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UNUSUALLY LARGE VALUES FOR SPECTRALLY POSITIVE
STABLE AND RELATED PROCESSES1

By George L. O’Brien

York University

Two classes of processes are considered. One is a class of spectrally
positive infinitely divisible processes which includes all such stable pro-
cesses. The other is a class of processes constructed from the sequence of
partial sums of independent identically distributed positive random vari-
ables. A condition analogous to regular variation of the tails is imposed.
Then a large deviation principle and a Strassen-type law of the iterated
logarithm are presented. These theorems focus on unusually large values
of the processes. They are expressed in terms of Skorokhod’s M1 topology.

1. Introduction. The purpose of this paper is to present a large deviation
principle (LDP) and an analogue of Strassen’s law of the iterated logarithm
(LIL) for two classes of stochastic processes. The LDP and LIL provide infor-
mation about the likelihood of unusually large values of the processes. The
first class of processes consists of certain spectrally positive infinitely divisi-
ble (inf. div.) processes, including all spectrally positive stable processes. The
second is a class of processes obtained from sequences of partial sums (p.
sums) of independent identically distributed positive random variables. The
results and the proofs for the two types of processes are very similar, so it is
efficient to consider them together. Likewise, there are close ties between the
proofs of the LDP and the LIL; probability estimates for the former are used
in conjunction with the Borel–Cantelli lemma to prove the latter.

The inf. div. processes and p. sums processes considered here are repre-
sented as integrals with respect to planar point processes. Such represen-
tations permit us to apply limit theorems proved for the point processes in
O’Brien and Vervaat (1996). These theorems are summarized in Section 3. If
the representations were continuous, the results of the present paper would
be trivial. As it is, we must work hard to reduce the problems to the point
process results.

We now describe the two classes of processes, beginning with the inf. div.
case. Let ν be a measure on �0�∞� with ν��∞�� = 0 and 0 < ν��x�∞�� < ∞
for all x > 0. Some further restrictions, including an analogue of regular
variation, will be imposed on ν later. Let E 	= �0�∞� × �0�∞�. We generally
use the symbol t for the first (horizontal or time) coordinate of E and x or y
for the second. Next, let 
 be the Poisson point process (random measure) on
E with intensity dtν�dx�.
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For A > 05 such that ∫ 1

0
y2Aν�dy� <∞(1.1)

and for c ∈ R, we define a process S in D�0�∞� by

S�t� 	=
∫ ∞

0

∫ t
0
yA�
�ds�dy� − 1�0�1��y�dsν�dy�� + ct

=
∫ ∞

0
yA�
��0� t�� dy� − 1�0�1��y�tν�dy�� + ct

(1.2)

Here, 1�0�1� denotes the usual indicator function and 
��0� t�� ·� is the measure
on �0�∞� given by 
��0� t��B� = 
��0� t� × B�. We can write S as a single
integral since the integrand in the double integral depends only on y. Also,
(1.1) guaranties that, with probability one (wp1), S is finite everywhere and
is in D�0�∞�. Note that S depends implicitly on A.

If
∫ 1

0 y
Aν�dy� <∞, then S can be written more simply as

S�t� =
∫ ∞

0
yA
��0� t�� dy� + c1t(1.3)

Similarly, if
∫∞

1 y
Aν�dy� <∞, we may write

S�t� =
∫ ∞

0
yA�
�0� t�� dy� − tν�dy�� + c2t(1.4)

An important special case arises by choosing ν��x�∞�� = x−1 for all x > 0, so
that ν�dy� = y−2dy. Then (1.2) with A = 1, (1.3) with A > 1 and (1.4) with
1/2 < A < 1 give the usual Itô (1942) representations of the spectrally positive
stable processes, with stability index A−1. The theorems in this paper are
broad enough to include these processes. We note however that a nonrandom
translation term is required for stable processes of index 1 and, for S as in
(1.4), the drift term c2t sometimes must be 0.

We now define our p. sums processes in a similar way. Let ν be a probability
measure on �0�∞� with ν��∞�� = 0 and ν��x�∞�� > 0 for all x ∈ �0�∞�. Let
�Xn�∞

n=1 be a sequence of independent random variables, all with distribution
ν. Let 
 be the observation process of �Xn�, namely the random measure on
E defined by


�B� 	= the cardinality of �n ∈ N	 �n�Xn� ∈ B�
Define S in this case by

S�t� 	=
�t�∑
i=1

�XA
i −E�XA

i 1�0�1��Xi��� + c�t�(1.5)

=
∫ ∞

0
yA�
��0� t�� dy� − �t�1�0�1��y�ν�dy�� + c�t�(1.6)

Here, �·� denotes the greatest integer function.
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For both the inf. div. case and the p. sums case, the paths of S are in
D�0�∞�. Our main results, however, do not hold for the usual Skorokhod
(1956)J1 topology. Indeed, we mainly use a variation of the slightly coarserM1
topology, also considered in Skorokhod (1956). These topologies are discussed
in Section 2.

Our LDPs involve a speed function α	 �1�∞� �→ �0�1� such that α�1� = 1
and α�γ� → 0 as γ → ∞. We will generally write α for α�γ� and β or β�γ� for
�α�γ��−1. Our LILs are related to the LDPs with the specific speed function
α�γ� = �log log γ�−1 for large γ. All limits, superior limits and the like will be
understood to be as γ → ∞, unless indicated otherwise.

Basic Hypotheses 1.1. The situation described above will be assumed
throughout (for either the inf. div. case or the p. sums case), and in addition
the following conditions will be assumed for all x > 1:

lim�γν��γxβ�∞���α = x−1�(1.7)

�γxβ�−2A
∫ γxβ

1
y2Aν�dy� = O�γ−1��(1.8)

and one of the following two conditions:

lim sup
∣∣∣∣
∫ γxβ

1
yAγ1−Aν�dy� − g�γ�

∣∣∣∣
α

≤ xA(1.9)

for some function g	 �1�∞� �→ R and c = 0, A ≥ 1 or α log γ → 0; or

lim sup
(∫ ∞

γxβ
yAγ1−Aν�dy�

)α
≤ 1(1.10)

and α log γ → 0 or c = − ∫∞
1 y

Aν�dy� [which is finite by (1.10)].
Now let Ŝγ denote the process t �→ γ−AS�γt� − tg�γ� when (1.9) is assumed

and t �→ γ−AS�γt� when (1.10) is assumed. In the p. sums case, we modify the
version for (1.9) to t �→ γ−AS�γt� − γ−1�γt�g�γ�.

Remarks 1.2. (a) Suppose ν��x�∞�� = x−1 for all x, so that S is stable.
Then, for any α, (1.7) and (1.8) hold. Also (1.9) holds with g = 0 when A > 1,
(1.9) holds with g�γ� = log γ when A = 1 and (1.10) holds when A < 1. The
supplementary assumptions following (1.9) and (1.10) are needed only to deal
with the term ct.

(b) Equation (1.7) comes from the LDPs for 
 (cf. Section 3) and is actually
necessary and sufficient for those LDPs to hold. It implies that for any ε > 0,

γ−1−ε < ν��γ�∞�� < γ−1+ε(1.11)

for γ sufficiently large. Suppose α log γ → 0. Then (1.11) is enough to show
(by integration by parts) that (1.8) holds for all A, that (1.9) holds with g ≡ 0
if A > 1 and that (1.10) holds if A < 1. On the other hand, (1.9) with g ≡ 0
implies A ≥ 1 or α log γ → 0, while (1.10) implies A ≤ 1. Incidently, (1.11)
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implies that our results are disjoint from those for processes which have finite
moment-generating functions, such as the results of Lynch and Sethuraman
(1987).

(c) In general, the faster α → 0, the larger the class of ν’s which satisfy
the above assumptions. For our LIL we need α to behave something like
�log log γ�−1, which means the class is rather small.

We recall from Schilder (1966) and Strassen (1964) that to get an LDP
or LIL for Brownian motion or related partial sums, we normalize in a way
that slightly perturbs the normalization used to get invariance or weak conver-
gence. The same applies in our situation, although the perturbation manifests
itself in the form of an exponent. Invariance is obtained by considering Ŝγ.
For our LDP, we consider the processes �Ŝγ ∨ 1�α The truncation at 1 serves
in the first instance to make sure this process is well defined (since Ŝγ can be
negative). We investigate values of Ŝγ which exceed 1.

We now establish our terminology for LDPs. If P is a probability measure
and δ ∈ �0�1�, define Pδ by Pδ�A� = �P�A��δ. If D is a topological space and
R	 D→ �0�∞� is lower semicontinuous (lsc), define a set function e−R on the
subsets of D by e−R�B� = sup�e−R�x�	 x ∈ B�. If �Pγ�γ≥1 is a family of Borel
probability measures on D, α is a speed function and R	 D �→ �0�∞� is lsc,
then a (full) LDP is an assertion that

Pαγ ⇒ e−R�(1.12)

where (1.12) is interpreted (as with weak convergence) as (1.13) and (1.14):

lim supPαγ�F� ≤ e−R�F� for all closed F�(1.13)

lim inf Pαγ�G� ≥ e−R�G� for all open G(1.14)

We do not assume a priori that the rate function R is lower compact, that is,
that �x ∈ D	 R�x� ≤ r� is compact for all r <∞. A vague LDP is an assertion
that (1.13) holds for all compact F and (1.14) holds as stated; in this case, we
write

Pαγ →v e
−R

It is convenient to extend D�0�∞� by allowing paths to take the value +∞.
We then define two subspaces of this extended D�0�∞�,

D 	= {
ξ ∈ D�0�∞�	 1 ≤ ξ�t� ≤ ∞ for all t ∈ �0�∞�}�(1.15)

D↑ 	= �ξ ∈ D	 ξ is nondecreasing�(1.16)

The main reason that theM1 topology is more useful than the J1 topology for
the current study is that D↑ is M1-compact but not J1-compact. Details are
given in Section 2.
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Theorem 1.3. For A > 05 and γ ≥ 1, let Ŝγ be a process as specified in
Basic Hypotheses 1.1, either for the inf. div. or the p. sums case. Let Pγ denote

the distribution of �Ŝγ ∨ 1�α. Then

Pαγ ⇒ e−R(1.17)

in the M1 topology, where R	 D �→ �0�∞� is the M1-lower compact function

R�ξ� 	=


A−1 ∑

x∈Range�ξ�
log x� if ξ ∈ D↑�

∞� otherwise.

(1.18)

Further, in the J1 topology, the corresponding vague LDP holds, but the rate
function R is not J1-lower compact.

Remarks 1.4. (a) Clearly, R�ξ� = ∞ if ξ takes infinitely many distinct
values above any x > 1 or if ξ�t� = ∞ for any t ∈ �0�∞�. (b) It is not known
whether a full LDP holds for the J1 topology. In any case, the rate function
of any full or vague LDP for the J1 topology must be R by the uniqueness of
vague rate functions [cf. O’Brien (1996), Section 2]. Since R is not J1-lower
compact, a full LDP cannot be proved by using a tightness argument.

It is often the case that LDPs have an associated Strassen-type LIL, for
which the set of limit points coincides with the set on which the LDP rate
function is at most 1. That turns out to be the case here. We will use the
following terminology.

Let �xγ�γ≥1 be a family of elements in a Hausdorff space. We say �xγ� is
relatively compact (as γ → ∞) if there is a compact set K such that, for every
open G ⊃ K, xγ is in G for all sufficiently large γ. We then call K an outer
limit for (xγ). An element x is called a limit point of �xγ� if for each open
G � x, the set �γ	 xγ ∈ G� is unbounded. If K is an outer limit for �xγ�, then
of course the set of limit points of �xγ� is a compact subset of K. Now let �Xγ�
be a family of (Borel) random elements. A compact set K is called a Strassen
outer limit of �Xγ� if K is an outer limit for �Xγ� wp1, and x is a Strassen
limit point for �Xγ� if x is a limit point of �Xγ� wp1. Finally, a Strassen LIL
for �Xγ� with set of limit points K is an assertion that K is a Strassen outer
limit for �Xγ� and every x ∈K is a Strassen limit point for �Xγ�. In this case
we write

Xγ →K wp 1(1.19)

Theorem 1.5. Let Ŝγ be a process as specified in Basic Hypotheses 1.1.
(a) Assume β is nondecreasing and satisfies the following:

lim supβ�eγ�/β�γ� <∞(1.20)

and
∞∑
k=1

δβ�ek� <∞(1.21)
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for some δ > 0. Then, in the M1 topology, D↑ is a Strassen outer limit for

�Ŝγ ∨ 1�α. (b) Suppose more specifically that

β�γ� = log log γ(1.22)

for large γ. Then, also in the M1 topology, wp1,

�Ŝγ ∨ 1�α → �ξ ∈ D↑	 R�ξ� ≤ 1�

=
{
ξ ∈ D↑	 ∑

x∈Range�ξ�
log x ≤ A

}


(1.23)

Remarks 1.6. Pakshirajan and Vasudeva (1981) proved Theorem 1.5(b) for
the case where S is a spectrally positive stable process with A > 1. The
specific very slowly increasing choice of β in (1.22) means in particular that
hypothesis (1.7) is quite restrictive. We can relax (1.22) slightly: we need that
β is nondecreasing and that

∑∞
k=1 exp�−rβ�ek�� is finite if r > 1 and infinite

if r < 1. We do not provide a proof of this extension because we would first
have to generalize the results of O’Brien and Vervaat (1996) in a similar way.
We note that the generalization would result in a “LIL” without any iterated
logarithms. Finally, we note that Theorem 1.5 is not valid for the J1 topology
since the set �ξ ∈ D↑	 R�ξ� ≤ 1� is not compact.

Our final result is a simple corollary of Theorems 1.3 and 1.5. Given a
process S of one of the types described above, define a new process S∗ in
D�0�∞� by

S∗�t� = sup
s≤t
S�s�(1.24)

Also, define Ŝ∗
γ to be the analogue of Ŝγ for S∗ and let P∗

γ be corresponding
analogue of Pγ.

Theorem 1.7. If Ŝγ satisfies the hypotheses of Theorem 1.3, then also

P∗α
γ ⇒ e−R

in theM1 topology. If the hypotheses of Theorem 1.5 hold, then the conclusions

hold also for Ŝ∗
γ

Theorem 1.7 is an immediate consequence of Theorems 1.3 and 1.5, com-
bined with the fact that the function f	 D �→ D given by �fξ��t� = sups≤t ξ�t�
is continuous relative to the M1 topology.

2. Two topologies. In this section, we discuss our two topologies for the
space D defined in (1.15). These are modified versions of Skorokhod’s M1 and
J1 topologies. The space D is a metric space under both topologies. In the
proofs of our main theorems, we work with the specific metrics and related
pseudometrics described below.



996 G. L. O’BRIEN

Given ξ ∈ D, we extend ξ to an element of D�−1�∞� by defining

ξ�t� = 1 for − 1 ≤ t < 0(2.1)

With this extension we arrange for both our topologies that

1 + 1�n−1�∞� → 1 + 1�0�∞� as n→ ∞(2.2)

With the usual M1 and J1 topologies, (2.2) fails.
We now consider the (modified) M1 topology. We define the extended graph

EG�ξ� of ξ ∈ D by extending ξ as in (2.1) and then setting

EG�ξ� 	= ��−1�0� × �1��
∪ {�t� x� ∈ �0�∞� × �1�∞�	 ξ�t−� ≤ x ≤ ξ�t� or

ξ�t−� ≥ x ≥ ξ�t�}
(2.3)

Since ξ ∈ D�−1�∞�, EG�ξ� is homeomorphic to �0�∞�. A parametrization of
ξ is a continuous bijection ξ∗	 �−1�∞� �−→ EG�ξ� with ξ∗�−1� = �−1�1� and,
denoting ξ∗�t� as the vector �ξ∗

1�t�� ξ∗
2�t��, with

�ξ∗
1�t� − t� < 1 for all t ∈ �−1�∞�(2.4)

Parametrizations can be shown to exist. For t > 0, we define a pseudometric
dt on �ξ ∈ D	 ξ is locally bounded� by

dt�ξ� ζ� 	= inf sup
−1≤s≤t

��ξ∗
1�s� − ζ∗

1�s�� + ��ξ∗
2�s� − ζ∗

2�s����(2.5)

where the infimum is over all parametrizations of ξ and ζ. We next define a
pseudometric d′

t on all of D by

d′
t�ξ� ζ� 	= dt�2 − �1/ξ��2 − �1/ζ��(2.6)

Finally, we define a metric d′ on D by

d′�ξ� ζ� 	=
∞∑
n=1

2−nd′
n�ξ� ζ�(2.7)

Note that d′
t ≤ min�dt�1� and that, for all n, d′

n ≤ 2nd′ and d′ ≤ d′
n + 2−n.

Also, d′
n and dn give rise to the same topologies.

We now consider our modified J1 topology. We again extend ξ ∈ D as in
(2.1). A time-shift is a continuous bijection λ	 �−1�∞� �→ �−1�∞�. For t > 0
we define the following pseudometric dJ� t on �ξ ∈ D	 ξ�s� <∞ for all s�:

dJ� t�ξ� ζ� 	= inf
λ

sup
−1≤s≤t

��ξ�s� − ζ�λ�s��� + �s− λ�s���

+ inf
λ

sup
−1≤s≤t

��ζ�s� − ξ�λ�s��� + �s− λ�s����

where the infima are over all time-shifts λ. We use the symmetrized version
in order to handle end effects near t. We also define d′

J� t and d′
J in analogy

to (2.6) and (2.7).
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Definition 2.1. The M1 and J1 topologies on D are the topologies gener-
ated by the metrics d′ and d′

J, respectively.

It can be shown that the M1 topology is coarser than the J1 topology. A
simple example that displays a key difference between the topologies is that

�1 + 1�n−1�∞� + 1�2n−1�∞�� → 1 + 21�0�∞� as n→ ∞(2.8)

for theM1 topology, but the sequence has no limit for the J1 topology. We also
note that the following sequences all diverge for both topologies:

�1 + 1�n−1�2n−1��� �1 + 1�0� n−1�� and �1 + 1�1−2n−1�1−n−1� + 1�1�∞��

Lemma 2.2. For t ≥ 0 and x ≥ 1, the set �ξ ∈ D	 ξ�t� > x� is Borel
measurable for both topologies; further, the two Borel σ-algebras coincide.

Lemma 2.2 can be proved by methods similar to those of Billingsley (1968),
Chapter 3. Our short proof of the next result avoids the issue of whether D
with the M1 topology is Polish.

Lemma 2.3. Every Borel probability measure on D is tight relative to the
M1 topology.

Proof. This is known for the J1 topology, and all sets which are J1-
compact are M1-compact. ✷

Lemma 2.4. The set D↑ is M1-compact but not J1-compact.

Proof. For ξn, ξ ∈ D↑, ξn → ξ iff ξn�t� → ξ�t� at continuity points of ξ.
Thus, D↑ with the M1 topology is homeomorphic to the set of subprobability
measures on �0�∞�, with the vague topology. This topology is known to be
compact. The example in (2.8) shows that D↑ is not J1-compact. ✷

3. Large deviations and the point process �. In this section, we recall
a few facts about LDPs and 
. We will use the notation and ideas given near
(1.12). We begin with a variation of the usual notion of tightness. Let D′ be
any metric space, let �Pγ�γ≥1 be any family of tight Borel probability measures
on D′ and let α be a speed function.

Definition 3.1. We say �Pαγ�γ≥1 is damped if for any ε > 0 there is a
compact K ⊂ D′ such that, for all open G ⊃K,

lim sup
γ→∞

Pαγ�Gc� < ε(3.1)

We say �Pαγ� is tight if for all ε > 0 there is a compact K ⊂ D′ such that
Pαγ�Kc� < ε for all γ ≥ 1.
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It is obvious that tightness implies dampedness. The converse for metric
spaces was proved in O’Brien [(1996), Theorem 3.3] for the case where γ → ∞
through a sequence. [Some related results for weak convergence are given, for
example, in Ethier and Kurtz (1986).]

Lemma 3.2. With Pγ and α as above and R	 D �−→ �0�∞� lsc, suppose that

Pαγ →v e
−R(3.2)

and that �Pαγ�γ≥1 is damped. Then R has compact level sets and

Pαγ ⇒ e−R(3.3)

Proof. It suffices to prove (3.3) for every sequence of values of γ which
goes to ∞. Then dampedness implies tightness, which with (3.2) implies
(3.3). ✷

In Section 4, we will prove Theorem 1.3 by verifying dampedness and the
corresponding vague LDP. We remind the reader of the following facts.

Lemma 3.3. (a) To prove (1.14) for all open G, it suffices to prove that for
all ξ ∈ D and open G � ξ,

lim inf Pαγ�G� ≥ e−R�ξ�(3.4)

(b) To prove (1.13) for all compact sets it suffices to prove that for all ξ ∈ D
and ε > 0 there is a neighborhood N of ξ such that

lim supPαγ�N� < e−R�ξ� + ε(3.5)

We will need the following results from O’Brien and Vervaat (1996) about
the random measure 
, as defined in Section 1.

First, let � denote the space of �∞�0�1�2�   �-valued regular Borel mea-
sures on E, endowed with the vague topology. [We say µ is regular if µ�K� =
inf�µ�G�	G open�G⊃K� for all compactK and µ�B� = sup�µ�K�	K compact,
K ⊂ B� for all Borel B.] A subbase for the vague topology is the collection of
all sets of the form �µ ∈ � 	 µ�G� > r� or �µ ∈ � 	 µ�K� < r� for r > 0, G
open in E and K compact in E. Given µ ∈ � , a speed function α and γ ≥ 1,
we define µγ by

µγ�B� = µ���t� x� ∈ E	 �tγ−1� �xγ−1�α� ∈ B��
= µ���γt� γxβ�	 �t� x� ∈ B��

Since 
 is in � wp1, we can consider the family �
γ�γ≥1. Let P
�γ denote the
distribution of the restriction of 
γ to �0�∞� × �1�∞�, and let �1 denote the
set of restrictions of elements of � to the same set. We also endow �1 with
the vague topology. Conveniently, � and �1 are compact.
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Theorem 3.4. Under Basic Hypotheses 1.1, we have the LDP

Pα
�γ ⇒ exp�−R
��
where R
	 �1 → �0�∞� is the lower compact function given by

R
�µ� =
∫ ∞

0

∫ ∞

1
log yµ�dt�dy�

= ∑
t≥0� y>1

log yµ���t� y���

In particular, for t > 0, x > 1 and r ≥ 1,

lim supPα�
��0� γt� × �γxβ�∞�� ≥ r�
= lim supPα�
γ��0� t� × �x�∞�� ≥ r�
≤ exp�−r log x�

(3.6)

We also have the LIL associated with Theorem 3.4. Let 
′
γ denote the restric-

tion of 
γ to �0�∞� × �1�∞�.

Theorem 3.5. Under the above conditions and with β�γ� = log log γ for
large γ,


′
γ → {

µ ∈ �1	 R
�µ� ≤ 1
}

wp 1

4. Proof of Theorem 1.3. We concentrate on the p. sums case with (1.9),
except in Remark 4.3. The inf. div. case is similar. For t > 0, x > 1 and γ ≥ 1,
let

I1�x� γ� t� 	=
∫ ∞

γxβ
γ−AyA
��0� γt�� dy��(4.1)

I2�x� γ� t� 	=
∫ γxβ

0
γ−AyA�
��0� γt�� dy� − �γt�ν�dy��(4.2)

Then

Ŝγ�t� = I1�x� γ� t� + I2�x� γ� t�

+
∫ γxβ

1
γ−AyA�γt�ν�dy� − γ−1�γt�g�γ� + cγ−A�γt�

(4.3)

If we assume (1.10) instead of (1.9), much the same proof works, with the third
and fourth terms in (4.3) together replaced by

−
∫ ∞

γxβ
γ−AyA�γt�ν�dy�

We will show in Lemma 4.4 that in an appropriate sense I1�x� γ� t� is the
dominant term on the right side of (4.3).
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Lemma 4.1. Let ε > 0. There exists r0 > 0 such that

W 	= ���w+ v� ∨ 1�r − �w ∨ 1�r� ≤ 2ε(4.4)

for all r ∈ �0� r0�, w ∈ R and v ∈ R with �v�r < 1 + ε.

Proof. Obviously, we may assume v > 0. If w + v ≤ 1, then W = 0. If
w ≤ 1 < w + v, then W ≤ �1 + �1 + ε�1/r�r − 1 ≤ 2r�1 + ε� − 1 < 2ε for small
r > 0. If w > 1, then W = �w + v�r − wr, which is decreasing in w ≥ 1 for
fixed v > 0 and r ∈ �0�1�. Thus W ≤ �1 + v�r − 1, which is less than 2ε by the
previous case with w = 1. ✷

Lemma 4.2. For T > 0 and v > x > 1, the following hold:

lim sup sup
0≤t≤T

�cγ1−At�α ≤ 1�(4.5)

lim sup sup
0≤t≤T

∣∣∣∣
∫ γxβ

1
γ1−AtyAν�dy� − tg�γ�

∣∣∣∣
α

≤ xA�(4.6)

Pα
[

sup
0≤t≤T

�I2�x� γ� t��α > vA
]

→ 0(4.7)

Proof. Formula (4.6) follows from (1.9) and (4.5) holds since c = 0, A ≥ 1
or α log γ → 0 We now prove (4.7). For now, fix x > 1 and γ ≥ 1 and write n
for �γt�, N for �γT� and I�n� for I2�x� γ� t�. Let Yk =Xk if Xk ≤ γxβ, Yk = 0
otherwise. Then

I�n� =
n∑
k=1

γ−A�YAk −EYAk �(4.8)

Since Yk is bounded, the following are finite for θ ∈ R:

L�θ� 	= logE�exp�θγ−A�YAk −EYAk ����
Mθ�n� 	= exp�θI�n� − nL�θ��

(4.9)

Also Mθ is a martingale in n and

E�Mθ�n��2 = exp�nL�2θ� − 2nL�θ��(4.10)

By Jensen’s inequality, L�θ� ≥ 0 for all θ. Henceforth, we consider only the
values θ = ±�2xAβ�−1. From (4.9), the fact that ew ≤ 1 + w + w2 for �w� ≤ 1,
(1.1) and (1.8), we obtain, with w 	= 2θγ−A�yA −EYA�,

L�2θ� ≤ log
∫ γxβ

0
�1 +w+w2�ν�dy�

= log
∫ γxβ

0
�1 +w2�ν�dy� ≤

∫ γxβ
0

w2ν�dy�

≤ γ−2A
∫ γxβ

0
x−2Aβy2Aν�dy� = O�γ−1�

(4.11)



LARGE VALUES FOR STABLE PROCESSES 1001

Applying Markov’s inequality, Doob’s L2-inequality for martingales, (4.10)
and (4.11), we obtain for θ = �2xAβ�−1,

Pα
[

sup
0≤t≤T

I2�x� γ� t� > vAβ
]

= Pα
[

sup
0≤n≤N

I�n� > vAβ
]

≤ Pα
[

sup
0≤n≤N

�Mθ�n��2 > exp�2θvAβ − 2NL�θ��
]

≤
(
E
[

sup
0≤n≤N

�Mθ�n��2
]

exp�−2θvAβ + 2NL�θ��
)α

≤ �4E�Mθ�N��2 exp�−2θvAβ + 2NL�θ���α

≤ �4 exp�−2θvAβ +NL�2θ���α

≤ 4 exp�−α��v/x�Aβ + γTL�2θ��� → 0

(4.12)

Similarly, with θ = −�2xAβ�−1,

Pα
[

sup
0≤n≤T

�−I�n�� > vAβ
]

≤ Pα
[

sup
0≤t≤N

�M−θ�n��2 > exp�−2θvAβ + 2NL�−θ��
]

≤ �4E�M−θ�N��2 exp�−2θvAβ + 2NL�−θ���α

≤ �4 exp�−2θvAβ + 2NL�−2θ��α

≤ 4 exp�−α��v/x�Aβ + γTL�2θ��� → 0

Combining this with (4.12), we get (4.7). ✷

Remark 4.3. In the proof for the inf. div. case, we get a similar result using
a continuous-time martingale. To summarize, we have E�exp�θI2�x� γ� t��� =
exp�tL�θ��, where, now,

L�θ� 	=
∫ γxβ

0
�exp�θγ−AyA� − 1 − θγ−AyA�ν�dy�

By (1.1), 0 ≤ L�θ� <∞ for all θ ∈ R. We then take

Mθ�t� 	= exp�θI2�x� γ� t� − tL�θ��
Then Mθ is a martingale and (4.10) holds for positive real n. Taking θ =
±�2xAβ�−1 as before, we again have

L�2θ� ≤
∫ γxβ

0
�2θγ−AyA�2ν�dy� = O�γ−1�
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We now return to the sequence case. Throughout Sections 4 and 5, we will
say a property holds “for sufficiently small x > 1” if there exists an x0 > 1
such that the property holds for all x ∈ �1� x0� We have the following key
results. The (pseudo-)metrics were defined in Section 2.

Lemma 4.4. For all ρ > 0,

Pα�d′��Ŝγ ∨ 1�α� �I1�x� γ� ·� ∨ 1�α� > ρ� → 0

for sufficiently small x > 1. For all ρ > 0 and T > 0,

Pα�dT��Ŝγ ∨ 1�α� �I1�x� γ� ·� ∨ 1�α� > ρ� → 0

for sufficiently small x > 1. The same results hold for the J1 topology.

Proof. By the relationships between (pseudo-)metrics and by Lemmas 4.1
and 4.2, we have for all T > 0, ρ > 0 and ε > 0 that

Pα�d′
T��Ŝγ ∨ 1�α� �I1�x� γ� ·� ∨ 1�α� > ρ�

≤ Pα�dT��Ŝγ ∨ 1�α� �I1�x� γ� ·� ∨ 1�α� > ρ�

≤ Pα
[

sup
0≤t≤T+1

��Ŝγ�t� ∨ 1�α − �I1�x� γ� t� ∨ 1�α� > ρ/2
]
< ε

eventually, for sufficiently small x > 1. By (2.7), for all ρ > 0 and ε > 0,
Pα�d′��Ŝγ ∨ 1�α� �I1�x� γ� t� ∨ 1�α� > 2ρ� < ε eventually, for sufficiently small
x > 1. The same argument works for the J1 topology. ✷

Lemma 4.5. With Pγ defined as in Theorem 1.3, �Pαγ� is M1-damped.

Proof. This follows from Lemma 4.4 and the fact that �I1�x� γ� ·� ∨ 1�α is
in the compact set D↑. ✷

In view of Lemmas 3.2 and 4.5, we may prove our LDP by verifying the
local conditions given in Lemma 3.3. We begin with the upper bound. Every
M1-neighborhood of ξ is also a J1-neighborhood, so the following argument
also yields the upper bound for the vague LDP in the J1 topology. First assume
ξ #∈ D↑. By Lemma 4.4, we have for ρ < d′�ξ�D↑� and G 	= �η ∈ D	 d′�ξ�η� <
ρ� that Pα��Ŝγ ∨ 1�α ∈ G� → 0. Thus we need only consider ξ ∈ D↑.

Suppose now that ξ ∈ D↑ and ξ�t� <∞ for all t ∈ �0�∞�, so that ξ is locally
bounded. We will show that for all η > 0, there exist T > 0 and ρ > 0 such
that

lim supPα�dT�Ŝγ ∨ 1�α� ξ� < ρ/2� ≤ exp�−R�ξ�� + η(4.13)
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In view of Lemma 4.4, it suffices to show that for all η > 0 there exist T > 0
and ρ > 0 such that

lim supPα�E0�γ�� ≤ exp�−R�ξ�� + η�(4.14)

for sufficiently small x > 1, where the event E0�γ� is given by

E0�γ� 	= �dT��I1�x� γ� ·� ∨ 1�α� ξ� < ρ�(4.15)

If ξ ≡ 1, then R�ξ� = 0 so (4.14) holds. Thus we may suppose there exist
m ≥ 1 and real numbers 0 ≤ t1 < · · · < tm and 1 < x1 < · · · < xm < ∞ such
that ξ�ti� = xAi , i = 1�2�    �m.

Choose r such that rAxA−1
i > 1� i = 1�2�    �m. Since �xi − rε�A = xAi −

rAxA−1
i ε+ o�ε� as ε→ 0, we have

pi 	= �xAi − ε��xi − rε�−A > 1� i = 1�2�    �m(4.16)

for sufficiently small ε > 0. Let x ∈ �1� x1�. Then choose δ > 0 with δ <
min�x1 − x� x2 − x1�    � xm − xm−1�. Then, suppose ε > 0 is also sufficiently
small that all the following hold: x1 − rε > 1; xA1 − ε > 1; xi > xi−1 + rε +
δ, i = 2�3�    �m; �xi + δ�A > xAi + 2ε, i = 1�2�    �m;

∏m
i=1�xi − rε�−1 ≤

�∏mi=1 xi�−1 + η and ε < 1. Next, let T = tm + 1. Since ξ ∈ D, we may choose
ρ ∈ �0� ε� such that ξ�ti+ 2ρ� < xAi +ε, i = 1�    �m. Finally, by making x > 1
smaller if necessary, we may assume that x < 1 + ρ and x < x1 − rε.

We will prove that

lim supPα�E0�γ�� ≤
m∏
i=1

x−1
i + η(4.17)

This will imply (4.14), since the infimum of
∏m
i=1 x

−1
i in (4.17), over all possible

choices of m and x1�    � xm, is exp�−R�ξ��.
If E0�γ� occurs, then each of the points �ti� xAi � and �ti+2ρ� ξ�ti+2ρ�� must

lie within distance ρ of some point on the extended graph of �I1�x� γ� ·� ∨ 1�α.
Since each function is in D↑, this implies that, for i = 1�2�    �m,

xAi − ε < ξ�ti� − ρ < �I1�x� γ� ti + ρ��α < ξ�ti + 2ρ� + ρ < xAi + 2ε(4.18)

If E0�γ� occurs, it must occur in conjunction with at least one of the following
three events:

E1�γ� 	=
m⋃
i=1

�
��0� γ�ti + ρ�� × �γ�xi + δ�β�∞�� > 0��(4.19)

E2�γ� 	=
m⋃
i=1

�
��0� γ�ti + ρ�� × �γ�xi − rε�β�∞�� = 0��(4.20)

E3�γ� 	=
m⋂
i=1

�
��0� γ�ti + ρ�� × �γ�xi − rε�β� γ�xi + δ�β�� ≥ 1�(4.21)
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If E1�γ� occurs, then for some i, �I1�x� γ� ti+ρ��α > �xi+δ�A > xAi +2ε, which
is inconsistent with (4.18). Thus P�E0�γ� ∩E1�γ�� = 0. By (4.18),

E0�γ� ∩E2�γ�

⊂
m⋃
i=1

[∫ γ�xi−rε�β

γxβ
γ−AyA
��0� γ�ti + ρ��� dy� > �xAi − ε�β

]

⊂
m⋃
i=1

[∫ ∞

γxβ
γ−A�γ�xi − rε�β�A
��0� γ�ti + ρ��� dy� > �xAi − ε�β

]

⊂
m⋃
i=1

[

��0� γ�ti + ρ�� × �γxβ�∞�� > pβi

]


(4.22)

By (3.6) and the fact that pβi → ∞,

Pα�E0�γ� ∩E2�γ�� → 0(4.23)

It now follows that

lim supPα�E0�γ�� = lim supPα�E0�γ� ∩E3�γ�� ≤ lim supPα�E3�γ��
By (3.6) extended to m disjoint rectangles, we conclude (4.17) since

lim supPα�E3�γ�� ≤
m∏
i=1

�xi − rε�−1 ≤
m∏
i=1

x−1
i + η(4.24)

We now sketch a parallel argument for the case where ξ�t� = ∞ for some
t ∈ �0�∞�, so that R�ξ� = ∞. Take T > t+ 1. It suffices to show that, for any
x > 1 and for large enough z,

lim supPα��I1�x� γ�T��α > �2z�A� < 2/z(4.25)

By (3.6),

lim supPα�
��0� γT� × �γzβ�∞�� > 0� ≤ z−1(4.26)

Also,

lim supPα�
��0� γT� × �γzβ�∞�� = 0 and �I1�x� γ�T��α > �2z�A�

≤ lim supPα
[∫ γzβ
γxβ

γ−AyA
��0� γT�� dy� > �2z�Aβ
]

≤ lim supPα�
��0� γT� × �γxβ�∞�� > 2Aβ� = 0

(4.27)

Then (4.25) follows from (4.26) and (4.27). This completes the upper bound
half of our LDP.

By Lemma 3.3(a), the lower bound half can be proved by showing that for
each ξ ∈ D and each neighborhood N of ξ, we have

lim inf Pα��Ŝγ ∨ 1�α ∈N� ≥ exp�−R�ξ��(4.28)

We do this for neighborhoods in the J1 topology as well as just theM1 topology,
thereby proving also the lower bound half of the vague LDP for theJ1 tolopogy.
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Obviously we need only consider ξ for which R�ξ� < ∞, so we may assume
that ξ ∈ D↑, ξ is everywhere finite, and that ξ takes only finitely many values
above any x > 1. Given such a ξ, define ξn ∈ D↑ by

ξn�t� =
{
ξ�t�� if ξ�t� ≥ 1 + n−1�

1 + n−1� otherwise.

Then ξn → ξ (even uniformly). It follows that we need only prove (4.28) for ξ
with the following form: there exist m ≥ 1, 0 ≤ t1 < · · · tm and 1 < x1 < · · · <
xm <∞ such that ξ�t� = 1 for 0 ≤ t < t1 (if t1 > 0), ξ�t� = xAi for ti ≤ t < ti+1,
i = 1�2�m − 1, and ξ�t� = xAm for t ≥ xm. By Lemma 4.4, it suffices to show
that for every J1-neighborhood N of ξ and every η > 0,

lim inf Pα��I1�x� γ� ·� ∨ 1�α ∈N� ≥ exp�−R�ξ�� − η(4.29)

for sufficiently small x > 1.
For ε > 0 and T > 0, let Nε�T be the set of functions ξ′ ∈ D such that

for some si ∈ �ti� ti + ε� and yi ∈ �xi� xi + 2ε�, i = 1�2�    �m, ξ′�t� = 1 if
0 ≤ t < s1, ξ′�t� = yi if si ≤ t < si+1� i = 1�2�    �m − 1, and ξ′�t� = ym if
sm ≤ t ≤ T. If ε is sufficiently small and T is sufficiently large, Nε�T ⊂ N,
so it suffices to prove (4.29) with N replaced by Nε�T. Assuming in particular
that x ∈ �1� xi� and T > tm + 1 + ε, we find that �I1�x� γ� ·� ∨ 1�α ∈ Nε�T for
large γ if 
 satisfies the following two conditions:


��γti� γ�ti + ε�� × �γxβi � γ�xi + ε�β�� > 0� i = 1�    �m�(4.30)


��0� γT� × �γxβ�∞�� < m+ 1(4.31)

Thus, it suffices to show that for all sufficiently small ε > 0,

lim inf Pα�(4.30) and (4.31) hold� ≥ exp�−R�ξ�� − η
This follows from Theorem 3.4.

5. Proof of Theorem 1.5. Once again we concentrate on the partial sums
case. The steps of the proof follow a similar pattern to the steps in Section 4
and we use the same notation. Also, in the following, if we have events B�γ�,
we write “B�γ� i.a.u.s.” to indicate the event that B�γ� occurs for all γ in
an unbounded set. If λ takes values only in the set �1� e� e2�   �, we use the
more usual expression “B�λ� infinitely often (i.o.).” We begin with an analogue
of (4.7).

Lemma 5.1. Assume the hypotheses of Theorem 1.5(a) hold. Then for T > 0
and v > 1,

P
[

sup
0≤t≤T

�I2�x� γ� t��α > vA i.a.u.s.
]

= 0�(5.1)

for sufficiently small x > 1.
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Proof. In order to apply the Borel–Cantelli (B–C) lemma, we reduce the
problem to one where γ takes values in a suitable discrete set. For γ ≥ 1, define
λ 	= λ�γ� 	= exp��log γ��, so λ ≤ γ < eλ. Next, define s 	= s�γ� t� 	= λ−1γt and
z 	= z�γ� x� 	= �λ−1γxβ�γ��α�λ�. A change of variable gives us

I2�x� γ� t� = γ−AλAI2�z� λ� s�

= γ−AλAI2�x� λ� s� +
∫ λzβ�λ�

λxβ�λ�
γ−AyA�
��0� λs�� dy� − �λs�ν�dy��

Since β is nondecreasing and C 	= 2 lim supα�λ�β�γ� < ∞ by (1.20), we have
x ≤ z�γ� x� ≤ xC for large γ. Also, �λγ−1�α�λ� → 1 and s ≤ et. Therefore, it
suffices to show that for all T > 0 and v > 1, the following hold for sufficiently
small x > 1,

P
[

sup
0≤t≤eT

�I2�x� λ� s��α�λ� > vA i.o.
]

= 0�(5.2)

P

[( ∫ λzβ�λ�

λxβ�λ�
λ−AyA
��0� λeT�� dy�

)α�λ�
> vA i.o.

]
= 0�(5.3)

( ∫ λzβ�λ�

λxβ�λ�
λ1−AyAeTν�dy�

)α�λ�
≤ vA eventually.(5.4)

Now choose δ > 0 such that (1.21) holds. By (4.7),

P
[

sup
0≤t≤T

�I2�x� λ� t��α�λ� > vA
]
< δβ�λ�

for large λ. By (1.21) and the B–C lemma, we have (5.2). Similarly, with xC < v,
(5.3) follows from

P

[∫ λzβ�λ�

λxβ�λ�
λ−AyA
��0� λeT�� dy� > vAβ�λ�

]

≤ P[xCAβ�λ�
��0� λeT� × �λxβ�λ��∞�� ≥ vAβ�λ�]
< δβ�λ�

for large λ, by (3.6). Also, (1.7) implies (5.4) for xC < v,
( ∫ λzβ�λ�

λxβ�λ�
λ1−AyAeTν�dy�

)α�λ�

≤
(∫ ∞

λxβ�λ�
λ1−A�λzβ�λ��AeTν�dy�

)α�λ�

= �λzAβ�λ�eTν�λxβ�λ��∞��α�λ�

→ zAx−1 < xCA−1 < vA ✷
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Lemma 5.2. For all ρ > 0,

P�d′��Ŝγ ∨ 1�α� �I1�x� γ� ·� ∨ 1�α� > ρ i.a.u.s.� = 0

for sufficiently small x > 1.

The proof follows from Lemma 5.1 and (4.5) and (4.6) by an argument like
the proof of Lemma 4.4.

Since �I1�x� γ� ·� ∨ 1�α is always in the compact set D↑, Lemma 5.2 implies
Theorem 1.5(a). We now prove Theorem 1.5(b). Let

K∗ 	= �ξ ∈ D↑	 R�ξ� ≤ 1� =
{
ξ ∈ D↑	 ∑

x∈Range�ξ�
log x ≤ A

}


Then K∗ is closed in D↑ and hence is compact. For our Strassen upper bound,
we prove that for any open G ⊃ K∗, �Ŝγ ∨ 1�α is wp1 eventually in G. By
Theorem 1.5(a) and the compactness of D↑, it suffices to prove that for each
ξ ∈ D↑\K∗, there is a neighborhood N of ξ such that

P��Ŝγ ∨ 1�α ∈N i.a.u.s.� = 0(5.5)

Assume that ξ ∈ D↑\K∗, and for now assume also that ξ is everywhere finite.
By Lemma 5.2, it suffices to prove that for some T > 0 and ρ > 0,

P�E0�γ� i.a.u.s.� = 0(5.6)

for sufficiently small x > 1, where E0�γ� is the event defined in (4.15). Follow-
ing the discussion below (4.15), there exist m > 0� t1�    � tm� x1�    � xm� r� δ
and so on, satisfying the conditions given there, with the extra condition,

m∑
i=1

log�xi − rε� > A(5.7)

By (4.22) and (3.6), with λ = ek for some k ∈ �0�1�   � and any ζ > 0 we have

P�E0�γ� ∩E2�γ� for some γ ∈ �λ� eλ��

≤
m∑
i=1

P�
��0� γ�ti + ρ�� × �γxβ�γ��∞�� > pβ�γ�
i for some γ ∈ �λ� eλ��

≤
m∑
i=1

P�
��0� eλ�ti + ρ�� × �λxβ�λ��∞�� > pβ�λ�
i �

< mζβ�λ�

eventually. By (1.21) and the B–C lemma, P�E0�γ�∩E2�γ� i.a.u.s.� = 0. There-
fore,

P�E0�γ� i.a.u.s.� ≤ P�E3�γ� i.a.u.s.�
By (5.7) and Theorem 3.5, P�E3�γ� i.a.u.s.� = 0. The proof of (5.5) for the case
where ξ�t� = ∞ for some t ∈ �0�∞� is similar and is omitted [but see near
(4.25)]. This proves the Strassen upper bound.
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We now prove the Strassen lower bound. By analogy with the proof of
the lower bound in Section 4, it suffices to prove that for

∑m
i=1 log xi < A,

P�(4.30) and (4.31) hold for γ i.a.u.s.� = 1. This follows from Theorem 3.5. ✷
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