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ON THE HIGH TEMPERATURE PHASE
OF THE SHERRINGTON–KIRKPATRICK MODEL

BY MICHEL TALAGRAND

Université Paris VI

We prove the validity of the “replica-symmetric” solution of the
Sherrington–Kirkpatrick model in a region that (probably) coincides with the
region predicted by the physicists.

1. Introduction. In the Sherrington–Kirkpatrick (SK) model, the energy of a
configuration σ = (σ1, . . . , σN), σi = ±1, is given by

HN(σ )= −
(

1√
N

∑
i<j

gij σiσj + h∑
i≤N

σi

)
,(1.1)

where (gij )i<j are i.i.d. N(0,1). The object of interest is Gibbs’ measure, a
probability measure on the space {−1,1}N of all configurations, given by

GN({σ })= exp(−β HN(σ ))
ZN

,(1.2)

where

ZN = ZN(β,h)=
∑
σ

exp
(−β HN(σ ))(1.3)

is the normalization factor. The very beautiful structure predicted at low tempera-
ture (= large β) by the physicists has fascinated many, but essentially nothing is
rigorously known about it. While certainly simpler, the rigorous study of the high
temperature phase is apparently also very difficult. It has been the object of intense
recent interest [4–6]. In [6], an extremely detailed picture is given, but only in a
subregion of the region of parameters where it is believed to hold.

In the present paper, we combine the ideas of [6, 7] with a dazzlingly beautiful
recent argument of F. Guerra [1] to extend the validity of the results of [6]
to a region of parameters that probably coincides with the region predicted
by physicists. The word “probably” here does not mean that the validity of
our arguments is dubious, but rather that the description of the region involves
properties of certain complicated elementary functions. These properties are
likely to be true in the entire region described by the physicists, but it seems
difficult to prove this analytically. Probably one should first check these properties
numerically (but numerical studies are not my cup of tea).
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Following Guerra [1], we will consider a more general version of the model. In
this version, we consider three parameters s, t, h≥ 0. The value of h is fixed once
and for all. We set

UN(σ )=
√
s√
N

∑
i<j

gij σiσj + √
t
∑
i≤N

ξiσi + h
∑
i≤N

σi.(1.4)

Here (ξi)i≤N is a new sequence of N(0,1) variables. If we set s = β2, t = 0, and
h is replaced by βh, we have UN(σ )= −β HN(σ ), where HN(σ ) is as in (1.1).

We set

pN(s, t)= 1

N
E log ZN,(1.5)

where

ZN =∑
σ

exp UN(σ ),(1.6)

and where E denotes expectation in the variables gij , ξi . A main objective is the
computation of limN→∞ pN(s, t) (a quantity closely related to the “free energy” of
the physicists). Let us consider the following expression (the “replica-symmetric
formula”)

RS(s, t)= inf
q

(
s

4
(1 − q)2 +E log

(
2ch(g

√
sq + t + h))),(1.7)

where the infimum is over q ≥ 0, and where g is N(0,1). The infimum is obtained
at a point q such that

q =E th2(g√
sq + t + h).(1.8)

[This condition simply expresses that the infimum is obtained at a point where the
derivative in q of the right hand side of (1.7) is zero. Integration by parts is used to
see this.]

When t = 0, it is already proved in [5] that if s ≤ s0 (where s0 is a number) we
have

RS(s, t)= lim
N→∞pN(s, t).(1.9)

No changes are required to prove that this is also true for all t �= 0. The physicists
conjecture that (1.8) holds whenever

s E
1

ch4(g
√
sq + t + h) < 1,(1.10)

where q is given by (1.7). [Equality in (1.10) defines the so-called A–T line.]
A minor difficulty (that announces more serious difficulties of the same nature) is
that it is not obvious that (1.8) has a unique solution.
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This was clarified recently by F. Guerra [1] and R. Latala [2], who independently
proved that the function

x → 1

x
E th2(g

√
x + h)

is strictly decreasing. Thus, if s, t > 0, the function

q → 1

q
E th2(g

√
sq + t + h)

is also strictly decreasing, and (1.8) has indeed a unique solution.
The recent progress made by F. Guerra [1] is the following:

THEOREM 1.1 (Guerra’s bound). For all values of s, t,N , we have

pN(s, t)≤RS(s, t).(1.11)

The magically beautiful proof of this statement will be given at the beginning
of Section 2. (The only sad point is that at present it is totally unclear whether the
argument can be extended to any of the other important models.) Learning (1.11)
came as a shock to the author because he had noticed while writing [6] that he
could extend (1.8) to all the region (1.10) provided he knew (1.11), not only for
the original system, but also for the system made of two coupled versions of it (see
also [7]). This is defined as follows. Given a new parameter λ (that represents the
intensity of the coupling), for two configurations σ , τ , we set

VN(σ ,τ )=UN(σ )+UN(τ )+ λ
∑
i≤N

σiτi(1.12)

and we set

rN(s, t, λ)= 1

N
E log

(∑
σ ,τ

expVN(σ ,τ )

)
.(1.13)

What, in this situation, is the result corresponding to (1.10)? For x ∈ R, y > 0,
let us define

A(x, y)=E log
(
4(chx ch2Y + shx sh2Y )

)
,(1.14)

where Y = g√
y + h and g is N(0,1). Given q ≥ 0, ρ ∈ R, let us define

W(s, t, λ, q,ρ)= s

2

(
(1 − q)2 + q2 − ρ2)+A(s(ρ − q)+ λ, s, q + t).(1.15)

(Of course such formulas must look like sheer magic to the reader. There is actually
no magic, but rather an interesting structure. The author knows how to derive
these formulas without appealing to the “replica method” of the physicists. This is
however a different topic than the one we pursue here, so we refer the reader to [8]
for a detailed account.)



SHERRINGTON–KIRKPATRICK MODEL 367

Let us denote by C(s, t, λ) the set of critical points of the function q,ρ →
W(s, t, λ, q,ρ), that is the values of (q, ρ) such that

∂W

∂q
= ∂W

∂ρ
= 0.(1.16)

Elementary (and tedious) computations show that this amounts to

ρ =&
(
q, s(ρ − q)+ λ), q ='(q, s(ρ − q)+ λ),(1.17)

where

&(q,x)= E

(
shx ch2Y + chx sh2Y

chx ch2Y + shx ch2Y

)
,(1.18)

'(q,x)= E

((
ex shY chY

chx ch2Y + shx sh2Y

)2)
,(1.19)

for Y = g
√
sq + t + h. The task of analyzing these explicit equations is in

principle elementary. Yet it is not clear how to carry it out. Let us observe that
when λ= 0, if q satisfies (1.8), then (q, q) ∈C(s, t,0).

We define

RSC(s, t, λ)= inf
(q,ρ)∈C(s,t,λ)W(s, t, λ, q, ρ).(1.20)

We have not proved that C(s, t, λ) is always non empty [this is very likely,
due to the “saddle shape” of the function q,ρ →W(s, t, λ, q, ρ)], so we define
RSC(s, t, λ)= ∞ should C(s, t, λ) be empty.

Our arguments require some regularity properties of the function RSC. We
now define a region of parameters where these properties will hold. We say that
(s0, t0) ∈ S (remember that h is fixed once for all) if the following occurs:

Given s ≤ s0, t ≥ t0, the solution to (1.8) satisfies (1.10).(1.21)

Given s ≤ s0 , t ≥ t0 and any λ ∈ R,

there is a unique point q(s, t, λ), ρ(s, t, λ) in C(s, t, λ)

at which the infimum is obtained in (1.20).

(1.22)

Moreover the map λ→ (q(s, t, λ), ρ(s, t, λ)) is differentiable; and the map λ→
∂
∂λ
ρ(s, t, λ) is continuous over the domain s ≤ s0, t ≥ t0, λ ∈ R.

CONJECTURE 1.2. The region S coincides with the region (1.10).

The rationale for this conjecture is as follows.
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1. To say that (s0, t0) ∈ S we require a certain regularity for s ≤ s0, t ≥ t0.
This is very mild, because decreasing s and increasing t seem only to improve
matters.

2. The requirement (1.22) amounts to little more than the second differentia-
bility of R(s, t, .). One really does not see why any value of λ, except zero, would
play a special role and be a singularity. But, as will be explained at the end of this
introduction, under (1.10), there can be no singularity at λ= 0.

The following should be compared to Theorem 1.1.

PROPOSITION 1.3. If (s, t) ∈ S, then, for each λ ∈ R, we have

lim sup
N→∞

rN(s, t, λ)≤ RSC(s, t, λ).(1.23)

Possibly (1.23) is true for all values of s, t , but there is little incentive to try to
prove this. The regularity of RSC(s, t, .) implicit in (1.22) is used as a technical
help to establish (1.23). It is possible that by working harder (or being more clever)
one could prove (1.23) without using (1.22). As we believe that Conjecture 1.2
holds, there is little motivation to try this.

THEOREM 1.4. If (s, t) ∈ S, then

lim
N→∞pN(s, t)=RS(s, t).(1.24)

Moreover, the system can be described with the same accuracy as in [6].

The regularity of RSC(s, t, ·) at λ �= 0 is used only as a technical help in the
proof of Proposition 1.3 (and possibly could be dispensed with it). In contrast, the
proof of Theorem 1.4 makes crucial use of the fact that

RSC(s, t, λ)≤ 2RS(s, t)+ λq + λ2M(1.25)

for small λ, where M = M(s, t) remains bounded when (s, t) stays away
from the A–T line. This condition can be proved under (1.10) alone [without
requiring (1.22)] as follows. Setting u= ρ − q , we rewrite (1.17) as

u=+(q, su+ λ), q ='(q, su+ λ)(1.26)

where

+(q,x)= shx chx E
1

(chx ch2Y + shx sh2Y )2
.(1.27)

As already pointed out, if q = q0 satisfies (1.8), the pair (q0, q0) satisfies (1.27)
when λ= 0. Moreover,

W(s, t,0, q0, q0)= 2RS(s, t).(1.28)
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The differential at (q0,0) of the map (q,u)→ (+(q, su),'(q, su)) is given by
the matrix (

A 0
D C

)

where

A= sE
1

ch4Y
, C = sE

(
1 − 2sh2Y

ch4Y

)
,

for Y = g
√
sq0 + t + h, so that, under (1.10), A,C < 1. By the implicit function

theorem, for λ small enough, the equations (1.26) have a solution that is
differentiable in λ, and this readily implies (1.25). Having proved (1.25) for small
λ, there is no loss of generality to assume that it holds for |λ| ≤ 1.

2. A priori bounds. In this section, we prove Proposition 1.3. Modulo (very
serious) technical difficulties, the proof is the same as that of Theorem 1.1, so we
first prove Theorem 1.1.

PROOF OF THEOREM 1.1. Considering s, t,N , q ≥ 0, we will prove that

pN(s, t)≤ s

4
(1 − q)2 +E log

(
2ch

(
g
√
sq + t + h)).(2.1)

For u≥ 0, we set t (u)= (s − u)q + t . This value is chosen so that

uq + t (u)= sq + t.(2.2)

To prove (2.1), we will prove that, for all u≥ 0, we have

f (u) := pN(u, t (u))≤ ξ(u) := u

4
(1 − q)2 +E log

(
2ch

(
g
√
uq + t (u)+ h)).

It suffices to prove that

f (0) ≤ ξ(0),(2.3)

f ′(u)≤ ξ ′(u)= 1
4 (1 − q)2.(2.4)

[The reader certainly observes how (2.2) ensures that ξ has a simple derivative.]
When s = 0, Gibbs’ measure is a product measure, and it is immediate that

pN(0, t)=E log
(
2ch

(
g
√
t + h)),

so that there is in fact equality in (2.3). To compute f ′(u), we use the basic
relations

∂

∂s
pN(s, t)= 1

4

(
1 −E〈R(σ ,σ ′)2〉),(2.5)

∂

∂t
pN(s, t)= 1

2

(
1 −E〈R(σ ,σ ′)〉).(2.6)
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Here, σ , σ ′ are two configurations:

R(σ ,σ ′)= 1

N

∑
i≤N

σiσ
′
i ,(2.7)

and the bracket represents a double integral with respect to Gibbs’ measure, that
is,

〈R(σ ,σ ′)〉 =
∫∫

R(σ ,σ ′) dGN(σ ) dGN(σ ′),(2.8)

for

GN({σ })= expUN(σ )

ZN
,(2.9)

UN(σ ) and ZN being given by (1.4) and (1.6) respectively. The relations (2.5)
and (2.6) are well known: the proof of similar relations will be given in a more
complicated situation in Lemma 2.1 below.

Combining (2.5) and (2.6), we have

f ′(u)= 1

4

(
1 −E〈R(σ ,σ ′)2〉)− q

2

(
1 −E〈R(σ ,σ ′)〉)

(2.10)

= 1

4
(1 − q)2 − 1

4
E
〈
(R(σ ,σ ′)− q)2〉≤ 1

4
(1 − q)2

and this proves (2.4). �

In view of the crucial role played by the relations (2.5), (2.6), we turn to the
investigation of similar relations for the function of interest, namely rN(s, t, λ).
Gibbs’ measure is now a probability on the space of pairs of configurations (σ ,τ ),
and is given by

GN
({(σ ,τ )})= 1

ZN
exp VN(σ ,τ ),

where VN is given by (1.12) and ZN is the normalization factor. We will again
denote by 〈 · 〉 integration with respect to Gibbs’ measure or its products; we will
denote by (σ ′,τ ′) a new copy of the system with the same disorder (replica). Thus,
we have

〈R2(σ ,σ ′)〉 =
∫∫ (

1

N

∑
i≤N

σiσ
′
i

)2

dGN(σ ,τ ) dGN(σ
′,τ ′),

and similar expressions.
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LEMMA 2.1. We have

∂rN

∂s
= 1

2

(
1 +E〈R(σ ,τ )2〉 − 2E〈R(σ ,σ ′)2〉),(2.11)

∂rN

∂t
= 1 +E〈R(σ ,τ )〉 − 2E〈R(σ ,σ ′)〉,(2.12)

∂rN

∂λ
= E〈R(σ ,τ )〉.(2.13)

PROOF. We have

∂rN

∂s
= 1

2
√
sN1/2

(∑
i<j

Egij 〈σiσj + τiτj 〉
)
.

We then use the integration by parts formula E(gf (g))=E(f ′(g)) to obtain

∂rN

∂s
= 1

2N2

(∑
i<j

E
(〈(σiσj + τiτj )2〉 − 〈(σiσj + τiτj )(σ ′

i σ
′
j + τ ′

i τ
′
j )〉
))
.

Next, we note that σ 2
i = τ 2

i = 1, and that

∑
i<j

aiaj = 1

2

(∑
ai

)2 −∑
a2
i .

We thus get

∂rN

∂s
= 1

4

(
2 + 2E〈R2(σ ,τ )〉 −E〈R2(σ ,σ ′)〉

−E〈R2(σ ,τ ′)〉 −E〈R2(τ ,σ ′)〉 −E〈R2(τ ,τ ′)〉
)

and the last 4 terms are equal by symmetry.
This yields (2.11). The proof of (2.12) is similar, and (2.13) is obvious. �

At this stage we observe the unpleasant fact that in (2.11) the term E〈R2(σ ,τ )〉
has the wrong sign to make the argument of Theorem 1.1 work. The basic idea
to go around this difficulty is to observe that we can control such quantities if we
control rN as a function of λ. [This is why we require control over all values of λ
in (1.22).]

LEMMA 2.2. Consider s, t, λ. Assume that there exists a function ϕ(λ) and
numbers B,λ0 such that

∀λ, rN(s, t, λ)≤ ϕ(λ),(2.14)

rN(s, t, λ0)= ϕ(λ0),(2.15)
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ϕ is twice differentiable and |ϕ′′(λ)| ≤ B if |λ− λ0| ≤N−1/4.(2.16)

Then we have

E
〈(
R(σ ,τ )− ϕ′(λ0)

)2〉≤ L√
N
(1 +B2 + s + t),(2.17)

where L is a number, and where the Gibbs’ measure is for the parameters s, t, λ0.

PROOF. We fix s, t . We first observe that the random function of λ given by

C(λ)= 1

N
log

(∑
σ ,τ

exp VN(σ ,τ )

)

is convex, and that rN = EB is also convex as a function of λ. Thus, from (2.14),
(2.15), we have

∂rN

∂λ
(s, t, λ0)= ϕ′(λ0),

∂2rN

∂λ2 (s, t, λ0)≤ B.(2.18)

Now [starting from (2.13)] one has

∂2rN

∂λ2
(s, t, λ0)=NE

(〈R(σ ,τ )2〉 − 〈R(σ ,τ )〉2)
so that by (2.18),

E
〈(
R(σ ,τ )− 〈R(σ ,τ )〉)2〉≤ B

N
.(2.19)

Next,

C′(λ0)= 〈R(σ ,τ )〉,
and by convexity of B , setting a =N−1/4, we have

1

a

(
C(λ0)−C(λ0 − a))≤ C′(λ0)≤ 1

a

(
C(λ0 + a)−C(λ0)

)
.(2.20)

We write
1

a

(
C(λ0 + a)−C(λ0)− aϕ′(λ0)

)

≤ 1

a

∣∣C(λ0 + a)−EC(λ0 + a)∣∣+ 1

a

∣∣C(λ0)−EC(λ0)
∣∣

+ 1

a

(
EC(λ0 + a)−EC(λ0)− aϕ′(λ0)

)
.

Now, by (2.14) to (2.16),

EC(λ0 + a)−EC(λ0)− aϕ′(λ0)= rN(s, t, λ0 + a)− rN(s, t, λ0)− aϕ′(λ0)

≤ ϕ(λ0 + a)− ϕ(λ0)− aϕ′(λ0)

≤ a2

2
B
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and proceeding in a similar manner for the left-hand side of (2.20) we have∣∣〈R(σ ,τ )〉 − ϕ′(λ0)
∣∣= ∣∣C′(λ0)−EC′(λ0)

∣∣
≤ a

2
C + 1

a

∣∣C(λ0 + a)−EC(λ0 + a)∣∣
(2.21)

+ 1

a

∣∣C(λ0 − a)−EC(λ0 − a)∣∣
+ 1

a

∣∣C(λ0)−EC(λ0)
∣∣.

Now, it follows from “concentration of measure” arguments (see, e.g., [7],
Proposition 2.2) that

∀λ, E
∣∣C(λ)−EC(λ)∣∣2 ≤ L

N
(s + t),

where L is a number. Allowing as customary the value of L to change at each
occurrence, we get from (2.21) that

E
(〈R(σ ,τ )〉 − ϕ′(λ0)

)2 ≤L
(
a2B2 + 1

a2N
(s + t)

)
.

Recalling that a =N−1/4 we get the result by combining with (2.19). �

To help the reader get the main idea of Proposition 1.3, we give now the central
argument.

LEMMA 2.3. Consider s, t > 0. We assume the following:
Given any λ ∈ R, there is a unique point q(s, t, λ), ρ(s, t, λ)

in C(s, t, λ) at which the infimum is obtained in (1.20).
(2.22)

The map λ→ (q(s, t, λ), ρ(s, t, λ)) is differentiable;

the map λ→ d

dλ
ρ(s, t, λ) is continuous.

Consider λ0 ∈ R, 0< ε < 1. We set

B = sup
|λ−λ0|≤1

∣∣∣∣∂ρ∂λ (s, t, λ)
∣∣∣∣,(2.23)

N0 = 4L2(1 + 4B2 + s + t)2
ε2 ,(2.24)

where L is the constant occurring in (2.17).
Assume that for some N ≥N0, we have

rN(s, t, λ0)= ε(1 + 3s)+ (1 + ε)RSC(s, t, λ0),(2.25)
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∀λ ∈ R, rN(s, t, λ)≤ ε(1 + 3s)+ (1 + ε)RSC(s, t, λ).(2.26)

Then there exist s′ < s, t ′ ≥ t , λ′ ∈ R with

rN(s
′, t ′, λ′) > ε(1 + 3s′)+ (1 + ε)RSC(s′, t ′, λ′).(2.27)

COMMENT. If s ≤ s0, t ≥ t0, where (s0, t0) ∈ S, then (2.22) is a consequence
of (1.21).

PROOF. The reader should keep in mind that s, t are fixed throughout the
proof, and that ε plays a technical role, so that the main computations are better
performed assuming ε = 0 at first reading. In the course of this proof, we will use
Lemma 2.3 for

ϕ(λ)= ε(1 + 3s)+ (1 + ε)RSC(s, t, λ).

By (1.22), we have

ψ(λ) := RSC(s, t, λ)=W
(
s, t, λ, q(λ), ρ(λ)

)
,

where we write q(λ) = q(s, t, λ), ρ(λ) = ρ(s, t, λ), so that, since (q(λ), ρ(λ)) ∈
C(s, t, λ); we have

ψ ′(λ)= ∂W

∂λ

(
s, t, λ, q(λ), ρ(λ)

)

+ q ′(λ) ∂W
∂q

(
s, t, λ, q(λ), ρ(λ)

)+ ρ′(λ)∂W
∂ρ

(
s, t, λ, q(λ), ρ(λ)

)

= ∂W

∂λ

(
s, t, λ, q(λ), ρ(λ)

)
.

Using (1.15), we get

ψ ′(λ)= ∂A

∂x

(
s
(
ρ(λ)− q(λ))+ λ, sq(λ)+ t).

Since

∂A

∂x
(x, sq + t)=&(q,x),

[the relation behind (1.18)] we see that by (1.17) we have

ψ ′(λ)= ρ(λ)
so that by (1.22), ϕ is twice differentiable, ϕ′′(λ) = (1 + ε)ρ′(λ) and, by (2.23),
|ϕ′′(λ)| ≤ 2B if |λ− λ0| ≤ 1.
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We get by (2.17) that

E
〈(
R(σ ,τ )− (1 + ε)ρ0

)2〉≤ L√
N
(1 +B2 + s + t),(2.28)

where ρ0 = ρ(λ0).
This is the required ingredient to make a suitable version of the proof of Guerra’s

Theorem 1.1 work. We define q0 = q(λ0). For u > 0, we define

t (u)= q0(s − u)+ t,
λ(u)= (s − u)(ρ0 − q0)+ λ0,

that are chosen so that the quantities

uq0 + t (u), u(ρ0 − q0)+ λ(u)(2.29)

do not depend upon u. We consider the functions

f (u)= rN
(
u, t (u), λ(u)

)
,

ξ(u)= (1 + ε)RSC
(
u, t (u), λ(u)

)
.

An important observation is that

(q0, ρ0) ∈C(u, t (u), λ(u)).
This is true for u= s, and the function &, ' of (1.17) depend upon s, t, λ, q only
through sq + t and s(ρ − q)+ λ. For s = u, t = t (u), λ= λ(u), these quantities
are independent of u. Thus

RCS
(
u, t (u), λ(u)

)≤W (
u, t (u), λ(u), q0, ρ0

)
(2.30)

and all we have to show is that we can find u < s such that

f (u) > ξ(u)+ 3ε(u− s).(2.31)

We observe that

ξ ′(u)= (1 + ε)
2

(
(1 − q0)

2 + q2
0 − ρ2

0
)
,

again using that the quantities (2.29) do not depend upon u. Now, Lemma 2.1
shows that

f ′(s)= 1
2

(
1 +E 〈R(σ ,τ )2〉 − 2E 〈R (σ ,σ ′)2〉)

− q0
(
1 +E 〈R (σ ,τ )2〉 − 2E 〈R (σ ,σ ′)〉)− (ρ0 − q0)E 〈R(σ ,τ )〉

= 1
2

(
(1 − q0)

2 + q2
0 − ρ2

0
)−E〈(R(σ ,σ ′)− q0

)2〉+ 1
2 E

〈(
R(σ ,τ )− ρ0

)2〉
.
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Thus,

f ′(s)= 1 + ε
2

(
(1 − q0)

2 + q2
0 − ρ2

0
)+ 1

2
E
〈(
R(σ ,τ )− (1 + ε)ρ0

)2〉+6,
where

6= −ε
2

(
(1 − q0)

2 + q2
0 − ρ2

0
)−E〈(R(σ ,σ ′)− q0

)2〉

− (ε2 + 2ε)ρ2
0 + ερ0E〈R(σ ,τ )〉 ≤ 3ε

2

using that |ρ0| ≤ 1, by (1.17) (note that |&| ≤ 1) and that |R(σ ,τ )| ≤ 1.
Using (2.28), we get

f ′(s)≤ ξ ′(s)+ L√
N

(
1 + 4B2 + (s + t))+ 3ε

2
.(2.32)

Thus, if N ≥N0, we have

f ′(s)≤ ξ ′(s)+ 2ε

and the existence of u satisfying (2.27) follows. �

LEMMA 2.4. Given s0 and ε > 0, there exists a number D(s0, ε) such that:
s ≤ s0, t ≥ 0, λ ∈ R,

rN(s, t, λ)≥ ε(1 + 3s)+ (1 + ε)RSC(s, t, λ) �⇒ t, |λ| ≤D(s0, ε).(2.33)

This lemma is technical, so it will be proved after we complete the proof of
Proposition 1.3.

PROOF OF PROPOSITION 1.3. Given (s0, t0) in S, we consider the number
D(s0, ε) given by (2.33). We consider

B1 = 4 sup

{∣∣∣∣∂ρ∂λ(s, t, λ)
∣∣∣∣; s ≤ s0, t0 ≤ t ≤D(s0, ε), |λ| ≤D(s0, ε)+ 1

}
.(2.34)

It follows from (1.21) that B1 <∞. We consider

N1 = 4L2(1 + 4B2
1 + s0 +D(s0, ε))
ε2 ,(2.35)

where L is again the constant in (2.17).

Since ε is arbitrary, to prove Proposition 1.3, it suffices to show that

N ≥N1, λ ∈ R �⇒ rN(s0, t0, λ) < ε(1 + 3s0)+ (1 + ε)RSC(s0, t0, λ).(2.36)
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To prove (2.36) we assume for contradiction that for someN ≥N1, some λ ∈ R,
we have

rN(s0, t0, λ)≥ ε(1 + 3s0)+ (1 + ε)RSC(s0, t0, λ).(2.37)

We then set

s = inf
{
s′ ≤ s0, ∃t ′ ≥ t0, ∃λ′ ∈ R,

(2.38)
rN(s

′, t ′, λ′)≥ ε(1 + 3s′)+ (1 + ε)RSC(s′, t ′, λ′)
}
.

Thus, given n > 0, we can find s(n)≤ s′ + 2−n, t (n)≥ t0, λ(n) ∈ R with

rN
(
s(n), t (n), λ(n)

)≥ ε(1 + 3s(n)
)+ (1 + ε)RSC

(
s(n), t (n), λ(n)

)
.(2.39)

Lemma 2.4 shows that t (n) ≤ D(s0, ε), |λ(n)| ≤ D(s0, ε), so that we can find a
subsequence t (n)→ t ≥ t0, λ(n)→ λ0. Thus, (2.39) and continuity show that

rN(s, t, λ0)≥ ε(1 + 3s)+ (1 + ε)RSC(s, t, λ0).(2.40)

Next, we observe that s > 0. This is because [see (1.14), (1.15)] we have

RSC(0, t, λ)=A(t, λ0)= rN(0, t, λ0).

The definition of s shows that if 0 ≤ s′ < s, then

∀λ ∈ R, rN(s
′, t, λ)≤ ε(1 + 3s′)+ (1 + ε)RSC(s′, t, λ)

so that, by continuity

∀λ ∈ R, rN(s, t, λ)≤ ε(1 + 3s)+ (1 + ε)RSC(s, t, λ).(2.41)

Since t, |λ0| ≤D(s0, ε), s ≤ s0, we see that N1 ≥N0, where N1 is given by (2.35)
and N0 by (2.24).

Since N ≥N1, we have N ≥N0. But then (2.27) contradicts the definition of s
in (2.38). Thus (2.37) cannot hold. This proves (2.36) and Proposition 1.3.

We should note that if (s0, t0) ∈ S, the argument proves the uniformity of the
limit when |λ| ≤ 1 and (s, t) belong to a compact subset of S. �

PROOF OF LEMMA 2.4. We will prove the following three facts:

rN(s, t, λ)≤ 2s + RSC(0, t, λ),(2.42)

RSC(s, t, λ)≥ −3s + RSC(0, t, λ),(2.43)

RSC(0, t, λ)≥ 1

L
(|λ| + t)− 1.(2.44)

It follows from (2.42) and (2.43) that

rN(s, t, λ)≤ 5s +RSC(s, t, λ)
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and from (2.44) that 5s ≤ εRSC(s, t, λ) if either t or |λ| is large enough, so that
(2.33) will follow.

To prove (2.42), we use Jensen’s inequality to integrate in the r.v. gij inside the
log rather than outside, and we obtain

rN(s, t, λ)≤ 2s + rN(0, t, λ).
To prove (2.43), we recall that

rN(0, t, λ)= RSC(0, t, λ)=E log
(
4(chλ ch2Y + shλ sh2Y )

)
,(2.45)

for Y = q√t + h. We observe that

chλ ch2Y + shλ sh2Y = 1
2(e

λ ch2Y + e−λ)(2.46)

so that

RSC(0, t, λ)≥ log(chλ)

and

RSC(0, t, λ)≥ λ− log 2 +E log ch2Y ≥ −|λ| − log 2 + 1

L
log ch(

√
t + h)

and these imply (2.44). To prove (2.43), we note that

RS(s, t, λ)=W(s, t, λ, q,ρ),
for a certain choice (q, ρ) ∈C(s, t, λ). Since in particular |ρ|, |q| ≤ 1, we have

RS(s, t, λ)≥ − s
2

+ log 4 +E log (chx ch2Y + shx sh2Y ),(2.47)

where x = s(ρ − q) + λ, Y = g
√
sq + t + h. It follows from (2.46) that the

right-hand side of (2.41) is a convex function of Y . In distribution, we have
Y = g1

√
sq + g2

√
t + h, where g1, g2 are i.i.d. N(0,1).

Using Jensen’s inequality while integrating in g1, we see that (2.47) remains
true if we replace Y by g

√
t + h. This implies (2.43) since |ρ − q| ≤ 2. �

3. High temperature region. Our first result demonstrates the strength of the
information contained in Proposition 1.3.

LEMMA 3.1. There exists a number L with the following property. Consider
(s, t) ∈ S and set

6N =6N(s, t)=RS(s, t)− pN(s, t).(3.1)

Consider M such that (1.25) holds for |λ| ≤ 1. Set

61
N =61

N(s, t)= sup
|λ|≤1

(
rN(s, t, λ)−RSC(s, t, λ)).(3.2)
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Then, given v > 0, v ≤ 2M , we have

P

(
G⊗2
N

({(σ ,τ ) : |R(σ ,τ )− q| ≥ v})≥ expN
(

26N +61
N − v2

8M2

))
(3.3)

≤ exp
(
− N

LM

v4

(s + t)2
)
.

COMMENT. We know from Section 2 that lim supN→∞61
N(s, t) ≤ 0 since

(s, t) ∈ S. If we also know that lim supN→∞6N = 0 (which, at least “philosoph-
ically” means that E〈(R(σ ,τ )− q)〉2 → 0), then we get a strong exponential in-
equality on the overlap. Lemma 3.1 transforms a control of a second moment into
an exponential inequality.

PROOF. The basic observation is that, recalling (1.4) and (1.12), we have

log〈expλNR(σ ,τ )〉 = log
∑
σ ,τ

expVN(σ ,τ )− 2 log
∑
σ

expUN(σ ,τ ).(3.4)

Concentration of measure shows that, given w > 0

P

(∣∣∣∣∣log
∑
σ ,τ

expVN(σ ,τ )−E log
∑
σ ,τ

expVN(σ ,τ )

∣∣∣∣∣≥ Nw

2

)
≤ exp

(
− Nw2

L(s + t)
)

and similarly for UN . Thus, with probability at least

1 − exp
(
− Nw2

L(s + t)
)
,(3.5)

we have

log〈expλNR(σ ,τ )〉
≤N(w+ rN(s, t, λ)− 2pN(s, t)

)
(3.6)

≤N(w+61
N(s, t)+ 26N(s, t)+RSC(s, t, λ)− 2RS(s, t)

)
.

Using (1.25) we get that for |λ| ≤ 1,〈
exp λN

(
R(σ ,τ )− q)〉≤ exp N(w+ λ2M +61

N + 26N)(3.7)

and thus, using the Chebyshev inequality,

G⊗2
N

({(σ ,τ ) : |R(σ ,τ )− q| ≥ v})≤ expN(w+ λ2M + λv− +61
N + 26N).

This holds with probability at least (3.5).
We now take λ= v/2M , w = v2/8M to see that

G⊗2
N

({(σ ,τ ) : |R(σ ,τ )− q| ≥ v})≤ exp N
(

26N +61
N − v2

8M

)

with probability at least (3.5). This is the result. �
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COROLLARY 3.2. Under the conditions of Lemma 3.1, we have

E
〈(
R(σ ,τ )− q)2〉≤ 16M2(6N +61

N)+ δN(3.8)

where δN → 0 uniformly as s, t,M remain bounded.

PROOF. Since |R(σ ,τ )− q| ≤ 2, (3.3) implies that

E
〈(
R(σ ,τ )− q)2〉≤ v2 + 4 expN

(
26N +61

N − v2

8M2

)

+ 4 exp
(
− Nv4

LM(s + t)2
)
.

We simply take v such that v2 = 16M2((6N +61
N)

+ + N−1/8), observing that
v ≤ 2M for large N . �

PROOF OF THEOREM 1.3. We consider (s, t) ∈ S, and q such that (1.8) holds.
We consider

6N(u)= RS
(
u, t + q(s − u))− pN (u, t + q(s − u)).

We have shown in the course of the proof of Theorem 1.1 that

d

du
6N(u)= E

〈(
R(σ ,τ )− q)2〉,(3.9)

where the brackets are for the values s(u) = u, t (u) = t + q(s − u) of the
parameters.

By (1.21), there is a number M such that

∀u≤ s, ∀λ, |λ| ≤ 1, RSC(u, t (u), λ)− 2RS(u, t (u))≤ λq +Mλ2.

Next, we have shown in Proposition 1.3 that if

61
N = sup

u≤1
|λ|≤1

(
rN(u, t (u), λ)−RSC(u, t (u), λ)),

then lim supN→∞ 61
N ≤ 0. If we combine (3.9) with Corollary 3.2, we see that for

some sequence εN → 0, we have

d

du
6N(u)≤ 16M2(6N(u)+ εN )

so that

d

du

(
6N(u)+ εN )≤ 16M2(6N(u)+ εN )
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and since 6N(0)= 0, we have

6N(u)≤ εN exp16M2u,

so that limN→∞ 6N(u)= 0 for u≤ s.
It remains to establish the last claim of Theorem 1.3, on how to get

the “complete picture” of [6]. This is simply because, once we know that
limN→∞ 6N = 0, (3.2) shows that given v > 0, for N large enough,

EG⊗2
N

({(σ ,τ ) : |R(σ ,τ )− q| ≥ v})≤ exp
(
−N
K

)
,(3.10)

where K does not depend upon N . The main difficulty of the cavity method,
namely the control of the error terms, vanishes, because under (3.4) we have
relations such as

E
〈(
R(σ ,τ )− q)4〉≤ vE〈(R(σ ,τ )− q)2〉+ exp

(
−N
K

)
(3.11)

(within exponentially small error terms). �
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