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UNIQUENESS OF THE TAGGED PARTICLE PROCESS IN
A SYSTEM WITH LOCAL INTERACTIONS1

BY ILIE GRIGORESCU

The Fields Institute and McMaster University

It has been shown that for a system of Brownian motions with local
interaction considered in a diffusive scaling, under some regularity as-
sumptions on the initial profile, the tagged particle process converges to a
diffusion. We provide a sufficient condition for granting both the existence
and the uniqueness of the tagged particle process for an arbitrary initial
profile.

1. Introduction. This paper derives a uniqueness result for the tagged
particle process associated to a scaled family of Brownian motions with local
interactions. The dynamics can be described as a limiting case of the finite-

� �range interaction considered in 2, 3 , recast on the circle in a suitable scaling
Ž � � .see 4 for the hydrodynamic limit .

The explicit determination of the tagged particle process for this interac-
� �tion is given in 1 . It is also proved that two particles of distinct labels

� �become independent in the limit. In Theorem 3 of 1 the tightness of the
tagged particle process starting at a particular point of the unit circle is
demonstrated for a general initial profile while the uniqueness results are

Ž .proved for a bounded initial density profile � dx . Our goal is to remove any
restriction from the initial condition and prove an uniqueness result for an

Ž .arbitrary � dx . The price one pays for this is the addition of a further
hypothesis describing how much mass can be assumed to lie on each ‘‘side’’ of

Ž .the tagged particle at time t � 0, formally described in 2.3 . One can explain
the motion of the tagged particle by considering its underlying free Brownian
motion over which an interaction with the environment is superposed. The
interacting forces are repulsive and proportional to the amount of mass on
each side of the particle. As long as the density profile is nonsingular, one can

Ž .easily tell how much mass i.e., how much repulsion lies on both sides.
Ambiguity arises only when there is positive mass at the specific point of the
trajectory. However, we show that the macroscopic profile is smooth at any

Ž .positive time t � 0 because it verifies the heat equation. The only time when
one has to make a description of the way in which mass gathers on each side
of the particle is t � 0. Once this mass split has been prescribed, uniqueness
follows.
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1.1. The formal definition. Consider a positive integer n and � � 0. Let
n i j � n 4� be the n-dimensional torus. We define F � � � � : � � � for any i, ji j

n� 4 Ž .in 1, . . . , n and F � � F . We shall denote by C � , F the set of1� i� j� n i j
Ž .functions f that are piecewise smooth up to the boundary F on � � F. Forn

such functions we define functions f i j and Di j f on the boundary F by

f i j � , � , . . . , � , � , � , . . . , � , � , � , . . . , �Ž .1 2 i�1 i	1 j�1 j	1 n

� f � , � , . . . , � , � 	 0, � , . . . , � , � � 0, � , . . . , � ,Ž .1 2 i�1 i	1 j�1 j	1 n

1.1Ž .

Di j f � , � , . . . , � , � , � , . . . , � , � , � , . . . , �Ž .1 2 i�1 i	1 j�1 j	1 n

� � � � f � , � , . . . , � , � 	 0, � , . . . , � ,Ž . Ži j 1 2 i�1 i	1 j�11.2Ž .

� � 0, � , . . . , � ..j	1 n

We are now in a position to define the generator of the process

� n t � � t , . . . , � tŽ . Ž . Ž .Ž .1 n

on � n.
n n 2 n i j i jŽ . � Ž . Ž . Ž .Let C � , F � f : � � R: f � C � � F and f � , D f � are finite0 0

Ž .4for any � � F and any i, j , called the set of smooth functions up to the0
boundary F.

For a real � � 0 we define the boundary conditions
i j i j i j � 41.3 D f � 	 � f � � f � � 0 � i , j � 1, . . . , n .Ž . Ž . Ž . Ž .Ž .

Ž Ž ..The operator LL , DD LL with
11.4 LL f � � fŽ . 2

and
nDD LL � f � C � , F : s.t. the boundary conditions 1.3 are satisfiedŽ . Ž .� 4

is the infinitesimal generator of a process P n on � n.�

1.2. The scaled model. The considerations made up to this point regard a
process P n for a given n. Let us consider a large positive N and let us blow�

up the space scale by a factor of N, such that the particles evolve on a circle
Ž .of radius N instead of 1; in the scaled version we shall look at � t 
N. The

2 Ž 2time scale will also be amplified by N to produce a diffusive scaling � 
t is
.invariant, i.e., the Laplacian is preserved .

Let 	 � 0 and � � 0 be fixed constants. The number of particles will be
scaled to n � N	; physically this implies that the average density of the

Ž .system does not change. The scaled process will be defined by 1.4 with
n � N	 and � � N�. It will be denoted byN

N N	1.5 P � P .Ž . � N�

nThe new process evolves on the n � N	-dimensional torus � . Each parti-
cle � , for k � 1, . . . , n, performs a Brownian motion on the unit circle until itk
collides with some other particle, where the given interaction governed by
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� �� � N� takes place. As explained in 1 , the model interpolates betweenN
Ž . Ž .� � 0 the pure reflection case and � � 
 the noninteracting case by

switching the labels of the colliding particles according to a Poisson process
ran following the local time of collision. The reflected or switched pair
proceeds by performing independent Brownian motions until the next colli-
sion and so on.

1.3. The lifted process.

DEFINITION 1. We shall denote by � n the space of continuous paths from�

� . n
n0, 
 on the n-dimensional torus � and by � the space of continuousR

� . npaths from 0, 
 on R .

Each continuous path on the unit circle can be lifted in a canonical way to
a continuous path on the covering space R. The mapping � will be the
Cartesian product of the n canonical mappings for each component with the
given initial condition

� �� 0 � � � x � 0, 1 with k � 1, . . . n.Ž .k k k

There is an important distinction to make between the process

�  � �  , . . . , � Ž . Ž . Ž .Ž .1 n

with state space the n-dimensional torus � n and the lifted process

x  � x  , . . . , x Ž . Ž . Ž .Ž .1 n

with state space Rn given by

x  � � � Ž . Ž .Ž .
constructed with the lift mapping

1.6 � : � n � � nŽ . � R

Ž . Ž .by lifting each component �  , . . . , �  .1 n
We use the notation shown in the following.

DEFINITION 2. Let � be the lift mapping for n � N	. Then

1.7 P N � P � N� ��1Ž .
N Ž� . n.and P is a measure on the path space C 0, 
 , R .

� NŽ .4DEFINITION 3. The process x  will be called the tagged particle1 t � 0
process.

nŽ . Ž . Ž .REMARK. For any function � � C � , F , � x � � x , . . . , x periodic of1 n
Ž NŽ ..period 1 in each variable, the mappings t � � x t can be identified to

Ž NŽ .. NŽ . nt � � � t by taking the image of x t on � . Consequently, we may
Ž . Ž .always substitute the original �  process with the lifted process x  as long

as the test functions are periodic.
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1.4. The previous results. A natural assumption is the existence of an
initial density profile.

HYPOTHESIS 1. We assume that for any N,

P N x N 0 � x � 1,Ž .� 4Ž .1 1

1 1Ž . Ž .and there is a measure � dx on � with � � � 	 such that
n1

N1.8 � � � dx .Ž . Ž .Ý x Ž0.kN k�1

� �It has been shown in 1 that as far as the dynamics of the entire system of
unlabeled particles is concerned, the behavior of the particles is indistin-
guishable from the unlabeled independent Brownian motions on the torus. As
a consequence there exists a hydrodynamical limit of the empirical density

1
N N� 	  	� � � t , dxŽ .Ž .x Ž t . x Ž t .1 nN

Ž . Ž .as N � 
. The macroscopic profile � t, dx � 	 t, x dx is the solution to
1	 � 	 ,t x x2

lim � t , dx � � dxŽ . Ž .
t�0

1.9Ž .

Ž .in the sense of distributions with � dx the initial density profile.

REMARKS.

Ž .i In equilibrium the macroscopic density is constant � 	.
Ž . Ž .ii For t � 0 the macroscopic profile 	 t, dx is absolutely continuous with

respect to the Lebesgue measure and we shall denote the density profile at
Ž . Ž .time ‘‘t ’’ by � t, dx � 	 t, x dx.

The limiting behavior of the above process is not interesting in itself since
it reduces to the simple independent case; however, by studying the particu-
lar evolution of the tagged particle one can derive a nontrivial result. The
next theorem states formally the existence of the hydrodynamical limit under
Hypothesis 1.

Ž . Ž . Ž .THEOREM 1. Let � t, dx � 	 t, x dx be the solution to 1.9 . For any
smooth periodic J: R � R of period 1 and any t � 0,

2n�N	1 1N1.10 lim E sup J x s � J x 	 s, x dx .Ž . Ž . Ž . Ž .Ž .Ý HkNN�
 00�s�t k�1

� �The main result from 1 is the following theorem. It is significant that the
Ž . Ž .initial profile � dx has a bounded density 	 x . This paper is dedicated to0

the removal of this assumption.
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THEOREM 2. If Hypothesis 1 is satisfied and the initial profile has a
Ž .bounded density, that is, there is a bounded positive function 	 x such that0

N N �1Ž . Ž . Ž Ž ..� dx � 	 x dx then the sequence of processes P � x  has a weak0 x 1
limit Q as N � 
 and Q is the unique solution to the martingale problemx x1 1

given by

1 � d2 1 2� 	 	 t , x dŽ .
x1.11 LL � � � 	 t , xŽ . Ž .t x2 2ž / ž /2 � 	 	 t , x 2 dxdxŽ . � 	 	 t , xŽ .Ž .

Ž .starting at 0, x .1

Ž .DEFINITION 4. Let’s denote by � x the periodic function of period 1 on R
Ž . � � Ž .such that � x � x on 0, 1 . For two points x and y on the circle, � y � x

will represent the distance from x to y in positive trigonometric sense.

NŽ .DEFINITION 5. For any N we shall define the process z  by1

1 1
N N N Nz t � x t 	 � x t � x tŽ . Ž . Ž . Ž .Ž .Ý1 1 k 1� 	 	 N k�1

for t � 0.

Ž � �.Theorem 3 Theorem 6 in 1 will be used in the proof of the main result of
NŽ .this paper. It provides a connection between the intermediary process z 1

NŽ .and x  . It is valid for an arbitrary initial profile.1

THEOREM 3. If Hypothesis 1 is satisfied then the families of processes
� Ž .4 � Ž .4 � Ž .4x  and z  are tight. For any limit process x  of the family of1 N 1 N 1 t � 0

� NŽ .4 � Ž .4processes x  there is a limit point z  of the family of processes1 N � 0 1 t � 0
� NŽ .4 Ž x1, z1. � N Ž NŽ . NŽ ..�14z  such that if Q is the limit point of P � x  , z 1 N � 0 1 1 N
corresponding to their joint distribution then:

Ž . Ž Ž . Ž . . Ž x1, z1.i z t � z 0 , FF is a continuous martingale with respect to Q ;1 1 t

� � 	 	 s, x sŽ .Ž .Ž .t 12ii z t � z 0 � ds, FFŽ . Ž . Ž . H1 1 t2ž /0 � 	 	Ž .

is also a QŽ x1, z1.-martingale.

2. Uniqueness for an arbitrary initial profile. Up to this point we
Ž .have seen that the tagged particle process x  has a unique limit point, a1

diffusion process, as soon as the initial profile has a bounded density. The
mass at x will be zero in this case. We shall give a more general condi-1
tion for uniqueness characterized by the repartition of mass at time t � 0
around x .1
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An essential step in establishing the asymptotic form of the tagged particle
Ž � �. Ž . Ž . �process in 1 is to show that for an initial profile � dx � 	 x dx with0

Ž . �	 x bounded and any T � 0 the mapping0

� �� : � � � , � � C 0, T , R ,Ž .
1 1

��  � �  	 � y � �  	 , y dyŽ . Ž . Ž . Ž .Ž .H
� 	 	 0

Ž .is well defined sends continuous paths into continuous paths and invertible.
The difficulty in proving the uniqueness for an arbitrary initial profile turns
out to originate in the ambiguous nature of the limit

1
lim �� t � lim � t 	 � y � � t 	 t , y dyŽ . Ž . Ž . Ž . Ž .Ž .H

� 	 	t�0 t�0 � �0, 1

Ž . Ž . Ž� 4.for paths �  starting at � 0 � x as soon as � x � 0. Once we remove1 1
this ambiguity we can prove the uniqueness of the limiting process.

For this purpose we assume that besides the initial profile condition

n1
� � � dx ,Ž .Ý x iN j�1

Ž . N Ž .1.8 , the process P also satisfies 2.3 .

Ž .DEFINITION 6. For any � � 0, 1 we define two periodic functions of period
1 on R equal to

� ��x , if x � 0, 1 � � ,� �2.1 � x �Ž . Ž .� x � 1, if x � 1 � , 1 , 2

� .smooth on 0, 1 as well as

2.2 g x � � x � � x .Ž . Ž . Ž . Ž .� �

Ž� 4. Ž .HYPOTHESIS 2. If � x � � x � 0, we assume that there is a number1 1
Ž . � Ž .� � Ž . Ž� 4. �� x in the interval 0, � x clearly, � x � 0 if � x � 0 such that� 1 1 � 1 1

1
N N N2.3 lim lim sup E g x � x � � x � 0.Ž . Ž .Ž .Ý � k 1 � 1N��0 N�
 k�1

Then the tagged particle process Q is unique. In other words, to ensurex1

uniqueness we need to know not only the macroscopic mass at the starting
point but also to manage making sense of a breakup of this mass in two
terms, the left- and right-hand side amount of mass at this same point. The
main result is stated in Theorem 4. We need a series of definitions before
stating the main result.
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DEFINITION 7. Let

1 1
2.4 F t , x � x 	 � y � x 	 t , y dyŽ . Ž . Ž . Ž .H

� 	 	 0

for t � 0 and the constant

1 1
2.5 z � x 	 � y � x � dx 	 � x .Ž . Ž . Ž . Ž .H1 1 1 � 1� 	 	 � 	 	� � � 40, 1 � x1

Ž . 
ŽŽ . .PROPOSITION 1. The function F t, x is in C 0, 
 , R and for any fixed
t � 0,

x � F t , xŽ .
is a strictly nondecreasing function with

�
0 � � � F t , x .Ž .x� 	 	

Ž . 1 Ž . Ž . Ž .PROOF. It is clear that 	 t, x � H 	 x � y p t, y dy where p t, x is0 0
1the fundamental solution to the heat equation � 	 � � 	 and as such thet x x2

smoothness is established. The contents of this proposition is the calculation
Ž .of � F t, x ,x

1 1
� x 	 � y � x 	 t , y dyŽ . Ž .Hx ž /� 	 	 0

1 1
� 1 	 � � y � x 	 t , y dy .Ž . Ž .Hx ž /� 	 	 0

We look at the derivative of the integral

1
� � y � x 	 t , y dyŽ . Ž .Hx ž /0

1
� � � y 	 t , y 	 x dyŽ . Ž .Hx

0

1
� � y � 	 t , y 	 x dy since the functions have period 1Ž . Ž . Ž .H x

0

11�� y 	 t , y 	 x � 	 t , y 	 x dyŽ . Ž . Ž .H0
0

� 	 t , 1 	 x � 	 � 	 t , x � 	 . �Ž . Ž .

DEFINITION 8. Proposition 1 allows us to define the inverse function for
Ž .F t,  for any t � 0,

�1G t ,  � F t ,  .Ž . Ž .Ž .
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DEFINITION 9. Let us denote

� �� � C 0, T , R ,Ž .

�� � � : � � C 0, T , R and lim � t � x ,Ž .Ž .Ž½ 5x 11 t�0

�� � � : � � C 0, T , R and lim � t � zŽ .Ž .Ž½ 5z 11 t�0

and

�� � ��* � f : 0, T � R f � C 0, T , R .� 4Ž .Ž
Moreover, we shall need a map on the path space �: �* � �* defined by

�� t � F t , � tŽ . Ž . Ž .Ž .
for t � 0 and

�� 0 � zŽ . Ž . 1

for t � 0.
It will also be convenient to denote

�  � F t ,  .Ž . Ž .t

We naturally have the inverse map ��1 : �* � �*, equal to

��1� t � ��1 � tŽ . Ž .Ž .Ž . Ž .t

for t � 0 and

��1� 0 � xŽ .Ž . 1

for t � 0.

THEOREM 4. Under Hypotheses 1 and 2 we have:

Ž . Ž . Ž� 4.i If � dx is continuous at x , that is, � x � 0, then the tagged1 1
particle process starting at x is unique.1

Ž . Ž� 4. Ž .ii If � x � � x � 0 then the family of limit points of the tight1 1
� N Ž NŽ ..�14family of processes P � x  is infinite and there is a unique such1 N

Ž . � Ž .�limit for each value of � x � 0, � x denoted for simplicity by Q .� 1 1 x1
Ž .iii Q can be characterized as the unique measure on � with thex x1 1

properties:
Ž . Ž . Ž . Ž .a For any smooth f t, x with supp f � 0, 
 � R the expression

t xf t , x t � f 0, x 0 � � f 	 LL f u , x u duŽ . Ž . Ž .Ž .Ž . Ž . Ž .H1 1 u u 1
0

Ž � 4 .is a Q , FF -martingale andx t t � 01

b Q � � � : �� � � � 1.� 4Ž . Ž .x x z1 1 1

The next section is dedicated to the proof of this uniqueness result.
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3. The proof of Theorem 4.

� .LEMMA 1. Suppose we have a positive measurable function a: 0, 
 � R �
R, smooth for t � 0. Also assume that the martingale problem associated to

Ž . Ž .Ž 2 2 . Ž .LL � 1
2 a t, x d 
dx is well posed for any t, x with t � 0.t
Ž� . . Ž .Let � � C 0, 
 , R be the space of continuous paths x  and let FF �t

Ž� Ž . � �4. 1� x s : s � 0, t for any t � 0. If there exist two probability measures Q
and Q2 on � satisfying the Markov property and solving the martingale

Ž . iŽ� Ž . 4.problem for the operator LL starting at x 0 � x � R, that is, Q x 0 � x �t
1 for i � 1, 2, then Q1 � Q2.

Ž . 
Ž . Ž .PROOF. For a fixed T � 0 and a given f x � C R we set u t, x the0
solution to the equation

3.1 u 	 LL u � 0Ž . t t

with the condition

u T , x � f x .Ž . Ž .
ŽSince the martingale problem starting at any positive time is well posed the

.solution is unique and the two measures solve the martingale problem
Ž .starting at x 0 � x we get that

1 2Q Qu t , x � E f x T � t � E f x T � tŽ . Ž . Ž .Ž . Ž .
Ž �naturally well defined on t � 0, T .

Ž . Ž .i The function u t,  is Lipschitz and the Lipschitz constant is indepen-
Ž �dent of the time t � 0, T .

Ž . Ž .Set v t, x � u t, x and verify that v satisfies the equationx

1 1v 	 av 	 a v � 0t x x x x2 2

Ž .by differentiating 3.1 . This equation satisfies the maximum principle and so

� � � �sup v t , x � sup f � x � c ,Ž . Ž . f
xŽ .t , x

which proves our statement.
Ž .ii For any measure Q satisfying the Markov property with

Q x 0 � x � 1� 4Ž .Ž .
and for any t � 0,

QE f x TŽ .Ž .
Q Q Q x Ž t .�� E E f x T FF � E E f x T � tŽ . Ž .Ž . Ž .t

�1 �1y� E f x T � t Q� x t dy � u t , y Q� x t dyŽ . Ž . Ž . Ž . Ž . Ž .Ž .H H
Q� E u t , x tŽ .Ž .
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so
i i iQ Q Q �E f x T � E E f x T FFŽ . Ž .Ž . Ž . t

iQ� E u t , x t , i � 1, 2.Ž .Ž .

Let us bring in a positive number � and set

� �G � sup x s � x � �Ž .� ½ 5
� �s� 0, t

and

g x � 1 .� G�

Ž . 1 2 Ž .iii We shall couple the two processes Q and Q and consider that y t is
Ž . Ž �an independent identically distributed copy of x t . For any t � 0, T ,

1 2Q QE f x T � E f y TŽ . Ž .Ž . Ž .
1 2 1 2Q �Q Q �Q� E u t , x t � E u t , y tŽ . Ž .Ž . Ž .
1 2 1 2Q �Q x y Q �Q x y� E u t , x t g g � E u t , y t g gŽ . Ž .Ž . Ž .� � � �

1 2 1 2Q �Q x y Q �Q x y	 E u t , x t 1 � g g � E u t , y t 1 � g g .Ž . Ž .Ž . Ž .Ž . Ž .� � � �

� Ž . � Q1� x �It is clear that the last two terms are bounded by 2  sup f x E 1 � g ,�

which converges to 0 as t � 0.

1 2 1 2Q �Q x y Q �Q x yE u t , x t g g � E u t , y t g gŽ . Ž .Ž . Ž .� � � �

1 2Q �Q x y� �� E u t , x t � u t , y t  g gŽ . Ž .Ž . Ž . � �

1 2Q �Q x y� � � �� c E x t � y t  g gŽ . Ž .f � �

1 2Q x Q y� � � � � � � �� c E x t � x  g 	 E y t � x  g � 2c � .Ž . Ž .ž /f � � f

We have shown that

1 2Q QE f x T � E f y T � 2c �Ž . Ž .Ž . Ž . f

for any � � 0 and any T � 0. The Markov property implies that Q1 � Q2.
Ž � �.The following result Theorem 7 in 1 states the existence and uniqueness

Ž .of the limit for the transformed process z  . �1

PROPOSITION 2. Under Hypotheses 1 and 2, the sequence of martingales
� NŽ .4 Ž . Ž .z  Definition 5 is tight and converges weakly to a process z  with1 N 1
law denoted by P solving the martingale problemz1

1 � � 	 	 t , G t , z d2Ž .Ž .Ž .
z3.2 LL �Ž . t 2 22 dz� 	 	Ž .
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starting at z , that is, with1

P z 0 � z � 1.� 4Ž .Ž .z 1 11

Ž . � � NŽ .PROOF. i The tightness. We know that Proposition 3 in 1 that z  is1
a martingale and by Doob’s inequality we can show that for any � � 0,

N N Nlim lim sup P sup z t � z s � � � 0.Ž . Ž .1 1½ 5ž /��0 N�
 � �t , s� 0, �

NŽ .At time t � 0, the martingale z  is the sum of the average of the distances1
Ž . NŽ .between particles bounded by one and x 0 � x almost surely.1 1

Ž .ii The process starts at z a.s. We now have to show that for any � � 0,1

N � N �lim sup P z 0 � z � � � 0.Ž .� 4Ž .1 1
N�


Ž .Let us bring in the function � and g � � � � 2.2 . We shall break the� � �
NŽ .element z 0 in two parts,1

1 1
� N N N NF 0, x 0 � x 0 	 � x 0 � x 0Ž . Ž . Ž . Ž .Ž . Ž .ÝN 1 1 � k 1� 	 	 N k�1

and

1 1 1
� N N NG 0, x 0 � g x 0 � x 0 .Ž . Ž . Ž .Ž . Ž .ÝN 1 � k 1� 	 	 � 	 	 N k�1

It is enough to show that

N � Nlim lim sup E F 0, x 0Ž .Ž .N 1
��0 N�


aŽ .
1

� x 	 � y � x � dy � 0Ž . Ž .H1 1� 	 	 � � � 40, 1 � x1

and
N � Nb lim lim sup E G 0, x 0 � � x � 0.Ž . Ž . Ž .Ž .N 1 � 1

��0 N�


Ž .We shall break up a into

1 1
� N Na1 F 0, x 0 � x 0 	 � y � x 0 � dyŽ . Ž . Ž . Ž . Ž .Ž . Ž .HN 1 1 � 1� 	 	 0

and

1 1 Na2 � y � x 0 � dy � � y � x � dy .Ž . Ž . Ž . Ž . Ž .Ž .H H� 1 1� 	 	 � � � 40 0, 1 � x1

Ž .a1 has limit 0 as N � 
 as long as � is smooth. This proves the iterated�

Ž .limit for a1 .
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NŽ� NŽ . 4.We recall that P x 0 � x � 1 by hypothesis.1 1
�Ž .�Hence lim a2 � 0 is a consequence of the dominated convergence� � 0

1 � 4 Ž . Ž .theorem on � � x while b is exactly 2.3 .1
Ž . Ž . Ž .iii z  is the solution to the martingale problem 3.2 starting at z . Let1 1

tz zMM t � f z t � f z 0 � LL f u , z u du.Ž . Ž . Ž . Ž .Ž . Ž . Ž .Hf 1 1 u 1
0

'Ž .The integral always makes sense because 	 u, x is of order 1
 s .
Ž .For a positive s � 0 and a smooth function f z we have no problem in

showing that

MM z t � MM z sŽ . Ž .f f

Ž .is a P , FF -martingale. This is because as long as s � 0, the coefficients ofz t � s1

the generator are smooth and bounded. Theorem 3 implies that for s � 0 the
� Ž .4process z t is a diffusion with coefficient1 t � s

� � 	 	 t , G t , zŽ .Ž .Ž .
2� t , z � .Ž . 2

� 	 	Ž .

We only have to show that
P zz1E MM s � 0Ž .f

Ž Ž .. Ž Ž ..as s � 0. The term f z s � f z 0 � 0 because the measure P is con-1 1 z1
Ž .centrated on the continuous paths starting at z 0 � z .1 1

Ž .The integral also tends to zero because again

1
	 s, x � constŽ . 's

'uniformly in s and x so the integral is of the order of s .
Ž . NŽ . Ž .iv The uniqueness. We already know that z  � z  and the limit1 1

solves the martingale problem for

1 � � 	 	 t , G t , z d2Ž .Ž .Ž .
zLL �t 2 22 dz� 	 	Ž .

Ž .starting at z 0 � z .1 1
The uniqueness is a corollary of Lemma 1. �

PROPOSITION 3. For any s � 0,

N N Nlim E F s, x s � z s � 0,Ž . Ž .Ž .1 1
N�



Ž .or equivalently for any f � C R ,0

N N NE f F s, x s � f z s � 0Ž . Ž .Ž . Ž .Ž .1 1

as N � 
.
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� Ž NŽ .. NŽ . �PROOF. What really matters in the difference F s, x s � z s is the1 1
absolute value of

1 1
� N NB s � � x s � x s � � y � x s 	 s, y dy.Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Hk 1 1N 0k�1

Ž . Ž .Let � � 0. We shall consider a smooth function � x approximating � x˜
pointwise; we mean that � � � everywhere except a neighborhood˜
Ž . Ž .��
2, 	�
2 of the origin. Now let � x be a smooth function bounded by 1�

� Ž . � � �with compact support supp � � � approximating � � � as � � 0.˜
Hence

� � �̃ �̃� � � � � �B s � B s � B s 	 B sŽ . Ž . Ž . Ž .
and we know that the expected value of the second term tends to zero
uniformly in s because � is smooth. We only have to take care of the first˜
term, which is less than or equal to

��� N˜� �B s � � � � x s � x sŽ . Ž . Ž . Ž .˜ Ž .Ý k 1
k�1

1 N	 � � � y � x s 	 s, y dyŽ . Ž . Ž .˜ Ž .H 1
0

1
� N�� �� B s 	 2 � y � x s 	 s, y dy.Ž . Ž . Ž .Ž .H � 1

0

When we take the expected value E N, the first term above tends to 0 as
N � 
 uniformly in s because � is smooth while the second needs a change�

Ž .of variable we do not have to forget that 	 and � are periodic of period 1 to
bring down our proof to

1N Nlim E � y 	 s, y 	 x s dy � O � . �Ž . Ž . Ž .Ž .H � 1
N�
 0

PROPOSITION 4. Let Q be a limit point of the tight family of processes
� NŽ .4 
Ž .x  . For a smooth f � C R and t � 0,1 N 0

N N Qlim E f F t , x t � E f F t , x t .Ž . Ž .Ž .Ž .Ž .Ž .1 1
N�


PROOF. For t � 0,

x � � x � F t , xŽ . Ž .t

is a smooth and increasing function on R. By denoting

�1N NQ � P � x tŽ .Ž .t N 1

N N Ž NŽ ..�1the marginal at t of Q � P � x  and recalling that1

Q N � Q ,t t
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we get
NN N P NE f F t , x t � E f F t , x tŽ . Ž .Ž . Ž .Ž . Ž .1 1

P NN� E f � x tŽ .Ž .t 1

NQ Qt t� E f � x � E f � xŽ . Ž .t t

Q� E f F x t . �Ž .Ž .Ž .1

PROPOSITION 5. If Q is a limit point of the tagged particle process, then for

Ž .any f � C R ,0

Qlim E f F t , x t � f zŽ . Ž .Ž .Ž .1 1
t�0

or equivalently

Q � : lim F t , � t � z � 1.Ž .Ž .½ 51ž /t�0

PROOF.
QE f F t , x t � f zŽ . Ž .Ž .Ž .1 1

Q N N� E f F t , x t � E f F t , x tŽ . Ž .Ž .Ž . Ž .Ž .1 1

N N N N	 E f F t , x t � E f z tŽ . Ž .Ž . Ž .Ž .1 1

N N	 E f z t � f z .Ž . Ž .Ž .1 1

So
Q N Nlim sup E f F t , x t � E f F t , x t � 0Ž . Ž .Ž .Ž . Ž .Ž .1 1

N�


from the precedent proposition and
N N N Nlim sup E f F t , x t � E f z t � 0Ž . Ž .Ž . Ž .Ž .1 1

N�


from Proposition 3. It follows that
Q N Nlim E f F t , x t � f z � lim lim sup E f z t � f z .Ž . Ž . Ž . Ž .Ž .Ž . Ž .1 1 1 1

t�0 t�0 N�



Ž . NŽ .Since f � C R we may truncate z t and integrate on the two sets0 1
� � NŽ . � 4 � � NŽ . � 4z t � z � � and z t � z � � ; on the first the integral is bounded1 1 1 1

	 	 Ž .by f times the measure of this set tends to 0 as lim lim sup andt � 0 N �


	 	on the second it is � � f � . �

DEFINITION 10. It is convenient to denote

�

 � � � � : lim �� t � zŽ . Ž .½ 5x x 11 1 t�0

and
�


 � ��

 .z x1 1
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PROPOSITION 6. Let Q1 and Q2 be two limit points of the family of tagged
particle processes starting at x . Then Q1 and Q2 are indistinguishable.1

PROOF. The two measures Q1 and Q2 have the Markov property, start at
Ž . 
x 0 � x and are concentrated on the set � . It is sufficient to prove that for1 x1

any positive integer m and any smooth function f of m variables with
compact support

1 2Q QE f � t , � t , . . . , � t � E f � t , � t , . . . , � t .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 2 m 1 2 m

The Markov property implies that we can limit ourselves to the case m � 1. If
t � t � 0, we naturally get an identity.1

From Propositions 3 and 4 and from Definition 9 we know that on the set
�


 ,x1
iQ Pz1E f F t , � t � E f � t for i � 1, 2.Ž . Ž .Ž . Ž .Ž .

For � � � and � � � we may writex z1 1

iQ P �1z1
 
E f � t 1 � � E f � � t 1 �Ž . Ž . Ž . Ž .Ž . Ž .� �x z1 1

for both i � 1, 2. To prove the uniqueness it will be enough to write down
i i iQ Q Q


 
E f � t � E f � t 1 � 	 E f � t 1 �Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .� � � �x x x1 1 1

and observe that since f is integrable, the second term is zero. �
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