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ON THE NORM AND EIGENVALUE DISTRIBUTION OF
LARGE RANDOM MATRICES

BY ANNE BOUTET DE MONVEL AND ALEXEI KHORUNZHY1

Universite Paris 7 and Verkin Institute´
We study the eigenvalue distribution of N � N symmetric random

Ž . �1 �2 Ž . Ž .matrices H x, y � N h x, y , x, y � 1, . . . , N, where h x, y , x � yN
are Gaussian weakly dependent random variables. We prove that the
normalized eigenvalue counting function of H converges with probabil-N

Ž .ity 1 to a nonrandom function � � as N � �. We derive an equation for
Ž .the Stieltjes transform of the measure d� � and show that the latter has

� �a compact support � . We find the upper bound for lim sup H and� N �� N
study asymptotically the case when there are no eigenvalues of HN
outside of � when N � �.�

1. Introduction. The first studies of N � N random matrices date back
to the works in multivariate statistical analysis of the thirties and forties
� Ž .�see, e.g., the monograph by Anderson 1984 . In the early fifties, Wigner

Ž .used random matrices RM in nuclear physics, where the asymptotic behav-
�ior for large-N of the eigenvalue statistics plays an important role see the

Ž .�collection of papers edited by Porter 1965 . At present, random matrices are
of great interest because of their applications in various fields of theoretical

�physics and also because of their rich mathematical content see, e.g., the
Ž .monographs and reviews by Cohen, Kesten and Newman 1986 , Crisanti,

Ž . Ž .Paladin and Vulpiani 1993 , Bougerol and Lacroix 1985 , Di Francesco,
Ž . Ž .Ginsparg and Zinn-Justin 1995 , Mehta 1991 and Voiculescu, Dykema and

Ž .�Nica 1992 .
ŽIn the RM theory, the following two classes of ensembles of Hermitian or

.real symmetric matrices have been most studied:

1. Ensembles of random matrices with jointly independent entries.
2. Ensembles of N � N matrices whose probability distribution is invariant

Ž . N Ž N .with respect to the unitary or orthogonal transformations of � or � .

These two classes of ensembles can be regarded as different generaliza-
Ž .tions of the Gaussian unitary or orthogonal ensemble that plays a funda-

� Ž .mental role in the RM theory see, e.g., the monograph by Mehta 1991 and
� Žreferences therein . This ensemble consists of Hermitian or real symmetric,

. Ž .respectively N � N matrices H whose entries H x, y , 1 � x � y � N areN N
independent Gaussian random variables with zero mathematical expectation
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2 2 Žand variance v for x � y and 2v for x � y for brevity we will consider the
.orthogonal case called GOE .

Ž . Ž .Ensembles 1 and 2 are opposite generalizations of the GOE in the sense
Ž .that the matrices of 1 have independent arbitrarily distributed entries,

Ž .while those of 2 possess a rather strong statistical dependence that does not
decay even when the entries are far enough from one another in the matrix.

Ž .Thus, it is natural to expect that the eigenvalue distributions of matrices 1
Ž . � Ž .and 2 have different properties see, e.g., Wigner 1955 and Boutet de

Ž . �Monvel, Pastur and Shcherbina 1995 , respectively .
The present paper deals with ensembles that can be regarded as interme-

Ž . Ž .diate between 1 and 2 . More precisely, we consider the case when the
Ž .entries H x, y of a symmetric N � N matrix H are weakly dependentN N

Gaussian random variables; that is, we assume that the correlations between
Ž .them vanish as the ‘‘distance’’ increases. This distance between H x, y andN

Ž � � . � � � � � � � �H x , y , x � y, x � y can be defined as the sum x � x � y � y .N
We are interested in the asymptotic behavior as N � � of the spectral

norm and eigenvalue distribution of H . These two characteristics are basicN
�in spectral RM theory and play an important role in many applications see,

Ž . Ž .e.g., Bovier, Gayrard and Picco 1995 , Crisanti, Paladin and Vulpiani 1993
Ž .�and Isopi and Newman 1992 .

Given an N � N real symmetric matrix H , the eigenvalue distribution isN
Ž .described by the normalized eigenvalue counting function NCF

1.1 � �; H � � �ŽN . � � N�1 , �ŽN . � ��� � �ŽN . ,Ž . Ž . � 4N j 1 N

ŽN . Ž .where � � � H are the eigenvalues of H . The spectral norm of H isj j N N N
defined as

� �H � max � H .Ž .N j N
j

An important result of the RM theory is the semicircle law derived by
Ž .Wigner 1955 . For the case of GOE it can be formulated as follows. Consider

the ensemble of real symmetric random matrices H with entriesN

1
1.2 H x , y � h x , y , x , y � 1, . . . , N,Ž . Ž . Ž .N 'N

Ž .where h x, y , x � y, x, y � � are jointly independent random variables
� Ž .4defined on the same probability space. Assume that the family h x, y has a

Gaussian distribution and satisfies the conditions

1.3a Eh x , y � 0Ž . Ž .

and

21.3b Eh x , y h s, t � v � x � s � y � t � � x � t � y � s ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .
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where the symbol E denotes the mathematical expectation and � is the
Kronecker symbol:

1, if x � 0,
� x �Ž . ½ 0, if x � 0.

Ž .Then � �; H weakly converges with probability 1, when N � �, to aN
Ž .nonrandom nondecreasing function � � ,v

1.4a lim � �; H � � � ,Ž . Ž . Ž .N v
N��

�12 2 2' � �2	 v 4v � � , if � � 2v ,Ž .�1.4b � � �Ž . Ž .v ½ � �0, if � � 2v.

Ž .Here and below, by weak convergence of NCF’s � �; H we mean theN
Ž .weak convergence of the measures d� �; H that are associated in aN

natural way with nonnegative nondecreasing functions.
Ž . Ž . Ž .It follows from 1.4 that �2v, 2v is the support of the measure d� � .

Ž .This means that the number n N of eigenvalues that fall into this interval
Ž . �1is proportional to N and lim n N N � 1. In fact, a stronger statementN ��

is valid: with probability 1 all eigenvalues of H fall into this interval,N
Ž . Ž .because, according to the results of Bronk 1964 and Geman 1980 ,

� �1.5 lim H � 2v with probability 1.Ž . N
N��

Analogous facts are known also for ensembles of random matrices with
Ž .independent entries more general than GOE. Namely, the semicircle law 1.4

Ž . Ž .is valid for the ensemble of matrices H 1.2 , where h x, y , x � y areN
Ž . � Ž .arbitrary i.i.d. random variables satisfying 1.3 see Pastur 1973 and Girko

Ž .1975 for the sufficiency and necessity of these conditions, respectively, and
Ž . �Girko 1988 for more details . This ensemble is known as the Wigner

ensemble of random matrices.
Ž .Relation 1.5 was also shown to be true for the Wigner ensemble. In this

� Ž . � 4 �case, the condition E h x, y � � is a sufficient and necessary one see, e.g.,
Ž . �Bai and Yin 1988 for a more general formulation . Under more restrictive

Ž .conditions on the probability distribution of h x, y , Boutet de Monvel and
Ž .Shcherbina 1995 derived that the exponential bound

� �Prob H � 2v 1 � 
� 4Ž .N1.6Ž .
� exp �N� log 1 � 
 1 � o 1 , N � �� 4Ž . Ž .Ž .

is valid for any given fixed 
 � 0 with some positive � . A similar estimate
follows from deep results recently obtained for the Wigner ensemble by Sinai

Ž . Ž .and Soshnikov 1998 . Relation 1.6 can be regarded as a generalization of
Ž .estimates derived by Bronk 1964 for GUE and GOE.

In the present paper, our main goal is to understand how the statistical
dependence between entries of random matrix H can change the limitingN
behavior of the spectral norm and eigenvalue distribution. Under rather

� �natural conditions, we find the upper bound for lim sup H , derive theN �� N
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Ž . Ž . Ž .estimate 1.6 , and prove that the nonrandom limit � � of � �; H exists.N
� � Ž .We show that in general the limit of H and the upper lower bound of theN

Ž .support of d� � do not coincide. We prove that this coincidence takes place
for a certain class of random matrices that includes the important particular

� Ž .4case when the random field H x, y can be regarded as a stationary one.N
The paper is organized as follows. In Section 2 we formulate our main

statements. In Section 3 we prove the theorems of Section 2 with the help of
Ž .one key technical result Theorem 3.1 . Section 4 is devoted to the proof of

Theorem 3.1. In Section 5 we formulate and prove auxiliary statements.

2. Main results and discussion. Let V be a nonrandom bounded
2Ž . Ž .symmetric nonnegative operator in l � with real entries V x, y , x, y � �.

Ž .Let h x, y , x � y, x, y � � be random variables defined on the same proba-
� Ž .4bility space �. We assume that the joint distribution of h x, y is Gaussian

� Ž .�with the following properties cf. 1.3 :

2.1a Eh x , y � 0Ž . Ž .
and

2.1b Eh x , y h s, t � V x , s V y , t � V x , t V y , s .Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž .One can easily show that the matrix C x, y; s, t � V x, s V y, t �

Ž . Ž .V x, t V y, s is nonnegatively defined and therefore satisfies the covariance
� Ž .�criterion Loeve 1978 . We prove this in Lemma 5.9 of Section 5.`

We introduce random symmetric N � N matrices H and V by theN N
relations

h x , y , if x � y ,Ž .�1�22.2 H x , y � N x , y � 1, . . . , NŽ . Ž .N ½ h y , x , if x � y ,Ž .
Ž . Ž .and V x, y � V x, y , x, y � 1, . . . , N and define the spectral norm of HN N

as
ŽN .� �H � max � ,N j

j�1, 2, . . . , N

where �ŽN . are the eigenvalues of H .j N

THEOREM 2.1. Denote

1
Ž�.˜ ˜2� �2.3 V � V � �, v � lim sup Tr V � VŽ . l 1 NNN��

and assume that
1

Ž�.2.4 v � lim inf Tr V � 0,Ž . 1 NNN��

where Tr denotes the trace of a matrix. Then the inequality

Ž�. ˜� � '2.5 lim sup H � 2 v VŽ . N 1
N��

holds with probability 1.
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REMARK. Using the technique developed to prove Theorem 2.1, it is
Ž . Ž . � Ž .�possible to consider the ensembles 2.1 and 2.2 such that cf. 2.4

2.6 N�1 Tr V � O N�� , N � � with some � � 0.Ž . Ž .N

� � Ž .In this case, the upper bound for the norm H remains the same as in 2.5 ,N
Ž�. ˜�� � Ž .4'but the estimate for probability Prob H � 2 v V 1 � 
 that we deriveN 1

� Ž . �is changed see 2.23 and proof of Theorem 3.1 in Section 4 .
The quantities vŽ�. and vŽ�. coincide in an important particular case1 1

Ž .where the limit of the normalized eigenvalue counting function 1.1 of VN
exists,
2.7  � � lim � �; V .Ž . Ž . Ž .N

N��

Ž .Assuming 2.7 , we can study the limiting eigenvalue distribution of H inN
more detail.

Ž . Ž .THEOREM 2.2. Let V satisfies conditions 2.3 and 2.7 , then:

Ž . Ž .i There exists a nonrandom function � � such that

2.8 lim � �; H � � �Ž . Ž . Ž .N
N��

with probability 1.
Ž . Ž . Ž .ii The Stieltjes transform f z of d� � ,

� �1f z � � � z d� � , z � �	�,Ž . Ž . Ž .H
��

can be found from the relation

� d �Ž .
2.9a f z � ,Ž . Ž . H �z � �g zŽ .0

Ž .where g z is a solution of the equation

� � d �Ž .
2.9b g z � , z � �	�.Ž . Ž . H �z � �g zŽ .0

Ž .This equation is uniquely solvable in the class F of functions � z analytic in
z � �	� and satisfying the conditions

lim �� i� � �, Im � z Im z � 0, z � �	�.Ž . Ž .
���

Ž . Ž .iii The support � of the measure d� � satisfies the relation�

2.10 � 
 �2 v v , 2 v v ,Ž . ' 'ž /� 1 m 1 m

where
�

2.11 v � � d � , v � sup �,Ž . Ž .H1 m
0 ���

Ž .and � is the support of the measure d � ; also, if � � � , then �� � � . � �
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Ž . Ž . Ž .REMARKS. i Equation 2.9 was derived by Khorunzhy and Pastur 1994
Ž . Ž . Ž .for random matrices 2.2 with Gaussian h x, y satisfying 2.1 , where

Ž . Ž .V x, y � u x � y and

2.12 u �x � u x , x � �, u x � �.Ž . Ž . Ž . Ž .Ý
x��

� Ž .4The latter inequality implies that the family of random variables h x, y is
Ž . Ž .weakly correlated, that is, that the dependence between h x, y and h s, t

� � � � Ž .vanishes when x � s or y � t increases infinitely. Conditions 2.12 provide
Ž .the existence of the limit 2.7 given by the relation

� � � � meas p � 0, 1 : u p � � ,� 4Ž . Ž .˜
Ž . Ž . � 4 � � �where u p � Ý u x exp 2	 ixp , p � 0, 1 see, e.g., Grenander and Szego˜ ¨x � �

Ž .�1958 .
Ž . Ž .ii Several analogues of 2.9 are known for some classes of random

� Ž .operators with statistically dependent coefficients see, e.g., Wegner 1979 ,
Ž . Ž .�Khorunzhy and Pastur 1993 and Khorunzhy 1996 .

Ž . Ž .iii Condition 2.7 can be regarded as a certain form of the condition of
� Ž .4weak statistical dependence for the family h x, y . Indeed, it follows from

Ž . Ž . �1 N � Ž .�22.3 and 2.7 that N Ý V x, y is bounded as N � �. Therefore thex, y�1
2 � Ž .�2N terms V x, y cannot be all of the same order of magnitude. This

Ž . � �implies a decay of V x, y when x � y � �.
Ž .iv In case V has a diagonal form

2.13 V x , y � w x � x � y , x , y � �, w x � 0,Ž . Ž . Ž . Ž . Ž .
Ž .the Gaussian random variables h x, y are uncorrelated and, hence, are

Ž .jointly independent. In this case, condition 2.7 is equivalent to the condition
that the following limit exists:

2.14  � � lim � x : w x � �, x � 1, . . . , N N�1 .� 4Ž . Ž . Ž .
N��

Ž .This is true in the case where w x is determined as a realization of an
Ž .infinite sequence of i.i.d. random variables with distribution function  � .

Ž .Then the law of large numbers implies 2.14 .
Ž .v Set

0, if � � v2 ,2.15  � �Ž . Ž . ½ 21, if � � v .
Ž .Then 2.9 reduces to the equation

1
2.16 f z � .Ž . Ž . 2�z � v f zŽ .

Ž .This equation was first derived by Marchenko and Pastur 1967 for the
Wigner ensemble of random matrices.

Ž . Ž .vi Any function � z � F admits a representation
� �1

� z � � � z d� � ,Ž . Ž . Ž .H
��
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Ž . � Ž .where � � is a nonnegative nondecreasing function such that H d� � � �.��

This function can be found by the inversion formula

1 b
2.17 � b � � a � lim Im � � � i� d�,Ž . Ž . Ž . Ž .H

	��0 a

Ž . �where a and b are such that � � is continuous at these points see, e.g.,
Ž .� � Ž .Donoghue 1974 . If the derivative � exists on the whole axis, then 2.17

can be rewritten as

1
�2.18 � a � Im � a � i0 .Ž . Ž . Ž .

	

Ž . Ž . �Ž .Using 2.18 , one can easily derive from 2.16 an exact expression for � �v
Ž .1.4b .

Ž . Ž . Ž .We obtain 2.5 and 2.8 and 2.9 under the rather weak and natural
Ž . Ž . Ž .conditions 2.3 and 2.4 and 2.7 . In brief, we require that the matrix V

possess those spectral characteristics that we expect to exist for H in theN
limit N � �. We see that the location of the support of the limiting eigen-
value distribution function is determined by the product v v , while the1 m

� �upper bound of the spectral norm H is determined by the variables v andN 1
� � � �V . It is natural to assume that the lower bound of H also depends on theN

� �norm V and therefore in general there exist eigenvalues of H lyingN
outside of the support � .�

Ž .A trivial example of a matrix H with this property is provided by 2.1N
Ž . Ž . Ž .and 2.2 when V x, y has the form of 2.13 , with

v� , if x � 1,2.19 w x �Ž . Ž . ½ v , if x � 1.

Ž . Ž .In this case it is easy to see that  � is given by 2.15 and, hence, the
Ž .density of the limit eigenvalue distribution is given by 1.4 and has the

Ž . Ž . Ž .support �2v, 2v . On the other hand, we have for the vector e x � � x � 1 ,1
with probability 1,

N1 22 �� �H e � h x , 1 � vv as N � �.Ž .ÝN 1 N x�1

� � 2 � �This relation implies that lim sup H � vv . Thus, for v � 4v one canN �� N
Ž .find with probability 1 eigenvalues of H outside �2v, 2v in the limitN

N � �.

THEOREM 2.3. Let V satisfies the conditions of Theorem 2.2 and

�1
r r2.20 Tr V � � d � , r � �Ž . Ž .HNN 0

for all N � �. Then with probability 1,

� �2.21 lim H � � ,Ž . N �
N��

� �where � � sup � .� �� ��
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Ž .It is easy to show that 2.20 is satisfied when V is a difference matrix

2.22 V x , y � u x � y ,Ž . Ž . Ž .
Ž . Ž . Žwith nonnegative entries u x � 0 such that 2.12 holds see Lemma 5.5 in

.Section 5 . It should be noted that all our results remain valid in the case
Ž .where condition 2.1b is replaced by the condition

Eh x , y h s, t � V x , s V y , t .Ž . Ž . Ž . Ž .
Ž .In this case the particular form 2.22 of V describes the random field

� Ž . 4h x, y , x � y that can be regarded as a version of a stationary random
field. In this connection, let us note that the matrices H resemble theN
metrically transitive operators introduced and studied by Pastur and Figotin
Ž .1992 . These operators have the property that their spectra coincide with the
support of the limiting eigenvalue distribution function. Thus, our observa-
tions lead to the conjecture that the same property for random matrices is
also related with stationarity of the probability distribution of their entries. It
could be interesting to develop a more precise formulation of this conjecture.

To conclude, we remark that as a by-product of the proof of Theorems 2.1
� Ž . Ž .�and 2.3 see estimates 3.14 and 3.24 we obtain the estimate

1�6N
� �2.23 Prob H � � 1 � 
 � exp � 
 1 � o 1 ,Ž . Ž . Ž .Ž .� 4N � N Nž /3�N

� � Ž �1 .as N � �, where � � V � N Tr V and 
 is an arbitrarily chosenN N N N
1�6Ž .�1�6sequence such that N 3� 
 � � as N � �.N N

Ž .In the case of GOE, estimate 2.23 takes the form

� �Prob H � 2v 1 � 
� 4Ž .N N

�� exp � N 
 �3 1 � o 1 , N � �,Ž . Ž .Ž .N

2.24Ž .

Ž .with � � 1�6. In this case it is known that 2.24 holds also for � � 1�6.
However, it is not hard to observe that the upper bound here is 2�3. In

Ž .particular, this follows from results obtained by Tracy and Widom 1994 that
Žthe maximal eigenvalue of A is located in the vicinity of the point 2v 1 �N

�2�3.N . In this connection, it would be interesting to find an optimal improve-
Ž .ment of 2.23 .

3. Infinite system of moment relations. To prove the theorems of
Section 2, we study the asymptotic behavior of the moments

�
p p �1 p pM N � EH , H � N Tr H � � d� �; H , p � �.Ž . Ž .Hp N N N N

��

Ž .We derive an infinite system of relations that involves the moments M Np

and certain terms vanishing for N � �. We develop a technique that allows
Ž � .us to estimate these terms for p � O N with some � � 0, N � �. Using

Ž .these estimates in the case of finite p, we obtain the convergence of M Np
Ž .as N � � and the convergence of d� �; H with probability 1. The esti-N
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mates derived for the case of infinitely increasing p allow us to study the
� �deviations of H .N

Let us introduce the variables

Žq . p q Ž0.� 4M N � EH V , p , q � � , � � � � 0 , M N � 1.Ž . Ž .p N N � � 0

In the sequel we omit the subscripts N when this does not lead to confusion.
We compute the average

N
p p�1EH x , y � EH x , s H s, yŽ . Ž . Ž .Ý

s�1

with the help of the following statement.

PROPOSITION 3.1. Let random variables � , . . . , � have a joint Gaussian1 n
distribution with zero mathematical expectation. Then

n � F
3.1 E� F � , . . . , � � E� � E ,Ž . Ž . Ýj 1 n j i ��ii�1

Ž .where F x , . . . , x is a nonrandom smooth function such that all integrals in1 n
Ž .3.1 exist.

One can easily prove this statement by integration by parts.
Ž .Taking into account 3.1 , we derive the relation

E H p�1 a, b H x , yŽ . Ž .
p�21

p�2�i i� � � �� E H V a, x VH y , b� Ž . Ž .ÝN i�0
3.2Ž .

� p�2�i � � i �� H V a, y VH x , b 4Ž . Ž .
Ž . Ž . Žq .Ž .see Lemma 5.1 for the proof . Applying 3.2 to M N , we obtainp

p�2
p q p�2�i i q�1 �1 p�2�i i q�13.3 EH V � E H V H V � N H VH V .Ž . � 4Ý

i�0

Let us introduce the notation

² :� � � � E� ,

where � is an arbitrary random variable with finite expectation. Taking into
2 k�1 q � Ž .account the fact that EH V � 0 see also 4.2 and Lemma 5.2 for the

� Ž .proof , we derive from 3.3 that

k�1
Žq . Ž1. Žq�1.M N � M N M NŽ . Ž . Ž .Ý2 k 2 k�2�2 j 2 j

3.4 j�0Ž .
� �Žq . N � �Žq . N ,Ž . Ž .2 k�2 2 k�2



A. BOUTET DE MONVEL AND A. KHORUNZHY922

where
2k�2

Žq . �1 2 k�2�i i q�1� N � N EH VH VŽ . Ý2 k�2
i�0

and
2k�2

Žq . 2 k�2�i i q�1² :² :� N � E H V H V .Ž . Ý2 k�2
i�0

Žq . Ž . Žq . Ž . Ž Žq . Ž ..The key observation is that � N and � N are o M N as2 k�2 2 k�2 2 k�2
N � �. To show this, we introduce variables

Žb. � �1 �2 �b �L x , y � H VH ��� VH x , yŽ . Ž .Ýp , N
b� �0, Ý � �pi i�1 i

and

Žm , q . Žb . Žb . Žb . q�11 m�1 m² : ² :² :D b , . . . , b � E L V ��� L V L VŽ . Ýp , N 1 m � � �1 m�1 m
m� �0, Ý � �pi i�1 i

and formulate our main technical result.

˜ ŽN .THEOREM 3.1. Let � � sup � , with � � V �v andN N N N 1

ŽN . �1 ˜v � V � N Tr V , V � max � V .Ž .1 N N N j N
j�1, . . . , N

If N � N � 3 � 218� , then0

Ž . b�12 b�1Žb. q b�1 Žq .˜3.5 0 � EL V � 2k � 2 b � 1 V M NŽ . Ž . Ž . Ž .2 k , N N 2 k

and
2 B �m Bm m4k � 4 BŽ . Ž .mŽm , q . B �1 Žq�1.m˜3.6 D b , . . . , b � V M NŽ . Ž . Ž .2 k , N 1 m 2 kmN

� 4for all q � 0 and b, k, B � b � ��� �b such that 2 max b, B , 4k � 4 �m 1 m m
Ž .1�6N�3� .

Ž . Ž . Ž .REMARKS. 1 To explain the form of the estimates 3.5 and 3.6 , let us
Žb. 2k � b � 1Ž . Ž .note that L is the sum of T 2k, b � terms, where T 2k, b isž /2 k , N b � 1

the number of all possible distributions of 2k identical balls into b boxes.
Each of the terms involved can be estimated from above by the same

Ž .expression. So, to simplify the subsequent computations, we replace T 2k, b
by its upper bound. This increases the value of the exponent of 4k � 4 in the

Ž . Ž .right-hand sides of the estimates 3.5 and 3.6 . In turn, this leads to
decrease of the exponent � in the estimate for the possible growth of k � N�.
This is why we consider � � 1�6 as far from the optimal exponent.

Ž . m Ž .2 The factor N that appears in the right-hand side of 3.6 reflects a
Žq .Ž .special property of the moments M N and, hence, of the measure2 k

Ž .d� �; H . In the theoretical physics literature this property is known as theN
�strong self-averaging property see, e.g., Lifshitz, Gredeskul and Pastur
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Ž .� Ž .1988 . In the RM theory, it was first observed by Berezin 1973 . Here the
strong self-averaging means that the variance of the variables

�
�� � d� �; H , � � C � ,Ž . Ž . Ž .H N 0

��

Ž �1 . Ž .is o N . This is true for a wide class of random matrices. Actually, 3.6 is
Ž .an improvement of this statement. The form of 3.6 is based on the assertion

that the random variable

� �

N � � d� �; H � E � � d� �; HŽ . Ž . Ž . Ž .H HN N
�� ��

� Ž .converges to a gaussian random variable as N � � see, e.g., Girko 1988 ,
Ž .�Khorunzhy, Khoruzhenko and Pastur 1996 .

p p kN NŽ .Here we prove that the moments of the random variable H � EHN
are of the order N�Ž p�k . when N � � and p � k � � simultaneously. This

Ž .means that d� �; H converges to a nonrandom limit much faster than theN
strong self-averaging property predicts. Let us also note that a similar

Ž .observation is made by Sinai and Soshnikov 1998 , who have proved that in
p pN NWigner ensemble, the random variable H � EH converges to a GaussianN N

random variable when N, p � �, p � N�, � � 1�2.
Ž .3 Theorem 3.1 remains valid when � is replaced by � . This means thatN

Ž . Ž .we can replace condition 2.4 by condition 2.6 , with � � 0 such that N��N
� �.

Ž . Ž .We prove Theorem 3.1 in Section 4. It follows from 3.5 and 3.6 that

21 � 4kŽ .
Žq . Ž2. q�1 Ž1. Žq�1.3.7 � N � E L V � M N M NŽ . Ž . Ž . Ž .2 k�2 2 k�2, N 0 2 k�2N N

and

64� 4kŽ .
Žq . Ž2 , q . Ž1. Žq�1.3.8 � N � D 1, 1 � M N M NŽ . Ž . Ž . Ž . Ž .2 k�2 2 k�2, N 0 2 k�22N

Ž .1�6for all N � N such that N�3� � 4k. Taking these estimates into ac-0
count, we return to the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Let us first note that given any positive number
Ž .
 � 1, there exists N 
 such that1

2 6
� 4k 4� 4kŽ . Ž .

� 43.9 � � 
 � N � max N , N .Ž . 0 12N N

Ž . Ž .Then 3.7 and 3.8 imply that

k�1
Ž1. Žq�1. Žq .3.10a 1 � 
 M N M N � M NŽ . Ž . Ž . Ž . Ž .Ý 2 k�2�2 j 2 j 2 k

j�0
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and
k�1

Žq . Ž1. Žq�1.3.10b M N � 1 � 
 M N M N ,Ž . Ž . Ž . Ž . Ž .Ý2 k 2 k�2�2 j 2 j
j�0

where q � � and k � �.�
Modifying slightly the arguments used by Boutet de Monvel and Shcherbina

Ž . Žq .Ž .1995 , we introduce a sequence of positive numbers m N, 
 determinedk
for a fixed positive 
 � 1 by the relations

k�1
Žq . Ž1. Žq�1.3.11a m N , 
 � 1 � 
 m N , 
 m N , 
 , k � 1,Ž . Ž . Ž . Ž . Ž .Ýk k�1�j j

j�0

q�2Žq . q Ž0.3.11b m N , 
 � 1 � 
 V , m N , 
 � 1.Ž . Ž . Ž . Ž .0 N 0

Ž .It is easy to see that the inequalities 3.10 imply the estimates

3.12 mŽq . N , �
 � M Žq . N � mŽq . N , 
 .Ž . Ž . Ž . Ž .k 2 k k

Ž . Ž .Equation 3.11a resembles the system of relations derived by Wigner 1955
Ž .for the moments of the semicircle distribution see Section 5, Lemma 5.4 .

From this observation, we obtain

2 k q�2Žq . q ŽN .˜ ˜'3.13 m N , 
 � 1 � 
 2 l 1 � 
 V , l � v VŽ . Ž . Ž . Ž .k N N N 1 N

Ž .see Lemma 5.6 for the proof . Thus we get
2 kŽ0.M N � 1 � 
 2 lŽ . Ž .2 k N

�1Ž .1�6for k � 8 N�3� when N is large enough. Let us show that this implies
Ž .2.5 .

Ž0.Ž .In view of the definition of the moments M N , we can write for any2 k
a � 0,

M Ž0. N � E �2 k d� �; HŽ . Ž .H2 k N
Ž .�	 �a , a

2 ka
ŽN .� E� � � a½ 5jN

a2 k

� �� Prob H � a .� 4NN
Then

� �Prob H � 1 � 2
 2 l� 4Ž .N N

M Ž0. NŽ .2 k� N inf 2 kk 1 � 2
 2 lŽ . N3.14Ž .
1�6N 


� N exp � log 1 � .ž /ž /3� 1 � 
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An elementary calculation shows that
�

� �Prob H � 1 � 2
 2 l � �.� 4Ž .Ý N N
N�1

Ž .Since 
 is arbitrary positive, then the Borel�Cantelli lemma implies 2.5 . �

PROOF OF THEOREM 2.2. Let us prove Theorem 2.2. In view of condition
Ž .2.7 , the following limits exist:

q�2Žq . Žq . q3.15a lim m N, 
 � m 
 � 1 � 
 � d � .Ž . Ž . Ž . Ž . Ž .ˆ H0 0
N��

This fact together with Lemma 5.4 implies that for any fixed k, q � � ,�

3.15b lim mŽq . N , 
 � mŽq . 
 ,Ž . Ž . Ž .ˆk k
N��

Žq .Ž . Ž .where the moments m 
 satisfy the analogue of system 3.11 whereˆ k
Ž . Ž .3.11b is replaced by the right-hand side of 3.15a .

Žq .Ž . Žq .Ž .Lemma 5.4 implies that the difference between m �
 and m 
k k
vanishes when 
 vanishes. This means that

3.16 lim M Žq . N � mŽq . 0 � mŽq . ,Ž . Ž . Ž .ˆ ˆ2 k k k
N��

where the mŽq . satisfy the system of relationsˆ k
k�1

Žq . Ž1. Žq�1.3.17a m � m m , k , q � 1,Ž . ˆ ˆ ˆÝk k�1�j j
j�0

3.17b mŽq . � �q d � , q � 1, mŽ0. � 1.Ž . Ž .ˆ ˆH0 0

Ž .Relation 3.16 with q � 0 can be rewritten in the form

lim E �2 k d� �; H � mŽ0. .Ž . ˆH N k
N��

2 k�1 Ž .It follows from Lemma 5.2 of Section 5 that EH� d� �; H � 0. Let usN
Ž .show that there exists a unique limiting measure d� � with odd moments

Ž0. ˜ 2 kŽ . � Ž .�zero and even moments m bounded by 2V see 3.13 .ˆ k
Let us define the functions

�
Žq . Žq . �2 k�13.18 f z � � m z , q � � ,Ž . Ž . ˆÝ k �

k�0

which are analytic in the region

˜ 2� �3.19 U � z : Im z � 2V � 1 .� 4Ž .
Ž .Then it is easy to show that 3.17 is equivalent to the system of equations

3.20 � zf Žq . z � mŽq . � f Ž1. z f Žq�1. z , q � � .Ž . Ž . Ž . Ž .ˆ 0 �

Ž .The system 3.20 has a unique solution that is also the unique solution of the
system

�q d �Ž .
Žq .3.21 f z � , q � �Ž . Ž . H �Ž1.�z � � f zŽ .



A. BOUTET DE MONVEL AND A. KHORUNZHY926

Ž . Ž0.Ž . Ž . Ž1.Ž . Ž .see Lemma 5.7 for the proof . Denoting f z � f z and f z � g z , we
Ž . Ž .obtain 2.9 . In Lemma 5.8 we prove iii of Theorem 2.2.

Ž .At this point, we have derived the weak convergence 2.8 in average. To
ŽN .Ž .prove that 2.8 holds with probability 1, we need to show that lim H �N �� 2 k

mŽ0. with probability 1. This can easily be proved in view of the convergenceˆ k
Žq . ŽN . qŽ . Ž .3.16 of the mathematical expectations M N � EH V and the esti-2 k 2 k N

mate of the variance
ŽN . q ŽN . q �2² :² :3.22 E H V H V � O N , N � � for fixed k , q � � ,Ž . Ž .2 k N 2 k N �

Ž .which follows from relation 3.6 of Theorem 3.1. Let us note that in Lemma
5.2 we prove that

ŽN . q ŽN . q² :² :E H V H V � 02 k�1 N 2 k�1 N

� Ž .�see also equality 4.3 .
The Borel�Cantelli lemma implies that each moment of the measure
Ž .d� �; H converges with probability 1,N

Ž0.m , if p � 2k ,ˆ kŽN .lim H �p ½ 0, if p � 2k � 1.N��

Ž0. Ž .The moments m uniquely determine the measure d� � with Stieltjesˆ k
Ž .transform f z . This proves Theorem 2.2. �

Ž .PROOF OF THEOREM 2.3. Condition 2.20 implies that the inequality

3.23 mŽq . N , 
 � mŽq . 
Ž . Ž . Ž .ˆk k

holds for all N � �. It follows from Lemmas 5.7 and 5.8 that the moments
Ž0.Ž . Ž .m 
 uniquely determine the measure with compact support d� � . Let usˆ k 


Ž
 . Ž .denote by � the upper edge of this support. Then 3.23 , together with the�

Ž .second inequality of 3.12 , implies that for large N we have
2 k 1�6Ž0. Ž
 .M N � � for all k � N�3� .Ž . Ž .2 k �

Repeating the arguments of the proof of Theorem 2.1, we obtain for arbitrary

 � 0 the inequality

1�6N
Ž
 .� �3.24 Prob H � � 1 � 
 � exp � 
 1 � o 1 ,Ž . Ž . Ž .Ž .� 4N � N Nž /3�N

as N � �, hence

� � Ž
 .3.25 lim sup H � � .Ž . N �
N��

Ž
 . Ž .Lemma 5.4 implies that lim � � � . Relation 3.24 implies that
 � 0 � �

� �lim sup H � � with probability 1.N �
N��

On the other hand, Theorem 2.2 implies that, with probability 1, any interval
Ž .� � �, � with fixed � � 0 contains eigenvalues of H in the limit N � �,� � N
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and then
� �lim sup H � � � � with probability 1.N �

N��

Ž . Ž .This proves Theorem 2.3. Let us note that estimate 2.23 follows from 3.24
because the right-hand side of this estimate does not depend on 
 � 0. �

4. Proof of recurrent estimates. In this section we prove Theorem 3.1.
Let us consider the mathematical expectation

Žb. q �1 � � � q1 b�1 bEL V � N E H V ��� H VH x , t V t , x .Ž . Ž . Ž .Ý Ýp
bx , s � �0, Ý � �pi i�1 i

Ž . Ž .We apply 5.1 to the last average see Lemma 5.1 in Section 5 and obtain
p�2b�1 b�s�1

Žb. q Žb�s�t . Ž t�1. q�s�1EL V � EL V EL VÝ Ý Ýp p�2�i i
s�0 t�0 i�0

b�1
�1 Žb�s�1. q�s�1� N b � s EL VŽ .Ý p�2

s�0
4.1Ž .

p�2b�1 b�s�1
Žb�s�t . Ž t�1. q�s�1² : ² :� E L E L V .Ý Ý Ý p�2�i i

s�0 t�0 i�0

Ž .Taking into account the inequality 5.3 from Section 5 and the relations

Žb. q Žb. q4.2 EL V � 0, EL V � 0Ž . 2 k�1, N N 2 k , N N

and

4.3 DŽ2, q . b , b � 0,Ž . Ž .2 j�1, N 1 2

Ž .which are proved in Lemma 5.2, we derive from 4.1 our first main inequal-
ity,

b�1 b�s�1 k�1
Žb. q s Žb�s�t . Ž t�1. q�1˜EL V � V EL V EL VÝ Ý Ý2 k 2 k�2�2 j 2 j

s�0 t�0 j�0

b�1
�1 s Žb�s�1. q�1˜� N b � s V EL VŽ .Ý 2 k�2

s�0
4.4Ž .

b�1 b�s�1
Ž2, q�s.� D b � s � t , t � 1 .Ž .Ý Ý 2 k�2

s�0 t�0

The second relation concerns the variables DŽm.. To derive it, we use thep
identity

² :² : ² :4.5 E � � � E � �Ž . 1 2 1 2

and write the equality

Žb . Žb . Žb . Žb .1 m�1 m m² : ² :² : ² :4.6 E L V ��� L V L x , y � E � L x , y ,Ž . Ž . Ž .� � � m�1 �1 m�1 m m
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Žb . Žb .1 m�1² : ² : Ž .where we denote � � L V ��� L V . Using relations 3.2 andm� 1 � �1 m�1
Ž .5.1 , we obtain

² : Žbm .E � L x , yŽ .m� 1 � m

b �1 b �s�1 � �2m m m
Žb �s�t . s�1 Ž t�1.m² :� E � L V V L x , yŽ .Ý Ý Ý ½ 5m� 1 � �2�i imžs�0 t�0 i�0

b � sm Ž t�1. s�1² :� E � L V x , yŽ .m� 1 � �2m /N4.7Ž .
b �1 m�1m 2br Žb �b �s�1. s�1r m� E Q ��� Q L V x , yŽ .Ý Ý 1 r�1 � �� �2½ r mNs�0 r�1

�Q ��� Q ,r�1 m�1 5
Žb .r² :where Q stands for L V . Let us note that the first mathematicalr � r

Ž . ² :expectation in the right-hand side of 4.7 is of the form E T YZ. We rewrite
it in a form appropriate for our use, with the help of the identity

² : ² : ² : ² :² : ² :² :E T YZ � ET Y EZ � ET Z EY � ET Y Z � ET E Y Z .

Ž .Using this identity and applying 4.5 to the third term of the right-hand side
Ž .of 4.7 , we obtain our second main inequality,

7
Žm , g .4.8 D b , . . . , b � R ,Ž . Ž . Ý2 k 1 m i

i�1

where

b �1 b �s�1 k�1m m
Žm , 0. Ž t�1. q�s�2R � D b , . . . , b , b � s � t EL V ,Ž .Ý Ý Ý1 2 k�2�2 j 1 m�1 m 2 j

s�0 t�0 j�0

b �1 b �s�1 k�1m m
Žm , q�s�1. Žb �s�t .mR � D b , . . . , b , t � 1 EL V,Ž .Ý Ý Ý2 2 k�2�2 j 1 m�1 2 j

s�0 t�0 j�0

b �1 b �s�1m m
Žm�1, q�s�1.R � D b , . . . , b , b � s � t , t � 1 ,Ž .Ý Ý3 2 k�2 1 m�1 m

s�0 t�0

b �1 b �s�1k�1m m
Žm�1, 0. Ž2 , q�s�1.R � D b , . . . , b D b � s � t , t � 1 ,Ž . Ž .Ý Ý Ý4 2 k�2�2 j 1 m�1 2 j m

s�0 j�0 t�0

b �1m b � sm Žm , q�s�1.R � D b , . . . , b , b � s � 1 ,Ž .Ý5 2 k�2 1 m�1 mNs�0
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m�1 2br Žm�1, q�s�1.R � D b , . . . , b , b , . . . , b , b � b � s � 1 ,Ž .Ý6 2 k�2 1 r�1 r�1 m�1 m r2Nr�1

m�1 2br
R � Ý7 2Nr�1

k�1
Žm�2, 0.� D b , . . . , b , b , . . . , bŽ .Ý 2 k�2�2 j 1 r�1 r�1 m�1

j�0

Žb �b �s�1. q�s�1r m� 2 j � 1 EL V .Ž . 2 j

It should be noted that in Section 3 we defined the variables DŽm. only for2 k
2 � m � 2k, k � 1. This means that for m � 2k, m � 2k � 1, or m � 2k � 2,

Ž .certain terms in the right-hand side of 4.8 should be omitted. However, if we
Žm. Ž .set D � 0 for m � 2k, then 4.8 will be valid for all k � 1, m � 2.2 k

Now we describe the induction procedure that we use to prove Theorem
Ž .3.1. Let us call ‘‘D-plane’’ the set of pairs k, m , m � 2, k, m � � and

‘‘L-line’’ the set of points j, j � �. Suppose that for some integer J � 3 the
Ž . Ž . Žm� . � �

� �estimates 3.5 and 3.6 are valid for all D and L such that k � m � J,2 k 2 j

j� � J � 2. We will say that such points on our D-plane and L-line are
positive.

Ž . Ž .Let us introduce the set D J � 1 of points k, m determined by the
Ž .relation k � m � J � 1. The step of the induction is to prove that D J � 1

consists of positive points and that the point j � J � 1 is also positive. Then,
Ž . Ž .according to the induction principle, 3.5 and 3.6 will be proved for all fixed

k and m.
Ž .To add D J � 1 to the set of positive points, we start from the point

� � Ž . �k � 1, m � J, which is apparently positive because 3.6 is true for these k
� Ž .and m . Now let us assume that for some integer k � 2 all points of D J � 1

satisfying k� � k � 1 are positive. Then all terms D and L involved in the
Ž .right-hand side of 4.8 correspond to positive points of the D-plane and L-line

Ž . Ž .and therefore satisfy 3.5 and 3.6 . Our main goal is to derive that this
Ž . Žm , q . �implies 3.5 for D . When this statement is proved, the point k � k,2 k

� Ž .m � J � 1 � k of the D-plane is shown to be positive so D J � 1 consists of
positive points. When this is proved, we will show that the point j � J � 1 in

Ž .the L-line is also positive. We do this with the help of 4.4 .
Ž . Ž .Following the induction principle, let us first ensure that 3.5 and 3.6 are

Žb. q Ž2, q .Ž .valid for the initial points L V and D b , b . Let us first consider2 2 1 2

Žb. q � � q1 bEL V � EH V ��� VH VÝ2
� �0,i

� � ��� �� �21 b

	 � ��q� EV HV HV .Ý
	�����b�1,

	 , � , ��0

Ž .It is not hard to see that in the latter sum there are b b � 1 �2 terms
b�1 q�1˜ Žcorresponding to � � 0 and these can be estimated by V V V �
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�1 q�2.N V . The b remaining terms corresponding to � � 0 have the form
2 q�b�1 q�b �1 q�b�1 Ž .EH V � V V � N V , and 3.5 obviously follows. Next, we

Ž2, q . �1 b �b �q�21 2Ž . Ž .find that D b , b � 2b b N V and that 3.6 is true for2 1 2 1 2
Ž . Ž .k � 1. We emphasize that 3.5 and 3.6 are proved for k � 1 when q, b, b1

and b are arbitrarily fixed. This implies that we do not need to care about2
Ž . Ž .changes of these parameters in 4.4 and 4.8 .

Žb. Ž .Let us turn now to the general case k � 1 for L . According to 3.5 , we2 k
Ž .assume that the first term in the right-hand side of 4.4 is less than

b�1 b�s�1 k�1 b�s�t�12sṼ 4 k � j b � s � t � 1Ž . Ž .Ž .Ý Ý Ý
s�0 t�0 j�0

2 t t b�s�1 Ž1. Ž1. q�1˜� 4 j � 4 t V EL V EL VŽ . 2 k�2�2 j 2 j

b�1 1
� F Ýk , b 2 s 2 s4k � 4 b � 1Ž . Ž .s�0

4.9Ž .

Ž . 2 t2 b�s�1�tk�1 b�s�1 j � 1 j � 1
1 �Ý Ý ž / ž /k � 1 k � 1j�0 t�0

Ž1. Ž1. q�1�EL V EL V ,2 k�2�2 j 2 j

with
b�1Ž .2 b�1 ˜F � 4k � 4 b � 1 V .Ž . Ž .k , b

For s � b � 2 we can estimate the last sum over t using the inequality
Ž . 2 t2 d�td j � 1 j � 1

	 d � sup 1 �Ž . Ýk ž / ž /k � 1 k � 1j�0, . . . , k�1 t�04.10Ž .
1

� 1 � ,
2 k � 1Ž .

Ž .which is proved in Lemma 5.3 see Section 5 . Then we find that the
Ž .right-hand side of 4.9 is less than

b�21 1
F 1 � Ýk , b 2 s 2 sž /2 k � 1Ž . 4k � 4 b � 1Ž . Ž .s�0

1
� X2 k , qb�1 b�14k � 4 b � 1Ž . Ž .
1

� F 1 � X ,k , b 2 k , qž /4 k � 1Ž .
where

k�1
Ž1. Ž1. q�1X � EL VEL V .Ý2 k , q 2 k�2�2 j 2 j

j�0
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Ž .Using 3.5 again, we conclude that the second term of the right-hand side
Ž .of 4.4 is less than

b�1b � 1 Ž . b�s2 b�s b Ž1. q�1˜4k b � s V EL VŽ . Ž .Ý 2 k�2N s�0

�1b�12b 1 12� F � 4k � 4 1 � � 1 �Ž .k , b 2ž / ž /N b � 1 4k � 4 b � 1Ž . Ž .
Ž1. q�1� V EL V2 k�2

2 2 �1� 2� eF 4k � 4 b � 1 N X .Ž . Ž .k , b 2 k , q

In the last inequality, we used the elementary relation
b�11

4.11 1 � � e for all b � 2Ž . ž /b � 1

and the obvious estimate

Ž1. q�1V EL V � X .2 k�2 2 k , q

Ž .Assuming that 3.6 is valid for the third term of the right-hand side of
Ž .4.4 , we see that it is less than

2 b�1 b�s�14k Ž . b�s�12 b�s�1 b Ž1. q�1˜4k b � s � 1 V EL VŽ . Ž .Ý Ý 2 k�22N s�0 t�0

6 3 b�1b�14k b � 1 2Ž . Ž .
� F 1 �Ýk , b 2 ž /b � 1N s�0

b�1 1
Ž1. q�1� V EL VÝ 2 k�2s2 s4k � 4 b � 1Ž . Ž .s�0

6 32 �2� F 2� e 4k b � 1 N X .Ž . Ž .k , b 2 k , q

Now we can conclude that

Žb. qEL V � F X2 k k , b 2 k , q

2 21 2� e 4k � 4 b � 1Ž . Ž .
� 1 � �ž 4 k � 1 NŽ .4.12Ž .

6 322� e 4k � 4 b � 1Ž . Ž .
� .2 /N

Ž .It follows from 4.1 that

1
Ž1. q Ž2. q�1 Ž2 , q .X � EL V � EL V � D 1, 1 .Ž .2 k , q 2 k 2 k�2 2 k�2N
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Ž . Ž .Applying 3.5 and 3.6 to the last two terms of this inequality, we obtain
2 6

� 4k 4� 4kŽ . Ž .
Ž1. qX � EL V � X � X2 k , q 2 k 2 k , q 2 k , q2N N

and finally that
�12 6

� 4k 4� 4kŽ . Ž .
Ž1. q4.13 X � 1 � � EL V .Ž . 2 k , q 2 k2N N

Ž . Ž .Elementary computations show that inequalities 4.12 and 4.13 imply
Ž .3.5 for all N, k and b satisfying the conditions of Theorem 3.1.

Ž .Now we turn to the proof of 3.6 . Let us denote
2 B �m B B �1m m m˜G � 4k � 4 B VŽ . Ž .k , m , B m

Ž .and assume that 3.6 is true for all terms R , . . . , R involved in the1 7
Ž .right-hand side of 4.8 . Then for the first term we have

b b �s�1 k�1m m
Ž . B �s�tm�2 B �s�t mmR � 4k � 4 j B � s � tŽ . Ž .Ý Ý Ý1 m

s�0 t�0 j�0

2 t t B �1 Ž1. Ž1. q�1m˜� 4 j � 4 t V EL V EL VŽ . 2 k�2�2 j 2 j

bk�1 m 1
� G Ý Ýk , m , B 2 sm s4k � 4 BŽ .j�0 s�0 m

mŽ . 2 t2 b �tb �s�1 mm k � j j � 1 k � jŽ . Ž . Ž .
Ž1. Ž1. q�1EL V EL VÝ m 2 k�2�2 j 2 j2 bm k � 1Ž .k � 1Ž .t�0

�1 mk�11 k � jŽ .
Ž1. Ž1. q�1� G 1 � EL V EL V .Ý mk , m , B 2 k�2�2 j 2 j2m ž / k � 1Ž .4k � 4 BŽ . j�0m

It is easy to derive that R is bounded by a similar expression, with2
Ž1. Ž1. q�1 Ž1. q�1 Ž1.EL V EL V replaced by EL V EL V. Then we can write2 k�2�2 j 2 j 2 k�2�2 j 2 j

the inequality
�1 mk�11 k � jŽ .

R � R � G 1 � W j ,Ž .Ý m1 2 k , m , B k2m ž / k � 1Ž .4k � 4 BŽ . j�0m

where we use that B � 2m and denotem

Ž1. Ž1. q�1 Ž1. q�1 Ž1.W j � EL VEL V � EL V EL V.Ž .k 2 k�2�2 j 2 j 2 k�2�2 j 2 j

Ž . Ž .The function W j , j � 1, . . . , k � 1 is symmetric with respect to k � 1 �2.k
Ž .mSince k � j is convex for m � 2, we can write

k�1 k�1
m 1 m mk � j W j � k � 1 W j � k � 1 X .Ž . Ž . Ž . Ž . Ž .Ý Ýk k 2 k , q2

j�0 j�0
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Thus
�11

R � R � G X 1 �1 2 k , m , B 2 k , q 2m ž /32m k � 1Ž .
4.14Ž . m1 1

� 1 � � .mž /k � 1 k � 1Ž .
Ž .For the next term R of 4.8 we find easily that3
3 b �1m4kŽ .

R � G Ý3 k , m , Bm N s�0

b �s�1 m 2ŽB �s.mm k k Bm Ž1. q�1Ṽ EL VÝ 2 k�2m Ž . 2 s2 B �s smk � 1 k � 1 4k � 4 BŽ . Ž . Ž .t�0 m

�13 24k � 4 B � 1Ž . m� G 1 � X .k , m , B 2 k , q2m ž /N 32m k � 1Ž .
It is not hard to derive that R is bounded by the same expression and that4

�12 24k � 4 B � 1Ž . m
R � G 1 � X5 k , m , B 2 k , q2m ž /N 32m k � 1Ž .

and
�124k � 4 B � 1Ž . m

R � G 1 � X .6 k , m , B 2 k , q2m ž /N 32m k � 1Ž .
Similar computations show that

k�1 4k
R � G Ý7 k , m , B 2m 4k � 4Ž .j�0

b �1m 1
� Ý s s4k � 4 BŽ .s�0 m

Ž .2 B �bm�1 m� 1 rj � 1
� b 1 �Ý r ž /k � 1r�1

B �b2 b m� 1 rrj � 1 B � bŽ .m� 1 r
� B �bž / m� 1 rk � 1 BŽ .m

Ž1. Ž1. q�1� EL V EL V .2 k�2�2 j 2 j
� Ž � Ž � ..B�

Denoting B � B � b , we observe that b B � B � b � 1. Takingm� 1 r r r
into account that R is positive only when m � 3, we can estimate7

m
� j � 1Ž .2 B 4 m�22 b 4r1 � P P � m 1 � P P � 1, P � .Ž . Ž .Ý k � 1r�1
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In view of these inequalities, we obtain

�1k 1
R � G 1 � X .7 k , m , B 2 k , q2 2m ž /k � 1 32m k � 1Ž . Ž .

Ž . Ž .Using 4.12 , we finally derive from 3.8 the estimate

DŽm , q . b , . . . , bŽ .2 k 1 m

m1 1
� G 1 � � mk , m , Bm ž /k � 1 k � 1Ž .

32k 4� B 4k � 4Ž .m� �2 Nk � 1Ž .4.15Ž .
�11

� 1 � 2ž /32m k � 1Ž .
�12 6

� 4k 4� 4kŽ . Ž .
Ž1. q� 1 � � EL V .2 k2ž /N N

It remains to show that for all N, k, m, and B satisfying the conditionsm
of Theorem 3.1, the inequality

Žm , q . Ž1. qD b , . . . , b � G EL VŽ .2 k 1 m k , m , B 2 km

holds. This can be done easily by simple computations. Indeed, the maximum
Ž .value of the expression in the square brackets of 4.15 is obtained when

Ž .1�6m � 2 and B � N�3� . The maximum value of the next two factorsm
Ž .from the right-hand side of 4.15 is obtained in the cases when m � 2 and

Ž .1�6B � N�3� , respectively. Then after simple computations, we see thatm
the product of these three factors is bounded by the expression

3 21 4� 4k � 4 1 4� 4kŽ . Ž .
1 � � 1 � 1 � .1�3 22�3 ž /ž /2 k � 1 NŽ . 3� N 32 k � 1Ž . Ž .

Now it is not hard to observe that this product is strictly less than 1 when the
inequality

32�34� 4k � 4 1Ž .
�2�3 3 k � 1N Ž .

holds. This inequality is valid for all k satisfying the conditions of Theorem
3.1. Theorem 3.1 is proved. �
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5. Auxiliary statements.

Ž .LEMMA 5.1. The relation 3.2 is true, so is the equality

E LŽb. x , yŽ .p

p�2N b�1 b�1
�1 Žb�s�r . Žr�1. s� N E L V x , t VL V y , tŽ . Ž .½ 5Ž . Ž .Ý Ý Ý Ý p�2�j j

t�1 s�0 r�1 j�0
5.1Ž .

� E LŽb�s�r .V x , y VLŽr�1.V s t , t .Ž . Ž .½ 5Ž . Ž .p�2�j j

Ž . Ž .PROOF. Let us assume that x � y in 3.2 . Then according to 3.1 we can
write

E H p a, b H x , yŽ . Ž .
1 � H p a, bŽ .

� E V s, x V t , y � V s, y V t , x .Ž . Ž . Ž . Ž .Ý ž /' � h s, tŽ .N s�t

Regarding the equality
p p�1 N�H a, b �H u , vŽ . Ž .

p�1�l l� H a, u H v , b , p � 1Ž . Ž .Ý Ý
� h s, t � h s, tŽ . Ž .l�0 u , v�1

Ž .and the consequence of the definition 2.2

�H u , v 1Ž . � u � s � v � t , if u � v ,Ž . Ž .
� ½' � u � t � v � s , if u � v ,� h s, t Ž . Ž .Ž . N

we obtain that

E H p a, b H x , yŽ . Ž .
p�1

�1 p�1�l l p�1�l l� N E H a, s H t , b � H a, t H s, b� 4Ž . Ž . Ž . Ž .Ý Ý
l�0 s�t

�1
� V s, x V t , y � V s, y V t , x 1 � � s � t .Ž . Ž . Ž . Ž . Ž .Ž .

Ž .This equality implies 3.2 .
Ž . Žb.To prove 5.1 , we start with the terms of L such that � � 1. Givenp b

Ž .fixed numbers � , . . . , � , let us compute the expectation1 b

E H �1V ��� VH �b�1 x , t H t , y � SŽ . Ž . Ž .
Ž .with the help of 3.1 . We obtain

� �1b r
�1 � � �1�j j � �11 r bS � N H V ��� VH V x , t VH V ��� VH y , tŽ . Ž . Ž . Ž .Ý Ý

r�1 j�0

� �1b r
�1 � � �1�j j � �11 r b� N H V ��� VH V y , t VH V ��� VH x , t .Ž . Ž . Ž . Ž .Ý Ý

r�1 j�0
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Note that if � � 1 or � � 0 for some i, 1 � i � b � 1, then the termsb i
corresponding to r � b or r � i are absent.

Thus, we have

E H �1V ��� VH �b x , yŽ . Ž .Ý
� �0, � �1i b

� � ��� �� �p1 b

p�2N b
�1 Žr . Žb�r�1.� N E L V x , t VL y , tŽ . Ž .½ Ž . Ž .Ý Ý Ý p�2�j j

t�1 r�1 j�0

� LŽr . V x , y VLŽb�r�1. t , t .Ž . Ž . 5Ž . Ž .p�2�j j

Similarly,

E H �1V ��� VH �b x , yŽ . Ž .Ý
� �0, � �1, � �0i b�1 b

� � ��� �� �p1 b

p�2N b�1
�1 Žr . 2 Žb�r�1.� N E L V x , t VL V y , tŽ . Ž .½ Ž . Ž .Ý Ý Ý p�2�j j

t�1 r�1 j�0

� LŽr . V 2 x , y VLŽb�r�1.V t , t .Ž . Ž . 5Ž . Ž .p�2�j j

Denoting by l a number such that � � 1 and � � ��� � � � 0, we arrivel l�1 b
Ž .at 5.1 . �

LEMMA 5.2. Let us consider the random variables

� �1 �1 �k� 1 �k �k �5.2 M a, b x , y � H V ��� V H V x , y ,Ž . Ž . Ž . Ž .N

Ž . Ž .where the vectors a � � , . . . , � , b � � , . . . , � have positive integer com-1 k 1 k
m � � � �ponents. Given vectors a , . . . , a , let us denote � � Ý a , where a �1 m l�1 l

Ýk � ands�1 s

�1I � E M a , b ��� M a , b , M a, b � N Tr M a, b .Ž . Ž . Ž . Ž .� 4N N 1 1 N m m N N

Then:

Ž .i If � is even, then I is strictly positive.N
Ž .ii If � is odd, then I is equal to zero.N

Ž . Ž .PROOF. i Using 3.2 , it is easy to show that I with � � 2 q is a linearN
Ž . � �combination of terms of the form 5.2 but with new a , b such thatl l

� � � 2 q � 2. The coefficients in this linear combination are of the form
qV � 0, q � 0 multiplied by 1 or 1�N. Repeating this procedure, we arrive atN

a finite number of summands that include factors
a b 2 a a bE H V H V , E H V or E H V H V .� 4 � 4 � 4N N N N N N N N N N

Ž .Easy computations based on 3.1 show that these factors are also positive
Ž .because of the positivity of V . Thus, i is proved.N

Ž .To prove ii , we use a similar procedure. Starting from I with � � 2 q � 1,N
we obtain at each step a linear combination of terms of the same form but
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with � diminished by 2. At the final stage with � 	 � 1, we obtain zero due to
Ž .2.1a .

Ž . Ž . Ž .Having proved i and ii , it is easy to obtain the relations 4.2 .
Ž . Ž2, q . Ž .Next, let us derive 4.3 . According to the definition, D b , b is a sum2 j�1 1 2

of terms of the form
Žb . Žb . Žb . Žb .1 2 1 2E L V L V or EL VEL V,½ 52 q 2 r�1 2 q 2 r�1

Ž .that are equal to zero according to ii .
In conclusion, let us note that

Žb. r�s s Žb. r˜ ˜ � �5.3 EL V � V EL V , V � V .Ž . 2 q , N N N 2 q , N N N N

One can easily prove this inequality using the previous argument.

Ž .LEMMA 5.3. Inequality 4.10 is valid for arbitrary d � �.

Ž . Ž . Ž .PROOF. Let us check 4.10 for d � 1. We denote P � j � 1 � k � 1 and
Ž .2 2 Ž . Ž .observe that the function 1 � P � P , 1� k � 1 � P � k� k � 1 takes its

maxima at the boundary points. Since k � 1, then
2 21 1 2 2 1

1 � � � 1 � � � 1 � .2ž / ž /k � 1 k � 1 k � 1 2 k � 1Ž .k � 1Ž .
Now assume that d � 2 and consider the case P � 1�2. Then

d
Ž . 2 d 2 d�22 d�t 2 t 21 � P P � 1 � P � dP 1 � P � � P .Ž . Ž . Ž . Ž .Ý

t�0

Ž . Ž .The function � P is strictly decreasing for 1� k � 1 � P � 1�2. Therefore,
2 d�2 21 d k

5.4 	 d � 1 � � .Ž . Ž .k 2 2ž /k � 1 k � 1 k � 1Ž . Ž .
Ž . Ž . Ž .Introduce the variable � � d � 1 � k � 1 . Then 5.4 together with the

Ž .elementary inequality 4.11 imply that

e�2 �

2	 d � � � 1 � k .Ž . Ž .k 2k � 1Ž .
Since the function e�2 �� , � � 0 is strictly decreasing, then

1 � k 2 1
	 d � � 1 � . �Ž .k 2 2 k � 1Ž .k � 1Ž .

LEMMA 5.4. Let nŽq . and nŽq . be determined by the relationsˆk k
k�1

Žq . Ž1. Žq�1. Žq .n � n n , n � Z � 0, k , q � � ,Ýk k�1�j j 0 q �
j�0

k�1
Žq . Ž1. Žq�1. Žq . ˆn � n n , n � Z � 0, k , q � � ,ˆ ˆ ˆ ˆÝk k�1�j j 0 q �

j�0
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Ž0. Ž0. ˆwhere m � m � 1 and Z and Z satisfyˆ0 0 q q

˜q ˆ ˜qZ � V , Z � V .q q

Suppose that there exists a positive number 
 such that

ˆ ˜q� �Z � Z � 
V .q q

Then
Ž0. Ž0. k 2 k˜5.5 n � n � 
 8 V .Ž . ˆk k

PROOF. Obviously we have that

5.6 nŽq . � nŽq . , nŽq . � nŽq . ,Ž . ˜ ˆ ˜k k k k

where
k�1

Žq . Ž1. Žq�1. Žq . q Ž0.˜n � n n , n � V , k , q � � , n � 1.˜ ˜ ˜ ˜ ˜Ýk k�1�j j 0 � 0
j�0

Žq . ˜qIt is easy to observe that n � V n , where the moments n are deter-˜k k k
mined by the recurrence relations

k�1
2˜n � V n n , n � 1.Ýk k�1�j j 0

j�0

Denoting �Žq . � nŽq . � nŽq ., we deduceˆk k k

k�1
Žq . Ž1. Žq�1. Ž1. Žq�1.� � � n � n � .ˆ ˆÝk k�1�j j k�1�j j

j�0

Žq . ˜qThen it is not hard to show that the inequalities � � 
V imply the0
Žq . k ˜ 2 k ˜qŽ .estimates � � 
 2 2V V . One can check this directly with the help ofk

Žq . ˜ k ˜q Žq . ˜ k ˜qŽ . Ž .the last equality and estimates n � 2V V and n � 2V V . Theseˆk k
Ž .are the consequences of inequalities 5.6 and

2 k˜n � 2V .Ž .k

Ž .This estimate is valid because, was as proved by Wigner 1955 , the n arek
˜Ž .the even moments of the semicircle distribution 1.4 with v � V:

n � �2 k d� � . �Ž .˜Hk V

Ž . Ž . Ž .LEMMA 5.5. Let V be given by 2.22 with u x � 0. Then 2.20 is true.

PROOF. It is easy to see that
N�

q �1 q� d � � N V x , xŽ . Ž .ÝH
0 x�1

N
�1� N u x � s u s � s ��� u s � x .Ž . Ž . Ž .Ý Ý 1 1 2 q�1

x�1 s ��i
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Then
N

�q �1 q �1V 0 � N Tr V � N u x � s u s � s ��� u s � xŽ . Ž . Ž . Ž .Ý ÝN 1 1 2 q�1
sx�1 i

� Ž .where Ý means that the sum is taken over the set of s , . . . , s , such that1 q�1
s � N for at least one variable s . It is obvious that the latter sum isi i

Ž .nonnegative and 2.20 is true. �

Ž .LEMMA 5.6. Inequality 3.13 is true.

Žq .Ž . Ž .PROOF. Let us show first that the moments m N, 
 given by 3.11k
satisfy

1�2Žq�1. Žq .˜ � 45.7 m N , 
 � 1 � 
 V m N , 
 , k , q � � � 0 .Ž . Ž . Ž . Ž .k N k

Ž . Ž . Ž .If k � 0, then 5.7 obviously follows from definition 3.11b . As for 3.11a ,
Ž . Žq .Ž .one can easily prove that if 5.7 holds for m N, 
 , q � � , then the sameT �

Žq . Ž .is true for m n, 
 , q � � .T�1 �
Ž . � 4We derive from 5.7 that for k, q � � � 0 ,

k�1
3�2Žq . Ž1. Žq .˜m N , 
 � 1 � 
 V m N, 
 m N , 
 .Ž . Ž . Ž . Ž .Ýk N k�1�j j

j�0

Žq .Ž .Let us introduce the numbers m N, 
 satisfying the relations˜ k

k�1
3�2Žq . Ž1. Žq .˜m N, 
 � 1 � 
 V m N , 
 m N , 
 ,Ž . Ž . Ž . Ž .˜ ˜ ˜Ýk N k�1�j j

j�0

q�2Žq . qm � 1 � 
 V .Ž .˜ 0 N

Then

5.8 mŽq . N , 
 � mŽq . N , 
 .Ž . Ž . Ž .˜k k

Let us introduce the functions
�

Žq . Žq . �2 k�1f̃ z � � m N , 
 zŽ . Ž .˜ÝN , 
 k
k�0

that satisfy the relations

mŽq . N , 
Ž .˜ 0Žq .˜ � 45.9 f z � , q � � � � � 0 .Ž . Ž .N , 
 �3�2 Ž1.˜ ˜�z � 1 � 
 V f zŽ . Ž .N N , 


Ž .In Lemma 5.7 we prove that the equation given by 5.9 with q � 1 is
˜ Ž̃0.Ž . Ž .uniquely solvable in F and the function f z � f z is the StieltjesN N , 


Ž .transform of a measure d� � such thatÑ , 


�
Ž0. 2 km N , 
 � � d� � .Ž . Ž .˜ ˜Hk N , 


��
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˜ Ž .It is easy to see that f z has the formN

1
f̃ z � ,Ž .N 3�2 ˜�z � 1 � 
 V g zŽ . Ž .˜N N

Ž .where the function g z � F is the unique solution of the equation˜N
3�2 ŽN .1 � 
 vŽ . 1

g z � .Ž .˜N 3�2 ˜�z � 1 � 
 V g zŽ . Ž .˜N N

It follows from the proof of Lemma 5.8 that
1�2ŽN . ˜supp d� � 
 �2 1 � 
 l , 2 1 � 
 l , l � v V .Ž . Ž . Ž .Ž .Ñ , 
 N N N 1 N

Thus,
k2Ž0. 2m N , 
 � 4 1 � 
 l .Ž . Ž .˜ k N

Ž . Ž0.Ž . � Ž .2 2 � kThis inequality combined with 5.8 proves that m N, 
 � 4 1 � 
 l .k N
Ž .We derive from 5.7 that

kq�2 q�2 2Žq . q Ž0. q 2˜ ˜m N , 
 � 1 � 
 V m N, 
 � 1 � 
 V 4 1 � 
 l .Ž . Ž . Ž . Ž . Ž .k N k N N

Ž .This gives 3.13 . �

Ž . Ž .LEMMA 5.7. The system of equations 3.20 considered for z � U 3.19 has
Ž .a unique solution. This solution satisfies the relations 3.21 . The equation

Ž .given by 3.21 for q � 1 is uniquely solvable in the class of functions F
defined in Theorem 2.2.

Ž .PROOF. Let us rewrite 3.20 in vector form. To do this, we introduce the
linear space B of vectors K with components K � �, q � � and determineq �
the norm

�̃q� � � �K � sup V K .B q
q���

Let us introduce a linear operator S such thatz

S K � �z�1K , q � � .Ž . qz q�1 �

Ž .Then 3.20 can be rewritten in terms of the vector K with components
Žq .Ž .K � f z as follows:q

5.10 K � �z�1 M � K S K,Ž . 1 z

where

Žq . ˆM � m � � d � , q � � , M � B.Ž .ˆ Hq 0 �

Ž .We are going to show that 5.10 has a unique solution in B. First let us
note that if a vector K� belongs to B, then the vector S K� also belongs to B.z

Ž .It is easy to observe that for z � U 3.19 the operator S is bounded,z

� � � � � � ��1S � sup S K � V z � 1�2.Bz z
�K �B

�� �K �1B
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Let us introduce the sequence of vectors K Žm., m � � given by the relations�

K Žm�1. � �z�1 M � K Žm.S K Žm. , K Ž0. � M.1 z

� � � Žm. �Taking into account that M � 1, it is easy to derive that K � 1 for all
z � U.

The difference

� � K Žm�1. � K Žm. , m � �m� 1 �

can be estimated by
Žm. Žm�1. Žm. Žm�1. Žm. Žm�1.� �� � K � K S K � K S K � KŽ .m� 1 1 1 z 1 z

˜ 22V
� �� � .m� �z

Now it is clear that the sequence K Žm. converges in B, when m � �, to a
Ž .vector K satisfying 5.10 . Obviously, this is the unique solution.

Ž . Ž1.Ž .Now let us prove that 3.21 for q � 1 has also a unique solution f z
that belongs to the class F. We do this with the help of the successive

Ž .approximations procedure used by Khorunzhy and Pastur 1994 . We con-
Ž1.Ž .sider the sequence of functions f z , m � � given by the relationsm �

� �� d �Ž .
Ž1. Ž1. �1f z � , f z � �z � d � .Ž . Ž . Ž .H Hm� 1 0Ž1.�z � � f zŽ .0 0m

Ž1.Ž .It is easy to see that f z � F for all m � � .m �
We denote � � f Ž1. � f Ž1. and obtainm� 1 m�1 m

�2

� z � � z d � .Ž . Ž . Ž .Hm� 1 m Ž1. Ž1.z � � f z z � � fŽ .m m�1

Hence,
�22˜ � �� z � V Im z � z .Ž . Ž .m� 1 m

Ž1.Ž .Thus, we have that for z � U the sequence f z converges when m � � tom
Ž1.Ž . Ž .a unique function f z satisfying 3.21 for q � 1.

Ž1.Ž .Since f z � F, then these functions represent the Stieltjes transformsm
Ž . Ž1.Ž .of the measures d� � that converge weakly as m � �. Therefore, f z �m m

Ž1.Ž . Ž1.Ž .f z for all fixed z � �	� and f z � F. Let us note that a similar
argument proves the existence of a unique solution in the class F of equation
Ž .5.9 for q � 1. �

Ž .LEMMA 5.8. The measure d� � has a finite support � that satisfies�

Ž .2.10 . � has the property that, if � � � , then �� � � .� � �

Ž .PROOF. Repeating the arguments of the proof of 5.7 , we derive that the
Žq . Ž .moments m of the measure d� � satisfy the inequalitiesˆ k

mŽq . � mŽq . , k , q � � ,ˆ ˜k k �
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where the mŽq . are given by the relations˜ k

k�1 �
Žq . Ž1. Žq . Žq . qm � v m m , m � � d � .Ž .˜ ˜ ˜ ˜Ý Hk m k�1�j j 0

0j�0

It is easy to see that the functions
�

Žq . Žq . �2 k�1f̃ z � � m zŽ . ˜Ý k
k�0

satisfy the system of equations

mŽq .˜ 0Žq .˜5.11 f z � ,Ž . Ž . Ž1.˜�z � v f zŽ .m

Ž .which is uniquely solvable see Lemma 5.7 . We see that if � � 0, then
Ž̃0. Ž̃1.Ž . Ž .Im f � � i0 is equal to zero if and only if Im f � � i0 � 0.

Ž .It follows from 5.11 that
2'�z 
 z � 4v v1 mŽ1.f̃ z � ,Ž .

2vm

where we choose the branch of the square root which satisfies
Ž̃1.Im f z Im z � 0, z � �	�.Ž .

Ž1.˜ Ž . � �Thus, Im f � � i0 � 0 if and only if � � 2 v v . The same statement is' 1 m
Ž0. Ž0. k˜ Ž . Ž . Ž .valid for Im f � � i0 . Using 2.18 , we obtain that m � 2 v v and'˜ k 1 m

therefore
kŽ0.m � 2 v v � k � �.'ˆ ž /k 1 m

Ž .Obviously, this implies 2.10 .
The symmetry property of � follows from the observation that the�

Ž .solution of 3.21 is odd in z

f Žq . �z � �f Žq . z , q � � .Ž . Ž . �

Ž .According to 2.18 , this equality implies that the support � is a symmetric�

set. �

Ž .LEMMA 5.9. Let V x, y be the matrix defined in Section 2. Then the
Ž . Ž . Ž .bilinear form determined by the matrix C x, y; s, t � V x, s V y, t �

Ž . Ž . Ž .V x, t V y, s on vectors � with components � x, y � �, x � y, x, y � �
� Ž . � 2such that Ý � x, y � �, is positive.x � y

� Ž .�PROOF. The covariance criterion Loeve 1978 provides the existence of a`
Ž .family of random variables � x , x � � with joint Gaussian distribution of

Ž . Ž . Ž .zero mathematical expectation and covariance matrix V x, y � E� x � y .
Ž . Ž . Ž . Ž .Using 3.1 , it is easy to show that the random variables � x, y � � x � y

Ž .� V x, y , x � y are correlated with covariance matrix C,

E � x , y � s, t � V x , s V y , t � V x , t V y , s .Ž . Ž . Ž . Ž . Ž . Ž .Ž .
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Therefore for any vector � � 0 with a finite number of nonzero components,
we have

2

C x , y ; s, t � x , y � s, t � E � x , y � x , y � 0. �Ž . Ž . Ž . Ž . Ž .Ý Ý
x�yx�y , s�t
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