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A GENERAL CLASS OF EXPONENTIAL INEQUALITIES
FOR MARTINGALES AND RATIOS1

BY VICTOR H. DE LA PENA˜
Columbia University

In this paper we introduce a technique for obtaining exponential
inequalities, with particular emphasis placed on results involving ratios.
Our main applications consist of approximations to the tail probability of

Žthe ratio of a martingale over its conditional variance or its quadratic
.variation for continuous martingales . We provide examples that strictly

extend several of the classical exponential inequalities for sums of inde-
pendent random variables and martingales. The spirit of this application
is that, when going from results for sums of independent random vari-
ables to martingales, one should replace the variance by the conditional
variance and the exponential of a function of the variance by the expecta-
tion of the exponential of the same function of the conditional variance.
The decoupling inequalities used to attain our goal are of independent
interest. They include a new exponential decoupling inequality with con-
straints and a sharp inequality for the probability of the intersection of a
fixed number of dependent sets. Finally, we also present an exponential
inequality that does not require any integrability conditions involving the
ratio of the sum of conditionally symmetric variables to its sum of squares.

Ž0. Introduction. In this paper we introduce a technique for obtaining a
.new class of exponential inequalities which as special cases contain several

of the known results for sums of independent variables and martingales. Our
approach seems to be useful in obtaining extensions of exponential inequali-
ties that are derived based on the use of Markov’s inequality and the moment

Ž . Ž .generating function, including results of Hoeffding 1963 , Freedman 1975 ,
Ž . Ž . Ž .Pinelis and Utev 1989 , Hitczenko 1990b and finally, Pinelis 1992, 1994

Ž . Ž .for discrete time martingales and McKean 1962 and Khoshnevisan 1996
for continuous time martingales. In some instances our results improve on

Ž .the known inequalities under expanded conditions . In brief, what we intro-
duce is a new technique for obtaining exponential inequalities, with special
emphasis placed on results involving ratios. We provide several new results
but did not attempt to include all possible applications of our method, as that
would have been too time-consuming. Instead, we present a technique and
several examples showing how to apply it.

The paper is divided as follows. In Section 1 we present the new exponen-
tial inequalities for discrete time martingales and show how they compare
with known results. In Section 2 we present a brief introduction to the theory
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of decoupling. In Section 3 we derive several new decoupling inequalities
including a surprising sharp decoupling inequality for the probability of the

Ž .intersection of dependent sets Corollary 3.4 . In this section we also obtain
Ž .an exponential inequality with constraints Corollary 3.1 that is the corner-

stone of the approach used in Section 4 to obtain the proofs of several of the
inequalities of Section 1. Section 5 presents exponential inequalities for
continuous time martingales and Section 6 inequalities for the ratio of a sum
of conditionally symmetric variables to its sum of squares, showing that the
applicability of our technique is not restricted to problems involving martin-

Ž .gales no integrability assumptions are made . The Appendix provides further
extensions. The paper is written in such a way that one can read Sections 1�4
independently of Sections 5 and 6.

1. New exponential inequalities. We will begin analyzing our ap-
proach with the special case of Bernstein’s and Bennett’s inequalities which

� Ž .we state next cf. Chow and Teicher 1988 , Exercise 4.3.14 and Bennett
Ž . �1962 .

� 4THEOREM 1.1. Let x be a sequence of independent random variablesi
with S � Ýn x , Ex � 0, Ex2 � �, v2 � Ýn Ex2. Furthermore, assumen i�1 i j j n j�1 j

� � k Ž . 2 k�2 Ž � � .that E x � k!�2 Ex c or P x � c � 1, for k � 2, 0 � c � �. Then,j j j
for all x � 0,

n 2x
P x � x � exp �Ý iž / 2 2½ 5'v 1 � 1 � 2cx�v � cxi�1 ž /n n

1.1Ž .
x 2

� exp � .2½ 52 v � cxŽ .n

In turn, for martingales we can derive the following inequalities.

� 4 ŽTHEOREM 1.2A. Let d , FF be a martingale difference sequence with E di i j
. Ž 2 . 2 2 n 2	 FF � 0, E d 	 FF � � , V � Ý � . Furthermore, assume thatj�1 j j�1 j n j�1 j

Ž � � k . Ž . 2 k�2 Ž � � .E d 	 FF � k!�2 � c a.e. or P d � c 	 FF � 1 for k � 2, 0 � c �j j�1 j j j�1
�. Then, for all x, y � 0,

n
2P d � x , V � y for some nÝ i nž /

i�1

x 2 x 2

� exp � � exp � .½ 5½ 5 2 y � cx' Ž .y 1 � 1 � 2cx�y � cxŽ .

1.2Ž .

In the special case of independent random variables, if we set y � V 2, wen
Žget exactly Theorem 1.1. This result which might be available in the litera-

. �Ž . �ture should be compared to Freedman’s 1975 , Theorem 1.6 .
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REMARK 1.1. In order to avoid potential problems with the definition of
conditional expectations, in this paper we will use the following notation. Let

Ž .X be a positive random variable on the probability space �, FF, P . Let A be
Ž . Ž .an FF-measurable set, then E X 	 A � H X dP�P A . Our concern is that, asA

Ž .stated by Example 8.8 of Wise and Hall 1993 , ‘‘Conditional expectations of
an integrable random variable need not be obtainable from a corresponding
conditional probability distribution.’’

Looking at the problem of extending Theorem 1.1, we considered normaliz-
ing the sums by their conditional variances and obtained the next result.

� 4 ŽTHEOREM 1.2B. Let d , FF be a martingale difference sequence with E di i j
. Ž 2 . 2 2 n 2	 FF � 0, E d 	 FF � � , V � Ý � . Furthermore, assume thatj�1 j j�1 j n j�1 j

Ž � � k . Ž . 2 k�2 Ž � � .E d 	 FF � k!�2 � c a.e. or P d � c 	 FF � 1 for k � 2, 0 � c �j j�1 j j j�1
�. Then, for all FF measurable sets A, x � 0,�

Ýn di�1 i
P � x , A2ž /Vn

2x Mn2� E exp � V � x , A ,n 2½ 5 ž /ž /' V1 � cx � 1 � 2cx n

1.3Ž .

n 2Ý d xi�1 i 21.4 P � x , A � E exp � V 1Ž . n A)2 ½ 5ž / ž /'V 1 � cx � 1 � 2cxn

and

Ýn d 1i�1 i
P � x , � y for some n2 2ž /V Vn n

1 x 2 x 2

� exp � � exp � .½ 5½ 5ž /'y 2 y 1 � cxŽ .1 � cx � 1 � 2cx

1.5Ž .

Ž .We observe that the right-hand side of 1.3 is bounded by

2 2x V Mn n
1.6 E exp � � x , A .Ž . 2½ 5 ž /2 1 � cx VŽ . n

Ž .REMARK 1.2. We remark that 1.5 points to a different minimizing value
Ž .than the one given in Theorem 3.3 of Pinelis 1994 . We checked our result

several times to verify its accuracy. The original version of the paper
2 2'Ž . Žhad quantity x�c � 1�c � 2cx � 1 �c which was obtained by using

.Mathematica in the exponent instead of the more streamlined expression
2 'Ž Ž .x � 1 � cx � 1 � 2cx . We are grateful to Gine and Pinelis for pointing us´

to the more streamlined form of the exponent.
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Ž . Ž . Ž .In the case the d � x ’s are independent 1.3 , 1.5 and 1.6 can be usedi i
Ž . 2to obtain 1.1 by replacing V by the constant v and next letting x � x��vn n n

and y � 1�v2. The fact that v is a constant produces a situation where then n
Ž .conditioning in 1.6 is no longer in effect.

2 � � 2 � Ž .If indeed one has a martingale, letting V � Ý � a finite constant�n i�1 i
Ž . Ž .in the proof of 1.3 and 1.6 , a change of variables gives

n 2�x
P d � x � expÝ i 2 2ž / ½ 5'V � cx � V V � 2cxi�1 n n n

1.7Ž .
�x2

� exp ,2½ 52 V � cxŽ .n

Ž .from 1.3 . By following the proofs given in Section 4, it is easy to see that all
the inequalities presented in this section are valid when taking V 2 �n
� n 2 � Ž .Ý � . A change of variables as done in 1.7 shows that this replacement�i�1 i
gives us the typical martingale results. This observation validates our claim
that our approach provides extensions of the typical exponential inequalities
for martingales.

Related results are given next, where we divide by � � � V 2 instead of byn
2 Ž . Ž .V only. It will be apparent later that it is easy to extend 1.3 � 1.5 ton

include linear combinations.

� 4 ŽTHEOREM 1.3. Let d , FF be a supermartingale difference sequence i.e.,i i
Ž . . Ž 2 . 2 2 n 2 2 � n 2 �E d 	 FF � 0 with E d 	 FF � � , V � Ý � or V � Ý � .�j j�1 j j�1 j n j�1 j n i�1 i

Furthermore, assume that d � 1. Then, for all FF measurable sets A and allj �

� � 0, � , x � 0,

Ýn di�1 i
P � x , A2ž /� � � Vn

2V� x n� x�11 1 Mn� 4� E exp � x � x , A2ž / ž / ž /ž /� x � 1 � x � 1 � � � Vn

1.8Ž .

Ýn di�1 i
P � x , A2ž /� � � Vn

� x 2 2 21 � x V Mn n� E exp � � x , A2½ 5ž / ž /� x � 1 2 1 � � x � � � VŽ . n

1.9Ž .

and

� xn 2 2Ý d 1 � x Vi�1 i n
1.10 P � x , A � E exp � 1Ž . ) A2 ½ 5ž /ž / � x � 1 2 1 � � x� � � V Ž .n
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and finally,

Ýn d 1i�1 i
P � x , � y for some n2 2ž /� � � V Vn n

1�y� x � x�11 1
� 4� exp � xž / ž /� x � 1 � x � 1

1.11Ž .

� x 2 21 � x
� exp � .½ 5ž /� x � 1 y 1 � � xŽ .

� 4THEOREM 1.4A. Let d , FF be a supermartingale difference sequence withi i
Ž . � � Ž 2 . 2 2 n 2E d 	 FF � 0, d � c, for 0 � c � �, E d 	 FF � � and V � Ý �j j�1 j j j�1 j n i�1 i

2 � n 2 �or V � Ý � . Then, for all x, y � 0,�n i�1 i

n
2P d � x , V � y for some nÝ i nž /

i�1
1.12Ž .

x x y cx
� exp � � � ln 1 � .2ž /½ 5ž /c c yc

In the case of normalized sums we get the following theorem.

� 4 ŽTHEOREM 1.4B. Let d , FF be a supermartingale sequence with E d 	i i j
. � � Ž 2 . 2 2 n 2FF � 0, d � c, for 0 � c � �, E d 	 FF � � and V � Ý � orj�1 j j j�1 j n i�1 i

2 � n 2 �V � Ý � . Then, for all FF -measurable sets A, � � 0 and � , x � 0,�n i�1 i �

Ýn di�1 i
P � x , A2ž /� � � Vn

� x
� exp � ln 1 � c� nŽ .½ 5c

� x � x 1
2� E exp � � � ln 1 � �cx VŽ . n2½ 5ž /ž /c c c

1.13Ž .

n
2d � � � � V x , A .Ž .Ý i nž /

i�1

Finally,

Ýn d 1i�1 i
P � x , � y for some n2 2ž /� � � V Vn n

� x
� exp � ln 1 � c� xŽ .½ 5c

1.14Ž .

� x � x 1 1
� exp � � � ln 1 � �cx .Ž .2½ 5ž /ž /c c yc
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Ž .This result extends the one given in Freedman 1975 .
Ž . Ž .Next, we extend a result of Hitczenko 1990b and Levental 1989 which is

a martingale version of Prokhorov’s inequality for sum of independent ran-
dom variables.

� 4 ŽTHEOREM 1.5A. Let d , FF be a martingale difference sequence with E di i j
. � � Ž 2 . 2 2 n 2	 FF � 0, d � c, for 0 � c � �, E d 	 FF � � and V � Ý � orj�1 j j j�1 j n i�1 i

2 � n 2 �V � Ý � . Then, for all x, y � 0,�n i�1 i

n x cx
21.15 P d � x , V � y for some n � exp � arc sinh .Ž . Ý i n ½ 5ž /ž / 2c 2 yi�1

For normalized sums, we have the following theorem.

� 4 ŽTHEOREM 1.5B. Let d , FF be a martingale difference sequence with E di i j
. � � Ž 2 . 2 2 n 2	 FF � 0, d � c, for 0 � c � �, E d 	 FF � � and V � Ý � orj�1 j j j�1 j n i�1 i

2 � n 2 �V � Ý � . Then, for all FF -measurable sets A, and all � � 0 and�n i�1 i �

� , x � 0,

Ýn di�1 i
P � x , A2ž /� � � VŽ .n

� x �cx
� exp � arc sinh½ 5ž /c 2

1.16Ž .

� x �cx
2 2� E exp � arc sinh V M � � � � V x , A ,Ž .Ž .n n n½ 5ž /ž /2c 2

Ýn di�1 i
P � x , A2ž /� � � VŽ .n

1.17Ž .
� x �cx � x �cx

2� exp � arc sinh E exp � arc sinh V 1n A( ½ 5 ½ 5ž / ž /ž /c 2 2c 2

and finally,

Ýn d 1i�1 i
P � x , � y for some n2 2ž /� � � V Vn n

1.18Ž .
� x �cx � x �cx

� exp � arc sinh exp � arc sinh .½ 5 ½ 5ž / ž /c 2 2cy 2

Again, specializing the above, we obtain the known results for martingales
and sums of independent random variables. Before we can embark on proving
the above exponential inequalities, we need to review several concepts and
extend results of the theory of decoupling inequalities.
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2. General theory of decoupling.

� 4 � 4DEFINITION 2.1. Let d be a sequence of random variables adapted to FFi i
Ž . � 4 � 4increasing with FF the trivial �-field. An FF -adapted sequence e is0 i i
� 4 � 4FF -tangent to d if for all i,i i

2.1 LL d 	 FF � LL e 	 FF .Ž . Ž . Ž .i i�1 i i�1

� 4DEFINITION 2.2. A sequence e of random variables adapted to an in-i
� 4creasing sequence of �-fields FF contained in FF is said to satisfy condition CIi

� 4if there exists a �-algebra GG contained in FF such that e is a sequence ofi
conditionally independent random variables given GG and

LL d 	 FF � LL e 	 FF � LL e 	 GGŽ . Ž . Ž .i i�1 i i�1 i

� 4for all i. The sequence e is said to be DECOUPLED.i

� 4 � 4REMARK 2.1. Concerning sequences of random sets D and E , thei i
above terms apply whenever their indicator variables satisfy the stated
conditions.

� 4A key result in the theory of decoupling states that, for any sequence di
� 4of variables adapted to an increasing sequence of �-fields FF , one can alwaysi

� 4 � 4find a sequence e which is tangent to d and satisfies the CI condition.i i
Ž� 4. � ŽFrequently, one can take GG � � d cf. Kwapien and Woyczynski 1989,´ ´i

.�1992 . The general framework that we will follow consists of applying this
result conditionally on GG and use known inequalities for sums of independent
random variables.

Ž .Let LL Y 	 HH denote the regular version of the conditional distribution of X
Ž .given a �-field HH. One approach for constructing a decoupled CI sequence to

� Ž .any adapted process is to proceed sequentially see de la Pena 1994 and˜
Ž .� Ž .Pinelis 1995 . Let GG � � � FF . At the jth stage in the process producingj

� 4the sequence d , e is drawn as a conditionally independent copy of d , giveni j j
Ž .FF . Therefore, we obtain e from LL d 	 FF and e is FF -conditionallyj�1 j j j�1 j j�1

independent of e , . . . , e , GG. The following diagram taken from de la Pena˜1 j�1
Ž .1994 illustrates the idea:

d �d �d �d � ��� �d �d1 2 3 4 j�1 j
� � � � �

e e e e ��� e e .1 2 3 4 j�1 j

Therefore, as long as the regular versions of the conditional distributions
� Ž .� Ž . Ž . Ž .exist see Shiryayev 1984 , then LL d 	 FF � LL e 	 FF � LL e 	 GG , andi i�1 i i�1 i

� 4it also follows that the constructed variables e are conditionally indepen-i
� 4 � �4 � 4 �dent given GG. In fact, the sequence e is FF -tangent to d with FF �i i i i

Ž . � 4� FF ; e , . . . , e and moreover e satisfies the CI condition with respect toi 1 i i
� �4 � �
FF and GG, which is contained in FF . Therefore, renaming FF as FF , we havei � i i

� 4 � 4 � 4that e is a decoupled FF -tangent sequence to d .i i i
Ž .The following lemma, which we take from Hitczenko 1990a , provides a

condensed version of the above cited result of Kwapien and Woyczynski.´ ´
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� 4LEMMA 2.1. Let d be any adapted sequence of random variables oni
Ž .�, FF, P and let BB be the �-algebra generated by the first n coordinates inn

N ˜ ˜ ˜ ˜Ž . Ž . � 4R , BB � � � BB . A new probability space �, FF, P and the sequence FFn n
combining the ones already introduced is defined as follows:

˜ N ˜ ˜2.3 � � � � R , FF � FF 
 BB, FF � FF 
 BB ,Ž . n n n

�

˜2.4 P A � B � LL d 	 FF 	 B dP 	 , A � FF , B � BB.Ž . Ž . Ž . Ž . Ž . Ž .
H n n�1ž /A n�1

Ž � 4. Ž . Ž � 4. � 4Letting d 	, t � d 	 and e 	, t � t , then the sequences d andn k n n k n n
˜ N� 4 � 4 � 4 � 4e are FF -tangent with e satisfying the CI condition for GG � FF 
 �, R .n n n

Next, we present an example that helps illuminate the concepts presented
above.

� 4EXAMPLE 2.1. Let X be a sequence of independent mean zero randomi
˜Ž� 4. � 4variables. Let T be a stopping time adapted to � X . Let X be ani i

� 4 Ž� 4.independent copy of X and hence independent of T as well. Let FF � � X .i n i
n Ž . n n Ž j�1 .Set M � M � Ý X 1 T � i � Ý d and U � Ý Ý X X �n T � n i�1 i j�1 j n j�2 i�1 i j

n � � 4 � 4Ý d . Both M , FF , n � 1 and U , FF , n � 2 are mean zero martingalesj�2 j n n n n
Ž .with highly dependent martingale difference sequences d � X 1 T � j , j � 1j j

� j�1 � ˜ ˜Ž .and d � Ý X X , j � 2. Let FF � � X , . . . , X ; X , . . . , X . Then, thej i�1 i j i 1 i 1 i
˜ � j�1 ˜ �� Ž . 4 � 4 � 4sequences e � X 1 T � j , j � 1 and e � Ý X X , j � 2 are FF -tan-j j j i�1 i j i

� 4 � � 4 � 4 � � 4gent to d and d , respectively. Moreover, both e and e are decoupledi i i i
versions of the original sequences which satisfy the CI condition with respect

Ž� 4.to GG � � X .i
The advantage of dealing with the decoupled sequences is made quite

evident if we assume that the X ’s are standard normal random variables. In
˜ n T � n ˜ ˜Ž .this case, M � Ý e � Ý X has the same distribution as T � n Xn j�1 j j�1 j 1

˜ n � n j�1 ˜Ž .and U � Ý e � Ý Ý X X has the same distribution asn j�2 j j�2 i�1 i j
2n j�1 ˜Ý Ý X X , where we recall that the variables were chosen so that' Ž .j�2 i�1 i 1

˜Ž � 4. � 4the pair T, X is independent of X . In the next section we providei i
inequalities comparing the moment generating functions of M and U ton n

˜ ˜those of M and U and, more generally, inequalities relating the momentn n
generating functions of the sums of two tangent sequences when one of them
is decoupled.

3. New decoupling inequalities. We will begin by proving the follow-
Ž .ing constrained decoupling inequality which extends a result in de la Pena˜

Ž . � Ž .�1994 see also de la Pena 1995 .˜

� 4THEOREM 3.1. Let d be a sequence of nonnegative, nondegenerate ran-i
dom variables. Then there exists a �-field GG and a GG-conditionally indepen-
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� 4 � 4dent sequence e , tangent to d , such that for all random variables g � 0i i
measurable with respect to GG,

1�2 1�2n n

3.1 E g d � Eg e .Ž . Ł Łi iž / ž /i�1 i�1

� Ž� 4.�Recall that GG may be taken to equal � d .i
ŽThe proof of the above result is based on the following lemma, which in

.the case K � 1 basically consists of a variation of Jensen’s inequality allow-
ing for a change of measure.

LEMMA 3.1. Let X, Y be two random variables with X � 0, Y � 0, X�Y � 0
Ž .a.e. and E X�Y � K for some constant K. Then,

' '3.2 E X � KEY .Ž .

' ' ' '' 'PROOF. E X � E X�Y � Y � E X�Y � EY � KEY , by Holder’sŽ . ¨
inequality.

PROOF OF THEOREM 3.1. The proof is very similar to the main result of de
Ž . � 4la Pena 1994 . From Section 2, it follows that for any sequence d one can˜ i

� 4 � 4find a tangent sequence e where e is conditionally independent given ai i
master �-field GG.

Let FF be the trivial �-field and for i � 1, let FF be the �-field generated0 i
� 4by d , . . . , d ; e , . . . , e . In order to see that1 i 1 i

Łn di�1 i
3.3 E � 1,Ž . nŁ E d 	 FFŽ .i�1 i i�1

one uses an induction argument along with the properties of conditional
Ž .expectation. More formally, if we assume 3.3 is valid for n � 1, then

n n�1Ł d Ł d E d 	 FFŽ .i�1 i i�1 i n n�1
E � E �n n�1Ł E d 	 FF E d 	 FFŁ E d 	 FFŽ . Ž .Ž .i�1 i i�1 n n�1i�1 i i�1

Łn�1 di�1 i� E � 1.n�1Ł E d 	 FFŽ .i�1 i i�1

� 4 � 4Also, since e is tangent to d and conditionally independent given GG,i i

n n n n

3.4 E d 	 FF � E e 	 FF � E e 	 GG � E e 	 GG .Ž . Ž . Ž . Ž .Ł Ł Ł Łi i�1 i i�1 i iž /i�1 i�1 i�1 i�1

Note that without loss of generality we may assume that g � 0 a.e. Next,
n n Ž .we replace X by gŁ d and Y by gŁ E d 	 FF in Lemma 3.1 to geti�1 i i�1 i i�1

n n nE gŁ d � 1 � E gE Ł e 	 GG � EgŁ e ,'' 'Ž .i�1 i i�1 i i�1 i

since g is GG-measurasble. This completes the proof. �
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Ž .The following example due to Hitczenko and found in de la Pena 1994˜
shows that the above result is sharp, at least in the case n � 2.

Ž . Ž .EXAMPLE 3.1. Let d 	 � 1 w , the indicator variable of the set A. Set1 A
d � d , g � 1. Then we can take as e an independent copy of d . Due to2 1 1 1

tangency, e must equal d . Then, Ed � E d d � Ee e � Ee Ee �' ' '2 1 1 1 2 1 2 1 2
Ed .1

� � 4 � � 4Taking d � exp td and e � exp te for some finite t, we get the follow-i i i i
ing corollary to Theorem 3.1. This corollary has the form we will need to
provide proofs for the exponential inequalities for martingales stated in
Section 1.

� 4 � 4 � 4 � 4COROLLARY 3.1. Let d , e be FF -tangent. Assume that e is decoupledi i i i
Ž . Ž� 4� .CI . Let g � 0 be any random variable measurable with respect to � d .i i�1
Then for all finite t,

n n
23.5 Eg exp t d � Eg exp 2 t e .Ž . Ý Ýi i(½ 5 ½ 5

i�1 i�1

� � �4Applying this result twice, for t and �t and using the inequality exp x �
� 4 � 4exp x � exp �x , one gets the following corollary.

COROLLARY 3.2. Under the assumptions of Corollary 3.1, for all 0 � t � �,

n n
2Eg exp t d � 2 Eg exp 2 t e .Ý Ýi i(½ 5 ½ 5

i�1 i�1

Corollary 3.1 can also be extended to deal with hyperbolic functions.

� 4 � 4 � 4 � 4COROLLARY 3.3. Let d , e be FF -tangent. Assume that e is decoupledi i i i
Ž . Ž� 4� .CI . Let g � 0 be any random variable measurable with respect to � d .i i�1
Then for all finite t,

n n
23.6 Eg cosh t d � Eg cosh 2 t e .Ž . Ý Ýi i(ž / ž /

i�1 i�1

Ž . Ž � 4 � 4.To see this, recall that cosh x � exp x � exp �x �2 and apply Corol-
' 'Ž . 'lary 3.1 twice and use the fact that for a, b � 0, a � b �2 � a � b �2 .Ž .

� 4 � 4 � 4 Ž .COROLLARY 3.4. Let D , E be FF -tangent sets see Remark 2.1 . As-i i i
� 4 Ž .sume that E is decoupled CI . Then, for any set G, measurable withi
Ž� 4� .respect to � D ,i i�1

n n n

3.7 P D � P E D ,Ž . � � �i i iž / ž /
i�1 i�1 i�1
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and more generally,

n n n

3.8 P D 
 G � P E 
 G D 
 G .Ž . � � �i i iž / ž /
i�1 i�1 i�1

The following example shows that Corollary 3.4 is sharp for every n.

� 4 � 4EXAMPLE 3.2. Let D be a sequence of independent sets. Let E be ani i
� 4 � 4independent copy of D . Then, the above sequences are FF -tangent withi i

Ž� 4 � 4 .respect to FF � � D , E , i � 1, . . . , n . Observe that in this case,n i i

n n n n

3.9 P D � P E � P E D ,Ž . � � � �i i i iž / ž / ž /
i�1 i�1 i�1 i�1

since the two sequences are independent. Compare this with Example 3.1.

4. Proofs of results of Section 1. Armed with the results from the last
section, we proceed to extend Bernstein’s and Bennett’s inequalities to mar-

Ž .tingales. The proof of 1.1 is based on the following inequality for sums of
independent random variables.

LEMMA 4.1. Under the assumptions of Theorem 1.1, for all x � 0 and
0 � r � 1�c,

n 2 2v rn
4.1 E exp r x � exp .Ž . Ý i½ 5 ½ 52 1 � crŽ .i�1

PROOF. The conditions imposed along with an expansion of the exponen-
tial gives

xÝn x x 2
i�1 i

E exp � exp ,2 2½ 5 ½ 5v � cx 2 v � cxŽ .n n

� Ž .�which is valid for all x � 0 cf. Chow and Teicher 1988 . More precisely,
� 4 � kŽ � � k .observe that exp rx � 1 � rx � Ý r x �k! for r � 0 implies thatj j k�2 j

� 4 � 2 2 Ž .4 Ž 2 .E exp rx � exp � r �2 1 � cr for 0 � cr � 1. Letting r � x� v � cx , wej j n
� n 4 �Ž . 4 � 2 2 Ž Ž ..4 Ž .have E exp rÝ x � exp xr �2 � exp r v � 2 1 � cr , which is 4.1i�1 i n

upon replacing r by its assigned value.
n � 4In what follows, we will use the notation M � Ý d and GG � � d .n i�1 i i

� 4PROOF OF THEOREM 1.2A. Let 
 � inf n: M � x where inf � � � if thisn
Ž 2 .does not happen. Taking A to be the set M � x and V � y for some n onn n

2 Ž .A, we have that 
 � �, M � x and V � y. Moreover, observe that 1 A �
 


Ž . Ž . Ž . Ž . Ž .1 A 1 
 � � 1 M � x implies P A � P M � x, A . Applying Markov’s in-
 


Ž .equality first, followed by Fatou’s lemma valid since 
 � � on A and a use of
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� Ž . 4 Ž .Corollary 3.1 with g � exp � ��2 x 1 M � x, A we get
 � n




P A � P d � x , AŽ . Ý iž /
i�1


�
� inf E exp d � x 1 M � x , AŽ .Ý i 
½ 5ž /2��0 i�1


�n�
� inf E lim inf exp d � x 1 M � x , AŽ .Ý i 
½ 5ž /2n��0 i�1


�n�
� inf lim inf E exp d � x 1 M � x , AŽ .Ý i 
½ 5ž /2n����0 i�1


�n

� inf lim inf E exp � e � x 1 M � x , AŽ .Ý i 
) ½ 5ž /n����0 i�1


�n

� 4� inf lim inf E 1 M � x , A exp �� x E exp � e GG ,Ž . Ý
 i) ½ 5ž /n����0 i�1

where the last equality follows since the variables outside the conditional
� 4 � 4expectation are GG measurable. Observe that since d and e are tangenti i

� 4and e is conditionally independent given GG, the moment assumptions oni
the distribution of d transfer to conditions on the e ’s and therefore we cani i
apply Lemma 4.1 to obtain


�n
24.2 E exp � e GG � exp h � V ,Ž . Ž .� 4Ý i 
 � n½ 5

i�1

Ž . 2 Ž Ž ..where h � � � � 2 1 � �c Replacing this in the above bound, one obtains



2P d � x , A � inf lim inf E exp � � x � h � V 1 M � x , A .' Ž . Ž .� 4Ž .Ý i 
 � n 
ž / n����0i�1

Since the variable inside the expectation is dominated by

exp � � x � h � V 2 1 M � x , A ,Ž . Ž .� 4Ž .
 


and V � y on A, using the dominated convergence theorem, we get




2P d � x , A � inf E exp � � x � h � V 1 M � x , A .' Ž . Ž .� 4Ž .Ý i 
 
ž / ��0i�1

Dividing both sides by P M � x , A gives' Ž .




2P d � x , A � inf E exp � � x � h � V 	 M � x , A .Ž . Ž .� 4Ž .Ý i 
 
ž / ��0i�1
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Then, since 
 � �, M � x and V 2 � y on A, we have
 


n
2P d � x , V � y for some n � inf exp � � x � h � y .� 4Ž .Ž .Ý i nž / ��0i�1

The proof is finished by using calculus to obtain the value minimizing the
above expression.

PROOF OF THEOREM 1.2B. Applying Markov’s inequality first, followed by
� Ž . 2 4 Ž 2 .a use of Corollary 3.1 with g � exp � ��2 V x 1 M �V � x, A , we obtainn n n

n
2P d � V x , AÝ i nž /

i�1

n�
2 2� inf E exp d � V x 1 M � V x , AŽ .Ý i n n n½ 5ž /2��0 i�1

n
2 2� inf E exp � e � V x 1 M � V x , AŽ .Ý i n n n( ½ 5ž /��0 i�1

n
2 2� inf E 1 M � V x , A exp ��V x E exp � e GG ,� 4Ž . Ýn n n i) ½ 5ž /��0 i�1

where the last equality follows since the variables outside the conditional
� 4 � 4expectation are GG measurable. Observe that since d and e are tangenti i

� 4and e is conditionally independent given GG, the moment assumptions oni
the distribution of d transfer to conditions on the e ’s and therefore we cani i
apply Lemma 4.1 to show that

2n �
24.3 E exp � e GG � exp V .Ž . Ý i n½ 5 ½ 5ž / 2 1 � �cŽ .i�1

Replacing this in the above bound one obtains,

n
2P d � V x , AÝ i nž /

i�1

2�
2 2� inf E exp � � x � V 1 M � V x , AŽ .n n n) ½ 5ž /2 1 � �c��0 Ž .

'x 1 1 � 2cx
2 2� E exp � � � V 1 M � V x , AŽ .n n n) 2 2½ 5ž /c c c

2x
2 2� E exp � V 1 M � V x , A .Ž .n n n) ½ 5ž /'1 � cx � 1 � 2cx
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2 Ž . Ž .Dividing both sides by P M � V x , A gives 1.3 , while 1.5 is obtained' Ž .n n
Ž .by adapting the stopping time argument of Freedman 1975 , already used in

� 2 4the previous theorem, by letting A � M �V � x, 1�V � y for some n .n n n
This is possible since Corollary 3.1 also works once we replace n by 
 � n,
where

Ýn di�1 i
4.4 
 � inf n � 1: � x ,Ž . 2½ 5Vn

with inf � � �. To complete the proof, we use the bounded convergence
Ž 2 Ž Žtheorem considering the fact that we can choose � so that � � x � � � 2 1 �

...�c � 0.

Ž .PROOF OF THEOREM 1.3. Observe first that with 3.5 from Freedman
Ž .1975 , it follows that for variables satisfying x � 1, Ex � 0 and all � � 0,i i

� 44.5 E exp � x � 1 � h � Var x � exp h � Var x ,� 4Ž . Ž . Ž . Ž . Ž .i i i

Ž . � � 4 4 � 4where h � � exp � � 1 � � . From this, it follows that, if x is a sequencei
of independent random variables under the above conditions, then

n n

4.6 E exp � x � exp h � Var x .Ž . Ž . Ž .Ý Ýi i½ 5 ½ 5
i�1 i�1

Using this fact after applying Markov’s inequality and Corollary 3.1 with

� Mn2g � exp � V x 1 � x , A ,n 2½ 5 ž /2 � � � VŽ .n

we get
n

2P d � � � � V x , AŽ .Ý i nž /
i�1

n� �
2 2� inf exp � � x E exp d � V � x 1 M � ��� V x , AŽ .Ž .Ý i n n n½ 5 ½ 5ž /2 2��0 i�1

n
2� 4� inf exp ��� x E exp � e � V � xÝ i n½ 5ž /��0 i�1

1�2

2�1 M � � � � V x , AŽ .Ž .n n

2� 4� inf exp ��� x E 1 M � � � � V x , AŽ .Ž .n n½��0

1�2n
2�exp ��V � x E exp � e GG� 4 Ýn i½ 5 5ž /

i�1
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2� 4� inf exp ��� x E1 M � p � � � V x , AŽ .Ž .n n
��0

1�22 2�exp ��V � x exp h � VŽ .� 4 � 4n n

2� 4� inf exp ��� x E1 M � � � � V x , AŽ .Ž .n n
��0

1�22�exp � �� x � h � V .Ž .� 4Ž . n

Ž .The minimum inside the expectation is attained at � � log � x � 1 . The
remainder of the proof follows as in the previous proofs.

The proof of Theorem 1.4A is very similar to that of Theorem 1.2A and will
not be given here. However, we include next the proof of its parallel result.

� 4PROOF OF THEOREM 1.4B. Let x be a sequence of independent randomi
n Ž . 2 � �variables with S � Ý x and Var S � v , Ex � 0 and x � c for all i;n i�1 i n n i i

� Ž . �then it is easy to see that as shown in Pinelis 1994 , Theorem 3.4

n � 4exp �c � 1 � �c
24.7 Z � exp � x � vŽ . Ýn i n2½ 5ci�1

is a supermartingale and hence
n � 4exp �c � 1 � �c

24.8 E exp � x � exp v .Ž . Ý i n2½ 5½ 5 ci�1

To see this observe that

exp �Ýn x� 4i�1 i
4.9 Z �Ž . n nŁ 1 � E exp � x � 1 � � x� 4Ž .i�1 j j

Ž . Ž � 4 . 2is a supermartingale and consider the function f r � exp r � 1 � r �r ,
Ž . Ž .where r � 0 and g 0 is taken to be 1�2. Then, since f r is increasing in r,

� �and we are assuming that x � c, one has thati

� 4exp �c � 1 � �c
2� 44.10 E exp � x � 1 � � x � Ex .Ž . Ž .i i i2c

Ž . Ž . � 4To complete the proof of 4.7 and hence 4.8 , use the fact that 1 � r � exp r .
Using Markov’s inequality and Corollary 3.1, we obtain

n
2P d � � � � V x , AŽ .Ý i nž /

i�1

n� �
2� P exp d � exp � � � V x , AŽ .Ý i n½ 5½ 5ž /2 2i�1

n nexp ��2 Ý d� 4Ž . i�1 i 2� inf E 1 d � � � � V x , AŽ .Ý i n2 ž /��0 exp ��2 � � � V xŽ .� 4Ž .n i�1
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n
2� inf E exp � e exp � � � � � V x� 4Ž .Ž .Ý i n½ 5��0 i�1

1�2n
2�1 d � � � � V x , AŽ .Ý i nž /

i�1

� 4exp �c � 1 � �c
2 2� inf E exp V exp � � � � � V x� 4Ž .Ž .n n2½ 5c��0

1�2n
2�1 d � � � � V x , AŽ .Ý i nž /

i�1

� 4exp �c � 1 � �c
2� 4� inf exp ��� x E exp � �� x Vn2½ 5ž /c��0

1�2n
2�1 d � � � � V x , A .Ž .Ý i nž /

i�1

Ž .The line previous to last follows using 4.8 conditionally on GG. Observe
also that the � that minimizes the function inside the expectation is � �o
Ž . Ž .1�c ln 1 � �cx . Substituting we obtain the bound,

� x
exp � ln 1 � c� xŽ .½ 5c

� x � x 1
2�E exp � � � ln 1 � �cx VŽ . n2½ 5ž /ž /c c c

1�2n
2�1 d � � � � V x , A .Ž .Ý i nž /

i�1

The proof is complete by dividing by

n
2P d � � � � V x , A . �Ž .Ý i n( ž /

i�1

In order to avoid unnecessary repetitions, the proof of Theorem 1.5A is
omitted. We instead include the proof of its parallel result.

PROOF OF THEOREM 1.5B. We start with some preliminary facts. It is easy
� 4to see that for independent mean zero random variables x with S �i n

n Ž . 2 � �Ý x , and Var S � v and x � c for all i, theni�1 i n n i

n �
24.11 Z � exp � x � sinh �cvŽ . Ýn i n½ 5ci�1
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is a supermartingale which gives that
n �

24.12 E exp � x � exp sinh �cv .Ž . Ý i n½ 5½ 5 ci�1

� Ž .�See the proof of Proposition 3.1 in Hitczenko 1990b . This fact will be used
later. Uisng Markov’s inequality and Corollary 3.1, we obtain

n
2P d � � � � V x , AŽ .Ý i nž /

i�1

n� �
2 2� inf exp � x E exp d � V � x 1 M � � � � V xŽ .Ž .Ý i n n n½ 5 ½ 5ž /2 2��0 i�1

n
2 2� 4� inf exp ��� x E exp � e � V � x 1 M � � � � V x , A .Ž .Ž .Ý i n n n( ½ 5ž /��0 i�1

Ž .Working conditionally on GG and using 4.12 , we get that the above is
bounded by

� 4inf exp ��� x½��0

1�2
�

2 2�E E exp sinh �c � �� x V 1 M � � � � V x , A GG .Ž .Ž .n n n½ 5ž / 5ž /c

Ž . Ž . Ž .Taking � � 1�c arc sinh c� x�2 , we get � x�2 � sinh � c �c gives theo o
bound

� x c� x
exp � arc sinh½ 5½ c 2

1�2
� x �cx

2 2�E E exp � arc sinh V 1 M � � � � V x , A GG .Ž .Ž .n n n½ 5ž / 5ž /ž /2c 2

The proof is complete by removing the conditional expectation and dividing
by

2P M � � � � V x , A . �' Ž .Ž .n n

REMARK 4.1. As might have been surmised by the reader, we could have
avoided the use of decoupling when obtaining the proofs of the results by
invoking instead appropriate exponential inequalities. However, one of the
strengths of our approach is that by using decoupling, we are ready to
improve on our inequalities in cases where new bounds on the moment
generating function for sums of independent random variables are available,
hence saving us the task of proving those results for martingales. Moreover,
decoupling is the guiding force behind the intuitive drive that lead us to the
results included in this work.
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In the next two sections we present results for which we do not have a
decoupling argument. They include inequalities for continuous time martin-
gales and for sums of conditionally symmetric variables.

5. Continuous time martingales. We were partly inspired to work on
this problem by the following result that we learned from Khoshnevisan
Ž . Ž . Ž .1996 , which he attributes essentially to McKean 1962 .

� 4THEOREM 5.1. Let M , FF , t � 0 be a continuous martingale with M � 0,t t 0
including the terminal point at infinity. Assume further that E exp�M� � � for
all � � R1. Then, for all � , �, x � 0,

² : 25.1 P M � � � � M x � exp �2�� x .� 4Ž . Ž .Ž .��

Ž .Khoshnevisan 1996 shows that this result is asymptotically optimal. In
this paper we provide an extension to the case where � might be zero. As a

² :result of our extension, we arrive at conditions on M under which one cant

improve upon Theorem 5.1.
More precisely, we can prove the following theorem.

� 4THEOREM 5.2. Let M , FF , t � 0 , M � 0 be a continuous martingale fort t 0
� Ž 2² : 4which exp �M � � M �2 is a supermartingale for all � � 0. Let A be att

set measurable with respect to FF . Then, for all 0 � t � �, � � 0, � , x � 0,�

² :P M � � � � M x , AŽ .Ž .tt

2�
2 ² : ² :� E exp �x M � �� M � � � � M x , A ,Ž .Ž .t tt½ 52

5.2Ž .

1
² :P M � � � � M x , � y for some t � �Ž .ttž /² :M t

� 2
2� exp �x � �� .½ 5ž /2 y

5.3Ž .

It is easy to see that for finite t, this result improves on Theorem 5.1 in
² :several situations, the more trivial one being when M � 2���, since thent
Ž .we get an improved bound by letting y � ��2� in 5.3 .

PROOF OF THEOREM 5.2. Using Markov’s inequality we obtain that for all
� � 0,

² :P M � � � � M x , AŽ .Ž .tt

� �� x �� x Mt² :� E exp M � � M 1 � x , A .tt½ 5ž / ž /² :2 2 2 � � � MŽ .t

5.4Ž .
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This in turn equals
2 2�� x � � � �� x
² : ² : ² :exp � E exp M � M � M � Mt t tt½ 5 ½ 52 2 4 4 2

Mt
�1 � x , Až /² :� � � MŽ .t

2�� x �
² :� exp � E exp �M � M t( t½ 5 ½ 52 25.5Ž .

2� Mt² :� E exp � �� x M 1 � x , At) ½ 5ž / ž /² :2 � � � MŽ .t

2�� x � Mt² :� exp � E exp � �� x M 1 � x , A .t)½ 5 ½ 5ž / ž /² :2 2 � � � MŽ .t

Taking � � � x minimizes the expression inside the square root sign and we
get

² :P M � � � � M x , AŽ .Ž .tt

2 2 2�� x � x Mt² :� exp � E exp � M 1 � x , A .t(½ 5 ½ 5 ž /² :2 2 � � � MŽ .t

² :Dividing over P M � � � � M x , A , we obtain' Ž .Ž .tt

² :P M � � � � M x , AŽ .Ž .tt

2 2� x Mt2 ² :� exp ��� x E exp � M � x , A .� 4 t½ 5 ž /² :2 � � � MŽ .t

5.6Ž .

Ž .Concerning 5.3 we use a similar argument to the ones used in the
� Ž ² : . 4previous section. Namely, let 
 � int t � 0: M � � � � M � x , withtt

� Ž ² : . ² : 4inf � � �, and A � M � � � � M � x, 1� M � y for some t and ob-tt t
serve that Fatou’s lemma gives that since 
 � � on A, and we have a
supermartingale,

�2

² :5.7 E exp �M � M 1 A � 1.Ž . Ž .

½ 52
Ž . Ž . Ž .Replacing t for 
 in 5.4 , using the expectation of 5.7 in equation 5.5

instead of the expectation given there and following the steps that continue,
we arrive at the bound

² :P M � � � � M x , AŽ .Ž .



2 2 2�� x � x M
² :� exp � E exp � M � x , A .
½ 5 ½ 5 ž /² :2 2 � � � MŽ .


5.8Ž .



˜V. H. DE LA PENA556

Next, observe that

M
� 41 A � 1 
 � � 1 A 1 � x .Ž . Ž .Ž . ½ 5ž /² :� � � MŽ .


Therefore,

1
² :P A � P M � � � � M x , � y for some t � �Ž . Ž .ttž /² :M t

M
� P � x , Až /² :� � � MŽ .


2 2 2�� x � x M
² :� exp � E exp � M � x , A
½ 5 ½ 5 ž /² :2 2 � � � MŽ .


� 2
2� exp �x � �� ,½ 5ž /2 y

² : Ž .where the last inequality follows since on A, M � 1�y , therefore com-


pleting the proof of the theorem. �

As follows easily from Proposition 5.1, which we take from Barlow, Jacka
Ž . � Ž 2² : . 4and Yor 1986 , Proposition 4.2.1, exp �M � � M �2 is a supermartin-tt

gale for all 0 � � � �; hence the related condition of Theorem 5.2 always
holds. We will use this proposition to provide an extension of Theorem 5.2 to
the case of martingales with jumps.

� 4PROPOSITION 5.1. Let M , t � 0 be a locally square-integrable martin-t
² c:gale, with M � 0. Let M denote the quadratic variation of its continuous0

� 4part. Let V be an increasing process, which is adapted, purely discontinu-t
ous and locally integrable; let V Ž p. be its dual predictable projection. Set
X � M � V , andt t t

Ž .p
2 2� �

C � 
 X , D � 
 X ,Ž . Ž .Ž . Ž .Ý Ýt s t s½ 55.9Ž . s�t s�t t
c² :H � M � C � D .tt t t

1Ž p.� 4Then exp X � V � H is a supermartingale.t t t2

Applying a special case of Proposition 5.1, we obtain the following
inequality.

� 4THEOREM 5.3. Let M , FF , t � 0 be a locally square-integrable martin-t t
� 4gale, with M � 0. In the notation of Proposition 5.1, let V � 0 . Then for any0 t
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set A measurable with respect to FF , and for all � � 0, � , x � 0,�

P M � � � �H x , AŽ .Ž .t t

2�
2� E exp �x H � �� M � � � �H x , A .Ž .Ž .t t t½ 5ž /2

5.10Ž .

1
P M � � � �H x , � y for some t � �Ž .t tž /Ht

� 2
2� exp �x � �� .½ 5ž /2 y

5.11Ž .

PROOF. The proof is almost identical to the one of Theorem 5.2. To see
this, take M � � �M in Proposition 5.1 to obtain the appropriate super-t t
martingale. �

� 4It is easy to see that in Theorem 5.3 we could remove the condition V � 0t
by replacing M by M � V Ž p..t t t

The natural question that arises is what happens when we have variables
which are not truncated if we do not want to impose on them an integrability
condition. The next section provides an example where this problem is
treated.

6. Sums of conditionally symmetric variables. In what follows we
� 4consider the case of conditionally symmetric variables. Let d be a sequencei

of variables adapted to FF . Then we say that the d ’s are conditionallyn i
Ž . Ž .symmetric if LL d 	 FF � LL �d 	 FF .i i�1 i i�1

Under these assumptions we can prove the following results.

� 4THEOREM 6.1. Let d be a sequence of random variables adapted to FF .i n
Assume the variables are conditionally symmetric. Then, for all x, y � 0,

n n 2x
26.1 P d � x , d � y for some n � exp � .Ž . Ý Ýi i ½ 5ž / 2 yi�1 i�1

For self-normalized sums we get Theorem 6.2.

� 4THEOREM 6.2. Let d be a sequence of random variables adapted to FF .i n
Assume the variables are conditionally symmetric. Then, for all sets A � F�

and all � � 0� , x � 0,

Ýn di�1 i
P � x , An 2ž /� � �Ý di�1 i

2 nn� Ý di�1 i2 2� E exp �x d � �� � x , A ,Ý i n 2½ 5 ž /ž /2 � � �Ý di�1 ii�1

6.2Ž .
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n 2 nÝ d �i�1 i 2 26.3 P � x , A � E exp �x d � �� ,Ž . Ý i)n 2 ½ 5ž / ž /2� � �Ý di�1 i i�1

and finally, for all x, y � 0,
Ýn d 1i�1 i

P � x , � y for some nn 2 n 2ž /� � �Ý d Ý di�1 i i�1 i

� 2
2� exp �x � �� .½ 5ž /2 y

6.4Ž .

PROOF OF THEOREM 6.2. The proof of Theorem 6.2 is based on a lemma
Ž .which we give first. We were inspired by the work of Burkholder 1991 ,

Ž .Lemma 10.2, and Pinelis 1994 when attempting this problem. Hitczenko
Ž .1990a presents the case of conditionally symmetric martingale differences

Ž .through an approximation scheme. He refers to Wang 1989 for the key idea
Ž .of using the �-algebra HH introduced below.n

� 4LEMMA 6.1. Let d be a sequence of conditionally symmetric randomi
variables. Then, for all � � 0,

exp Ýn �d� 4i�1 i
6.5 ,Ž . 2 n 2exp � �2 Ý d� 4Ž . i�1 i

is a supermartingale.

PROOF. Let HH be the trivial �-field and for n � 1, let HH be the sigma0 n
� �field generated by d , . . . , d , d . Similarly, let FF be the trivial �-field1 n�1 n 0

and for n � 2, let FF be the sigma field generated by d , . . . , d . For alln�1 1 n�1
sets H � HH and F � FF , definen n n�1 n�1

�1 � �H � 	 : d 	 , . . . , d 	 , d 	 � H ,� 4Ž . Ž . Ž .n 1 n�1 n n
�1 � Ž . Ž . 4and similarly F � 	: d 	 , . . . , d 	 � F . Then, the conditionaln�1 1 n�1 n�1

� 4symmetry of d implies that the conditional distributions of d given HH andi n n
that of �d given HH are the same. In what follows we show in detail thatn n

� 4 � 4E exp �d 	 HH � E exp ��d 	 HH .n n n n

To attain this goal, observe that for all sets H � HH , F � FF and alln n n�1 n�1
� � 0 we have that

� 4exp �d dPH n
� �d , . . . , d , d �H1 n�1 n n

� 4� exp �d dPH n�1	�Hn

� 4 � 4� exp �d dP � exp �d dPH Hn n�1 �1 �1 �1	�H 
F 	�H 
Fn n�1 n n�1

� �� 4� exp �d 1 d , . . . , d , d � H dPŽ .H n 1 n�1 n n�1	�Fn�1
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� �� 4� exp �d 1 d , . . . , d , d � H dPŽ .H n 1 n�1 n n�1c	�Fn�1

� �� 4� exp ��d 1 d , . . . , d , �d � H dPŽ .H n 1 n�1 n n�1	�Fn�1

� �� 4� exp ��d 1 d , �d � H dPŽ .H n 1, . . . , dn�1 n n�1c	�Fn�1

� 4� exp ��dH n�1	�Hn

� 4� exp ��d dP .H n
� �d , . . . , d , d �H1 n�1 n n

Ž � 4 � 4.Moreover, exp �d � exp ��d �2 is measurable with respect to HH .n n n
Therefore,

� 4 � 4exp �d � exp ��dn n� 4E exp �d 	 HH � E HHn n n2

� 4 � 4 2 2exp �d � exp ��d � dn n n� � exp .½ 52 2

Using these observations, we will show that for all � � 0,

exp Ýn �d� 4i�1 i
E � 1.2 n 2exp � �2 Ý d� 4Ž . i�1 i

By conditioning on HH we have thatn

n�1exp Ý �d� 4i�1 i � 4E E exp �d 	 HHŽ .n n2 n 2exp � �2 Ý d� 4Ž . i�1 i

n�1 2exp Ý �d �� 4i�1 i 2� E exp dn2 n 2 ½ 52exp � �2 Ý d� 4Ž . i�1 i

n�1exp Ý �d� 4i�1 i� E .2 n�1 2exp � �2 Ý d� 4Ž . i�1 i

To complete the proof use induction.
We are now ready to complete the proof of Theorems 6.1 and 6.2.

PROOF OF THEOREMS 6.1 AND 6.2. The proof of Theorem 6.1 is quite
analogous to that of Theorem 5.1 and therefore is left to the reader. Concern-
ing Theorem 6.2, we will deal with the case � � 0, � � 1, because the general
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case follows similarly. For all A � FF and all � � 0,�

Ýn di�1 i
P � x , An 2ž /Ý di�1 i

n n n� � x Ý di�1 i2� E exp d � d 1 � x , AÝ Ýi i n 2½ 5 ž /2 2 Ý di�1 ii�1 i�1

n 2 n n nexp ��2 Ý d � � x Ý d� 4Ž . i�1 i i�1 i2 2� E exp d � d 1 � x , AÝ Ýi i n 22 n 2 ½ 5 ž /4 2 Ý dexp � Ý d� 4Ž . i�1 i4 i�1 i i�1 i�1

2 nn n� Ý di�1 i2 2� 1 E exp d � � x d 1 � x , AÝ Ýi i) n 2½ 5 ž /2 Ý di�1 ii�1 i�1

2 nnx Ý di�1 i2� E exp � d 1 � x , A ,Ý i) n 2½ 5 ž /2 Ý di�1 ii�1

where the last step follows by minimizing over �, taking � � x. The proof is
n n 2complete dividing both sides by P Ý d �Ý d � x , A . �' Ž .i�1 i i�1 i

Ž .The proof of 6.4 is very analogous to that of Theorem 5.2, so it is left to
the reader to fill the gaps.

APPENDIX

ŽWhen we were about to submit this paper six days prior to the actual
.submission date we found the preprint Caballero, Fernandez and Nualart´

Ž .1996 that is related to this work. We decided to write this Appendix to show
what is needed to take the new information into account. Caballero, Fernandez´

Ž .and Nualart 1996 was apparently written at roughly the same time as de la
Ž .Pena 1996a, b . It includes the following inequality.˜
� 4Let M , FF be a continuous martingale null at 0, for all p � 1,t t

1�p
p � 1Ž .

2² : ² :A.1 P M � x M � E exp � x M .Ž . Ž .t tt ½ 5ž /2

The authors used it to obtain ‘‘estimates for the density of a random variable
on the Wiener space that satisfies a nondegeneracy condition.’’ They also

Ž .refer to Exercise 4.18 of Revuz and Yor 1991 , where related estimates for
the ratio of the martingale over a function of its quadratic variation are
given. We observe that their exponential inequality in the case p � 2 is a
special case of Theorem 5.3. The methods they employ are similar to ours,
and the combination of the two approaches can be applied to derive exten-
sions of their result in line with the type of inequality presented in this work.
In particular, we will derive the following extension of their work.



EXPONENTIAL MARTINGALE INEQUALITIES 561

THEOREM 5.2A. Under the assumptions of Theorem 5.2, for all FF sets A,�

² :P M � x M , AŽ .tt
1�p

p � 1 MŽ . t2² :� E exp � x M 1 � x , A .t½ 5 ž /ž /² :2 M t

A.2Ž .

Ž .In what follows we will prove A.2 and will also provide the key to
extending the related results in this paper in light of this new information.
The basic idea is that the results change only slightly in the case where A is
arbitrary. The only difference is that the variable inside the expectation is

Ž .raised to a p � 1 power and we take the p-th root of the resulting
Ž .expectation just as in A.2 . Concerning the case of inequalities where A is
Ž .fixed ahead of time like 6.4 , there is no difference in the results obtained. On

Ž .our way to proving A.2 we will first extend Lemma 3.1.

LEMMA 3.1A. Let X, Y be two random variables with X � 0, Y � 0,
Ž .X�Y � 0 a.e., and E X�Y � K for some constant K. Then

1�p1� q 1� q Ž p�1.A.3 EX � K EY .Ž . Ž .
1� q Ž .1� q 1� q Ž Ž ..1� qPROOF. By Holder’s inequality, EX � E X�Y Y � E X�Y¨

Ž p� q.1� pEY .
Ž . Ž .To get A.2 , use A.3 with

² : ² :X � exp �M � � x M 1 M � x M , A� 4 Ž .t tt t

and
�2

² : ² : ² :Y � exp M � � x M 1 M � x M , A .Ž .t t tt½ 52

To complete the proof, let � � x and observe that p�q � p � 1. �

Several of the results of Section 1 can be extended by using the following
alternates to Theorem 3.1 and Corollary 3.1.

THEOREM 3.1A. In the context of Theorem 3.1, for all p, q � 1, with
1�p � 1�q � 1,

1�pŽ .p�11�qn n

A.4 E g d � E gE e GG .Ž . Ł Łi iž / ½ 5ž /i�1 i�1

n Ž n . Ž .PROOF. Take X � gŁ d and Y � gE Ł e 	 GG in A.3 . �i�1 i i�1 i

COROLLARY 3.1A. Under the assumptions of Corollary 3.1, for all p, q � 1
with 1�p � 1�q � 1,

1�pŽ .p�11�qn n

A.5 E g exp � d � E gE exp � e GG .Ž . Ý Ýi i½ 5 ½ 5ž / ½ 5ž /i�1 i�1
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Ž .In what follows we provide an extension to 1.8 in Theorem 1.3, which
provides an example of the type of result one can derive using Corollary 3.1A.

THEOREM 1.3A. Under the assumptions of Theorem 1.3, for all p � 1,

n
2P d � � � � V x , AŽ .Ý i nž /

i�1

Ž .p�1� x � x�11 1
2� 4� E exp � x Vnž / ž /½ 5� x � 1 � x � 1A.6Ž .

1�p

Mn
�1 � x , A .2ž /� � � Vn

PROOF. Applying Markov’s inequality and Corollary 3.1A with g �
� Ž . 2 4 Ž Ž 2 . .exp � ��2 V x � �� x 1 M � � � � V � x, An n n

n
2P d � � � � V x , AŽ .Ý i nž /

i�1

n1 �
2� inf E exp � V � x � �� x exp dŽ . Ýn i½ 5 ½ 5ž /q q��0 i�1

� 1 M � � � � V 2 x , AŽ .Ž .n n

2� inf E exp � p � 1 �V � x � �� xŽ .� 4Ž .n
��0 �

1�pŽ .p�1n
2� E exp � e 	 GG 1 M � � � � V x , AŽ .Ž .Ý i n n½ 5ž / 0i�1

2� inf E exp � p � 1 �V � x � �� xŽ .� 4Ž .nž
��0

1�pŽ .p�12 2� exp h � V 1 M � � � � V x , AŽ .� 4 Ž .Ž . Ž .n n n /
� inf exp � p � 1 �� x� 4Ž .ž

��0

1�pŽ .p�12 2�E exp � �� x � h � V 1 M � � � � V x , A .Ž .� 4Ž . Ž .Ž .n n n /
Ž .The minimum inside the expectation is attained at � � log � x � 1 , provid-

Ž .ing A.6 . �
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� 2 4 2Observe that when specializing to the case A � 1�V � y , replacing Vn n
by its lower bound and solving gives,

M 1n
P � x , � y2 2ž /� � � V Vn n

1�y� x � x�11 1
� 4� exp � x ,ž / ž /� x � 1 � x � 1

A.7Ž .

Ž .which is a special case of 1.11 . Therefore, there is no difference in the
resulting inequality if V 2 is replaced by its bound.n

The same phenomenon repeats throughout the remaining results of the
paper.

Ž .Acknowledgments. This work except for the Appendix gathers in
Ž .polished form the results of two works by de la Pena 1996a, b , which were˜

written while the author was visiting the Department of Statistics of Stan-
ford University. We thank M. J. Klass and T. L. Lai, who during that time
provided valuable comments on the contents of those two papers. We also
thank them and Guillermo Gallego and B. Narasimhan for stimulating
conversations. We were guided by a remark of J. L. Doob who, on a hiking
trip around 1991, told us that one of the important problems in probability
was the study of the properties of the ratio of a martingale over a submartin-
gale and by a question of M. Talagrand, who around the same time asked us
if we could do decoupling with constraints. Finally, we thank the Depart-
ments of Statistics of Stanford and Berkeley where we spent the fall of 1996

Žand the Department of Mathematical Statistics of Aahrhus University where
.the final draft was completed for their support and hospitality.

REFERENCES
Ž .BARLOW, M. T., JACKA, S. D. and YOR, M. 1986 . Inequalities for a pair of processes stopped at a

( )random time. Proc. London. Math. Soc. 3 52 142�172.
Ž .BENNETT, G. 1962 . Probability inequalities for sums of independent random variables, J.

Amer. Statist. Assoc. 57 33�45.
Ž .BURKHOLDER, D. L. 1991 . Exploration in martingale theory and its applications. Ecole d’Ete de´

Probabilites de Saint-Flour XIX. Lecture Notes in Math. 1464 1�66. Springer, Berlin.´
Ž .CABALLERO, M. E., FERNANDEZ, B. and NUALART, D. 1996 . Estimation of densities and applica-´

tions. Univ. Barcelona Math. Preprint Ser. 222.
Ž .CHOW, Y. S. and TEICHER, H. 1988 . Probability Theory: Independence, Interchangeability,

Martingales, 2nd ed. Springer, New York.
Ž .DE LA PENA, H. 1994 . A bound on the moment generating function of a sum of dependent˜

variables with an application to simple random sampling without replacement. Ann.
Inst. H. Poincare Probab. Statist. 30 197�211.´

Ž .DE LA PENA, V. H. 1995 . A bound on the moment generating function of a sum of dependent˜
Žvariables with an application to simple random sampling without replacement. Cor-

.rection . Ann. Inst. H. Poincare. Probab. Statist. 31 703�704.´
Ž .DE LA PENA, V. H. 1996a . A new class of exponential inequalities I. Preprint.˜
Ž .DE LA PENA, V. H. 1996b . A new class of exponential inequalities II. Preprint.˜

Ž .FREEDMAN, D. 1975 . On tail probabilities for martingales. Ann. Probab. 3 100�118.



˜V. H. DE LA PENA564

Ž .HITCZENKO, P. 1990a . Upper bounds for the L -norms of martingales. Probab. Theory Relatedp
Fields 86 225�238.

Ž .HITCZENKO, P. 1990b . Best constants in martingale version of Rosenthal’s inequality. Ann.
Probab. 18 1656�1668.

Ž .HOEFFDING, W. 1963 . Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58 13�30.

Ž .KHOSHNEVISAN, D. 1996 . Deviation inequalities for continuous martingales. Stochastic Process.
Appl. To appear.

Ž .KWAPIEN, S. and WOYCZYNSKI, W. A. 1989 . Tangent sequences of random variables: basic´ ´
inequalities and their applications. In Proceedings of Conference on Almost Every-

Žwhere Convergence in Probability and Ergodic Theory G. A. Edgar and L. Sucheston,
.eds. 237�265. Academic Press, New York.

Ž .KWAPIEN, S. and WOYCZYNSKI, W. A. 1992 . Random Series and Stochastic Integrals: Single and´ ´
Multiple. Birkhauser, Boston.¨

Ž .LEVENTHAL, S. A. 1989 . A uniform CLT for uniformly bounded families of martingale differ-
ences. J. Theoret. Probab. 2 271�287.

Ž .MCKEAN, H. P. 1962 . A Holder condition for Brownian local time. J. Math. Kyoto Univ. 1¨
195�201.
Ž .PINELIS, I. 1992 . An approach to inequalities for the distributions of infinite-dimensional

Žmartingales. In Probability in Banach Spaces 8 R. M. Dudley, M. G. Hahn and
.J. Kuelbs, eds. 128�134. Birkhauser, Boston.¨

Ž .PINELIS, I. 1994 . Optimum bounds for the distributions of martingales in Banach spaces. Ann.
Probab. 22 1679�1706.
Ž .PINELIS, I. 1995 . Sharp exponential inequalities for the martingales in the 2-smooth Banach
spaces and applications to ‘‘scalarizing’’ decoupling. In Probability in Banach Spaces 9

Ž .55�70 J. Hoffmann-Jorgensen, J. Kuelbs and M. Marcus, eds. Birkhauser, Boston.¨
Ž .PINELIS, I. and UTEV, S. A. 1989 . Exact exponential bounds for sums of independent random

variables. Theory Probab. Appl. 34 304�346.
Ž .REVUZ, D. and YOR, M. 1991 . Continuous Martingales and Brownian Motion. Springer, Berlin.

Ž .SHIRYAYEV, A. N. 1984 . Probability. Springer, Berlin.
Ž .WANG, G. 1989 . Some sharp inequalities for conditionally symmetric martingales. Ph.D. disser-
tation. Univ. Illinois, Urbana-Champaign.

Ž .WISE, G. L. and HALL, E. B. 1993 . Counterexamples in Probability and Real Analysis. Oxford
Univ. Press, New York.

DEPARTMENT OF STATISTICS

COLUMBIA UNIVERSITY

NEW YORK, NEW YORK 10027
E-MAIL: vp@wald.stat.columbia.edu


