre de martingales continues. Séminaire de Probabilités XXXI. Lecture Notes in Math. 1655 69-76. Springer, Berlin.
Berzin, C. and León, J. R. (1994). Weak convergence of the integrated number of level crossings to the local time for Wiener processes. CRAS Seriel 319 1311-1316.
Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. North-H olland, Amsterdam.
Nualart, D. and Wschebor, M. (1991). Integration par parties dans l'espace de Wiener et approximation du temps local. Probab. Theory Related Fields 90 83-109.
Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Grundlehren Math. Wiss. 293. Springer, Berlin.

Laboratoire Modélisation Stochastique
Centro de Matemática
et Statistique
Université de Paris-Sud
Bâtiment 425
Facultad de Ciencias Eduardo Acevedo 1139

91405 ORSAY
Montevideo 11200
France
Uruguay
E-mAIL: wscheb@fcien.edu.uy
E-MAIL: perera@stats.math.u-psud.fr gperera@cmat.edu.uy

