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LYAPUNOV EXPONENTS FOR SMALL RANDOM
PERTURBATIONS OF HAMILTONIAN SYSTEMS

BY PETER H. BAXENDALE AND LEVON GOUKASIAN

University of Southern California

Consider the stochastic nonlinear oscillator equation

ẍ =−x − x3 + ε2βẋ + εσxẆt

with β < 0 and σ �= 0. If 4β + σ 2 > 0 then for small enough ε > 0 the
system (x, ẋ) is positive recurrent in R2 \ {(0,0}. Now let λ(ε) denote the top
Lyapunov exponent for the linearization of this equation along trajectories.
The main result asserts that

λ(ε)= ε2/3λ+O(ε4/3) as ε→ 0

with λ > 0. This result depends crucially on the fact that the system above
is a small perturbation of a Hamiltonian system. The method of proof can
be applied to a more general class of small perturbations of two-dimensional
Hamiltonian systems. The techniques used include (i) an extension of results
of Pinsky and Wihstutz for perturbations of nilpotent linear systems, and (ii)
a stochastic averaging argument involving motions on three different time
scales.

1. Introduction. The stochastic version of the Duffing–van der Pol equation

ẍ = αx + βẋ − ax3 − bx2ẋ + σxẆt

(with a ≥ 0, b ≥ 0) has quickly become a standard test case for the theory of
stochastic bifurcations. See Arnold [2], Arnold, Sri Namachchivaya and Schenk-
Hoppé [4], Keller and Ochs [15], Liang and Sri Namachchivaya [18] and Schenk-
Hoppé [22]. Here we consider only the case of a multiplicative perturbation by
white noise. In phase space we get the equations

dx1 = x2 dt,

dx2 = (αx1+ βx2− ax3
1 − bx2

1x2) dt + σx1 dWt,
(1)

where Wt denotes a standard one dimensional Brownian motion process. (The
Wong–Zakai correction term is 0 in this system, so the Itô and Stratonovich
versions have the same coefficients.) Linearizing this equation at x = 0 we get

dut =
[

0 1
α β

]
ut dt +

[
0 0
σ 0

]
ut dWt .(2)

Received November 2000; revised April 2001.
AMS 2000 subject classifications. Primary, 37H10, 60H10; secondary, 37H15, 37H20, 60J60.
Key words and phrases. Stochastic oscillator, Lyapunov exponent, Hamiltonian, stochastic aver-

aging, nilpotent stochastic differential equation.

101



102 P. BAXENDALE AND L. GOUKASIAN

The top Lyapunov exponent for the linearized equation is

λ(α,β,σ )≡ lim
t→∞

1

t
log‖ut‖

where the limit exists almost surely and does not depend on u0 �= 0 if σ �= 0.
Clearly the sign of λ(α,β,σ ) determines the stability or instability of the linearized
process ut . The sign of λ(α,β,σ ) also determines the stability or instability for the
original process xt , in the following sense.

THEOREM 1. Assume either a > 0 and b > 0; or a = 0, b > 0 and α < 0; or
a > 0, b= 0 and β < 0.

(i) If λ(α,β,σ ) < 0 then 0 is almost surely stable, in the sense that P x(xt → 0
as t→∞)= 1 for all x ∈R2.

(ii) If λ(α,β,σ ) > 0 then 0 is almost surely unstable, and the process
{xt : t ≥ 0} is positive recurrent in R2 \ {0} with stationary probability µ, say.
Moreover, µ has the property µ(B(0, r))/r2 → ∞ as r → 0 if β < 0 and
µ(B(0, r))/r2 → 0 as r→ 0 if β > 0.

This is an application of results of Baxendale [7] and Baxendale and Stro-
ock [10], see also [2], Section 9.5.1; more details are given in the remark following
Lemma 6 in Subsection 3.1. The cases when a = 0 and b = 0 correspond to
the stochastic versions of the van der Pol oscillator and the Duffing equation,
respectively. The theorem implies that for the one point motion {xt : t ≥ 0} we
see a change in the dynamical behavior, or a D-bifurcation, when λ(α,β,σ )

changes sign, and a qualitative change in the stationary probability measure µ,
or P-bifurcation, when β changes sign.

If the Lyapunov exponent λ(α,β,σ ) is negative, it is clear that the trajectories
{xt : t ≥ 0} and {yt : t ≥ 0} obtained by starting the SDE (1) at distinct points x

and y will simultaneously converge to 0, and so in particular the distance apart
‖yt − xt‖ will converge to 0. However if λ(α,β,σ ) > 0 it is not readily apparent
what will happen to ‖yt − xt‖ as t →∞. We will refer to this as the problem of
stability along trajectories. In this paper we will address a closely related property,
that of linearized stability along trajectories. (This property is also the main topic in
the paper [8].) Linearizing the SDE (1) along the trajectory xt we get the following
equation

dvt =
[

0 1
α − 3ax2

1 − 2bx1x2 β − bx2
1

]
vt dt +

[
0 0
σ 0

]
vt dWt .

Write

vt = ‖vt‖
[

cosθt
sin θt

]
,
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then

dθt = [(
β − bx2

1
)

sin θ cosθ + (
α − 3ax2

1 − 2bx1x2
)
cos2 θ

− sin2 θ − σ 2 sin θ cos3 θ
]
dt + σ cos2 θ dWt

and, assuming λ(α,β,σ ) > 0 so that µ exists, we get the Furstenberg–Khas’-
minskii–Carverhill formula for the Lyapunov exponent for the vt process

λ(α,β,σ, a, b)≡ lim
t→∞

1

t
log‖vt‖ =

∫
Q(x, θ) dP (x, θ)(3)

where

Q(x, θ)= (β−bx2
1) sin2 θ+(1+α−3ax2

1−2bx1x2) sin θ cos θ+ σ 2

2
cos 2θ cos2 θ

and the measure P on (R2 \ {0}) × S1 is the stationary probability measure for
the (xt , θt ) process. However the integral in (3) is hard to evaluate; we cannot
determine the sign of λ(α,β,σ, a, b) and so we cannot determine whether there is
linearized stability or instability along the trajectories.

In this paper we will consider the special case of equation (1) where α =−ω2,
ω > 0, and a > 0 are fixed, and the other parameters are small. Using the
transformation xt = (

√
a/ω)xt/ω we see that

λ(−ω2, β, σ )= ωλ(−1, β/ω,σ/ω3/2),

λ(−ω2, β, σ, a, b)= ωλ(−1, β/ω,σ/ω3/2,1,ωb/a).

Therefore we can and will assume henceforth that ω = a = 1. Replacing the
dissipation terms βẋ and −bx2ẋ by ε2βẋ and −ε2bx2ẋ, respectively, and
replacing the noise intensity σ 2x2 by ε2σ 2x2, we get the system

dx1 = x2 dt,

dx2 = (−x1− x3
1 + ε2βx2− ε2bx2

1x2) dt + εσx1 dWt.
(4)

Here b ≥ 0. If b = 0 we need to assume also that β < 0. The equation with
b = 0 appears in the study of stochastically forced vibrations of a thin beam;
see Wedig [24]. In this setting −β represents friction, so the restriction β < 0 is
physically meaningful. We note, in justification of our title, that the equations (4)
with ε = 0 give the flow of the Hamiltonian system with H(x1, x2) = x2

1/2 +
x4

1/4+ x2
2/2.

Imkeller and Lederer [14] give an exact formula for λ(−1, β, σ ). Using this
result, or the earlier asymptotic result of Auslender and Mil’shtein [5], we get

λ
(−1, ε2β, εσ

)= (
β

2
+ σ 2

8

)
ε2 +O(ε4).(5)

Thus, if β/2+ σ 2/8 < 0, then for all sufficiently small ε > 0 the trajectories xt
converge to 0 almost surely. However if β/2+ σ 2/8 > 0, then for all sufficiently



104 P. BAXENDALE AND L. GOUKASIAN

small ε > 0 the process xt is positive recurrent on R2 \ {0} with stationary
probability µε, say, and we need to consider the Lyapunov exponent

λ(ε)≡ λ(−1, ε2β, εσ,1, ε2b)

for the linearization of (4) along trajectories. Our main result is the following.

THEOREM 2. Consider (4) with σ > 0 and b ≥ 0 and β/2 + σ 2/8 > 0. If
b= 0 suppose also that β < 0. Then

λ(ε)= ε2/3λ+O(ε4/3) as ε→ 0(6)

where

λ= γ0

∫
(0,∞)

G(h) dρ(h) > 0.(7)

Here γ0 is a constant, given in (33) with a numerical value approximately 0.29;
and G(h) is a positive function, given in (45); and ρ is the invariant probability
measure on (0,∞) for the generator given explicitly in (24), (46), (47).

COROLLARY 1. Fix ω �= 0, β ∈R, σ �= 0, a > 0 and b≥ 0. If 4ω2β + σ 2 > 0
and either b > 0 or β < 0 then there is ε0 > 0 such that λ(−ω2, ε2β, εσ ) > 0 and
λ(−ω2, ε2β, εσ, a, ε2b) > 0 whenever 0 < ε ≤ ε0.

COROLLARY 2. For every α < 0 and a > 0 there exist β ∈R, σ �= 0 and b≥ 0
such that λ(α,β,σ ) > 0 and λ(α,β,σ, a, b) > 0.

For a stochastic flow {ξt : t ≥ 0} on a compact manifold M , the fact that
the top Lyapunov exponent is positive, together with suitable non-degeneracy
conditions, implies that the associated forward Markov invariant measure (or
statistical equilibrium measure) almost surely contains no atoms. (For a discussion
of forward Markov invariant measures, see [2]; for the result see [6], Remark 4.12.)
The major step in this argument is the fact that linearized instability implies
instability for the two point motion (ξt (x), ξt (y)) on M ×M . If we assume that a
similar result is valid for the strictly forward complete stochastic flow generated
by (1) on the non-compact space R2 \ {0}, then Corollary 2 implies that for
certain parameter values in the stochastic Duffing–van der Pol equation the forward
Markov invariant measure contains no atoms.

Our technique of proof allows us also to determine the behavior of the stationary
probability µε as ε→ 0. Let ρ̃(h) denote the density of ρ with respect to Lebesgue
measure on (0,∞), and let T (h) denote the period of the Hamiltonian flow
(obtained by putting ε = 0 in (4)) around the orbit H(x1, x2) = h. Define µ0 to
be the measure on R2 \ {0} with density ρ̃(H(x1, x2))/T (H(x1, x2)) with respect
to two-dimensional Lebesgue measure.
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THEOREM 3. Let g(x1, x2) be a smooth function with compact support in
R2 \ {0}. Then ∣∣∣∣ ∫ g dµε −

∫
g dµ0

∣∣∣∣=O(ε2) as ε→ 0.

In particular µε→ µ0 as ε→ 0 weakly as probability measures on R2.

The formula for the density of µ0 and the weak convergence of µε to µ0 are
well known as a general principle for stochastic averaging of Hamiltonian systems,
see Khas’minskii [16]. Here we observe that our techniques provide a rate for the
convergence. The proof of this result appears in Subsection 3.6. It is clear from
the proof that the convergence of order ε2 will remain true for a wider class of
functions g with appropriate behavior near 0 and∞, but we not pursue that matter
here.

The appearance in Theorem 2 of the scaling factor ε2/3, rather than ε2 as in the
formula (5) for the Lyapunov exponent at 0, is perhaps surprising. Its presence is
essentially based on the following sequence of observations.

(i) Equation (4) is a small perturbation of a Hamiltonian system.
(ii) The linearization of a two-dimensional Hamiltonian system, when written

with respect to a suitable moving frame, is a nilpotent linear system.
(iii) A remarkable paper of Pinsky and Wihstutz [20] shows how to handle

small random perturbations of a nilpotent system. In its simplest form, the method
of [20] shows that the linear SDE

dut =
[

0 1
0 0

]
ut dt +

[
0 0
ε 0

]
ut dWt

has top Lyapunov exponent ε2/3γ0 where γ0 is the constant appearing in
Theorem 2.

The paper by Pinsky and Wihstutz [20] deals with constant coefficient
linear SDEs, whereas the coefficients in our system will depend on the current
position of the underlying trajectory xt . Thus in addition to the Pinsky–Wihstutz
transformation and the consequent averaging over an angle θt ∈ S1, we will have
to do some averaging for the process xt . A simplified version of this technique
appears in [9]. In the present situation, it turns out that we have to deal with motions
on three distinct times scales. We elaborate on this in the discussion following
Proposition 1 in Section 2.

As mentioned above, our main result depends crucially upon the fact that we
are dealing with a small random perturbation of a two-dimensional Hamiltonian
system. In fact, much of what we do is valid in this general setting. In Section 2 we
develop a formalism in the setting of small random perturbations of Hamiltonian
systems. The main result of this section, Theorem 4, asserts that, under suitable
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conditions, the top Lyapunov exponent (corresponding to linearizing along
trajectories) has the behavior described in (6) and (7) except that now the function
G(h) and the operator N are described in more general terms. Then in Section 3
we verify the conditions of Theorem 4, and obtain the more precise description of
the function G and the coefficients for the operator N , thus proving Theorem 2.
The proof of Theorem 3 also appears in Section 3.

2. Stochastic Hamiltonian systems. Throughout this section we assume
that H : R2 → R is a smooth function with isolated critical points such that
H(x)→∞ as ‖x‖→∞. We write Hi = ∂H/∂xi and Hij = ∂2H/∂xi∂xj . Then
∇H(x) = [H1(x),H2(x)]T and ∇H(x) = [H2(x),−H1(x)]T . The Hamiltonian
system associated with H is

ẋ =∇H(x)

with flow denoted xt =+t(x). Then vt =D+t(x)v satisfies

v̇t =
[
H12(xt ) H22(xt )

−H11(xt ) −H12(xt )

]
vt .

In order to see the nilpotent structure of the linearized Hamiltonian flow we define
vector fields

U1(x)=∇H(x) and U2(x)= ∇H(x)

‖∇H(x)‖2 ,

and then we write vt in the moving frame given by .(H(x))U1(x) and U2(x).
Here . is a smooth positive function we shall choose later. More precisely, we
write

vt =w1,t.
(
H(xt)

)
U1(xt )+w2,tU2(xt )(8)

and derive the equation for the vector

wt = [
w1,t w2,t

]T
.

Throughout the paper we will use the notation V.f to denote the action of a
vector field V as a first order differential operator acting on a function f . Thus
V.f (x)=DF(x)(V (x))= 〈∇f (x),V (x)〉.

LEMMA 1. If x is not a critical point of H then (U1.H)(x)= 0, (U2.H)(x)=
1 and

DU1(x)
(
U2(x)

)−DU2(x)
(
U1(x)

)= J (x)U1(x)(9)

where

J (x)= [H2(x)
2 −H1(x)

2][H22(x)−H11(x)] + 4H1(x)H2(x)H12(x)

[H1(x)
2 +H2(x)

2]2 .
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PROOF. Direct calculation. �

It can now easily be shown that

ẇt =
[

0 J (xt )/.
(
H(xt)

)
0 0

]
wt .(10)

The next result contains a generalization which will be useful when we consider
perturbations of Hamiltonian systems.

LEMMA 2. For any vector field V on R2 write

V (x)= α1(x)U1(x)+ α2(x)U2(x)(11)

away from the critical points of H . Consider the equation ẋt = V (xt ) and its
linearized version v̇t = DV (xt )vt . Write vt in terms of wt as in (8). Then away
from the critical points of H we have ẇt =M(xt)wt where

M(x)=(U1.α
1)(x)− [J (x)+ (log.)′

(
H(x)

)]
α2(x)

(U2.α
1)(x)+ J (x)α1(x)

.(H(x))

.(H(x))(U1.α
2)(x) (U2.α

2)(x)

 .

PROOF. Substitute V (x) = α1(x)U1(x) + α2(x)U2(x) in the equation v̇t =
DV (xt)(vt ) to get an expression for v̇ first in terms of αi , Ui and v and then,
using (8), in terms of αi , Ui , . and w. Differentiate (8) with respect to t to give
an expression for v̇ in terms of Ui , ., w and ẇ. Equate these two expressions for
v̇ to get an equation involving αi , Ui , ., w and ẇ. Take the components of this
equation in the directions U1 and U2, and use (9) to obtain the desired result. �

Now we consider a small perturbation of the original Hamiltonian system

dxt =∇H(xt) dt + ε2V0(xt ) dt + ε

r∑
i=1

Vi(xt ) ◦ dWi
t(12)

for given smooth vector fields V0,V1, . . . , Vr . Notice that we have chosen to write
(12) using Stratonovich rather than Itô stochastic differentials; this appears to offer
some slight reduction in the lengths of some of the calculations, but has no serious
effect on the theory. The linearization of (12) is given by

dvt =D(∇H)(xt)vt dt + ε2DV0(xt )vt dt + ε

r∑
i=1

DVi(xt)vt ◦ dWi
t .(13)

Following the notation in Lemma 2 we write

Vi(x)= α1
i (x)U1(x)+ α2

i (x)U2(x)
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for i ≥ 0. Then (12) becomes

dxt =U1(xt ) dt + ε2(α1
0U1+ α2

0U2)(xt ) dt + ε

r∑
i=1

(α1
i U1 + α2

i U2)(xt ) ◦ dWi
t

(14)

and the process Ht ≡H(xt) satisfies

dHt = ε2α2
0(xt ) dt + ε

r∑
i=1

α2
i (xt ) ◦ dWi

t

(15)

= ε2

(
α2

0(xt )+
1

2

r∑
i=1

Vi.α
2
i (xt )

)
dt + ε

r∑
i=1

α2
i (xt ) dW

i
t .

LEMMA 3. Let wt represent the linearized process vt in the moving frame
given by (8). Up to the first time that the process xt given by (12) hits a critical
point of H , or explodes to infinity, we have

dwt =
0

J (xt )

.(H(xt))

0 0

wt dt + ε2M0(xt )wt dt + ε

r∑
i=1

Mi(xt )wt ◦ dWi
t

where for i = 0,1, . . . , r ,

Mi(x)=
 (U1.α

1
i )(x)− [J (x)+ (log.)′(H(x))]α2

i (x)
(U2.α

1
i )(x)+ J (x)α1

i (x)

.(H(x))

.(H(x))(U1.α
2
i )(x) (U2.α

2
i )(x)

 .(16)

PROOF. The proof is essentially the same as that of Lemma 2. Instead of
equating two expressions for v̇t , we equate two semimartingale expressions for
dvt . First we equate the martingale parts (which can be read off from the Strato-
novich differentials) to obtain the matrices Mi(x) for i ≥ 1. Then we can subtract
all the Stratonovich differential terms from both sides, and equate the remaining
(bounded variation) terms to obtain M0(x). �

At this point it is clear that we are dealing with a small perturbation of a
nilpotent system. Accordingly, we follow the method of Pinsky and Wihstutz [20]
and transform R2 using the transformation

T =
[
ε2/3 0

0 1

]
.

It is easy to see that for each fixed ε the process Twt will have the same Lyapunov
exponent as wt . For simplicity of notation we continue to write wt ; it is now given
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by the equation

dwt = ε2/3

0
J (xt )

.(H(xt))

0 0

wt dt + ε2Mε
0 (xt )wt dt

(17)

+ ε

r∑
i=1

Mε
i (xt )wt ◦ dWi

t

where for i = 0,1, . . . , r ,

Mε
i (x)= TMi(x)T

−1

=
 (U1.α

1
i )(x)− [J (x)+ (log.)′(H(x))]α2

i (x)
ε2/3[(U2.α

1
i )(x)+ J (x)α1

i (x)]
.(H(x))

ε−2/3.(H(x))(U1.α
2
i )(x) (U2.α

2
i )(x)

 .

Write

wt = ‖wt‖
[

cosθt
sin θt

]
.

Then from (17) we can obtain Stratonovich SDEs for log‖wt‖ and θt . Converting
these to Itô form, using (14) and (15) we get

d
(
log‖wt‖)= [

ε2/3Q0(xt , θt )+ ε4/3Q1(xt , θt )+ ε2Q2(xt , θt )

+ ε8/3Q3(xt , θt )+ ε10/3Q4(xt , θt )
]
dt(18)

+
r∑

i=1

[
ε1/3Qi

5(xt , θt )+ εQi
6(xt , θt )+ ε5/3Qi

7(xt , θt )
]
dWi

t

and

dθt = [
ε2/3t0(xt , θt )+ ε4/3t1(xt , θt )+ ε2t2(xt , θt )

+ ε8/3t3(xt , θt )+ ε10/3t4(xt , θt )
]
dt(19)

+
r∑

i=1

[
ε1/3t i5(xt , θt )+ εti6(xt , θt )+ ε5/3t i7(xt , θt )

]
dWi

t

where

Q0(x, θ)= J (x)

.(H(x))
cosθ sin θ

+ .2(H(x)
) r∑
i=1

[
U1.α

2
i (x)

]2[1

2
cos2 θ − sin2 θ cos2 θ

]
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and

t0(x, θ)=− J (x)

.(H(x))
sin2 θ − .2(H(x)

) r∑
i=1

[
U1.α

2
i (x)

]2 cos3 θ sin θ

and

t i5(x, θ)= .
(
H(x)

)
(U1.α

2
i )(x) cos2 θ.

We shall see that the remaining Qk and tk do not contribute to the leading term in
the asymptotic expansion for λ(ε). However the following result will be important
in obtaining integrability and growth estimates on these terms; its proof is by direct
calculation, using Itô’s formula and the formula for the Wong–Zakai correction
term.

LEMMA 4. Each of the functions Q1, Q2, Q3, Q4, (Qi
5)

2, (Qi
6)

2, (Qi
7)

2, t1,
t2, t3, t4, (ti5)

2, (ti6)
2 and (ti7)

2 is a sum of terms of the form f (θ)g(x) where each f

is a trigonometric polynomial and each g is either (i) an entry in M0(x), or (ii) an
entry in DMi(x)(Vi(x)) for i ≥ 1, or (iii) a product of two entries in Mi(x) for
i ≥ 1. Here Mi(x) is the matrix-valued function given in (16).

At this point we need to make some assumptions about the Hamiltonian function
H and the perturbing vector fields V0, V1, . . . , Vr . Let M denote the space R2 with
the critical points of H removed.

(A1) For each sufficiently small ε > 0 the process {(xt , θt ) : t ≥ 0} given by (12)
and (19) is a positive recurrent diffusion process on M × S1 with (unique)
stationary probability Pε, say. We write µε for the M marginal of Pε.

(A2) For each sufficiently small ε > 0, the functions log‖∇H‖ and log. are
integrable with respect to µε.

(A3) For each sufficiently small ε > 0, the functions Q0, . . . , Q4, [Qi
5]2, [Qi

6]2
and [Qi

7]2 are all integrable with respect to Pε.
(A4) There is K < ∞ so that for each sufficiently small ε > 0 we have

| ∫ Qk dPε| ≤K for k = 1, 2, 3, 4.

PROPOSITION 1. Assume (A1)–(A4). The Lyapunov exponent λ(ε) for the
linearization vt given by (13) satisfies

λ(ε)= ε2/3
∫
M×S1

Q0(x, θ) dPε(x, θ)+O(ε4/3)

as ε→ 0.

PROOF. Formula (8) relating vt and wt yields the inequalities

‖vt‖ ≤max
(
.(xt)‖∇H(xt )‖,‖∇H(xt )‖−1)‖wt‖
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and

‖wt‖ ≤max
(
.(xt)

−1‖∇H(xt )‖−1,‖∇H(xt )‖)‖vt‖.
Assumptions (A1) and (A2) imply that ‖∇H(xt )‖ and .(xt) are tempered (see [2],
Section 4.1), so that limt→∞(1/t)[log‖vt‖ − log‖wt‖] = 0, and therefore for
each ε the processes vt and wt have the same Lyapunov exponent. It now follows
from (18) and assumption (A3) that

λ(ε)= lim
t→∞

1

t
log‖wt‖ =

∫
M×S1

Qε(x, θ) dPε(x, θ)

where

Qε(x, θ)= ε2/3Q0(x, θ)+ ε4/3Q1(x, θ)+ ε2Q2(x, θ)+ ε8/3Q3(x, θ)

+ ε10/3Q4(x, θ).

The result now follows easily using assumption (A4). �

We now proceed to estimate the integral
∫
Q0(x, θ) dPε(x, θ). Recall that Pε

is the invariant probability measure for the process (xt , θt ) on M × S1. From the
equations (12) for xt and (19) for θt we can write down the generator Lε, say, for
the (xt , θt ) process. Define functions

a(x)= J (x)/.
(
H(x)

)
,

b(x)= [
.
(
H(x)

)]2 r∑
i=1

[
U1.α

2
i (x)

]2
,

c(x)= α2
0(x)+ 1

2

r∑
i=1

Vi.α
2
i (x),

d(x)= 1
2

r∑
i=1

[
α2
i (x)

]2
,

and operators

L= V0+ 1
2

r∑
i=1

V 2
i ,

L̃ε = U1+ ε2L

+ ε2/3
[
−a(x) sin2 θ

∂

∂θ
+ b(x)

(
− cos3 θ sin θ

∂

∂θ
+ 1

2
cos4 θ

∂2

∂θ2

)]
.

Then Lε = L̃ε plus terms of order ε4/3 and higher involving at least one derivative
with respect to θ . Also, for any function F of a real variable we have

Lε(F ◦H)(x)= ε2L(F ◦H)(x)= ε2[c(x)F ′(H(x)
)+ d(x)F ′′

(
H(x)

)]
.
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From the formula for Lε , or equivalently from the equations (12), (19) and (15),
we see a separation of time scales. The xt process moves around the orbits of the
Hamiltonian system at rate 1; the angle θ moves around S1 at rate ε2/3; and the
process Ht ≡ H(xt ) moves at rate ε2. The existence of two different time scales
for motion around orbits and motion across orbits is the basis of many results on
stochastic averaging for small perturbations of Hamiltonian systems, from early
work by Khas’minskii [16] to more recent studies by Freidlin and Wentzell [13],
Freidlin and Weber [11, 12] and Liang and Sri Namachchivaya [18]. Here we see
that to estimate the Lyapunov exponent we need to deal also with the motion θt
running at a third, intermediate, rate.

Our technique will involve averaging over each of the orbits of the unperturbed
Hamiltonian system, then averaging over the angle θ , and finally averaging over
the space of orbits. More precisely, we will use the adjoint method and build, for
each ε > 0 a function fε(x, θ) so that

Lεfε(x, θ)=Q0(x, θ)− λ+ ε2/3
4∑

k=0

ε2k/3φk(x, θ)

for suitable constant λ and functions φk. Then, subject to growth and integrability
conditions we get

0=
∫

Q0 dPε − λ+ ε2/3
4∑

k=0

ε2k/3
∫

φk dPε(20)

so that ∫
Q0 dPε = λ+O(ε2/3).(21)

In the adjoint method the stochastic averaging is carried out by averaging certain
of the coefficients of the operator L̃ε , and then constructing fε in terms of the
averaged version of L̃ε. In order to carry this out, we will make some further
assumptions.

(A5) The function H has a single critical point.

Under assumption (A5) we can assume without loss of generality that the
critical point is at 0 and that H(0) = 0. Then for each h > 0 the unperturbed
Hamiltonian flow has a simple closed orbit H−1(h). Let T (h) denote the period
of this orbit, and let mh denote the probability measure given by time averaging
around this orbit. Define functions

c(h)=
∫

c(x) dmh(x)=
∫ [

α2
0(x)+ 1

2

r∑
i=1

(Vi.α
2
i )(x)

]
dmh(x)(22)
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and

d(h)=
∫

d(x) dmh(x)= 1

2

∫ r∑
i=1

[α2
i (x)]2 dmh(x)(23)

and the operator

N = c(h)
∂

∂h
+ d(h)

∂2

∂h2
.(24)

(A6) T ′(h) �= 0 for all h > 0.
(A7)

∫ ∑r
i=1[(U1.α

2
i )(x)]2 dmh(x) > 0 for all h > 0.

(A8) N is the generator of a positive recurrent diffusion on (0,∞) with invariant
probability ρ.

The following result explains why we will need (A6).

LEMMA 5. Assume (A5). Then for h > 0,∫
J (x) dmh(x)=−T ′(h)

T (h)
.

PROOF. Let vt =D+t(x)(v) denote the linearized version of the unperturbed
Hamiltonian flow, and write vt = w1(t)U1(xt ) + w2(t)U2(xt ). Taking . ≡ 1 in
(10) we get

ẇ(t)=
[

0 J (xt )

0 0

]
w(t)

so that for H(x)= h

w(T (h))=
[

1
∫ T (h)

0 J (xt ) dt

0 1

]
w(0).(25)

But we also have the identity

+T (H(x))(x)= x

for all x. Differentiating this expression we get

U1(x)T
′(H(x)

)
DH(x)(v)+ vT (H(x)) = v.(26)

Taking v =U2(x) in (26) and comparing with (25) we obtain∫
J (x) dmh(x)= 1

T (h)

∫ T (h)

0
J (xt) dt =−T ′(h)

T (h)

as desired. �
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Define, for h > 0,

G1(h)=
∫

J (x) dmh(x),(27)

G2(h)=
∫ r∑

i=1

[(U1.α
2
i )(x)]2 dmh(x)(28)

and

G(h)= ∣∣G1(h)
∣∣2/3[

G2(h)
]1/3

.(29)

Up to this point the positive function . has been arbitrary, subject to the
requirements of (A2)–(A4). Now we choose to define . by[

.(h)
]3 = G1(h)

G2(h)
(30)

for h > 0. Assumptions (A6)–(A7) together with Lemma 5 imply that G(h) and
.(h) are positive and finite for all h > 0. The choice of . will ensure that the terms
of order ε2/3 in L̃ε, when averaged with respect to mh, are of the form ε2/3G(h)M

where the operator M , defined in (32), contains no dependence on h.
We will construct fε in a sequence of four steps.
Step 1. The choice of . implies that∫

a(x) dmh(x)=
∫

b(x) dmh(x)=G(h).

Since a(x)−G(H(x)) and b(x)−G(H(x)) have zero mean with respect to mh

for all h, there exist functions A(x) and B(x) such that

(U1.A)(x)= a(x)−G
(
H(x)

)
,

(U1.B)(x)= b(x)−G
(
H(x)

)
.

It follows that

U1.
(
A(x) cosθ sin θ +B(x)

[1
2 cos2 θ − cos2 θ sin2 θ

])
(31)

=Q0(x, θ)−G(H(x))
[
cosθ sin θ + 1

2 cos2 θ − cos2 θ sin2 θ
]
.

Step 2. Define operators

M = (− sin2 θ − cos3 θ sin θ)
∂

∂θ
+ 1

2
cos4 θ

∂2

∂θ2
(32)

and

M̃ =−[a(x)−G
(
H(x)

)]
sin2 θ

∂

∂θ

+ [b(x)−G
(
H(x)

)][− cos3 θ sin θ
∂

∂θ
+ 1

2
cos4 θ

∂2

∂θ2

]
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so that

L̃ε = U1+ ε2L+ ε2/3[G(H(x)
)
M + M̃

]
.

The operator M is hypoelliptic on S1; let ν denote the corresponding invariant
measure on S1. Define

γ0 =
∫ [

cosθ sin θ + 1
2 cos2 θ − cos2 θ sin2 θ

]
dν(θ),(33)

then there is a smooth bounded function R(θ) so that

MR(θ)= cosθ sin θ + 1
2 cos2 θ − cos2 θ sin2 θ − γ0.

Then

L̃ε(ε
−2/3R)(θ)=G

(
H(x)

)[
cosθ sin θ + 1

2 cos2 θ − cos2 θ sin2 θ
]

(34)
−G

(
H(x)

)
γ0 + M̃R(θ).

Here γ0 is a fixed constant. As in [9] we can identify it as the top Lyapunov
exponent of the linear SDE

dvt =
[

0 1
0 0

]
vt dt +

[
0 0
1 0

]
vt dWt.

Numerically γ0 ∼ 0.29. An exact formula for γ0 is given by Ariaratnam and
Xie [1]. Notice that our choice of the function . has ensured that the invariant
probability ν, the constant γ0, and the function R all do not depend on h.

Step 3. Repeating the ideas of Step 1 we calculate

U1.
[
A(x) sin2 θ R′(θ)+B(x)

(− cos3 θ sin θ R′(θ)+ 1
2 cos4 θ R′′(θ)

)]
(35)

= M̃R(θ).

Step 4. For any function on R2 of the form F(H(x)) we have

L(F ◦H)(x)= c(x)F ′
(
H(x)

)+ d(x)F ′′
(
H(x)

)
.

Recall the definitions of c(h) and d(h) and N in assumption (A8). The operator
N is the stochastically averaged operator for the “slow” motion Ht = H(xt ). If
there is a smooth function =(h) such that

(N=)(h)=G(h)−
∫
(0,∞)

Gdρ

then we have

Lε(ε
−2= ◦H)(x)=G

(
H(x)

)− ∫ Gdρ+ Ñ=
(
H(x)

)
(36)
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where the operator Ñ is given by

Ñ = [
c(x)− c

(
H(x)

)] ∂
∂h
+ [d(x)− d

(
H(x)

)] ∂2

∂h2
.

Since the coefficients of Ñ are of mean zero with respect to mh for each h we can
find functions C(x) and D(x) so that

(U1.C)(x)= c(x)− c
(
H(x)

)
,

(U1.D)(x)= d(x)− d
(
H(x)

)
.

Then

U1.
[
C(x)= ′

(
H(x)

)+D(x)= ′′
(
H(x)

)]= Ñ=
(
H(x)

)
.(37)

Now define fε(x, θ) by

fε(x, θ)=A(x) cosθ sin θ +B(x)
[ 1

2 cos2 θ − cos2 θ sin2 θ
]

+ ε−2/3R(θ)

− [A(x) sin2 θR′(θ)+B(x)
(− cos3 θ sin θR′(θ)+ 1

2 cos4 θR′′(θ)
)]

+ ε−2γ0(= ◦H)(x)

− γ0
[
C(x)

(
= ′ ◦H )

(x)+D(x)
(
= ′′ ◦H )

(x)
]
.

Then using equations (31), (34), (35), (36) and (37) we get

(Lεfε)(x, θ)=Q0(x, θ)− γ0

∫
Gdρ + ε2/3

4∑
k=0

ε2k/3φk(x, θ)(38)

where the functions φ0, . . . , φ4 are given in the Appendix. The terms involving the
φk(x, θ) appear because of the action of Lε−U1 or Lε− L̃ε on the various terms
in fε. We note that the functions A(x), B(x), C(x), D(x) and =(h) and some of
their derivatives appear in the formulas for the φk .

At this point we wish to integrate equation (38) with respect to Pε and claim
that

∫
Lεfε dPε = 0. However we are working on a non-compact space, and so

the assertion
∫

Lεfε dPε = 0 may fail without some further restrictions on fε.
For example, if L denotes the standard Ornstein–Uhlenbeck operator on the real
line, with invariant probability µ there exists a smooth function f so that Lf ≡ 1
and then

∫
Lf dµ = 1 �= 0. The following result, quoted from Baxendale and

Goukasian [9], gives a sufficient condition.

PROPOSITION 2. Let {yt : t ≥ 0} be a diffusion process on a σ -compact
manifold N with invariant probability measure µ. Let L be an operator acting
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on C2(N) functions that agrees with the generator of {yt : t ≥ 0} on C2

functions with compact support. Let f ∈ C2(N) and g ∈ C(N) be µ-integrable
functions satisfying Lf = g. Suppose there exists a positive F ∈ C2(N) satisfying
LF(y) ≤ kF (y) for some k <∞ such that sup{|g(y)|/F (y) :y ∈ N} <∞ and
f (y)/F (y)→ 0 as y→∞. Then

∫
N g(y) dµ(y)= 0.

At this point we can complete our list of assumptions.

(A9) G is integrable with respect to ρ and there is a smooth function =(h) such
that (N=)(h)=G(h)− ∫

(0,∞) Gdρ for h > 0.
(A10) For each sufficiently small ε > 0, the functions fε and φk , 0≤ k ≤ 4 are all

integrable with respect to Pε.
(A11) There is K < ∞ so that for each sufficiently small ε > 0 we have

| ∫ φk dPε| ≤K for 0≤ k ≤ 4.
(A12) For each sufficiently small ε > 0, there exists a positive F ∈ C2(M × S1)

satisfying LεF (x, θ)≤ kF (x, θ) for some k <∞ such that sup{|Q0(x, θ)|/
F (x, θ) : (x, θ) ∈M × S1}<∞ and sup{|φk(x, θ)|/F (x, θ) : (x, θ) ∈M ×
S1} < ∞ for 0 ≤ k ≤ 4 and fε(x, θ)/F (x, θ) → 0 as (x, θ) → ∞ in
M × S1.

THEOREM 4. Assume (A1)–(A12). Then the top Lyapunov exponent for the
linearized version (13) of the perturbed Hamiltonian system (12) satisfies

λ(ε)= ε2/3λ+O(ε4/3) as ε→ 0

where

λ= γ0

∫
(0,∞)

G(h) dρ(h) > 0.

Here γ0 is the fixed constant (approximately 0.29) given in (33), and G(h) is
the positive function given by (27)–(29) and ρ is the invariant probability for the
stochastically averaged H(xt) process with generator N given by (22)–(24).

PROOF. Assumption (A9) allows us to obtain (38). Assumptions (A10)–(A11)
together with Proposition 2 allow the passage to (20), and then (A12) gives (21).
Together with Proposition 1 we have the desired result. �

REMARK 1. In the next section we shall take H(x1, x2) = x2
1/2 + x4

1/4 +
x2

2/2. Notice that the methods of this section do not apply to the Hamiltonian
x2

1/2+ x2
2/2 because the period T (h) is constant. Some of the methods may turn

out to be useful for the Hamiltonian −αx2
1/2+ x4

1/4+ x2
2/2 with α > 0, although

in this case Assumption (A5) of a single critical point is false and the structure of
the averaged Hamiltonian process is more complicated; see [13].
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REMARK 2. In Theorem 4 we need a long list of assumptions dealing with
integrability and growth because the state spaces M and (0,∞) are non-compact.
This should be compared with the elegant statement of the adjoint method in
Arnold, Papanicolaou and Wihstutz [3] when dealing with a compact state space.
When verifying conditions (A3), (A4), (A10) and (A11), it is useful to note that the
functions Qk , Qi

k , tk , t ik , φk and fε are each sums of terms of the form f (θ)g(x)

where each f is bounded. Thus it suffices to consider the integrals of each of the
g(x) with respect to the invariant probability µε for the xt process. Similarly, in
verifying condition (A12), it suffices to estimate the size of the g functions in terms
of a function F of x only.

REMARK 3. Recall the measure µ0 defined in Theorem 3. From the
definitions of G(h) and γ0 we see that

λ=
∫

Q0(x, θ) dmh(x) dν(θ) dρ(h)=
∫

Q0(x, θ) dµ0(x) dν(θ)

and so the passage from Proposition 1 to Theorem 4 consisted of showing that∫
Q0(x, θ) dPε(x, θ)=

∫
Q0(x, θ) dµ0(x) dν(θ)+O(ε2/3).

We can replace Q0 by a general function of the form g(x)s(θ) for smooth functions
g and s and apply the same sequence of 4 steps to construct a function f̃ε such that

(Lεf̃ε)(x, θ)= g(x)s(θ)−
∫

g(x) dµ0(x)

∫
s(θ) dν(θ)+ ε2/3

4∑
k=0

ε2k/3φ̃k(x, θ).

Then, subject to growth and integrability conditions similar to those in Theorem 4,
we obtain∣∣∣∣ ∫ g(x)s(θ) dPε(x, θ)−

∫
g(x)s(θ) dµ0(x) dν(θ)

∣∣∣∣=O(ε2/3) as ε→ 0.

If s is a constant then some of the terms in f̃ε vanish, and we obtain∣∣∣∣ ∫ g(x) dµε(x)−
∫

g(x) dµ0(x)

∣∣∣∣=O(ε2) as ε→ 0.

Thus, in some sense, Pε converges to µ0 × ν at rate ε2/3 and µε converges to µ0
at rate ε2. We will make these statements more precise in Section 3.6.

3. Stochastic nonlinear oscillator. In this section we write (x, y) ∈ R2 and

r =
√
x2 + y2 and consider the system

dx = y dt,

dy = (−x − x3 + ε2βy − ε2bx2y) dt + εσx dWt.
(39)
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Throughout this section we assume that σ > 0, b ≥ 0 and 4β + σ 2 > 0. If b = 0
we assume also that β < 0. By Theorem 1 and the estimate (5), the condition
4β + σ 2 > 0 ensures that the one-point motion (xt , yt ) is positive recurrent on
R2 \ {(0,0)} for all sufficiently small ε > 0.

We have two tasks to carry out in this section. We need to show that
conditions (A1)–(A12) are satisfied, and we need to obtain explicit formulas for
the function G(h) and the coefficients c(h) and d(h) appearing in the operator N .

The system (39) is a perturbation of the Hamiltonian system with H(x,y) =
x2/2+ x4/4+ y2/2 by the vector fields

V0(x, y)= (β − bx2)

[
0
y

]
, V1(x, y)= σ

[
0
x

]
.

We have

U1(x, y)=
[

y

−x − x3

]
, U2(x, y)= 1

(x + x3)2 + y2

[
x + x3

y

]

and so

α1
0(x, y)=−

(β − bx2)y(x + x3)

(x + x3)2 + y2 ,

α2
0(x, y)= (β − bx2)y2,

α1
1(x, y)=

−σx(x + x3)

(x + x3)2 + y2 ,

α2
1(x, y)= σxy

and

J (x, y)= −3x2(y2 − (x + x3)2)

[(x + x3)2 + y2]2 .

Since the system has only one-dimensional noise, we shall write Q1
k(x, y, θ) =

Qk(x, y, θ) and t1k (x, y, θ)= tk(x, y, θ) for k = 5,6,7.
We can see immediately that H has only one fixed point, so that (A5) is satisfied.

Also, since [(U1.α
2
1)(x, y)]2 = σ 2(y2 − x2− x4)2 we see that (A7) is satisfied.

3.1. Uniform estimates on integrals. The generator of the one-point motion
(xt , yt ) is

Lε = y
∂

∂x
+ (−x − x3+ ε2(β − bx2)y

) ∂
∂y
+ 1

2
ε2σ 2x2 ∂2

∂y2
.
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LEMMA 6. For each sufficiently small ε > 0 there is a unique invariant
probability measure Pε on (R2 \ {0}) × S1 for the diffusion process with
generator Lε. Moreover there is γ > 0, depending on ε, such that∫

(x2 + y2)−γ dµε(x, y) <∞,(40)

where µε is the marginal distribution of Pε on R2 \ {0}.

PROOF. For sufficiently small ε > 0 the Lyapunov exponent λ(−1, ε2β, εσ )

is positive. The existence and uniqueness of µε and the integrability result (40)
now follows from [7], Theorem 2.8. (For the function f in the conditions of [7],
Theorem 2.8, we can take the function Hε defined in Lemma 7.) The existence of
Pε is now immediate, using the compactness of S1. The uniqueness of Pε follows
from a result of San Martin and Arnold [21], Theorem 5.1, using techniques of
geometric control and Lie algebra considerations. Notice that for the purpose of
checking the uniqueness of Pε we can work with respect to the original Euclidean
frame for the vt process. �

REMARK 4. The proof of Theorem 1 uses the same result [7], Theorem 2.8.
In this case we use the function

f (x, y)=−
(
α + δ2

2

)
x2 +

(
a

4
+ δb

12

)
x4+ 1

2

(
y − (β + δ)x + b

3
x3
)2

where δ > 0. If b = 0 we take δ =−2β/3. In case (ii) the invariant probability µ

has the first or second behavior near 0 according as B(−2) > 0 or B(−2) < 0
where B is the moment Lyapunov function for equation (2). The result ([10],
Corollary 2.13) allows the calculation B(−2)=−β , and Theorem 1 is proven.

LEMMA 7. There exist α > 0 and ε0 > 0 and K <∞ such that∫
exp

(
αH(x, y)4/9)dµε(x, y)≤K whenever 0 < ε ≤ ε0.

PROOF. We consider first the case when b > 0. For fixed δ > 0 define the
function

Hε(x, y)=
(

1

2
− ε4δ2

2

)
x2+

(
1

4
+ ε2δb

12

)
x4 + 1

2

(
y − ε2(β + δ)x + ε2b

3
x3
)2

.

Then

LεHε(x, y)= ε2
[
−δy2− b

3
x6+

(
β + δ− b

3

)
x4+

(
σ 2

2
+ β + δ

)
x2+ ε2βδxy

]
.
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It is easy to show there exist positive constants K1, K2 and k so that

Hε(x, y)≤K1
(
x6+ y2),

LεHε(x, y)≤−ε2K2
(
x6 + y2),

whenever x2 + y2 ≥ k and 0 < ε ≤ 1/
√
δ. Then on the set x2 + y2 ≥ k we have

Lε(exp(αH 2/3
ε ))(x, y)

exp(αH 2/3
ε )(x, y)

= 2α

3
Hε(x, y)

−1/3LεHε(x, y)

+
(

2α2

9
Hε(x, y)

−2/3 − α

9
Hε(x, y)

−4/3
)
ε2σ 2x2

(
∂Hε(x, y)

∂y

)2

≤ 2α

3
Hε(x, y)

−1/3LεHε(x, y)+ 4α2

9
ε2σ 2x2Hε(x, y)

1/3

≤ ε2 2α

9
(x6 + y2)2/3(−3K−1/3

1 K2+ 2ασ 2K
1/3
1

)
.

Therefore if α < (3/2σ 2)K2K
−2/3
1 we obtain the estimate

Lε

(
exp

(
αH 2/3

ε

))
(x, y)≤−ε2K3 exp

(
αH 2/3

ε

)
(x, y)

for x2 + y2 ≥ k for some positive constant K3. On the compact set x2 + y2 ≤ k

we have an estimate Lε(exp(αH 2/3
ε ))(x, y)≤ ε2K4 for some positive constant K .

Together we get the estimate

Lε

(
exp

(
αH 2/3

ε

))
(x, y)≤−ε2K3 exp

(
αH 2/3

ε

)
(x, y)+ ε2K4

valid on all of R2. It follows by a result of Meyn and Tweedie ([19], Theorem 4.3)
that ∫

exp
(
αH 2/3

ε

)
dµε ≤ K4

K3
for all ε ≤ 1/

√
δ.(41)

Finally notice that (1+ ε2δb/3)x4 ≤ 4Hε(x, y) and

H(x,y)≤ 1

2
x2 + 1

4
x4+

(
y − ε2(β + δ)x + ε2b

3
x3
)2

+ ε4
(
b

3
x3 − (β + δ)x

)2

.

It follows that there are positive constants c1 and c2 such that H(x,y)≤
c1Hε(x, y)+ c2Hε(x, y)

3/2 for all ε ≤ 1
√
δ. Therefore the estimate (41) implies

one of the form ∫
exp

(
αH 4/9) dµε ≤K for all ε ≤ 1/

√
δ

for a different positive α and a finite K . This completes the proof in the case b > 0.
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We now consider the case when b= 0 and β < 0. We use the same function Hε

as above with b = 0. In this case we take δ = −2β/3 > 0. In the calculation of
LεHε(x, y) the x6 term is missing and the highest order term in x is ε2(β + δ)x4.
The estimates on Hε and LεHε can be done in terms of H(x,y) rather than x6+y2.
We replace the function exp(αH 2/3

ε ) by the function exp(α
√
Hε) and use the result

of Meyn and Tweedie to obtain an estimate of the form∫
exp

(
α
√
Hε

)
dµε ≤ K4

K3
for all ε ≤ 1/

√
δ.

Finally we use the fact that Hε(x, y)/H(x, y) → 1 as ε → 0 uniformly for
(x, y) ∈ R2 to obtain a stronger version of the lemma where the power 4/9 is
replaced by 1/2. �

LEMMA 8. For every p,q > 0 and ε > 0 there is k <∞, depending on p, q
and ε, such that the function F(x, y) = H(x,y)p +H(x,y)−q has the property
LεF (x, y)≤ kF (x, y) for all (x, y) ∈R2.

PROOF. By direct calculation. �

3.2. Averaging around orbits; explicit formulas. The following calculations
extend those contained in Liang and Sri Namachchivaya [18]. We use the
Hamiltonian function H(x,y) = x2/2 + y2/2 + x4/4, and evaluate integrals of
certain functions with respect to the probability measure mh along the orbit
H(x,y)= h. Throughout we shall assume h > 0.

Define Q(x,h) = 2(h − x2/2 − x4/4). Then along the top half of the
orbit H(x,y) = h the Hamiltonian flow +t(x, y) satisfies dx/dt = √Q(x,h).
Moreover the orbit meets the x-axis at the points x =±xh where xh =

√
4h+ 1−

1. For any function f (x, y) satisfying f (x, y)= f (−x,−y) we have∫
f (x, y) dmh(x, y)= 1

T (h)

∫ T (h)

0
f
(
+t(x, y)

)
dt

= 2

T (h)

∫ xh

−xh
f (x,

√
Q(x,h) )√

Q(x,h)
dx.

The following result can be proved using elementary techniques of integration.

LEMMA 9. Write

In(h)=
∫ xh

−xh
xn√

Q(x,h)
dx.
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Then

I0(h)= 2

(1+ 4h)1/4K(m),(42)

I2(h)=
[
(1+ 4h)1/2

(
2E(m)

K(m)
− 1

)
− 1

]
I0(h),(43)

I2n+4(h)=−4n+ 4

2n+ 3
I2n+2(h)+ 8n+ 4

2n+ 3
hI2n(h) if n≥ 0,(44)

where

m2 = 1

2

(
1− 1√

4h+ 1

)
and K(m) and E(m) denote the complete elliptic integrals of the first and second
kind (see [25], Section 22.7).

COROLLARY 3. For the system (39) the condition (A6) is satisfied and

G1(h)=−I ′0(h)
I0(h)

,

G2(h)= σ 2
[

32

7
h2 + 16

21
h+ I2(h)

I0(h)

(
−24

7
h− 16

21

)]
,

G(h)= |G1(h)|2/3[G2(h)]1/3,(45)

c(h)=
(

4β

3
+ 4b

15

)
h+ I2(h)

I0(h)

(
σ 2

2
− β

3
− 4b

15
− 8b

15
h

)
,(46)

d(h)= σ 2
[
− 2

15
h+ I2(h)

I0(h)

(
2

5
h+ 2

15

)]
,(47)

where the function I0(h) is given by (42) and the ratio I2(h)/I0(h) is given by (43).

PROOF. Since T (h)= 2I0(h)= 4(1− 2m2)1/2K(m) we obtain

T ′(h)
T (h)

=
[
K ′(m)

K(m)
− 2m

1− 2m2

]
dm

dh

=
[

E(m)

m(1−m2)K(m)
− 1

m(1− 2m2)

]
dm

dh

(see [25], Section 22.736). Since E(m) <K(m) for m �= 0 it follows that T ′(h) <
0 for all h > 0 and hence (A6) is satisfied. The formula for G1(h) is immediate
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from the equality T0(h)= 2I0(h). Now

G2(h)= σ 2
∫ (

y2− x2 − x4)2 dmh(x, y)

= σ 2
∫ (

2h− 2x2 − 3x4

2

)2

dmh(x, y)

= σ 2
∫ (

4h2− 8hx2+ (4− 6h)x4+ 6x6 + 9x8

4

)
dmh(x, y)

= σ 2
(

4h2 − 8h
I2(h)

I0(h)
+ (4− 6h)

I4(h)

I0(h)
+ 6

I6(h)

I0(h)
+ 9I8(h)

4I0(h)

)
and the calculation is completed by using the reduction formula (44) to obtain
expressions for I4(h) and I6(h) and I8(h) in terms of I2(h) and I0(h). The
calculations for c(h) and d(h) are similar. �

We can use information about the behavior of the complete elliptic integrals
K(m) and E(m) for m near 0 and 1/

√
2 to obtain information about .(h) =

[G1(h)/G2(h)]1/3 and G(h) and c(h) and d(h) for h near 0 and∞. The following
result summarizes an important intermediate step.

LEMMA 10. Write G3(h)= I2(h)/I0(h) and recall G1(h)=−I ′0(h)/I0(h).

(i) G1(h) and G3(h) are analytic functions of h in a neighborhood of 0. As
h→ 0 we have

G1(h)= 3

4
− 87h

32
+ 657h2

64
+O(h3),

G3(h)= h− 9h

8
+ 39h2

16
+O(h3).

(ii) As h→∞ we have

G1(h)∼ 1

4h
; G′1(h)∼−

1

4h2 ; G′′1(h)∼
1

2h3 ;
and

G3(h)∼ 2γ1h
1/2; G′3(h)∼ γ1h

−1/2; G′′3(h)∼−
γ1

2
h−3/2;

where γ1 = 2E(1/
√

2)/K(1/
√

2)− 1≈ 0.457.

COROLLARY 4. As h→ 0,

.(h)∼ (3/8σ 2)1/3h−2/3,

.′(h)∼−(2/3)(3/8σ 2)1/3h−5/3,

.′′(h)∼ (10/9)(3/8σ 2)1/3h−8/3;
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and as h→∞,

.(h)∼ (7/128σ 2)1/3h−1,

.′(h)∼ (7/128σ 2)1/3h−2,

.′′(h)∼ 2(7/128σ 2)1/3h−3.

3.3. Derivatives of A, B , C and D. The functions fε and φk involve the
functions A, B , C and D, together with some of their derivatives. Consider first
the function A(x, y) required to be a solution of U1.A(x, y)= a(x, y)− ∫

a dmh

along the orbit H(x,y) = h. In order to verify conditions (A10)–(A12) we need
estimates on A(x, y) and V1.A(x, y) and LA(x, y), together with similar estimates
on B , C and D. Our first result is valid for a general Hamiltonian system with a
single critical point at (0,0).

LEMMA 11. Assume (A5). Let D denote an integral curve of the vector field
U2 from 0 to ∞, and let f be a smooth function on R2 \ {0}. Write f̃ (x, y) =
f (x, y) − ∫

f dmh for (x, y) ∈ H−1(h). Then there is a unique function F on
R2 \ {0} such that U1.F (x, y) = f̃ (x, y) and F |D ≡ 0. Moreover, we have the
equality

U1.(U2.F )(x, y)= U2.f̃ (x, y)− J (x, y)f̃ (x, y)(48)

and the inequalities

|F(x, y)| ≤ T (h) sup
{|f̃ (u, v)| : (u, v) ∈H−1(h)

}
,(49)

|(U2.F )(x, y)| ≤ T (h) sup
{|(U2− J ).f̃ (u, v)| : (u, v) ∈H−1(h)

}
,(50)

|(U2
2 .F )(x, y)| ≤ T (h) sup

{|(U2− J )2.f̃ (u, v)| : (u, v) ∈H−1(h)
}
,(51)

valid for (x, y) ∈H−1(h).

PROOF. For each h> 0 parameterize the orbit H−1(h) by the path p(t) where
p(0)= p(T (h)) ∈D and p′(t)=U1(p(t)). Then we can take

F(p(t))=
∫ t

0
f̃
(
p(s)

)
ds

and clearly this is the unique solution of U1.F = f̃ with F |D ≡ 0. The first
inequality (49) follows directly. The equality (48) is a direct application of
Lemma 1. Since F |D ≡ 0 then F2.A|D ≡ 0 and so we can apply the previous
estimate with F and f̃ replaced by U2.F and (U2 − J ).f̃ to obtain the second
estimate (50). Repeating this idea gives the third estimate (51). �

LEMMA 12. For the system (39), suppose U1.F (x, y) = f̃ (x, y) as above,
and that F(0, y) ≡ 0. For ease of notation write ‖f ‖h = sup{|f (u, v)| :
H(u,v)= h}.
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(i) There are constants k and δ such that if r =
√
x2 + y2 < δ and

H(x,y)= h then

|F(x, y)| ≤ k‖f ‖h,
|V1.F (x, y)| ≤ k

[‖f ‖h + r2‖U2.f ‖h],∣∣LF(x, y)
∣∣≤ k

[‖f ‖h + ‖V1.f ‖ + r2‖U2.f ‖ + r4‖U2
2 .f ‖h

]
.

(ii) If f and its first two derivatives have at most polynomial growth as
(x, y)→∞, then so do F and V1.F and LF .

PROOF. This is a direct application of the estimates in the Lemma. In (i) we
use the facts that T (h) and the functions α1

0 , α1
1 , V1.α

1
1 , J and U2.J are all bounded

near (0,0) and that α2
1 and V1.α

2
1 are both of order r2 near (0,0). In (ii) we use the

fact that all of the functions just mentioned have at most polynomial growth. �

COROLLARY 5. For the functions A, B , C and D associated with the
system (39):

(i) A and V1.A and LA and B and V1.B and LB are all O(r4/3) as (x, y)→
(0,0) and all have at most polynomial growth as (x, y)→∞.

(ii) C and V1.C and LC are all O(r2) as (x, y)→ (0,0) and all have at most
polynomial growth as (x, y)→∞.

(iii) D and V1.D and LD are all O(r4) as (x, y)→ (0,0) and all have at most
polynomial growth as (x, y)→∞.

PROOF. This is a direct application of the previous result. In case (i) we use
the estimates on . and its derivatives given in Subsection 3.2. �

3.4. Existence and derivatives of = . We now turn attention to the diffusion on
(0,∞) with generator N and the functions G and = . The coefficients c(h) and
d(h) were given in (46), (47). They yield the following asymptotics as h tends to
0 and∞:

c(h)∼
(
β + σ 2

2

)
h as h→ 0,

d(h)∼ σ 2

4
h as h→ 0,

c(h)∼−8γ1b

15
h3/2 as h→∞ if b > 0,

c(h)∼ 4β

3
h as h→∞ if b= 0 and β < 0,

d(h)∼ 4γ1σ
2

5
h3/2 as h→∞.
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It follows easily that there is a C2 function F : (0,∞)→ (0,∞) of the form
F(h)= h−c1 for h sufficiently small and F(h)= exp c2

√
h for h sufficiently large

with the property that N F(h)≤−c3F(h)+ c4. Here c1, c2, c3 and c4 are positive
constants; this construction can be done for all sufficiently small c1 and c2.

Condition (A8) on the existence of the invariant probability ρ follows imme-
diately (using results of Khas’minskii [17], Theorem III.7.3 and Theorem IV.4.1).
Moreover, by a result of Meyn and Tweedie ([19], Theorem 4.2), the invariant
probability ρ has the property

∫
(0,∞) F (h) dρ(h) <∞. From the calculations in

Subsection 3.2 we have the following asymptotics for G

G(h)∼ (9σ 2/8)1/3h2/3 as h→ 0,

G(h)∼ (2σ 2/7)1/3 as h→∞.

Since G/F is bounded on (0,∞) it follows that
∫
(0,∞) G(h) dρ(h) <∞. Now

the estimate N F(h) ≤ −c3F(h) + c4 implies that N is the generator of an F -
exponentially ergodic process (see [19], Theorem 6.1). It follows that there exists
a smooth function = such that N=(h) = G(h) − ∫

Gdρ and |=(h)|/F (h) is
bounded. Thus (A9) is satisfied. More details of this sequence of arguments is
given in Baxendale and Goukasian [9], Proposition 4 and Lemma 5. At this stage
we have pointwise estimates on = coming from the fact that |=(h)|/F (h) is
bounded. But when we look at the formulas for fε and φ2 we see that we will
need better pointwise estimates on = and also estimates on its first 4 derivatives.
To obtain these we need the following result, which may be of independent interest

LEMMA 13. Let {xt : t ≥ 0} be a diffusion process, with generator L on a σ -
compact space M . Suppose that there is a compact K ⊂M and a function F ≥ 1
so that LF ≤ −cF outside K for some c > 0. Define τK = inf{t ≥ 0 :xt ∈ K}.
Then P x(τK <∞)= 1 for all x /∈K. Suppose further there exist functions f and
g so that Lf = g outside K and |g(x)|/F (x) is bounded on M and f (x)/F (x)→
0 as x→∞. Then

Exf (xτK )− f (x)=Ex
∫ τK

0
g(xs) ds for all x /∈K.

PROOF. The first assertion is due to Khas’minskii [17], Theorem III.7.1. To
prove the second assertion we use the assumption about F to show that the local
martingale f (xt∧τK )−

∫ t∧τK
0 g(xs) ds is a uniformly integrable martingale. Define

τn = inf{t ≥ 0 :xt /∈Kn} where the compact sets Kn satisfy K =K0 ⊂K1 ⊂K2 ⊂
· · · ↗N . The condition Lf = g implies that

Exf (xt∧τn∧τK )− f (x)=Ex
∫ t∧τn∧τK

0
g(xs) ds(52)
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for all x /∈ K . The assumption on F implies that ec(t∧τn∧τK)F (xt∧τn∧τK ) and
F(xt∧τn∧τK )+ c

∫ t∧τn∧τK
0 F(xs) ds are supermartingales. These yield the inequal-

ities

ExF (xt∧τn∧τK )≤ F(x)

and

Ex
∫ t∧τn∧τK

0
F(xs) ds ≤ 1

c
f (x)

for x /∈ K . The first inequality implies that the random variables f (xt∧τn∧τK )
are uniformly integrable with respect to P x and so we can pass to the limit as
t →∞ and n→∞ in the left side of (52). The second inequality allows the use
of the dominated convergence theorem on the right side of (52) as t →∞ and
n→∞. �

We now specialize to the diffusion process with generator N on (0,∞).
Taking one function F in the exponential ergodicity argument above to get growth
estimates on = , and then a different F with larger c1 and c2 here, we see that we
can apply Lemma 13 with f (x)==(x) and g(x)=G(x)− ∫ Gdρ ≡ G̃(x). Take
K = [δ, k] for sufficiently small δ and large k, and x < δ. We have

=(δ)−=(x)=Ex
∫ τδ

0
G̃(xs) ds.

Replacing δ by an arbitrary point y ≤ δ we get

=(y)−=(x)=Ex
∫ τy

0
G̃(xs) ds

whenever 0 < x < y ≤ δ. Replacing = in this calculation by the function f (x)=
logx we get

logy − logx = Ex
∫ τy

0
N f (xs) ds.

Since N f (x)= x−1c(x)− x−2d(x)→ β + σ 2/4= 2λ > 0 as x→ 0 there exist
δ1 > 0 and k1 <∞ such that |G̃(x)| ≤ k1N f (x) whenever 0 < x < δ1. Then

|=(y)−=(x)| ≤Ex
∫ τy

0

∣∣G̃(xs)
∣∣ds ≤ kEx

∫ τy

0
N f (xs) ds = k1(logy − logx)

whenever 0 < x < y ≤ min(δ, δ1) ≡ δ2. Taking y = δ2 we get the improved
pointwise estimate |=(x)| ≤ |=(δ2)| + k1 log δ2 − k1 logx for 0 < x < δ2. More
importantly, letting y ↘ x we get |= ′(x)| ≤ k1x

−1 for 0 < x < δ2. Now
substituting into

c(x)= ′(x)+ d(x)= ′′(x)=G(x)−
∫

Gdσ
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and using the asymptotics of c(x) and d(x) and G(x) near 0 gives |= ′′(x)| ≤
k2x

−2 near 0. Differentiating the expression above (remembering that c and d and
G3 are real analytic functions in a neighborhood of 0 and using Corollary 3 and
Lemma 10) we get consecutively |= ′′′(x)| ≤ k3x

−3 and then |= ′′′′(x)| ≤ k4x
−4

near 0.
We can repeat this method near∞. For sufficiently large k we have

=(y)−=(x)=Ex
∫ τy

0
G̃(xs) ds

whenever k ≤ y < x. If b = 0 and β < 0 we use the function f (x) = − logx,
and if b > 0 we use the function f (x) = x−1/2. We use the formulas for c and d

and G from Corollary 3 together with the asymptotics for G1 and G3 and their
derivatives near ∞ from Lemma 4. In the first case we get estimates of the form
|=(x)| ≤ k0 logx, |= ′(x)| ≤ k1x

−1, |= ′′(x)| ≤ k2x
−3/2, |= ′′′(x)| ≤ k3x

−2 and
|= ′′′′(x)| ≤ k4x

−5/2 for x large. In the second case we get estimates of the form
|=(x)| ≤ k0 and |=(j)(x)| ≤ kjx

−3/2, 1≤ j ≤ 4, for x large.

3.5. Proof of Theorem 2. Formulas for c(h) and d(h) and G(h) have been
obtained in Corollary 3. The conditions (A1) and (A5)–(A9) have been verified
earlier in this section. The estimates on . in Corollary 4, together with Lemmas 6
and 7 imply that (A2) is satisfied. The estimates on A, B , C, D and = and their
derivatives from Subsections (3.3) and (3.4) imply that fε(x, y) grows at most
like | log r| as (x, y)→ (0,0) and has at most polynomial growth in x and y as
(x, y)→∞. It follows from Lemmas 6 and 7 that fε is integrable with respect
to Pε.

Using the estimates on . given in Corollary 4, together with explicit formulas
for the α

j
i (x, y) and J (x, y), it is a routine (but lengthy) calculation to show that

each of the entries in M0(x, y) and M1(x, y) and DM1(x, y)(V1(x, y)) remains
bounded as (x, y)→ (0,0) and has at most polynomial growth as (x, y)→∞.
This implies, using Lemma 4, that each of the Qk(x, y, θ) and tk(x, y, θ) remains
bounded as (x, y)→ (0,0) and has at most polynomial growth as (x, y)→∞.
Conditions (A3) and (A4) now follow immediately using Lemma 7.

Using the results on the tk from the previous paragraph together with the
estimates on the functions A, B , C, D and = and their derivatives from
Subsections (3.3) and (3.4), it is now easy to verify that each of the functions
φ0, . . . , φ4 (given in the Appendix) remain bounded as (x, y)→ (0,0) and have at
most polynomial growth as (x, y)→∞. Notice that for the function φ2 near 0, the
estimates on C and D obtained in Subsection 3.3 together with obvious estimates
on c and d and α2

1 exactly counteract the possible growth in the derivatives of =
given in Subsection 3.4. Conditions (A10) and (A11) now follow using Lemma 7
and the condition (A12) follows using Lemma 8.
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REMARK 5. Suppose that in equation (39) the multiplicative noise εσxdWt is
replaced by additive noise εσdWt . This has the effect of replacing the functions α1

1
and α2

1 by new functions α1
1(x, y)=−σ(x+ x3)/[(x+ x3)2+ y2] and α2

1(x, y)=
−σx. Then the four functions U1.α

1
1, U1.α

2
1 , U2.α

1
1 and U2.α

2
1 are of order r−1, r ,

r−3 and r−1 respectively near 0. Since the probability measure µε is independent
of ε (for additive noise) and has a smooth positive density, it follows that the entries
in the matrices M1(x, y) and (∂/∂y)M1(x, y) fail to be integrable, and the entire
method fails.

3.6. Convergence of measures. Here we continue the discussion started in
Remark 3 concerning the convergence of the probability measures Pε and µε. For
convenience we revert to notation used in Section 2 and let x denote a point in R2.
The following result extends Theorem 3.

THEOREM 5. Let g(x) be a smooth function with compact support in R2 \ {0}
and let s(θ) be a smooth function on S1. Then∣∣∣∣ ∫ g(x)s(θ) dPε(x, θ)−

∫
g(x)s(θ) dµ0(x) dν(θ)

∣∣∣∣=O(ε2/3) as ε→ 0

and ∣∣∣∣ ∫ g(x) dµε(x)−
∫

g(x) dµ0(x)

∣∣∣∣=O(ε2) as ε→ 0.

In particular Pε → µ0 × ν weakly as probability measures on R2 × S1, and
µε→ µ0 as ε→ 0 weakly as probability measures on R2.

PROOF. Define g(h) = ∫
g(x) dmh(x) and choose a function E(x) so that

U1.E(x)= g(x)− g(H(x)). Define s = ∫
s(θ) dν(θ) and choose a function R̃(θ)

so that MR̃(θ) = s(θ) − s. Choose a function =̃(h) so that N =̃(θ) = g(h) −∫
g dρ. The results in Subsection 3.4 on the existence of = and the estimates on =

and its first four derivatives apply equally well to the function =̃ . Now define
f̃ε(x, θ) by

f̃ε(x, θ)= E(x)s(θ)+ ε−2/3 g(H(x))

G(H(x))
R̃(θ)− g(H(x))

G(H(x))
A(x) sin2 θ R̃′(θ)

− g(H(x))

G(H(x))
B(x)

(
− cos3 θ sin θ R̃′(θ)+ 1

2
cos4 θ R̃′′(θ)

)
+ ε−2s

(
=̃ ◦H )

(x)− s
[
C(x)

(
=̃ ′ ◦H )

(x)+D(x)
(
=̃ ′′ ◦H )

(x)
]
.

Then a direct calculation shows that

(Lεf̃ε)(x, θ)= g(x)s(θ)−
∫

g(h)dρ(h)

∫
s(θ) dν(θ)

(53)

+ ε2/3
4∑

k=0

ε2k/3φ̃k(x, θ)
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for suitable functions φ̃k. Now the assumption that g has compact support in
R2 \ {0} implies that E(x) and g(H(x)) are zero near 0 and∞. Thus when we are
checking integrability and growth conditions for the functions f̃ε and φ̃k the only
terms which can be non-zero near 0 or∞ are ones involving the function =̃ and its
derivatives. But =̃ satisfies the same estimates as = , and so the calculations used to
verify conditions (A10)–(A12) in the preceding subsection can be used here also.
The rest of the argument used in Theorem 4 is unchanged, and we obtain the first
estimate.

In the case when s(θ)≡ 1 then we can take R̃(θ)≡ 0 and the argument proceeds
as before, but in a simplified form. The φ̃k terms vanish for k = 0, 1, 3 and 4, so
that the estimate is of order ε2.

Finally notice that Lemma 6 shows that {µε : 0 < ε ≤ ε0} and {Pε : 0 < ε ≤ ε0}
are both tight families of probability measures on R2 and R2 × S1, respectively.
The estimates above prove uniqueness for any subsequential limit, so we obtain
the statements about weak convergence of Pε to µ0× S1 and µε to µ0. �

APPENDIX

Define

R1(θ)= sin θ cos θ − sin2 θR′(θ),

R2(θ)= 1
2 cos2 θ − sin2 θ cos2 θ + sin θ cos3 θR′(θ)− 1

2 cos4 θR′′(θ).

Then

φ0(x, θ)= t1(x, θ)R
′(θ)+ t0(x, θ)

[
A(x)R′1(θ)+B(x)R′2(θ)

]
+ 1

2

r∑
i=1

[
t i5(x, θ)

]2[
A(x)R′′1 (θ)+B(x)R′′2 (θ)

];
φ1(x, θ)= t2(x, θ)R

′(θ)+ 1
2

r∑
i=1

[
t i6(x, θ)

]2
R′′(θ)

+ t1(x, θ)
[
A(x)R′1(θ)+B(x)R′2(θ)

]
+ 1

2

r∑
i=1

t i5(x, θ)
[
Vi.A(x)R

′
1(θ)+ Vi.B(x)R

′
2(θ)

];
φ2(x, θ)= t3(x, θ)R

′(θ)+LA(x)R1(θ)+LB(x)R2(θ)

+ t2(x, θ)
[
A(x)R′1(θ)+B(x)R′2(θ)

]
+ 1

2

r∑
i=1

[
t i6(x, θ)

]2[
A(x)R′′1 (θ)+B(x)R′′2 (θ)

]
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+
r∑

i=1

t i6(x, θ)
[
Vi.A(x)R

′
1(θ)+ Vi.B(x)R

′
2(θ)

]

− γ0

[
LC(x)= ′

(
H(x)

)+ ( r∑
i=1

α2
i (x)Vi.C(x)+C(x)c(x)

)
= ′′

(
H(x)

)

+C(x)d(x)= ′′′
(
H(x)

)]

− γ0

[
LD(x)= ′′

(
H(x)

)

+
(

r∑
i=1

α2
i (x)Vi.D(x)+D(x)c(x)

)
= ′′′

(
H(x)

)

+D(x)d(x)= ′′′′
(
H(x)

)];
φ3(x, θ)= t4(x, θ)R

′(θ)+ 1
2

r∑
i=1

[
t i7(x, θ)

]2
R′′(θ)

+ t3(x, θ)
[
A(x)R′1(θ)+B(x)R′2(θ)

]
+

r∑
i=1

t i7(x, θ)
[
Vi.A(x)R

′
1(θ)+ Vi.B(x)R

′
2(θ)

];
φ4(x, θ)= t4(x, θ)

[
A(x)R′1(θ)+B(x)R′2(θ)

]
+ 1

2

r∑
i=1

[
t i7(x, θ)

]2[
A(x)R′′1 (θ)+B(x)R′′2 (θ)

]
.
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