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ECCENTRIC BEHAVIORS OF THE BROWNIAN SHEET
ALONG LINES

BY ROBERT C. DALANG1 AND T. MOUNTFORD2

Ecole Polytechnique Fédérale and University of California, Los Angeles

Distinct excursion intervals of a Brownian motion (that correspond to a
fixed level) have no common endpoints. What is the situation for distinct ex-
cursion sets of a Brownian sheet? These sets are termed Brownian bubbles
in the literature, and this paper examines how bubbles from fixed or ran-
dom levels come into contact with each other, by examining whether or not
the Brownian sheet restricted to a specific type of curve can have a point of
increase. At random levels, we show that points of increase can occur along
horizontal lines, while at fixed levels, such a point of increase can occur at the
corner of a broken line segment with a right-angle. In addition, the Hausdorff
dimension of the set of points with this last property is shown to be 1/2 a.s.

1. Introduction. The Brownian sheet is a centered, continuous Gaussian
process (W(t), t ∈ R2+) indexed by the positive quadrant in the plane, with
covariance given by

E
(
W(s1, s2)W(t1, t2)

)= (s1 ∧ t1)(s2 ∧ t2).
It is one of the natural extensions of Brownian motion to higher dimensional time.

In this paper, we study behaviors of excursions of the Brownian sheet and of the
sets in the non-negative quadrant on which these excursions occur. These behaviors
have been the subject of several papers in recent years [4, 5, 10, 16]. Given a level
q ∈ R, the complement of the level set {t :W(t) = q} is a random open set, the
components of which we call Brownian bubbles, following [5], or q-bubbles if
the level q is to be specified. A component of {t : W(t) > q} will be termed an
upwards bubble, and a component of {t :W(t) < q} a downwards bubble. Upwards
or downwards is the direction of the bubble.

These bubbles are natural analogues of excursion intervals from level q of
Brownian motion. Unlike the beautiful excursion theory available for Brownian
motion [8, 19, 20], there is no such theory for the Brownian sheet. One difficulty,
that also makes the problem challenging, is that the boundary of a bubble is a very
complicated random set (in contrast to an excursion interval), and distinct bubbles
may share common boundary points [16, 4]. For instance, in [4], it was shown that
it is possible to travel within a bubble along a monotone curve until reaching the
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boundary of the bubble, and then, continuing along this curve, to immediately enter
another distinct bubble of opposite direction. More precisely, for any q ∈ R, with
positive probability, there exists a (random) monotone curve γ : [−1,1] → [1,2]2

such that W(γ (−u)) < q <W(γ (u)), for 0< u≤ 1.
In this paper, we consider the possibility of travelling horizontally or vertically

within a bubble to a boundary point, and then, from this boundary point, travelling
horizontally or vertically and immediately entering a distinct bubble. Concretely,
we ask:

1. are there horizontal line segments [t1 − h, t1 + h] × {t2} such that [t1 − h, t1[×
{t2} and ]t1, t1 + h] × {t2} are in distinct q-bubbles, for fixed or random q?

2. are there “broken line segments” ({t1}× ]t2, t2 + h]) ∪ (]t1, t1 + h]× {t2}) such
that {t1}× ]t2, t2 + h] and ]t1, t1 + h] × {t2} are in distinct q-bubbles, for fixed
or random q?

These questions are of interest independently of considerations regarding the
geometry of bubbles. Indeed, it is a celebrated classical result of Dvoretsky, Erdős
and Kakutani [7] (see also [2]) that Brownian motion has no point of increase,
where a point of increase of (B(u), u ≥ 0) is a time u > 0 such that for some
ε > 0,

B(u− h) < B(u) < B(u+ h), 0< h< ε.

In the case of the Brownian sheet, for each t2 > 0, t1 �→W(t1, t2) is a (speed t2)
Brownian motion, so a.s., there is no t1 such that [t1 −h, t1[×{t2} and ]t1, t1 +h]×
{t2} lie in distinct bubbles of opposite direction, even at random levels. This
naturally raises the question of whether this might occur for some random t2,
possibly with the additional requirement that W(t1, t2) take some fixed value q .
Because the Ornstein–Uhlenbeck process (Uv, v ≥ 0) on Wiener space can be
represented using the Brownian sheet as follows:Uv(u)= e−v/2W(u, ev) [13, 15],
this question is the same as asking whether the Ornstein–Uhlenbeck process on
Wiener space hits the set of paths with points of increase. Our first result answers
this question in the affirmative.

THEOREM 1. Fix h > 0. With positive probability, there exists (t1, t2) ∈ [2,3]2

such that

W(t1 − u, t2) < W(t1, t2) < W(t1 + u, t2), 0< u< h.(1.1)

From this “positive probability” result, one can easily deduce an a.s. result: there
exist a.s. random (t1, t2) and h > 0 such that (1.1) holds. These results imply that
at random levels, one can pass from a downwards bubble to an upwards bubble
along horizontal line segments.

Given this result, one could ask whether a similar result is possible with the
additional request that W(t1, t2) = q . Our approach does not allow us to answer
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this question (see Remark 8). However, we can answer the question negatively if
both bubbles are required to have the same direction.

THEOREM 2. Fix q ∈ R. With probability one, there is no (t1, t2) ∈ R2+ such
that W(t1, t2)= q and for some h > 0,

[t1 − h, t1[×{t2} and ]t1, t1 + h] × {t2}
belong to distinct q-bubbles with the same direction.

Another natural question is whether at some random level, one can pass from
some bubble to a distinct bubble of the same direction while moving along a
horizontal line segment. For any fixed t2, t1 �→ W(t1, t2) has countably many
local maxima and minima, but it can be shown that a.s., none of these correspond
to passing between distinct bubbles of the same direction. In a future paper, the
authors plan to show that this is possible for random t2.

With regard to question 2 concerning broken line segments, we shall prove the
following result.

THEOREM 3. Fix q ∈ R and h > 0. With positive probability, there exist
uncountably many points (t1, t2) ∈ [2,3]2 such that

W(t1, t2 + u) < q <W(t1 + u, t2), 0< u< h(1.2)

[and, of course,W(t1, t2)= q by continuity].
As for Theorem 1, it is possible to deduce an a.s. statement from Theorem 3.

The estimates used in the proof of Theorem 3 enable us to show in addition that
the Hausdorff dimension of the set of points with the property (1.2) is 1/2: see
Theorem 9. On the other hand, there are a small number of such points with an
additional property as described in the following theorem.

THEOREM 4. Fix q ∈ R. With positive probability, there exists (t1, t2) ∈
[2,3]2 such that for 0< u< 1,

W(t1, t2 + u) < q <W(t1 + u, t2) and W(t1 − u, t2) > q.

For a point (t1, t2) as in the conclusion of this theorem, q is a local minimum of
s1 �→W(s1, t2), this local minimum occurs at t1 and (t1, t2) is the lower extremity
of a vertical segment that is contained in a downwards q-bubble. In other words,
W has a point of increase along the broken line with corner at (t1, t2).

The result of Theorem 3 raises the question of whether it is possible to fix the
value of t1 and find some random t2 so that (t1, t2) has property (1.2). We prove that
this is not possible even if the level q is allowed to be random. For convenience, we
consider broken lines going up and then to the right, rather than, as in Theorem 3,
lines going down and to the right. By time inversion properties of the Brownian
sheet (see [23], Chapter 1), it is sufficient to consider one case only.
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THEOREM 5. Fix t1 > 0. Almost surely, there do not exist t2 > 0 and h > 0
such that

W(t1, (t2 − u)∨ 0)≤W(t1, t2)≤W(t1 + u, t2) for all 0 ≤ u≤ h.

In the next section, we state the main estimates (Lemma 6) and use these to
prove Theorems 1 and 3. We also prove Theorem 5. Section 3 is concerned with
Hausdorff dimensions. In Section 4, we give the proof of the estimates in Lemma 6.
Finally, in Section 5, we prove Theorems 4 and 2.

2. Points of increase. Throughout this paper, q ∈ R is fixed. For u≥ 0, define

g(u)= u3/4

(3/4 could be replaced by any number greater than 1/2), and for t = (t1, t2) ∈ R2+
and n ∈ N, define Wt,n

R = (W
t,n
R (u), u≥ 0), Wt,n

U = (W
t,n
U (v), v ≥ 0) and Wt,n

L =
(W

t,n
L (u), 0 ≤ u≤ t1 − 2−2n), where

W
t,n
R (u)=W(t1 + 2−2n + u, t2)−W(t1 + 2−2n, t2),

W
t,n
U (v)=W(t1, t2 + 2−2n + v)−W(t1, t2 + 2−2n),

W
t,n
L (u)=W(t1 − 2−2n − u, t2)−W(t1 − 2−2n, t2)

(“L” for “left,” “R” for “right” and “U” for “up”).
For each t ∈ [2,3]2, define events F0(t, n), FR(t, n), FU(t, n) and FL(t, n) by

F0(t, n)= {
W(t1 + 2−2n, t2) ∈]q + 2−n, q + 2−n+1[,
W(t1, t2 + 2−2n) ∈]q − 2−n+1, q − 2−n[,
W(t1 − 2−2n, t2) ∈]q − 2−n+1, q − 2−n[},

FR(t, n)= {
W
t,n
R (·) hits 1 before hitting the graph of g(·)− 2−n

and Wt,n
R (u)≥ g(u)− 2−n, 0 ≤ u≤ 1

}
,

FU(t, n)= {
W
t,n
U (·) hits −1 before the graph of − g(·)+ 2−n,

and Wt,n
U (v)≤ −g(v)+ 2−n, 0 ≤ v ≤ 1

}
,

FL(t, n)= {
W
t,n
L (·) hits −1 before the graph of − g(·)+ 2−n

and Wt,n
L (u)≤ −g(u)+ 2−n, 0 ≤ u≤ 1

}
,

and finally,

FB(t, n)= FU(t, n)∩ F0(t, n) ∩FR(t, n), FH(t, n)= FL(t, n)∩ FR(t, n)
(“B” for “broken line” and “H ” for “horizontal line”).
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Let D2n be the set of points in [2,3]2 for which both coordinates are dyadic
rationals of order 2n. For i, j ∈ {0, . . . , n}, let Ei,j be the set of couples (s, t) of
elements of D2n such that

2−2(n−i+1) ≤ |s1 − t1| ≤ 2−2(n−i) and 2−2(n−j+1) ≤ |s2 − t2| ≤ 2−2(n−j).

Finally, we consider the (partial) order ≤ on R2+ defined by

s = (s1, s2)≤ t = (t1, t2) ⇐⇒ s1 ≤ t1 and s2 ≤ t2.

We also write s � t if s1 < t1 and s2 < t2.

LEMMA 6. Given q ∈ R, there exist constants K > 0, c > 0 and C > 0 such
that for all large n ∈ N and t ∈D2n:

(a) P (Fi(t, n))≥K 2−n, for i ∈ {0,R,U,L};
(b) P (FB(t, n))≥K 2−3n and P (FH(t, n))≥K 2−2n;
(c) for all (s, t) ∈Ei,j with s ≤ t or t ≥ s,

P
(
FB(s, n)∩ FB(t, n))≤C 2−(3n+i+j)(2−i ∧ 2−j );

(d) for all (s, t) ∈Ei,j ,

P
(
FH(s, n)∩FH(t, n))≤C 2−(2n+2i)(exp

(−c(j − i)2−(n−j))∧ 1
)
.

REMARK 7. (a) If s, t ∈ [2,3]2 but neither s ≤ t nor t ≤ s, then it follows
from the definition that FB(s, n) ∩ FB(t, n) = ∅. Indeed, if s1 < t1 and s2 > t2,
for instance, then W(t1, s2) > q on FB(s, n), while W(t1, s2) < q on FB(t, n).

(b) Note the difference in the exponent of the first 2 on the right-hand sides of
(c) and (d). A factor similar to the last exponential factor on the right-hand side of
(d) could be included on the right-hand side of (c), to yield

P
(
FB(s, n)∩ FB(t, n))

≤ C 2−(3n+i+j)(2−i ∧ 2−j ) exp
(−c(n− i)2−(n−j) − c(n− j)2−(n−i)).

This extra exponential factor is crucial in the proof of Theorem 1 (horizontal lines)
but is not needed in the proof of Theorem 3 (broken lines).

Assuming this lemma, we now prove Theorems 3 and 1. The method used in
the proofs is known as the “second-moment argument.”

PROOF OF THEOREM 3. We first show that with positive probability, there
exists t ∈ D2n such that (1.2) holds. This will in particular allow the reader to
compare this proof with the proof of Theorem 1 below. Let Xn(ω) be the number
of elements t ∈D2n such that ω ∈ FB(t, n). We shall show that

E(Xn)≥K 2n and E(X2
n)≤ 8C 22n.(2.1)
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Indeed, applying Lemma 6(b), we see that

E(Xn)= ∑
t∈D2n

P
(
FB(t, n)

)≥ (22n)2K 2−3n =K 2n.

Moreover, noticing that the cardinality of Ei,j is bounded by (22n)2 22i 22j , we can
apply Lemma 6(c) to get

E(X2
n)= ∑

s,t∈D2n

P
(
FB(s, n)∩ FB(t, n))

≤
n∑
i=0

n∑
j=0

∑
(s,t)∈Ei,j

C 2−(3n+i+j)(2−i ∧ 2−j )

≤ C 2n
n∑
i=0

n∑
j=0

2i+j (2−i ∧ 2−j )

≤ 2C 2n
n∑
i=0

i∑
j=0

2j

≤ 8C 22n.

This proves the inequalities in (2.1).
We now conclude from (2.1) thatE(X2

n)≤ (8C/K2)E(Xn)
2, and an application

of the Cauchy–Schwarz inequality to the right-hand side yields P {Xn > 0} ≥ K2

8C .
By Fatou’s lemma,

P

(
lim sup
n→∞

{Xn > 0}
)

≥ lim sup
n→∞

P {Xn > 0} ≥ K2

8C
> 0.

Let G = lim supn→∞{Xn > 0} and fix ω ∈ G. There is a sequence nk ↑ ∞ such
that Xnk(ω) > 0 for all k, that is, there exists a sequence (t(k))⊂ [2,3]2 such that
ω ∈ FB(t(k), nk) for all k (note in passing that {t(k)} is totally ordered for ≤ by
Remark 7(a)). By taking a subsequence, we can assume that (t(k)) converges to
t ∈ [2,3]2. By construction, W(t)= q and for 0< u< 1,

W(t1 + u, t2)− q = lim
k→∞W

(
t
(k)
1 + u, t

(k)
2

)− q ≥ lim
k→∞g(u− 2−nk)− 2nk

= g(u) > 0,

and similarly, W(t1, t2 + u) − q < 0. This proves that on G, there exists a
point (t1, t2) ∈ [2,3]2 such that property (1.2) holds. Building on the arguments
just developped, we shall show in Theorem 9 that with positive probability, the
Hausdorff dimension of the set of points with property (1.2) is 1/2, which implies
that there are uncountably many such points. This proves Theorem 3. �
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PROOF OF THEOREM 1. Let Xn(ω) be this time the number of elements
t ∈D2n such that ω ∈ FH(t, n). We shall show that

E(Xn)≥K 22n and E(X2
n)≤ C(4 + 4c)24n.(2.2)

Indeed, applying Lemma 6(b),

E(Xn)= ∑
t∈D2n

P
(
FH(t, n)

)≥ (22n)2K 2−2n =K 22n.

Moreover, by Lemma 6(d) and the bound on the cardinality of Ei,j ,

E(X2
n)= ∑

s,t∈D2n

P
(
FH(s, n)∩ FH(t, n))

≤
n∑
i=0

n∑
j=0

∑
(s,t)∈Ei,j

C 2−(2n+2i)(exp
(−c(j − i)2−(n−j))∧ 1

)

≤ C 22n
n∑
i=0

n∑
j=0

22j (exp
(−c(j − i)2−(n−j))∧ 1

)
.

We split the sum into two parts, according as i ≥ j or i < j . When i ≥ j, the last
factor equals 1 and the first part of the sum becomes

n∑
i=0

i∑
j=0

22j ≤ 2
n∑
i=0

22i ≤ 4 · 22n.

When i < j , the exponential plays a crucial role and the second part of the sum
becomes

n∑
i=0

n∑
j=i+1

22j exp
(−c(j − i)2−(n−j))=

n∑
j=1

j−1∑
i=0

22j exp
(−c(j − i)2−(n−j))

=
n∑
j=1

22j
j∑
i=1

exp(−c i 2−(n−j)).

The sum over i is geometric, equal to

exp(−c2−(n−j))− exp(−c(j + 1)2−(n−j))
1 − exp(−c 2−(n−j)) .

Because the numerator is ≤ 1 and the denominator is ≥ c 2−(n−j)−1, we conclude
that

E(X2
n)≤ C 22n

(
4 · 22n + c

n∑
j=0

22j · 2n−j+1

)
≤ C(4 + 4c)24n.

This proves the inequalities in (2.2). The remainder of the proof is similar to the
end of the proof of Theorem 3 and is therefore omitted. �
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REMARK 8. One could attempt to use the same method to prove existence of
points of increase along horizontal lines at a fixed level q , say. In this case, one
would define

FH0 (t, n)= FL(t, n) ∩F0(t, n)∩ FR(t, n).
As in Lemma 6(b), we would check that

P
(
FH0 (t, n)

)≥K 2−3n,

and as in Lemma 6(c), for all (s, t) ∈Ei,j ,

P
(
FH0 (s, n)∩ FH0 (t, n)

)
≤ C 2−(3n+2i)(2−i ∧ 2−j ) exp

(−c(n− i)2−(n−j) − c(n− j)2−(n−i)).
Letting Xn(ω) be the number of elements t ∈ D2n such that ω ∈ FH0 (t, n), the
reader may check that one gets, as in the proof of Theorem 1, that

E(Xn)≥K 2n and E(X2
n)≤ C′22n logn.

One cannot conclude from these bounds thatE(Xn)2/E(X2
n) is bounded below, so

the “second-moment argument” with these estimates fails.

PROOF OF THEOREM 5. The scaling properties of the Brownian sheet imply
that (s1, s2) �→W(s1t1, s2)/

√
t1 is again a Brownian sheet, and therefore it suffices

to prove the theorem in the case where t1 = 1. Similarly, (s1, s2) �→ √
vW(1, s2/v)

is a Brownian sheet, and therefore it suffices to show that for all h > 0, P (Fh)= 0,
where

Fh = {∃t2 ≥ 1 :W(1, (t2 − u)∨ 0)≤W(t1, t2)≤W(t1 + u, t2), ∀u ∈ [0, h]}.
For k ∈ N, let Fh,k be defined in the same way as Fh, but with the additional
restriction that t2 ∈ [1 + kh,1 + (k + 1)h]. It will even suffice to prove that
P (Fh,k)= 0, for all h > 0 and k ∈ N.

Fix h > 0 and k ∈ N. Then Fh,k ⊂Gh,k , where

Gh,k =
{
∃v ∈ [0, h] :W(1,1 + kh+ v)= sup

0≤u≤v
W(1,1 + kh+ u)(2.3)

and W(1 + u,1 + kh+ v)−W(1,1 + kh+ v)≥ 0, ∀u ∈ [0, h]
}
.(2.4)

Note that the set D of all v ∈ [0, h] with property (2.3) has the same law as
the zero set of a Brownian motion ([19], Chapter VI, Theorem 2.3). As such,
its Hausdorff measure with respect to the function t �→ (2t log log(1/t))1/2 is
finite a.s. (see [18, 22]), and in particular, its Hausdorff measure with respect
to the function

√
t is zero a.s. Therefore, for any ε > 0, we can cover D by a

sequence (Ij ) of (random) intervals such that
∑
j |Ij |1/2 < ε a.s. Note that the
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Ij are measurable relative to the sigma-field generated by the process W(1, ·). In
addition,

Gh,k ⊂⋃
j

Hh,k,j ,(2.5)

where

Hh,k,j = {∃v ∈ Ij :W(1 + u,1 + kh+ v)−W(1,1 + kh+ v)≥ 0, ∀u ∈ [0, h]}.
Fix j . We shall show that there is a constant K such that

P
(
Hh,k,j |W(1, ·))≤K|Ij |1/2 a.s.(2.6)

Indeed, if Ij = [u2, v2] and Bh,k,j (u) = W(1 + u,1 + kh + u2) − W(1,1 +
kh+ u2), then

W(1 + u,1 + kh+ v)−W(1,1 + kh+ v)

= Bh,k,j (u)+']1,1+u]× ]1+kh+u2,1+kh+v]W,
where for s1 ≤ t1 and s2 ≤ t2,

']s1,t1]× ]s2,t2]W =W(t1, t2)−W(s1, t2)−W(t1, s2)+W(s1, s2),

and so

Hh,k,j ⊂
{

inf
0≤u≤hBh,k,j (u)+ sup

0≤u≤h,u2≤v≤v2

']1,1+u]× ]1+kh+u2,1+kh+v]W ≥ 0
}
.

By the independent increments and scaling properties of the Brownian sheet, the
event on the right-hand side has the same conditional probability given W(1, ·) as{√

h
√

1 + kh+ u2 inf
0≤u≤1

B(u)+ √
h

√
v2 − u2 sup

0≤u≤1, 0≤v≤1
W̃ (u, v)≥ 0

}
,

where B(·) is a standard Brownian motion and W̃ is an independent Brownian
sheet. The probability of this event is bounded by∫

R

P

{
inf

0≤u≤1
B(u)≥ −x√v2 − u2

}
(2.7)

× P

{
sup

0≤u≤1, 0≤v≤1
W̃ (u, v) ∈ [x, x + dx]

}
.

From the reflection principle, P {inf0≤u≤1B(u)≥ −α}=P {|B(1)| ≤ α} ≤ 2ϕ(0)α,
where ϕ(·) is the standard N(0,1) density function, and therefore, the expression
in (2.7) is bounded by

C|Ij |1/2E
(

sup
0≤u≤1, 0≤v≤1

W̃ (u, v)

)
.

The expectation is finite by [17], Lemma 1.2, and so (2.6) is proved.
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From (2.5) and (2.6), we conclude that

P (Gh,k)≤E

(∑
j

P
(
Hh,k,j |W(1, ·))

)
≤KE

(∑
j

|Ij |1/2
)

≤Kε,

and as ε > 0 is arbitrary, this implies that P (Gh,k)= 0. This completes the proof
of Theorem 5. �

3. Hausdorff dimensions.

THEOREM 9. Fix q ∈ R and h > 0. With probability one, the Hausdorff
dimension of{

(t1, t2) ∈ R
2+ :W(t1, t2 + u) < q <W(t1 + u, t2), 0< u< h

}
is equal to 1/2.

PROOF. Given the estimates of Lemma 6, this proof goes along the same
lines as that of [16], Proposition 2.1. We first prove that the Hausdorff dimension
is ≤ 1/2. By scaling properties of the Brownian sheet, it suffices to consider the
case h= 1. We can also replace I by I ∩ [2,3]2. For s ∈D2n, define squares

In(s)= [s1, s1 + 2−2n] × [s2, s2 + 2−2n](3.1)

and events

Fn(s)= {∃ t ∈ In(s) :W(t1, t2 + u) < q <W(t1 + u, t2), 0< u≤ 1
}
.

We shall show below that there is K > 0 such that

P
(
Fn(s)

)≤Kn3 2−3n for all large n ∈ N and s ∈D2n.(3.2)

Assuming this, we now prove the theorem. Notice that for each n ∈ N and ω ∈-,
{In(s) : s ∈ D2n and ω ∈ Fn(s)} is a (random) covering of I ∩ [2,3]2, and for
α > 0,

E

( ∑
s∈D2n:ω∈Fn(s)

(
diam In(s)

)α) ≤ ∑
s∈D2n

2−α(2n+1/2)P (Fn(s))

≤K24n 2−2αnn3 2−3n

=Kn3 2(1−2α)n.

For α > 1/2, we conclude from Fatou’s lemma that

lim inf
n→∞

∑
s∈D2n:ω∈Fn(s)

(
diam In(s)

)α = 0 a.s.,

and therefore the Hausdorff dimension of I ∩ [2,3]2 is ≤ α a.s., for all α > 1/2,
and thus is ≤ 1/2 a.s.



THE BROWNIAN SHEET: ECCENTRIC BEHAVIORS 303

We now prove (3.2). Let

Ws
R(u)=W(s1 + u, s2)−W(s1, s2), Ws

U(v)=W(s1, s2 + v)−W(s1, s2),

and define

Gn(s)= {|W(s)− q|< n2−n}∩ G̃n(s),
where

G̃n(s)= {
Ws
R(u) >−n2−n+1 and Ws

U(u) < n2−n+1, 0< u< 1
2

}
.

Then Fn(s) \Gn(s) is contained in(
Fn(s)∩ {|W(s)− q| ≥ n2−n})

(3.3)
∪ (Fn(s)∩ {|W(s)− q|< n2−n} ∩ G̃n(s)c).

On Fn(s), there is t ∈ In(s) such that W(t)= q , and therefore the first term in the
union is contained in {

sup
t∈In(s)

|W(t)−W(s)| ≥ n2−n
}
,(3.4)

and the probability of this event is bounded by Ke−cn2
by [17], Lemma 1.3.

On {|W(s)− q|< n2−n} ∩ G̃n(s)c, there is u ∈]0,1/2] such that either

W(s1 + u, s2) < q + n2−n − n2−n+1 = q − n2−n,
or W(s1, s2 + u) > q + n2−n. Therefore, the second term in (3.3) is contained in{

sup
0<u<1/2

sup
0<v<2−2n

|W(s1 + u, s2 + v)−W(s1 + u, s2)|> n2−n
}

(3.5)

∪
{

sup
0<u<2−2n

sup
0<v<1/2

|W(s1 + u, s2 + v)−W(s1, s2 + v)|> n2−n
}
.(3.6)

Scaling properties of the Brownian sheet imply that the probability of this event is
not greater than

2P
{

sup
3<u<7/2

sup
0<v<1

|W(u,v)|> n
}

≤ 2Ke−cn2

by [17], Lemma 1.3. We have therefore shown that there is K > 0 such that for
all n,

P
(
Fn(s) \Gn(s))≤Ke−cn2

.

We now estimate P (Fn(s) ∩ Gn(s)). This is of course not greater than
P (Gn(s)), and by the independent increments property of the Brownian sheet,
this is bounded by

P
{|W(s)− q|< n2−n} · (Kn2−n+1)2 ≤K ′n3 2−3n.
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In conclusion, for large n,

P
(
Fn(s)

)≤ P
(
Fn(s) \Gn(s))+ P

(
Fn(s)∩Gn(s))

≤Kn3 2−3n,

and (3.2) is proved.
We now prove that the Hausdorff dimension of I is ≥ 1/2. Let Bn(ω) = {t ∈

D2n : ω ∈ FB(t, n)}. We begin by showing that for α < 1/2, there is p > 0 and
k <∞ such that for all n ∈ N,

P

{
1

card(Bn)2
Yn < k

}
≥ p,

where

Yn = ∑
s,t∈Bn
s "=t

1

|s − t|α .

First, observe that card Bn =Xn, where Xn is defined in the proof of Theorem 3,
and using (2.1) and the definition of the Ei,j , we see that

1

E(Xn)
2E(Yn)≤ 2−2n

K2

n∑
i=0

n∑
j=0

∑
(s,t)∈Ei,j

P {s ∈Bn, t ∈Bn}
(2−2(n−i+1) ∧ 2−2(n−j+1))α

.

Now s ∈ Bn and t ∈ Bn if and only if FB(s, n) ∩ FB(t, n) occurs, so by Lem-
ma 6(c), this is bounded by

4C

K2
22n

n∑
i=0

n∑
j=0

22i 22j 2−(3n+i+j)(2−i ∧ 2−j )(22(n−i) ∨ 22(n−j))α

≤ 8C

K2 2(−1+2α)n
n∑
i=0

i∑
j=0

2(1−2α)j

≤ C̃ 2(−1+2α)n 2(1−2α)n

= C̃

(the last inequality uses the fact that α < 1/2). Using the elementary inequality
P {X > λE(X)} ≥ (1 − λ)2E(X)2/E(X2) for a non-negative random variable X
(see, e.g., [9], page 8), we conclude from (2.1) that there is c > 0 (not depending
on n) such that P {Xn > cE(Xn)} > c, and from the above that there is L < ∞
such that

P

{
1

E(Xn)2
Yn ≤ L

}
> 1 − c

2
.
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Therefore, P {Yn ≤ Lc−2X2
n} ≥ c/2. Set F = lim supn→∞{Yn ≤ Lc−2X2

n}. By
Fatou’s lemma, P (F )≥ c/2, and on F ,

1

(card Bn)2
Yn ≤ Lc−2

occurs for infinitely many n. Because all limits of sequences (tn), with tn ∈ Bn
for all n, belong to I ∩ [2,3]2, we conclude following [12] (Chapter II, Section 3,
pages 160–162) that on F , the capacitary dimension of I ∩ [2,3]2, therefore its
Hausdorff dimension by Frostman’s Lemma (Kahane [9], Chapter 3, Section 3), is
at least α.

In fact, c actually depends on q , through the constants in Lemma 6(a) and (c).
However, inspection of the proof of these two statements in Lemma 6 (given in the
next section) shows that the constant in (c) of this Lemma does not depend on q ,
and for q in a bounded interval, the constant in (a) can be chosen independently
of q . Writing Iq instead of I to emphasize the dependence on q , notice that
scaling properties of the Brownian sheet imply that P {dim(Iq ∩ [2k,3k]2)≥ α} ≥
P {dim(Iq/k ∩ [2,3]2) ≥ α} ≥ c/2 for all k ∈ N∗. We conclude from the zero-one
law of Orey and Pruitt [17] that P {dimIq ≥ α} = 1. �

REMARK 10. Fix q ∈ R and h > 0, and let I be as in Theorem 9. Observe
that any pair {s, t} of points in I such that max(|s1 − t1|, |s2 − t2|) < hmust satisfy
either s � t or t � s. Indeed, if for instance, s1 > t1 and s2 ≤ t2, then (s1, t2)
would satisfy W(s1, t2) ≤ q (because s ∈ I) and W(s1, t2) > q (because t ∈ I), a
contradiction.

As mentioned at the end of the proof of Theorem 3, an obvious consequence of
Theorem 9 is that I is uncountable and therefore cannot consist only of isolated
points. If R is a square with sides of length h that contains an infinite subset IR
of I, then by the above, IR must be totally ordered for ≤ and is therefore contained
in a monotone curve. It might be tempting to conjecture that I contains a monotone
curve, but this is not the case. Indeed, any such curve would be contained in the
level set {t :W(t)= q}, but this is not possible by [3], Theorem 1: any Jordan arc
in the level set must be nowhere differentiable, whereas a monotone curve has a
tangent at many points. In fact, the discussion above, along with [3], Theorem 3,
implies that I is an uncountable but totally disconnected set.

REMARK 11. The same arguments as in the proof of the upper-bound in
Theorem 9 show that for h > 0, the Hausdorff dimension of the set

B = {
(t1, t2) ∈ R

2+ :W(t1 − u, t2) <W(t1, t2) <W(t1 + u, t2), 0< u< h
}

is ≤ 1. However, the bound in Lemma 6(d) is not sufficient to yield a lower bound
on the Hausdorff dimension of this set.
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4. Proof of Lemma 6. (a) Fix t ∈D2n. We first show that there is K > 0 such
that P (F0(t, n))≥K2−n. Let

Z1 =W(t1 − 2−2n, t2), Z2 =W(t1, t2)−W(t1 − 2−2n, t2),

Z3 =W(t1 + 2−2n, t2)−W(t1, t2), Z4 =W(t1, t2 + 2−2n)−W(t1, t2).

Because of the independence of increments of the Brownian sheet over disjoint
rectangles, Z1, Z2, Z3 and Z4 are independent Gaussian random variables, and

F0(t, n)= {
Z1 +Z2 +Z3 ∈]q + 2−n, q + 2−n+1[,
Z1 +Z2 +Z4 ∈]q − 2−n+1, q − 2−n[, Z1 ∈]q − 2−n+1, q − 2−n[}.

LetX1, X2, X3 andX4 be independent standardN(0,1) random variables, and set
αt,n = ((t1 − 2−2n) · t2)1/2. Then (Z1,Z2,Z3,Z4) has the same law as

(αt,nX1, 2−n√t2X2, 2−n√t2X3, 2−n√t1X4),

and therefore

P
(
F0(t, n)

) ≥ P
{
αt,nX1 + 2−n√t2(X2 +X3) ∈]q + 2−n, q + 2−n+1[,
αt,nX1 + 2−n(

√
t2X2 + √

t1X4) ∈]q − 2−n+1, q − 2−n[,
αt,nX1 ∈]q − 2−n+1, q − 2−n[, X2 ∈ [−1,1]}.

Because 1 ≤ αt,n ≤ 3, we use independence and the fact that the standard Gaussian
density is bounded below over the interval [−5,5] to see that this is bounded below
by ∫ (q−2−n)/αt,n

(q−2−n+1)/αt,n

dx1 fX1(x1)

∫ 1

−1
dx2 fX2(x2) · k0 ≥K 2−n,

where fX1 (resp. fX2) denotes the density function of X1 (resp. X2). For i ∈
{R,U,L}, P (Fi(t, n)) is bounded below by

P
{
B hits 1

3 before the graph of 1
3(g(·)− 2−n)

and Bu ≥ 1
3 (g(u)− 2−n), 0 ≤ u≤ 1

}
,

where B = (Bu) is a standard Brownian motion. This probability is ≥ K 2−n by
Lemma 12 below.

(b) By the independent increments property of W , FU(t, n), F0(t, n) and
FR(t, n) are independent and similarly, FL(t, n) and FR(t, n) are independent.
Therefore, P (FB(t, n))≥K 2−3n and P (FH(t, n))≥K 2−2n by (a).

(c) Observe that for (s, t) ∈Ei,j with s ≤ t ,

FB(s, n)∩ FB(t, n)
(4.1)

⊂ F0(s, n)∩ F̃U (s, t, n)∩ F̃R(s, t, n)∩ F0(t, n)∩ FU(t, n)∩ FR(t, n),



THE BROWNIAN SHEET: ECCENTRIC BEHAVIORS 307

where

F̃U (s, t, n)=
{
W
s,n
U (u)≤ −g(u)+ 2−n, 0 ≤ u≤ t2 − s2

2

}
,

F̃R(s, t, n)=
{
W
s,n
R (u)≥ g(u)− 2−n, 0 ≤ u≤ t1 − s1

2

}
.

Notice that FU(t, n) and FR(t, n) are independent of each other and of the other
events in (4.1), and the probability of each is bounded by P {B(u) ≥ −2−n,
0 ≤ u ≤ 1}, where (B(u)) is a standard Brownian motion, therefore, from the
reflection principle, by C 2−n [19], Chapter III, Section 3.

Let F (t1, t2)= σ(W(s1, s2), s1 ≤ t1, s2 ≤ t2) and set

Y1 =W

(
s1,

s2 + t2

2

)
,

Y2 =W

(
s1 + t1

2
, s2

)
−W(s1, s2),

Y3 =W(t1 + 2−n, t2)− Y1 − Y2.

The event F0(t, n) is contained in the event{
W(t1 + 2−2n, t2) ∈]q + 2−n, q + 2−n+1[}.

This event can be written{
Y3 ∈]q + 2−n − Y1 − Y2, q + 2−n+1 − Y1 − Y2[},

and therefore its conditional probability given F (s1, (s2 + t2)/2)∨F ((s1 + t1)/2,
t2) is bounded above by the (unconditional) probability that Y3 lie in some given
interval of length 2−n. Because (s, t) ∈ Ei,j , Var Y3 ≥ (2−2(n−i) ∨ 2−2(n−j))/8,
and so this probability is ≤ C(2−i ∧ 2−j ). The remaining three events F0(s, n),
F̃U (s, t, n) and F̃R(s, t, n) are independent,

P
(
F0(s, n)

)≤ P
{
W(s1 + 2−2n, s2) ∈]q + 2−n, q + 2−n+1[}≤C 2−n

and

P
(
F̃U(s, t, n)

)≤ P
{
B(u)≤ 2−n, 0 ≤ u≤ 2−2(n−j+2)}≤ C 2−j ,

P
(
F̃R(s, t, n)

)≤ P
{
B(u)≥ −2−n, 0 ≤ u≤ 2−2(n−i+2)}≤ C 2−i

(we have again used the reflection principle, along with Brownian scaling). Putting
together the bounds above, we conclude that

P
(
FB(s, n)∩FB(t, n))≤ C 2−3n 2−i 2−j (2−i ∧ 2−j ),

which is the estimate in (c).
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(d) Fix (s, t) ∈ Ei,j such that s ≤ t (the other relative positions of s and t are
bounded similarly). Define

F̂R(s, t, n)=
{
W
s,n
R (u)≥ g(u)− 2−n, 0 ≤ u≤ t1 − s1

2

}
,

F̂L(t, s, n)=
{
W
t,n
L (u)≤ −g(u)+ 2−n, 0 ≤ u≤ t1 − s1

2

}
,

GR(t, s, n)= {
W
t,n
R (·) hits 1 before −2−n,

W
s,n
R (t1 − s1 + ·) hits 1 before −2−n}.

Observe that

FH(s, n)∩ FH(t, n)⊂ FL(s, n)∩ F̂R(s, t, n)∩ F̂L(t, s, n)∩GR(t, s, n),
and that the first three events on the right-hand side are mutually independent.
Considerations in the proof of (c) show that

P
(
FL(s, n)

)≤ C 2−n, P
(
F̂R(s, t, n)

)≤ C 2−i, P
(
F̂L(t, s, n)

)≤C 2−i .
Let

H(s, t, n)= FL(s, n)∩ F̂R(s, t, n)∩ F̂L(t, s, n)∩ {Ws,n
R (t1 − s1) >−2−n}.

Then P (H(s, t, n)) ≤ C 2−n−2i , and therefore the conclusion will follow if we
prove that

P
(
GR(t, s, n)|H(s, t, n))≤K 2−n(exp(−c(j − i)2−(n−j))∧ 1

)
.(4.2)

When j ≤ i, the right-hand side is equal to 2−n. Because

GR(t, s, n)⊂ {Wt,n
R (·) hits 1 before −2−n}

and the event on the right-hand side is independent ofH(s, t, n) and its probability
is ≤ 2−n, inequality (4.2) is satisfied in this case.

Assume now that i < j . Set

Y =W(t1, s2)−W

(
s1 + t1

2
+ 2−2n, s2

)
,

Ŷ = E

(
Y |Wt,n

L (u), 0 ≤ u≤ t1 + s1

2

)
= s2

t2
W
t,n
L

(
s1 + t1

2
− 2−2n

)
,

Z =W
s,n
R (t1 − s1)

=W
s,n
R

(
s1 + t1

2

)
+ Ŷ + (Y − Ŷ )+ (

W(t1 + 2−2n, s2)−W(t1, s2)
)
.

Then

GR(t, s, n)= {
W
t,n
R hits 1 before −2−n, W(t1,s2),n

R (·)+Z hits 1 before −2−n}.



THE BROWNIAN SHEET: ECCENTRIC BEHAVIORS 309

Notice that (W t,n
R (·),W(t1,s2),n

R (·)) is in dependent of σ(H(s, t, n)) ∨ σ(Z), and
therefore, for each z, the event

G(t, s, n; z)= {
W
t,n
R (·) hits 1 before −2−n,

W
(t1,s2),n
R (·) hits 1 − z before − z− 2−n}

is independent of σ(H(s, t, n))∨ σ(Z). It follows that

P
(
GR(t, s, n)|H(s, t, n))=

∫ +∞
−2−n

P
(
G(t, s, n; z))fZ|H(s,t,n)(z) dz,(4.3)

where fZ|H(s,t,n) denotes the conditional density of Z given H(s, t, n). Let
G′(t, s, n; z) be defined as G(t, s, n; z) but with 1 − z replaced by 1/2. For
z ≤ 1/2, G(t, s, n; z) ⊂ G′(t, s, n; z), and P (G′(t, s, n; z)) is a non-decreasing
function of z, which is therefore bounded by P (G′(t, s, n; z∨ 2−n)).

Given H(s, t, n), the law of Ws,n
R ((s1 + t1)/2) is that of a standard Brownian

motion at time s1/2
2 (t1 −s1)/2 conditioned not to have hit −2−n, and the law of Y is

also, but at time t1/22 (t1 −s1)/2. Because Y − Ŷ is independent ofH(s, t, n), its law
givenH(s, t, n) is still normal, with mean 0 and variance s2(1 − s2/t2)(t1 − s1)/2.
It follows therefore from Lemmas 14 and 15 below that the conditional density
of 2n−i Z given H(s, t, n) is bounded by

ψ(x)=K(|x|3 ∨ 1)e−x2/2,

where K is a constant that does not depend on n, i or j , and therefore the
conditional probability in (4.3) is no greater than∫ +∞

−2−i
P
(
G′(t, s, n; (2−(n−i)x)∨ 2−n))ψ(x)dx.(4.4)

Let k0 = supx≥0 x
1/2 2−x . Then the integral in (4.4) can be split into two integrals,

the first over x ≤ (n − i)1/2/(16k0), the second over x > (n − i)1/2/(16k0). By
Lemma 13 below, the first integral is bounded by

∫ +∞
−2−i

2−n
(
(2−(n−i)x)∨ 2−n

2−(n−j+1)

)c2−(n−j)/√s2
ψ(x)dx

= 2−n(2i−j )c2−(n−j)/√s2
∫ +∞
−2−i

(x ∨ 2−i)c2−(n−j)/√s2ψ(x)dx(4.5)

≤K 2−n 2−c(j−i)2−(n−j)/√s2,

while the second integral is bounded by∫ +∞
(n−i)1/2/(16k0)

P {Wt,n
R (·) hits 1 before −2−n}ψ(x)dx ≤K2−ne−(n−i)/C.
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For c < 1/C, the right-hand side is less than or equal to

K 2−n exp
(−c(n− i)2−(n−j)).(4.6)

We observe that

2−c(n−i)2−(n−j) ≤ 2−c(j−i)2−(n−j)
,

and, from (4.4), (4.5) and (4.6), we conclude that (4.2) holds with i < j . This
completes the proof of Lemma 6. �

LEMMA 12. Fix α > 1/2 and κ > 0. Set gα(u) = uα and let B = (Bu,

u ≥ 0) be a standard Brownian motion started at zero. There is a constant c > 0
[c = c(α, κ)] such that for all 0< ε < 1,

P {B hits κ before the graph of κ(gα(·)− ε)
(4.7)

and Bu > κ(gα(u)− ε), 0 ≤ u≤ 1} ≥ c ε.

PROOF. Because κ > 0 is fixed, we assume to simplify the notations that κ = 1
and we write g(u) instead of gα(u). Define

τε = inf{u > 0 : Bu = 1 or Bu ≤ g(u)− ε},
which is a stopping time relative to the natural filtration (Fu) of B . The probability
in (4.7) is bounded below by

P
({τε ≤ 1, Bτε = 1} ∩ {Bu > g(u)− ε, τε < u≤ 1})

≥E
(
1{τε≤1/2, Bτε=1}P

{
Bu ≥ g(u)− ε, τε < u < τε + 1|Fτε

})
.

On {τε ≤ 1
2 , Bτε = 1}, the conditional probability is bounded below by

P {1 +Bu > g(
1
2 + u), 0< u< 1},

which is a positive number that does not depend on ε. It is therefore sufficient to
show that

P {τε ≤ 1
2 , Bτε = 1} ≥ c ε.

Set σε = inf{u > 0 : Bu ∈ {−ε,1}}. Then τε ≤ σε , and Bσε = 1 on {Bτε = 1}.
Therefore,

P {τε ≤ 1
2 , Bτε = 1} = P {τε ≤ 1

2 , Bτε = 1|Bσε = 1}P {Bσε = 1}.
The second factor is equal to ε ([19], Chapter II, Proposition 3.8), while according
to Williams’ path decomposition theorem ([19], Chapter VI, Proposition 3.13(iv)),
the first is equal to

Pε{ρ1+ε ≤ 1
2 , χu > g(u), 0< u< ρ1+ε},
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where (χu, u ≥ 0) is (under Pε) a Bessel(3) process started at ε and ρ1+ε =
inf{u > 0 : χu = 1 + ε}. This probability is bounded below by

Pε{ρ2 ≤ 1
2 , χu > g(u), 0< u< ρ2} ≥ P0{ρ2 ≤ 1

2 , χu > g(u), 0< u< ρ2}.
Because α > 1

2 , according to a result of M. Motoo [14], g(·) is a lower escape
function for the Bessel(3) process started at 0 (see also [11], Example 5.4.7), and
therefore this last probability is a positive number that does not depend on ε. This
completes the proof. �

LEMMA 13. There are K > 0 and c > 0 such that: for all s, t ∈ [2,3]2 with
s1 ≤ t1, s2 < t2 and t1 − s1 ≤ 1/2, for all large n and x ∈ [2−n,1/16],

P
{
W
t,n
R (·) hits 1 before − 2−n, W(t1,s2),n

R (·) hits 1 before − x − 2−n}

≤K 2−n
(

x√
t2 − s2

)c√t2−s2/√s2
.

PROOF. Fix s, t ∈ [2,3]2. The law of (W t,n
R (·), W(t1,s2),n

R (·)) is the same as
that of (√

s2B1,
√
s2B1 + √

t2 − s2B2
)
,

where (B1,B2) is a standard planar Brownian motion started at the origin. Let

D(n,x)= {
(b1, b2) ∈ R

2 : −x − 2−n <
√
s2 b1 < 1,

−2−n <
√
s2 b1 + √

t2 − s2 b2 < 1
}
.

Then D(n,x) is a parallelogram (see Figure 1), with one vertex at the point

I =
(−x − 2−n

√
s2

,
x√
t2 − s2

)
.

Let L1 be the union of the two boundary segments of D(n,x) that meet at I , and
L2 the union of the other two boundary segments. The probability in the statement
of the lemma is bounded above by

P(0,0)
{
(B1,B2) exits D(n,x) via L2

}
.(4.8)

The Euclidean distance from I to the origin is bounded by

x + 2−n
√
s2

+ x√
t2 − s2

=
((

1 + 2−n

x

)√
t2 − s2√
s2

+ 1
)

x√
t2 − s2

≤ 3x√
t2 − s2

(we have used the fact that 2−n ≤ x), while the distance from I to

J =
(

1√
s2
,
−2−n − 1√
t2 − s2

)
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FIG. 1. The set D(n,x).

is bounded below by

1√
2

(
1√
s2

+ 2−n + 1√
t2 − s2

)
≥ 1√

2

1√
t2 − s2

.

We now restate the problem in a new coordinate system with origin at 0′ = I

and coordinate axes in the directions

b′
1 =

(
1,

−√
s2√

t2 − s2

)
, b′

2 =
( √

s2√
t2 − s2

,1
)
.

The probability in (4.8) is bounded above by

P(3x/
√
t2−s2,2−n)

{
(B1,B2) exits D′ via L′

2
}
,(4.9)
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where

D′ =
{
(b′

1, b
′
2) ∈ R

2 : 0<
√
t2 − s2 b

′
1 + √

s2 b
′
2 <

1√
3
, 0< b′

2 <
1√
3

}

and L′
2 is the union of the two boundary segments of D′ that do not contain the

origin (of the new coordinate system).
If the first constraint in the definition of D′ were not present, the probability in

(4.9) would reduce to a hitting probability for real Brownian motion. In order to
evaluate the influence of the constraint 0<

√
t2 − s2 b

′
1 +√

s2 b
′
2, we use a method

first developed by Spitzer [21] (whose results were later significantly extended
in [6] and [1]) to study moments of escape times from cones, rather than the
probability of exiting a truncated cone through a specific subset of the boundary, as
is required here. We identify R2 with the complex plane C and consider the image
of D′ under the transformation ψα: C → C defined by

ψα(z)= zπ/(π−α),

where α ∈]0, π/2[ is defined by tanα = √
t2 − s2/

√
s2. Under this transformation,

which is conformal in D′, (B1,B2) becomes a time-changed Brownian motion
(Bτt , t ≥ 0) [19], Chapter V, Section 2, Theorem 2.5.

The image of D′ under ψα contains the rectangle

R =
]
−1

2
,

1

2

(
1 + 3x√
t2 − s2

)π/π−α[
×
]
0,

1

2
√

3

[
.

Let S = (3x/
√
t2 − s2,2−n) and S′ = ψα(S). If S′ = (b′

1, b
′
2), we estimate b′

1 and
b′

2 as follows. Let (r, θ) be the polar coordinates of S, and note that r sin θ = 2−n
and

r ≤ 3x√
t2 − s2

+ 2−n ≤ 4x√
t2 − s2

.

The polar coordinates of S′ are(
rπ/(π−α), π

π − α
θ

)
.

Use the elementary inequality 1/(1 − x) ≤ 1 + 2x to see that the b′
2-coordinate

of S′ is

rπ/(π−α) sin
(

π

π − α
θ

)
≤ (r sin θ) r2α/π sin( π

π−α θ)
sin θ

≤ c 2−nr2α/π .(4.10)

The b′
1-coordinate of S′ satisfies

0 ≤ b′
1 ≤ rπ/(π−α) cos

(
π

π − α
θ

)
≤
(

4x√
t2 − s2

)π/(π−α)
.
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The distance of S′ to the left boundary segment of R is therefore at least 1/2. The
distance to the right boundary segment is at least

1

2

(
1 + 3x√
t2 − s2

)π/(π−α)
−
(

4x√
t2 − s2

)π/(π−α)

= 1

2

(
1 + 3x√
t2 − s2

)π/(π−α)(
1 − 2

(
4x

1 + 3x

)π/(π−α))
.

The last factor is ≥ 1/2 because x ≤ 1/16, while the preceding factor is ≥ 1.
Therefore, this distance is ≥ 1/4. Finally, the distance of S′ to the top boundary
segment of R is at least 1/4. Therefore, the probability, starting from S′

1, that the
motion (Bτt ) exits R though its upper, left or right boundary segments, which is
the same as for planar Brownian motion started at S′, is bounded by a constant
times the distance of S′ to the lower boundary segment of R. By (4.10), this means
that the probability in (4.9) is

≤K · 2−n
(

x√
t2 − s2

)2α/π

.

Because α = arctan(
√
t2 − s2/

√
s2) and arctanx ≤ x for x ≥ 0, we get the

inequality stated in the lemma with c= 2/π . �

LEMMA 14. Fix Ki > 0, ni ∈ N∗, c > 0 and let Xi , i = 1,2, be independent
random variables with density bounded by Ki(|x|ni ∨ 1) exp(−x2/c). Then there
is a constant K such that the density of X1 +X2 is bounded by K(|x|n1+n2 ∨ 1)
exp(−x2/(2c)).

PROOF. Notice that P {X1 +X2 ∈ dz} is equal to∫
R

dx fX1(x)fX2(z−x)≤K1K2

∫
R

dx (|x|n1 ∨1)e−x2/c (|z−x|n2 ∨1)e−(z−x)2/c.

Elementary algebra shows that this equals

K1K2e
−z2/c

∫
R

dx
(|x|n1 ∨ 1

)
(|z− x|n2 ∨ 1) exp

(
−2(x − z/2)2

c
+ z2

2c

)
.

For fixed z, use the change of variables y = x − z/2 to see that this equals

K1K2e
−z2/(2c)

∫
R

dy

(∣∣∣∣y + z

2

∣∣∣∣
n1

∨ 1
)(∣∣∣∣y − z

2

∣∣∣∣
n2

∨ 1
)
e−2y2/c

≤K1K2e
−z2/(2c)

(
c

2

)1/2

E

((∣∣∣∣
√
c

2
Y + z

2

∣∣∣∣
n1

∨ 1
)(∣∣∣∣

√
c

2
Y − z

2

∣∣∣∣
n2

∨ 1
))
,

where Y is a N(0,1) random variable. For n1 ∈ N and n2 ∈ N, one can develop the
powers using Newton’s rule, to see that the expectation is bounded by

K(|z|n1+n2 ∨ 1). �
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LEMMA 15. Let B be a standard Brownian motion. There is K > 0 such that,
for all 0 < ε < 1, the conditional density of B(1) given that B has not hit −ε
during the time interval [0,1] is bounded by K(|x| ∨ 1) exp(−x2/2).

PROOF. Let ϕ be the density of a N(0,1) random variable. By the reflection
principle, for x >−ε,

P
{
B(1) ∈ [x, x + dx] | B has not hit −ε}= (ϕ(x)− ϕ(x + 2ε)) dx

2P {−ε < B(1) < 0}

= ϕ(x)
1 − exp(−2xε− 2ε2)

2
∫ 0
−ε ϕ(y) dy

dx.

From the elementary inequality 1 − e−x ≤ x, we see that the numerator is bounded
above by

2xε+ 2ε2 = 2ε(x + ε)≤ 2ε(x + 1)≤ 4ε(|x| ∨ 1),

while the denominator is bounded below by 2ϕ(−1)ε, therefore the fraction is
bounded above by K(|x| ∨ 1), with K = 2/ϕ(−1). �

5. Other properties. We shall now prove Theorem 4. The proof relies on the
following lemma.

LEMMA 16. Fix q ∈ R, and set

F̃0(t, n)= {
W(t1 + 2−2n, t2) ∈ ]q + 2−n, q + 2−n+1[,
W(t1, t2 + 2−2n) ∈ ]q − 2−n+1, q − 2−n[,
W(t1 − 2−2n, t2) ∈ ]q + 2−n, q + 2−n+1[,

W(t1, t2) ∈ ]q − 2−n+1, q − 2−n[,
W(t1, t2 − 2−2n) ∈ ]q + 2−n, q + 2−n+1[}

and

F̃L(t, n)= {
W
t,n
L (u)≥ g(u)− 2−n, 0 ≤ u≤ 1

}
.

There exist a constant K1 > 0 such that for all large n and t = (t1, t2) ∈ [2,3]2,

P
(
F̃L(t, n)∩ FU(t, n)∩ F̃0(t, n) ∩FR(t, n))≥K1 2−4n.

PROOF. By the independent increments property of the Brownian sheet,
FU(t, n), FR(t, n) and F̃L(t, n)∩ F̃0(t, n) are independent. Moreover, P (FU(t, n))
≥K 2−n and P (FR(t, n))≥K 2−n by Lemma 6(a), so we only need to show that
P (F̃L(t, n)∩ F̃0(t, n))≥ C 2−2n.
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Recall that F (t1, t2) = σ(W(s1, s2), s1 ≤ t1, s2 ≤ t2) and let G(t1, t2) =
σ(W(s1, t2), s1 ≤ t1). Recall that Wt

R(·) and Wt
U(·) are defined in the proof of

Theorem 9, and define the events

F1 = {
W(t1 − 2−2n, t2) ∈]q + 2−n, q + 2−n+1[},

F2 = {
W(t1, t2) ∈]q − 2−n+1, q − 2−n[},

F3 = {
W(t1, t2 − 2−2n) ∈]q + 2−n, q + 2−n+1[},

F4 = {
W(t1, t2)+Wt

R(2
−2n) ∈]q + 2−n, q + 2−n+1[},

F5 = {
W(t1, t2)+Wt

U(2
−2n) ∈]q − 2−n+1, q − 2−n[}.

Then

F̃0(t, n)= F1 ∩ · · · ∩ F5.

Notice that

P
(
F5|F (t))= P

{
2n
(
q −W(t)

)+Z ∈]−2,−1[ |W(t)},
where Z is N(0,1) and independent of F (t). On F2, 1 ≤ 2n(q − W(t)) ≤ 2,
so on F2, this conditional probability is bounded below by P {Z ∈ I }, where
I ⊂ [−1,1] is some interval an length 1. In other words, on F2,

P
(
F5|F (t))≥ ϕ(1),

where ϕ(·) is the N(0,1) density function.
Notice also that F4 and F5 are conditionally independent given F (t), and

reasoning as above, we find that on F2,

P
(
F4|F (t))≥ ϕ(4).

Observe now that

W(t1, t2 − 2−2n)= t2 − 2−2n

t2
W(t)+

(
t1
t2 − 2−2n

t2

)1/2

2−nY,

where Y is N(0,1) and independent of G(t). Because W restricted to ([0, t1] ×
{t2}) ∪ ({t1} × [0, t2]) is a Markov process (it is a Brownian motion as one moves
to the right along the horizontal segment, and then a Brownian bridge as one
continues down the vertical segment),

P
(
F3|G(t))
= P

{
2n
(
q −W(t)

)+ 2−n

t2
W(t)+

(
t1
t2 − 2−2n

t2

)1/2

Y ∈]1,2[
∣∣∣W(t)},

so on F2, this is bounded below by P {Y ∈ I }, where I ⊂ [1,5] is a fixed interval
of length 1. In other words, on F2,

P
(
F3|G(t))≥ ϕ(5).
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Also, reasoning as above, we conclude that on F1,

P
(
F2|G(t1 − 2−2n, t2)

)≥ c1 > 0.

Putting together the estimates above yields a positive constant c̃ such that

P
(
F̃L(t, n)∩ F̃0(t, n)

)≥ c̃P
(
F̃L(t, n)∩ F1

)
,

and so we must show that there is c > 0 such that P (F̃L(t, n)∩ F1)≥ c 2−2n.
Notice that Wt,n

L (·) is a Brownian motion with speed contained in [2,3], and
set H = σ(W

t,n
L (u), 0 ≤ u ≤ 1). Let σn = inf{u ≥ 0 :Wt,n

L (u) = g(u) − 2−n},
so that F̃L(t, n) = {σn > 1}, and let Y1 = W(t1 − 2−2n − 1,1), Y2 = −Wt,n

L (1).
Notice that {σn > 1} ∈ H , Y2 is H -measurable, and F1 = {Y1 ∈]q + 2−n − Y2,
q + 2−n+1 − Y2[ }. Let G = {Wt,n

L (1) ∈ [1,2]}. Because Y1 is normal with
variance in [1,6] and Y1 is independent of H , it follows that on G ∩ {σn > 1},
P (F1|H) ≥ c12−n, where c1 > 0 (c1 depends on q but not on n or t), and 2−n is
the length of the interval in the definition of F1.

Set τ = inf{u ≥ 0 :Wt,n
L (u)= 3/2}. On {σn > 1, τ > 1}, G occurs, and by the

strong Markov property at τ , there is 1> c2 > 0 such that

P (G∩ {σn > 1, τ ≤ 1})≥ c2P {σn > τ, τ ≤ 1} ≥ c2P {σn > 1, τ ≤ 1}.
We can now write

P
(
F̃L (t, n)∩ F1

)≥ P
(
F1 ∩G∩ {σn > 1} ≥ c22−nP

(
G∩ {σn > 1}).

The last probability is equal to

P {σn > 1, τ > 1} + P (G∩ {σn > 1, τ ≤ 1})
≥ P {σn > 1, τ > 1} + c2P {σn > 1, τ ≤ 1} ≥ c2P {σn > 1} ≥ c32−n

by Lemmma 12. Lemma 16 is proved. �

PROOF OF THEOREM 4. Set

F(t, n)= F̃L(t, n)∩ FU(t, n)∩ F̃0(t, n)∩ FR(t, n)
and let Xn(ω) be the number of elements t ∈ D2n such that ω ∈ F(t, n). From
Lemma 16, we conclude that

E(Xn)=
∑
t∈D2n

P
(
F(t, n)

)≥ (22n)2K1 2−4n =K1.

Notice that for s, t ∈ D2n with s "= t , F(s,n) ∩ F(t, n) = ∅. Indeed, if s1 < t1
and s2 < t2, then ω ∈ F(s,n) implies W(s1, t2) < q while ω ∈ F(t, n) implies
W(s1, t2) > q . If s1 < t1 and s2 > t2, then ω ∈ F(s,n) implies W(t1, s2) > q

while ω ∈ F(t, n) implies W(t1, s2) < q . If s1 = t1 and s2 < t2, then ω ∈ F(s,n)
implies W(s1, t2 + 2−2n) < q while ω ∈ F(t, n) implies W(s1, t2 − 2−2n) > q .
If s1 < t1 and s2 = t2, then ω ∈ F(s,n) implies W(t1, s2) > q while ω ∈ F(t, n)
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implies W(t1, s2) < q . Since s and t can be interchanged, this shows that F(s,n)∩
F(t, n)= ∅, when s "= t . Therefore

P {Xn > 0} = P

( ⋃
t∈D2n

F (t, n)

)
= ∑
t∈D2n

P
(
F(t, n)

)=E(Xn)≥K > 0.

The remainder of the proof is similar to the end of the proof of Theorem 3 and is
therefore omitted. �

We now prove Theorem 2. The proof of this theorem uses the following lemma.

LEMMA 17. Let B = (Bu) be a standard Brownian motion, and for each
x > 0, set τx = inf{u > 0 : Bu = x}. Given ε > 0, there are positive constants
K and C such that for all large n, the event “there is x ∈ [n2 2−n, n−6] such that
τx ≤ n2x2 and infu≤τx B(u)≥ −Kx” has probability at least 1 −C 2−n(1−ε).

PROOF. For k = 0,1, . . . , [n(1 − ε/2)], set

τ (k) = inf
{
u > 0 : Bu ∈ {−Kn2 2−n+k, n2 2−n+k}}.

Observe that

P0{B hits −Kn22−n before n22−n} = 1

K + 1
,(5.1)

P−Kn22−n+k{B hits −Kn2 2−n+k+1 before n2 2−n+k+1} = K + 2

2K + 2
(5.2)

and

P {τ (k) ≥ n6 2−2n+2k} ≤ P
{

sup
0<u<n62−2n+2k

|B(u)| ≤Kn2 2−n+k}

= P

{
sup

0<u<1
|B(u)| ≤ K

n

}
(5.3)

≤ Ce−cn2
.

Notice that the complement of the event described in the lemma is contained in

[n(1−ε/2)]⋂
k=0

({τ (k) ≥ n6 2−2n+2k} ∪ {Bτ(k) = −Kn2 2−n+k})

⊂
([n(1−ε/2)]⋂

k=0

{Bτ(k) = −Kn6 2−n+k}
)

∪
([n(1−ε/2)]⋃

k=0

{τk ≥ n6 2−2n+2k}
)
.
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By (5.3), the second term has probability bounded by Cne−cn2
, while by (5.1),

(5.2) and the strong Markov property, the probability of the first term is bounded
by

1

K

(
K + 2

2K + 2

)n/(1−ε/2)
≤ 2−n(1−ε)

provided K is large enough. This proves the lemma. �

PROOF OF THEOREM 2. In view of scaling properties of the Brownian sheet,
it is sufficient to show that there does not exist (t1, t2) ∈ [2,3]2 such that:

(i) W(t1, t2)= q;
(ii) W(t1 + u, t2) > q , 0< u≤ 1;

(iii) W(t1 − u, t2) > q , 0< u≤ 1;
(iv) (t1 − 1, t2) and (t1 + 1, t2) belong to distinct components of L+(q).
For s = (s1, s2) ∈ D2n, let Fn(s) be the event just described but with the

additional requirement (t1, t2) ∈ In(s), where In(s) is defined in (3.1). It suffices
to show that sups∈D2n

P (F (s, n))= o(2−4n). For i ∈ {L,R}, let

τi(n)= inf{u≥ 0 :Ws
i (u)= n−3},

and set

Gn(s)= {|W(s)− q| ≤ n2−n}∩ {
Ws
R(u)≥ −n2−n, 0 ≤ u≤ 1

}
∩ {Ws

L(u)≥ −n2−n, 0 ≤ u≤ 1
}∩ {

τR(n)∨ τL(n)≤ n−4}.
Then

P
(
Fn(s)

)≤ P
(
Fn(s)∩Gn(s))+ P

(
Fn(s) \Gn(s)).

Observe that the second term on the right-hand side is bounded by the sum of four
terms:

P
(
Fn(s)∩ {|W(s)|> n2−n}),(5.4)

P
(
Fn(s)∩ {Ws

R(·) hits − n2−n before time 1}),(5.5)

P
(
Fn(s)∩ {Ws

L(·) hits − n2−n before time 1}),(5.6)

P {τR(n)∨ τL(n) > n−4}.(5.7)

By (i), the probability in (5.4) is bounded by the probability in (3.4), therefore by
Ke−cn2

. Similarly, the probability in (5.5) is bounded by the probability of the
event in (3.5), therefore by Ke−cn2

, and a similar bound holds for (5.6). Finally,
(5.7) is bounded by

2P {τR(n) > n−4} = P

{
sup

0≤u≤1
|B(u)|< 1

n

}
≤Ke−cn2

.

It therefore only remains to show that P (Fn(s)∩Gn(s))= o(2−4n).
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Fix ε > 0 and choose K > 0 and C > 0 so that the event H(n, k) described in
Lemma 17 has probability at least 1 −C 2−n(1−ε). For i ∈ {U,D}, set

Hi(n)=
{
∃x ∈ [n22−n, n−4] : τ ix ≤ n2x2, inf

u≤τ ix
Ws
i (u)≥ −Kx

}
.

Here, τ ix is defined in the same way as τx in Lemma 17, but with B replaced by
W
(s1−τL(n),s2)
i .
Note that HU(n) is independent of HD(n) and Gn(s), and HD(n) is “essen-

tially” independent of Gn(s). Therefore, by Lemma 17,

P
(
Gn(s)∩HU(n)c ∩HD(n)c)≤ (n2−n)3 (C2−n(1−ε))2 = o(2−4n).

It remains now to show that

P
(
Fn(s)∩Gn(s)∩HU(n))= o(2−4n)

and
P
(
Fn(s)∩Gn(s)∩HD(n))= o(2−4n).

We only examine the first probability, as the other is “similar.”
Let xU(n) be the smallest x ∈ [n22−n, n−4] that guarantees the occurence of

HU(n), and set τU(n) = τUxU(n). Note that τU(n) is a stopping time relative to
WU(·). Let B be the union of the three segments

B1 = {s1 − τL(n)} × [s2, s2 + τU(n)],
B2 = [s1 − τL(n), s1 + τR(n)] × {s2 + τU(n)},
B3 = {s1 + τR(n)} × [s2, s2 + τU(n)],

and notice that on Fn(s)∩Gn(s)∩HU(n), W |B hits 0. Define

η(u, v)=']s1−τL(n),s1−τL(n)+u]×]s2,s2+v]W,
and observe that on Fn(s)∩Gn(s)∩HU(n), for (t1, t2) ∈ B1,

W(t1, t2)=W(s)+Ws
L(τL(s))+W

(s1−τL(n),s2)
U (t2 − s2)

≥ (q − n2−n)+ n−3 −KxU(n)

≥ q − n2−n + n−3 −Kn−4

≥ q + 1
2n

3

for large n, and therefore W |B1 > 0. On the same event, for (t1, t2) ∈ B2,

W(t1, t2)=W(s)+Ws
L orR(|t1 − s1|)+W

(s1−τL(n),s2)
U

(
τU(n)

)
+ η

(
t1 − s1 + τL(n), τU(n)

)
≥ (q − n2−n)− n2−n + xU(n)+ η

(
t1 − s1 + τL(n), τU (n)

)
≥ q − 1

2xU(n)+ η
(
t1 − s1 + τL(n), τU (n)

)
,
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for n large, while for (t1, t2) ∈ B3,

W(t1, t2)=W(s)+Ws
R(τR(n))+W

(s1−τL(n),s2)
U (t2 − s2)

+η(τR(n)+ τL(n), t2 − s2
)

≥ q − n2−n + n−3 −KxU(n)+ η
(
τR(n)+ τL(n), t2 − s2

)
≥ q − n2−n + n−3 −Kn−4 + η

(
τR(n)+ τL(n), t2 − s2

)
≥ q − 1

2n
−3 + η

(
τR(n)+ τL(n), t2 − s2

)
.

It follows that P (Fn(s)∩Gn(s)∩HU(n)) is bounded by the sum of two terms:

P

{
inf

s1−τL(n)<t1<s1+τR(n)
η
(
t1 − s1 + τL(n), τU(n)

)
<−1

2
xU(n),

τR(n)∨ τL(n)≤ n−4, τU(n)≤ n−6
}

≤ P

{
(2n−4)1/2

(
n2X2

U (n)
)1/2

sup
t∈[0,1]2

W(t) >
1

2
xU(n)

}

= P

{
sup

t∈[0,1]2
W(t) >

1

2
√

2
n

}

≤ e−cn2

and

P

{
inf

s2<t2<s2+τU (n)
η
(
τR(n)+ τL(n), t2 − s2

)
<−1

2
n−3,

τR(n)∨ τL(n)≤ n−4, τU (n)≤ n−6
}

≤ P

{
(2n−4)1/2(n−6)1/2 sup

t∈[0,1]2
W(t) >

1

2
n−3

}

= P

{
sup

t∈[0,1]2
W(t) >

1

2
√

2
n2
}

≤ e−cn4
.

This completes the proof of the theorem. �
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