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DECOMPOSITION OF STATIONARY �-STABLE
RANDOM FIELDS1

By Jan Rosiński

University of Tennessee

This work is concerned with the structural analysis of stationary
α-stable random fields. Three distinct classes of such random fields are
characterized and it is shown that every stationary α-stable random field
can be uniquely decomposed into the sum of three independent components
belonging to these classes. Various examples of stationary α-stable random
fields are discussed in this context.

1. Preliminaries and introduction. In this paper we study measur-
able stationary symmetric α-stable (SαS) random fields X = �Xt�t∈Td , where
T = R or Z and d ≥ 1. Such processes can be represented (in distribution) by
stochastic integrals

X d=
{ ∫

S
ft�s�M�ds�

}
t∈Td

	(1.1)

where M is an independently scattered SαS random measure on some Borel
space �S	�S� with control measure µ, and �ft�t∈Td ⊂ Lα�S	µ� is a collection of
deterministic functions such that the map �t	 s� → ft�s� is jointly measurable
(see, e.g., [7]). The condition for the stationarity of X is equivalent to∥∥∑akftk+t

∥∥
α

= ∥∥∑akftk
∥∥
α
	(1.2)

for every t	 t1	 � � � 	 tn ∈ Td	 a1	 � � � 	 an ∈ R and n ≥ 1. We also consider
complex-valued SαS random fields; the symmetry assumption means in this
case the invariance under multiplication by complex numbers of modulus 1
(rotations). In the complex case, ft are complex valued, M is invariant under
rotations, and (1.2) must hold for all a1	 � � � 	 an ∈ C. A family of functions
�ft�t∈Td satisfying (1.1) is called a representation of X. Following verbatim
the proof of Theorem 3.1 in [6] (given for d = 1), one shows that every sta-
tionary SαS random field �α < 2� has a representation of the form

ft�s� = ct�s�
{
d�µ ◦φt�
dµ

�s�
}1/α

f�φt�s��	 s ∈ S	 t ∈ Td	(1.3)

where φt� S → S is a measurable nonsingular flow on �S	µ� [i.e., φt1+t2�s� =
φt1�φt2�s��, φ0�s� = s, and µ ∼ µ ◦ φt, for every t1	 t2	 t ∈ Td	 s ∈ S], and
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f ∈ Lα�S	µ�. Furthermore, ct� S → �±1� (in the complex case, ct� S → ��z� =
1� z ∈ C�) is a measurable cocycle for �φt�t∈Td , that is, for every t1	 t2 ∈ Td,

ct1+t2�s� = ct1�s�ct2�φt1�s��	 µ-a.e.(1.4)

The flow �φt�t∈Td is determined by the distribution of X up to the equivalence
relation of flows and the cocycle �ct�t∈Td up to the coboundary factor (see
Theorem 3.6 in [6]).

It is easier to study solutions of (1.4) when this equation holds for all
s ∈ S as well. We say that a measurable cocycle is strict if (1.4) holds for
all �t1	 t2	 s� ∈ Td × Td × S. It turns out that one can always choose a strict
cocycle in (1.3). This follows from the following fact given (in a greater gener-
ality) in [10], Appendix B9. For every measurable cocycle �ct�t∈Td there exists
a strict measurable cocycle �c̃t�t∈Td on the same measure space such that, for
each t ∈ Td	 c̃t = ct µ-a.e.

Our structural analysis of stable non-Gaussian random fields is based on
the representation (1.3). The idea is to decompose S into �φt�t∈Td-invariant
parts and to characterize the flow and the cocycle acting on each part sep-
arately. This operation corresponds to a decomposition of X into the sum of
simpler independent stationary SαS random fields. The relation between X
and �ct	φt�t∈Td is not explicit, however. Therefore, we are seeking for crite-
ria in terms of �ft�t∈Td to characterize the equivalence classes of �ct	φt�t∈Td
which, in turn, determine appropriate classes of stationary random fields.

The best known examples of stationary random fields include harmonizable
and moving average random fields. Recall that a harmonizable random field
is of the form

X d=
{ ∫

T̂d
eit·sM�ds�

}
t∈Td

	(1.5)

where T̂ = �0	2π� if T = Z	 T̂ = R if T = R, and µ�T̂d� < ∞; comparing
this with (1.3) we have φt = id, ct�s� = eit·s and f = 1. A moving average is
given by

X d=
{ ∫

Td
f�t+ s�M�ds�

}
t∈Td

	(1.6)

where f ∈ Lα�Td	Leb�� µ = Leb (the Lebesgue measure when Td = Rd and
the counting measure when Td = Zd); here φt�s� = t + s and ct = 1. Taking
superpositions of independent moving averages leads to a larger class of the
so-called mixed moving averages (see [8]). A mixed moving average is repre-
sented by

X d=
{ ∫

W×Td
g�w	 t+ s�M�dw	ds�

}
t∈Td

	(1.7)

where g ∈ Lα�W × Td	 λ ⊗ Leb�	 λ is a σ-finite measure on a Borel space
�W	�W�, and the control measure µ of M equals λ ⊗ Leb. In this case,
φt�w	 s� = �w	 t + s� and ct = 1. For other special cases of stationary SαS



STATIONARY STABLE FIELDS 1799

random processes and fields we refer the reader to the recent monographs by
Janicki and Weron [2] and by Samorodnitsky and Taqqu [7].

This work extends results of [6] from stationary SαS processes to ran-
dom fields, presents more direct approach to their structural analysis, and
provides examples. The major obstacle in generalizing [6] to random fields
was the unavailability of Krengel’s theorem [4] classifying dissipative flows
indexed by Rd	 d ≥ 2. We resolve this difficulty and prove a characterization
of mixed moving averages in Theorem 2.1 directly, without referring to dissi-
pative flows or Hopf decomposition (see also Corollary 2.2). In Theorems 2.4
and 3.1 we characterize, respectively, harmonizable random fields and random
fields which do not admit harmonizable or mixed moving average components.
The latter class is not well understood at present. Therefore, in Section 3, we
give some examples of processes from this class. We show examples of “cocycle
processes” which are defined by (1.3) reduced to the cocycle term only

ft = ct	 t ∈ Td	(1.8)[
µ is a φt-invariant finite measure and f = 1 in (1.3)

]
. A cocycle (1.4) plays

a similar role to the exponential function in (1.5); it changes the phase of the
noiseM (recall that the exponential function is a cocycle for the identity flow).
Cocycle processes are doubly stationary by Theorem 7 in [1]. Our examples
demonstrate that even real-valued cocycle processes, which are defined by
±1-valued cocycles, form a large class.

The characterizations obtained in Theorems 2.1, 2.4 and 3.1 lead to a unique
decomposition of a stationary SαS random field into three independent parts

X d= X1 + X2 + X3	

where X1 is a mixed moving average, X2 is harmonizable, and X3 is a station-
ary SαS process without mixed moving average or harmonizable components.
Thus, time moving averages and harmonic frequencies constitute basic build-
ing blocks of a general SαS random field but they act independently of each
other. This independence implies, in principle, a possibility of their identifica-
tion from the statistics of a random field. This is Theorem 3.7, generalizing
Theorem 6.1 in [6].

There is one technical condition that we will often assume in the proofs.
Namely, we will assume that �ft�t∈Td , satisfying (1.1) and (1.2), also satisfies

supp
{
ft� t ∈ Td

} = S�(1.9)

This condition is unrestrictive because the truncation of S to supp�ft� t ∈ Td�
does not affect (1.1) or (1.2). Let F denote the closure in Lα of lin�ft� t ∈ Td�.
A representation �ft�t∈Td is said to be minimal if (1.9) holds and σ�g/h� g	h ∈
F� = �S modulo µ. Every separable in probability SαS process has a minimal
representation (see, e.g., [2]).

Many results of this paper can be generalized to processes indexed by
groups. Since such generalizations raise some other interesting issues that
can be considered in the group context, we have chosen to investigate them in
a separate work.
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2. Moving average and harmonizable S�S random fields.

Theorem 2.1. Let X = �Xt�t∈Td be a stationary SαS random field with an
arbitrary representation �1�1�. Then X is a mixed moving average if and only if∫

Td
�ft�s��α dt < ∞	 µ-a.e.(2.1)

Proof. First we will prove the necessity of (2.1). Suppose that X has a
representation (1.7); without loss of generality we may assume that∫
Td �g�w	 t��α dt < ∞ for all w ∈ W. By Theorem 3.1 in [5] there exist functions
�� S → W× Td	 � = ��1	�2�, and h� S → R (C, resp.) such that

ft�s� = h�s�g��1�s�	 2�s� + t�	 Leb ⊗ µ-a.e.

which yields (2.1).
The proof of the sufficiency goes through a series of steps modifying repre-

sentation (1.1) until the desired form (1.7) is obtained.

Step 1. Let �gt� t ∈ Td� ⊂ Lα�W	ν� be a minimal representation of X (see
Section 1). Then

g∗�w� �=
∫
Td

�gt�w��α dt < ∞	 ν-a.e.(2.2)

Proof of Step 1. We may and do assume (1.9). By Remark 2.5 in [6] there
exist measurable maps  � S → W and h� S → C\�0� (into R\�0�, resp.) such
that, for each t ∈ Td,

ft�s� = h�s�gt� �s��	 µ-a.e.(2.3)

and µ ◦ −1 ∼ ν. Let W∞ �= �w� ∫
Td �gt�w��α dt = ∞�; from (2.1) and (2.3) we

get µ� −1�W∞�� = 0, which gives ν�W∞� = 0 and proves (2.2).
Using the same arguments as in [6], Theorem 3.1, we infer that there exists

a measurable nonsingular flow φt� S → S on �W	ν� and a cocycle ct� S →
��z� = 1� z ∈ C� (or into �±1� if X is real valued) such that

gt = ct
{
d�ν ◦φt�
dν

}1/α

g0 ◦φt	 t ∈ Td�(2.4)

Step 2. Under the assumptions of Step 1 there exists a �φt�t∈Td-invariant
measure λ on W which is equivalent to ν.

Proof of Step 2. In view of (2.2), the measure λ given by

λ�dw� �= g∗�w�ν�dw�
is absolutely continuous with respect to ν. LetW0 �= �w� g∗�w� = 0�. We have

0 =
∫
W0

g∗ dν =
∫
Td

∫
W0

�gt�α dν dt�
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Hence there exists a dense set D ⊂ Td such that for every t ∈ D,∫
W0

�gt�α dν = 0�(2.5)

Consider the group of isometries Vt� L1�W	ν� → L1�W	ν� given by

Vth = d�ν ◦φt�
dν

h ◦φt�
Notice that �gt�α = Vt��g0�α�. The group �Vt�t∈Td is measurable, thus strongly
continuous, and since (2.5) holds on a dense set D, it holds for all t ∈ Td.
Consequently, W0 is disjoint �mod ν� with supp�gt� t ∈ Td�. From the mini-
mality of �gt�t∈Td we get ν�W0� = 0, showing that λ is equivalent to ν.

To prove that λ is invariant, choose τ ∈ Td and A ∈ �W. We have

λ�φτA� =
∫
W
1A�φ−τ�w��g∗�w�ν�dw�

=
∫
Td

∫
W
1A�φ−τ�w��d�ν ◦φt�

dν
�w��g0�φt�w���αν�dw�dt

=
∫
Td

∫
W
1A�w�d�ν ◦φt�

dν
�φτ�w���g0�φt+τ�w���α�ν ◦φτ�dw��dt

=
∫
W
1A�w�

∫
Td

d�ν ◦φt+τ�
dν

�w��g0�φt+τ�w���α dt ν�dw� = λ�A��
This completes the proof of Step 2.

Step 3. Define

ht�w� �= ct�w�h�φt�w��	
where h �= �g∗�−1/αg0. Then �ht� t ∈ Td� ⊂ Lα�W	λ� is a representation of X
such that for λ-a.a. w ∈ W, ∫

Td
�h�φt�w���α dt = 1�(2.6)

Proof. From the equality

1 = d�λ ◦φt�
dλ

= d�v ◦φt�
dν

g∗ ◦φt
g∗

we get

gt = ct
{

g∗

g∗ ◦φt

}1/α

g0 ◦φt = �g∗�1/αht

or

ht = �g∗�−1/αgt	

proving that �ht�t∈Td ⊂ Lα�W	λ� is a representation of X. Since the last equal-
ity holds modλ, for each t ∈ Td, by Fubini’s theorem we get (2.6) λ-a.e., as
needed.
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Notice now that the set �w� ∫Td �h�φt�w���α dt = 1� is �φt�-invariant. There-
fore, removing from W the complement of this set, which is of measure zero
by (2.6), does not affect the representation �ht�. Hence we may and do assume
that (2.6) holds for every w ∈ W.

Step 4. There exists a sequence of �φt�-invariant real-valued Borel func-
tions on W which separate the orbits of �φt�t∈Td .

Proof of Step 4. We will now employ some topological arguments. By
Theorem 8.7 of Varadarajan [9], W can be considered as a Borel subset of
a compact metric space W̃ on which the flow �φt�t∈Td is defined, W is �φt�-
invariant, and the map Td × W̃ � �t	w� → φt�w� ∈ W̃ is jointly continuous.

Let �An� be the sequence of finite unions of finite intersections of sets from
a countable topological basis of W. Let

Anm �= An ∩ �w� �h�w�� > m−1��
Since

∫
W �h�α dλ < ∞	 λ�Anm� < ∞ for every n	m ≥ 1. Define

unm�w� �=
∫
Td

1Anm�φt�w��dt�

Notice that

unm�w� ≤
∫
Td
mα�h�φt�w���α dt = mα < ∞	

for every w ∈ W, n	m ≥ 1, and clearly unm is �φt�-invariant. We will show
that �unm�n	m≥1 separate the orbits of �φt�t∈Td .

Suppose that w1 and w2 live on different orbits. We first claim that for some
n	m ≥ 1,

unm�w1� > 0�(2.7)

Indeed, from (2.6) (which now holds for all w ∈ W) we infer that there exist
m ≥ 1 and t0 ∈ Td such that for every open neighborhood G of t0,

��t ∈ G� �h�φt�w1��� > m−1�� > 0

(�·� stands for the Lebesgue measure). Furthermore, there exists an n ≥ 1 such
that φt0�w1� ∈ An. By the continuity of φ, there is an open neighborhood G of
t0 such that φt�w1� ∈ An, provided t ∈ G. Hence

unm�w1� = ��t� φt�w1� ∈ An	 �h�φt�w1��� > m−1��
≥ ��t ∈ G� �h�φt�w1��� > m−1�� > 0	

proving (2.7). Now we will show that w1 and w2 can be separated.
Let n	m be as in (2.7). If unm�w2� �= unm�w1�, then there is nothing to

prove. Thus we assume

unm�w2� = unm�w1� = δ > 0�
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There exists a compact set K ⊂ Td such that∫
K
1Anm�φt�wi��dt > δ/2	 i = 1	2�(2.8)

Consider compact sets in W given by

-i �= �φt�wi�� t ∈ K�	 i = 1	2�

Since w1 and w2 live on different orbits, -1 ∩-2 = �. Hence, there is an n1 ≥ 1
such that

An1
⊃ -1 and An1

∩ -2 = ��
By the definition of the sequence �Ak�, An ∩ An1

= An′ , for some n′ ≥ 1.
Consider un′m. In view of (2.8) we get

un′m�w1� ≥
∫
Td

1-1∩Anm�φt�w1��dt

≥
∫
K
1Anm�φt�w1��dt > δ/2

and

un′m�w2� =
∫
Kc

1An′m�φt�w2��dt < δ/2�

Hence un′m�w2� < un′m�w1�, which ends the proof of Step 4.
By Step 4 and von Neumann’s cross-section lemma (see [9], Corollary 8.2),

there exists a Borel set W0 ⊂ W which intersects each orbit of �φt�t∈Td at
exactly one point. [To be exact, this step may require a reduction of W to
some �φt�t∈Td-invariant subset, say, W̃, such that λ�W\W̃� = 0.]

Step 5. LetW0 be as above. The map��W0×Td → W, given by��w0	 t� =
φt�w0�, is a Borel isomorphism. The measure λ ◦ �, induced on W0 × Td by
the inverse map �−1 from W, is the product measure of certain measure λ0
on W0 and the Lebesgue measure on Td.

Proof of Step 5. First we will show that � is one-to-one. Suppose that
��w1	 t1� = ��w2	 t2�. Then w1 = w2 = w0 from the definition of W0, thus
φt0�w0� = w0, where t0 = t1 − t2. Hence h�φt+nt0�w0�� = h�φt�w0��, for every
n ∈ N and t ∈ Td, which, in view of (2.6), is only possible when t0 = 0. Hence
� is one-to-one and clearly onto. Since � is Borel measurable, its inverse is
measurable by Kuratowski’s theorem.

Let �−1�w� = �π�w�	 τ�w�� and consider Q �= λ ◦�. We have

Q�A×B� = λ��w� π�w� ∈ A	 τ�w� ∈ B��	 A ∈ �W0
	 B ∈ �Td �

Since λ is �φt�-invariant by Step 2, we get

Q�A× �B+ t�� = λ��w� π�φt�w�� ∈ A	 τ�φt�w�� ∈ B+ t��
= λ��w� π�w� ∈ A	 τ�w� + t ∈ B+ t�� = Q�A×B��
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Hence Q�A × ·� is proportional to the Lebesgue measure, and consequently,
Q�A×B� = λ0�A��B�, for some measure λ0 on �W0	�W0

�.
The next step ends the proof of the theorem.

Step 6. Let �ct�t∈Td be a strict cocycle (see Section 1) and let

k�w0	 s� �= cs�w0�h�φs�w0��	 �w0	 s� ∈ W0 × Rd�

Then

kt�w0	 s� �= k�w0	 t+ s�	
is a representation of X in Lα�W0 × Td	 λ0 ⊗ Leb�.

Proof of Step 6. For every a1	 � � � 	 an ∈ R (C, resp.) and t1	 � � � 	 tn we
have ∫

W0×Td

∣∣∣∑ajktj�w0	 s�
∣∣∣αλ0�dw0�ds

=
∫
W0×Td

∣∣∣∑ajctj���w0	 s��h�φtj���w0	 s���
∣∣∣αλ0�dw0�ds

=
∫
W

∣∣∣∑ajhtj�w�
∣∣∣αλ�dw�

which ends the proof of Theorem 2.1. ✷

If d = 1 and �ft�t∈T is given by (1.3) then (2.1), together with (1.9), charac-
terize dissipative flows; in this case Theorem 2.1 is a consequence of Krengel’s
theorem [4] (see [6]). However, this line of reasoning does not extend to the
multiparameter case. We propose the following extension of Krengel’s theorem
to flows indexed by Td.

Measurable nonsingular flows �φ�1�
t �t∈Td and �φ�2�

t �t∈Td , defined on measure
Borel spaces �S1	�S1

	 µ1� and �S2	�S2
	 µ2�, resp., are said to be equivalent if

there exists a measurable map �� S2 → S1 with the following properties:

1. There exist Ni ⊂ Si with µi�Ni� = 0 �i = 1	2� such that � is a Borel
isomorphism between S2\N2 and S1\N1.

2. µ1 and µ2 ◦�−1 are mutually absolutely continuous.
3. φ�1�

t ◦� = � ◦φ�2�
t 	 µ2-a.e. for each t ∈ T.

Theorem 2.2. Let �φt�t∈Td be a measurable nonsingular flow on a σ-finite
measure space �S	�S	µ�. Then �φt�t∈Td is equivalent to the flow,

ψt�w	 s� �= �w	 t+ s�	 t ∈ Td

defined on �W×Td	 �W⊗�Td	 λ⊗Leb�, where �W	�W	λ� is some σ-finite mea-
sure space, if and only if for some (equivalently, any) function h ∈ L1�S	�S	µ�
with supp�h ◦φt� t ∈ Td� = S modulo µ,∫

Td
�h�φt�s���d�µ ◦φt�

dµ
�s�dt < ∞	 µ-a.e.(2.11)
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For the proof, follow steps 2–5 of Theorem 2.1.

Example 2.3. A (nonstationary) �α	H�-Takenaka random field Y is
defined by

Yt �= M�Vt� =
∫
Rd×R+

1Vt�x	 r�M�dx	dr�	 t ∈ Rd	

where

Vt �= ��x	 r�� !x! ≤ r�8��x	 r�� !x− t! ≤ r�	
and M is a SαS random measure on Rd × R+ with control measure

µ�dx	dr� = rαH−d−1 dxdr	

H ∈ �0	1/α� (see [7], Chapter 8.4). Consider the increment field X of Y given by

Xt �= Yt+e −Yt	 t ∈ Rd	

where e ∈ Rd is fixed. We will first compute a spectral representation of X,

ft�x	 r� = 1Vt+e�x	 r� − 1Vt�x	 r�
= 1�!x! ≤ r� + 1�!x− t− e! ≤ r� − 21�!x! ≤ r	 !x− t− e! ≤ r�

− �1�!x! ≤ r� + 1�!x− t! ≤ r� − 21�!x! ≤ r	 !x− t! ≤ r�"
= ε�x	 r��1�!x− t− e! ≤ r� − 1�!x− t! ≤ r�"	

where ε�x	 r� = 1�!x! > r� − 1�!x! ≤ r�� ε = ±1. It is easy to check that
�ft�t∈Td ⊂ Lα�Rd × R+	 µ� satisfies (1.2), so that X is a stationary random
field.

Since, for each �x	 r� ∈ Rd × R+,∫
Rd

�ft�x	 r��α dt = �Br�x− e�8Br�x�� < ∞	
where Br�y� denotes the ball of radius r centered at y, X is a mixed moving
average by Theorem 2.1. A mixed moving average representation of X is of
the form

gt�x	 r� = 1�!x+ t+ e! ≤ r� − 1�!x+ t! ≤ r��

Theorem 2.4. Let X = �Xt�t∈Td be a stationary SαS random field with an
arbitrary representation �1�1�. Then X is a harmonizable process if and only if
for �Leb ⊗ Leb ⊗ µ�-almost all �t1	 t2	 s� ∈ Td × Td ×S,

ft1+t2�s�f0�s� = ft1�s�ft2�s��(2.12)

Proof. The necessity of (2.12) follows by a similar argument to the proof
of necessity in Theorem 2.1 and uses the fact that the representation of a
harmonizable SαS random field gt�x� = et·x satisfies (2.12) for every x ∈ Rd.

To prove the sufficiency we first show, in the same way as Step 1 of
Theorem 2.1, that (2.12) holds for a minimal representation. From this point
on, the proof is identical to the proof of the case d = 1 given in [6],
Theorem 5.7. ✷
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Example 2.5. We will describe the real part of a harmonizable random
field X in terms of (1.3). Suppose that X is given by (1.5) with control measure
µ of M. Let Z be a real-valued SαS random measure on T̂d × �0	2π� with
control measure µ⊗ Leb. We claim that

X d=
{
k−1
α

∫
T̂d×�0	2π�

ei�s+t·w�Z�dw	ds�
}
t∈Td

	(2.13)

where kα = �∫ 2π
0 � cos s�α ds�1/α. Indeed, for any complex numbers zj = �xj	 yj�,

tj ∈ Td, j = 1	 � � � 	 n, we have

E exp i#
[∑
j

z̄j

∫
T̂d×�0	2π�

ei�s+tj·w�Z�dw	ds�
]

= E exp i
∫
T̂d×�0	2π�

[∑
j

xj cos�s+ tj ·w� + yj sin�s+ tj ·w�
]
Z�dw	ds�

= exp −
∫
T̂d×�0	2π�

∣∣∣∣∑
j

xj cos�s+ tj ·w� + yj sin�s+ tj ·w�
∣∣∣∣
α

µ�dw�ds

= exp −
∫
T̂d

∫
�0	2π�

∣∣∣∣#(
eis

∑
j

z̄je
itj·w

)∣∣∣∣
α

dsµ�dw�

= exp −kαα
∫
T̂d

∣∣∣∣∑
j

z̄je
itj·w

∣∣∣∣
α

µ�dw�	

which proves (2.13). Hence the real part of X is given by

#X d=
{
k−1
α

∫
T̂d×�0	2π�

cos�s+ t ·w�Z�dw	ds�
}
t∈Td

�(2.14)

This is a special case of (1.3). Indeed, let the flow �φt�t∈Td be defined on �T̂d×
�0	2π�	 µ⊗ Leb� by

φt�w	 s� �= �w	 s+2π t ·w�	
where “+2π” denotes the addition on the one-dimensional torus �0	2π�,
f�w	 s� �= k−1

α cos s, and ct = 1. Notice that this flow is measure preserv-
ing. A possibility of representing the real part of a harmonizable process in
the form (2.14) (with a different proof) was shown to us by Donatas Surgailis.
We also record one fact that follows easily from (2.13): there are no real-valued
harmonizable SαS random fields other than zero.

3. Decomposition. Consider the representation (1.1) and assume (1.9).
Define

SD �= �s ∈ S�
∫
Td

�ft�s��α dt < ∞�(3.1)
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and

SH �= {
s ∈ S� ft1+t2�s�f0�s� = ft1�s�ft2�s� for a.a. �t1	 t2� ∈ T2d}�(3.2)

If the representation satisfies some regularity conditions, such as the right
continuity of the sections t → ft�s�, then

SH = �s� ft1+t2�s�f0�s� = ft1�s�ft2�s� for all �t1	 t2� ∈ T2d��(3.3)

By the joint measurability of the representation �ft�, the sets SD and SH
are measurable. We claim that SD and SH are essentially disjoint, that is,
µ�SD ∩SH� = 0. Indeed, if s ∈ SH, then

( ∫
Td

�ft�s��α dt
)2

=
∫
Td

∫
Td

�ft1�s��α�ft2�s��α dt1 dt2

=
∫
Td

∫
Td

�ft1+t2�s��α�f0�s��α dt1 dt2 = ∞	

unless ft�s� = 0 for a.a. t ∈ Td. Consider N �= �s ∈ SH� ft�s� = 0 for a.a. t�.
Since ∫

N

∫
Td

�ft�s��α dtµ�ds� = 0	

∫
N �ft�s��αµ�ds� = 0 for a.a. t ∈ Td. The latter equality holds for all t by the

continuity of the map Td � t → ft ∈ Lα�S	µ�. Hence µ�N ∩ supp�ft� t ∈
Td�� = 0, giving µ�N� = 0 by (1.9). This proves

∫
Td �ft�s��α dt = ∞µ-a.e. on

SH, and so SD and SH are essentially disjoint.
It is obvious that if �ft� is given by (1.3), then φ−1

t �SD� = SD, for every
t ∈ Td, that is, SD is �φt�t∈Td-invariant. However, it is not obvious that SH
is �φt�t∈Td-invariant. We will sketch the proof of the invariance of SH under
the some simplifying assumptions; a complete proof requires repeating tedious
arguments of Lemma 5.6 in [6] given for d = 1. Let

ut�s� �= ct�s�
{
d�µ ◦φt�
dµ

}1/α

�s��

Then

ut1+t2�s� = ut1�s�ut2�φt1�s��	 µ-a.e.,(3.4)

for every t1	 t2 ∈ Td and

ft�s� = ut�s�f0�φt�s���
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Assume that (3.4) holds for all s ∈ S	 t1	 t2 ∈ Td and also assume (3.3). Let
s ∈ SH. We get, for every t1	 t2 ∈ Td,

ft1+t2�φt�s��f0�φt�s�� = ut1+t2�φt�s��f0�φt+t1+t2�s��f0�φt�s��
= ut+t1+t2�s�ut�s�−1f0�φt+t1+t2�s��f0�φt�s��
= ft+t1+t2�s�ut�s�−1f0�φt�s��
= ft�s�ft1+t2�s�f0�s�−1ut�s�−1f0�φt�s��
= ft�s�ft1�s�ft2�s�f0�s�−2ut�s�−1f0�φt�s��
= ft+t1�s�ft+t2�s�ft�s�−1ut�s�−1f0�φt�s��
= ut1�φt�s��f0�φt+t1�s��ut2�φt�s��f0�φt+t2�s��
= ft1�φt�s��ft2�φt�s���

Thus φt�s� ∈ SH, proving the invariance of SH.
We will say that a stationary SαS random field X admits a harmonizable

(mixed moving average, resp.) component if

X d= X1 + X2	(3.5)

where Xi = �Xi
t� t ∈ Td�	 i = 1	2, are mutually independent stationary SαS

random fields X1 is harmonizable (mixed moving average, resp.).

Theorem 3.1. Let X = �Xt�t∈Td be a stationary SαS random field with an
arbitrary representation �1�1�. Then X does not admit harmonizable �mixed
moving average, resp.� components if and only if µ�SH� = 0 �µ�SD� = 0, resp.].

Proof. We will consider only the harmonizable component case; the proof
for mixed moving average component is similar. Let �gt�t∈Td ⊂ Lα�W	ν� be a
minimal representation of X satisfying (2.3). Let WH be defined by (3.2) for
�gt�t∈Td ; we infer from (2.3) that

µ�SH8 −1�WH�� = 0�(3.6)

Suppose that µ�SH� > 0. Because µ ◦ �−1 ∼ ν, we have ν�WH� > 0. Since
�gt�t∈Td has the form (2.4), we can apply the proof of Theorem 5.7 in [6] to
our case proving that �gt�t∈Td restricted to WH is a representation of a har-
monizable process, say X1. Since WH is �φt�t∈T-invariant, �gt�t∈Td restricted
to W\WH is also a representation of a stationary process, say X2, which is
independent from X1. Thus (3.5) holds.

Conversely, if X admits a harmonizable component, then it possesses a
representation with µ�SH� > 0. By (3.6), µ�SH� > 0 for any representation
satisfying (1.9). ✷

Example 3.2. Let �rk�n∈Z be a bilateral sequence of independent Bernoulli
random variables defined on a probability space �S	µ� such that

µ�rk = 1� = 1 − µ�rk = −1� = p�
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Let

fn �=




n−1∏
k=0

rk	 if n ≥ 1,

1	 if n = 0,

−1∏
k=n
rk	 if n ≤ −1.

Then �fn�n∈Z is a representation of a stationary SαS sequence X = �Xn�n∈Z
which does not admit harmonizable or mixed moving average components
[α ∈ �0	2� and p ∈ �0	1� are arbitrary]. If p = 1/2, then it is easy to verify
that X has a simpler representation,

X d=
{ ∫

S
rndM� n ∈ Z

}
�

Example 3.2 can be viewed as a special case of the following.

Example 3.3. Let S = RZ, and let µ be a finite measure on S which is
invariant under the group of shifts �φn�s�"k �= sk+n, s = �� � � 	 s1	 s0	 s1	 � � �� ∈
S, n	k ∈ Z. Put

σn�s� �=




n−1∑
k=0

sk	 if n ≥ 1,

0	 if n = 0,

−
−1∑
k=n
sk	 if n ≤ −1,

and define

fn�s� �= eiσn�s�	 n ∈ Z�

It is easy to verify that

fn+m�s� = fn�s�fm�φn�s��	 n	m ∈ Z	 s ∈ S	
that is, �fn�n∈Z is a cocycle for the flow �φn�n∈Z. Thus

Xn �=
∫
S
eiσn�s� dM	 n ∈ Z

is a cocycle SαS process described in (1.8). We have SD = � and

SH = �s ∈ S� sk − s0 ∈ 2πZ for all k ∈ Z��
By Theorem 3.1, X does not have a mixed moving average component. Further-
more, X does not have a harmonizable component when µ�SH� = 0 [α ∈ �0	2�].

The next example is also interesting; it gives periodic real-valued stationary
stable processes when θ = π and M is a real-valued SαS random measure.
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Example 3.4. Let S = �0	1�	 µ = Leb and

ft�s� �= eiθ�t+s"	 t ∈ R	 s ∈ S	
where �x" denotes the largest integer not exceeding x; θ ∈ �0	2π� is fixed. It is
easy to verify that �ft�t∈R is a cocycle for the flow φt�s� �= t+ s− �t+ s". Since
this flow preserves µ, �ft�t∈R is a special case of (1.8). We will show that

Xt �=
∫

�0	1�
eiθ�t+s"M�ds�	 t ∈ R	

does not admit harmonizable or mixed moving average components. Clearly,
SD = �; SH = � because, for every s ∈ �0	1� and �t1	 t2� from the triangle
��t1	 t2�� 0 ≤ t1 < 1 − s	 0 ≤ t2 < 1 − s	 t1 + t2 ≥ 1 − s�, we have

ft1+t2�s�f0�s� = eiθ �= ft1�s�ft2�s� = 1�

This example can be generalized to random fields as follows.

Example 3.5. Let S = �0	1�d	 µ = Leb, and let

ft�s� �= eiθ
∑d
k=1�tk+sk"	

where t = �t1	 � � � 	 td� ∈ Rd and s = �s1	 � � � 	 sd� ∈ S. Then the correspond-
ing SαS random field does not admit moving average or harmonizable
components.

The next example demonstrates the richness of the class of cocycle
processes.

Example 3.6. Let S = � �R� be the space of integer-valued Radon meas-
ures on R equipped with the topology of vague convergence of measures and
let µ be the probability measure on S under which the identity map

�S	µ� � s → s ∈ � �R�
is a Poisson point process with the Lebesgue intensity measure (see [3]). Define
φt� S → S by

�φt�s�"�A� �= s�A+ t�	 t ∈ R	 A ∈ �R�

The stationary of the Poisson point process implies that µ is invariant under
φt. Fix θ ∈ �0	2π� and define

ft�s� �= eiθσt�s�	 t ∈ R	

where

σt�s� �=


s��0	 t��	 if t > 0,
0	 if t = 0,
−s��0	 t��	 if t < 0.
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Then

ft1+t2�s� = ft1�s�ft2�φt1�s�� for all t1	 t2 ∈ R	 s ∈ S	
and again, �ft�t∈R is a special case of (1.8). It is obvious that µ�SD� = 0.
Consider s ∈ SH. By (3.2) we have, for almost all t1	 t2 > 0,

s��0	 t1�� − s��t2	 t1 + t2�� ∈ 2πθ−1Z	(3.7)

which is only possible when πθ−1 is rational. The left continuity of t → s��0	 t��
yields (3.7) for all t1	 t2 > 0. Take t1 = 1 and t2 = n ∈ N in (3.7). We get that
s��n	n+ 1�� − s��0	1�� ∈ 2πθ−1Z, so that

s��2k	2k+ 1�� − s��2k+ 1	2k+ 2�� ∈ 2πθ−1Z	 k = 0	1	 � � � �(3.8)

Since the setsAk = �s� s��2k	2k+1��−s��2k+1	2k+2�� ∈ 2πθ−1Z�, considered
as events for the probability space �S	µ�, are independent and have the same
probability less than 1 (the set 2πθ−1Z does not contain 1, for example), (3.8)
may hold only for s from a µ-null set. Hence µ�SH� = 0, proving that

Xt �=
∫
S
eiθσt�s�M�ds�	 t ∈ R	

is a stationary SαS process which does not have harmonizable or moving aver-
age components. This is a real-valued stationary process when θ = π and M
is real-valued.

The majority of our examples are given for d = 1. We will now outline a pro-
cedure for generating stationary random fields from stationary SαS processes.
Suppose we have stationary SαS processes �d = 1� with a representation of
the form (1.3). Clearly,

Uth �= ct
{
d�µ ◦φt�
dµ

}1/α

h ◦φt	 h ∈ Lα�S	µ�	 t ∈ T	(3.9)

is a one-parameter group of isometries on Lα�S	µ�. Suppose now that we have
d such groups �Ut1�t∈T	 � � � 	 �Utd�t∈T, all acting on Lα�S	µ� and commuting
with each other (they can be identical, for example). Define

ft �= Ut11 · · ·Utdd f	 t = �t1	 � � � 	 td� ∈ Td	(3.10)

where f ∈ Lα�S	µ� is fixed. Then �ft�t∈Td ⊂ Lα�S	µ� is a representation of
a stationary SαS random field. Conversely, any representation of a station-
ary random field can be obtained in this way. Indeed, a representation (1.3)
determines a d-parameter group �Ut�t∈Td by (3.9). Let

Utk �= Utek	 t ∈ T	

where ek is the kth element of the standard basis in Rd. Then �Ut1�t∈T	 � � � 	
�Utd�t∈T are commuting one-parameter groups of isometries on Lα�S	µ� and
(3.10) coincides with (1.3).
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Theorem 3.7. Let X be a stationary SαS random field given by a stochastic
integral

Xt =
∫
S
ft dM	 t ∈ Td�

Then X can be decomposed into the sum of three mutually independent sta-
tionary SαS random fields

X = X1 + X2 + X3	(3.11)

such that X1 is a mixed moving average, X2 is harmonizable, and X3 does not
admit harmonizable or mixed moving average components. The decomposition
�3�11� is unique in the sense that if X̃ = X̃1 + X̃2 + X̃3 is a version of X, where
X̃1	 X̃2 and X̃3 are mutually independent mixed moving average, harmoniz-
able, and a stationary random field without harmonizable or moving average
components, respectively, then X̃1 =d X1, X̃2 =d X2, and X̃3 =d X3.

Proof. Define

X1
t �=

∫
SD

ft dM	

X2
t �=

∫
SH

ft dM

and

X3
t �=

∫
S3

ft dM	

where S3 = S\�SD∪SH�. In order to apply Theorems 2.1, 2.4 and 3.1 we need
to verify that Xi are stationary i = 1	2	3. We will prove this and, at the same
time, the uniqueness in (3.11).

Let �gt�t∈Td ⊂ Lα�W	�W	 ν� be a minimal representation of X so that (2.3)
and (2.4) hold. Using the same arguments as in the first part of the proof of
Theorem 3.1 we get

µ�SD8 −1WD� = 0

and

µ�SH8 −1WH� = 0�

Since µh ◦  −1 = ν, where µh�ds� = �h�s��αµ�ds�, we obtain for every
a1	 � � � 	 an ∈ R (C, resp.) and t1	 � � � 	 tn ∈ Td,∫

SD

∣∣∑akftk
∣∣α dµ =

∫
SD

∣∣∑akgtk ◦ ∣∣α�h�α dµ

=
∫
 −1WD

∣∣∑akgtk ◦ ∣∣α dµh
=

∫
WD

∣∣∑akgtk
∣∣α dν�
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Hence �gt�WD
� is a representation of X1. Similarly, we show that �gt�WH

� is a
representation of X2. This shows the uniqueness of the decomposition (3.11)
and also the stationarity of Xi, because WD and WH are �φt�-invariant. ✷
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