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MONOTONICITY OF CONDITIONAL DISTRIBUTIONS AND
GROWTH MODELS ON TREES1

By Thomas M. Liggett

University of California, Los Angeles

We consider a sequence of probability measures νn obtained by con-
ditioning a random vector X = �X1� � � � �Xd� with nonnegative integer
valued components on

X1 + · · · + Xd = n − 1

and give several sufficient conditions on the distribution of X for νn to be
stochastically increasing in n. The problem is motivated by an interacting
particle system on the homogeneous tree in which each vertex has d + 1
neighbors. This system is a variant of the contact process and was studied
recently by A. Puha. She showed that the critical value for this process
is 1/4 if d = 2 and gave a conjectured expression for the critical value
for all d. Our results confirm her conjecture, by showing that certain νn ’s
defined in terms of d-ary Catalan numbers are stochastically increasing
in n. The proof uses certain combinatorial identities satisfied by the d-ary
Catalan numbers.

1. Introduction. For an integer d ≥ 2, let X = �X1� � � � �Xd� be a random
vector with values in

S = �0�1�2� � � �	d =
∞⋃

n=1

Sn�

which we have written as the union of discrete simplices

Sn = {
x = �x1� � � � � xd� ∈ S:x1 + · · · + xd = n − 1

}
�

Suppose that

P
(
X1 = x1� � � � �Xd = xd

)
> 0

for all choices of x1� � � � � xd. For each n ≥ 1, define νn as the following condi-
tional distribution on Sn:

νn�x1� � � � � xd� = P
(
X1 = x1� � � � �Xd = xd �X1 + · · · + Xd = n − 1

)
�

The purpose of this paper is to find sufficient conditions for the measures νn

to be stochastically increasing in n.
Specifically, we can regard S as a partially ordered set, with the partial

order

�x1� � � � � xd� ≤ �y1� � � � � yd� iff xi ≤ yi for each 1 ≤ i ≤ d�
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A function f on S is increasing if x ≤ y implies f�x� ≤ f�y�. Two probability
measures µ and ν on S are said to be stochastically ordered, µ ≤ ν, if∫

fdµ ≤
∫

fdν(1.1)

for all increasing functionsf onS. Anecessaryand sufficient condition for this to
be the case is that there exist a probability measure on ��x�y� ∈ S × S:x ≤ y	
with marginals µ and ν respectively. [See Theorem 2.4 in Chapter II of Liggett
(1985).] Such a measure is called a coupling measure. Our question then is to
determine when νn ≤ νn+1 for each n ≥ 1.

A lot of work has been done in which stochastic monotonicity is proved
or used in various contexts. A recent book on the subject is Shaked and
Shanthikumar (1994). The particular problem we are concerned with has
apparently come up only a few times. In perhaps the first of these, Efron (1965)
found a sufficient condition for νn ≤ νn+1 (see the remarks following the state-
ment of Theorem 1.9 below). Joag-Dev and Proschan (1983) showed that in
this situation, νn is negatively associated. In the opposite direction, Pemantle
(2000) showed recently that certain measures on �0�1	d that are negatively
correlated in an appropriate sense have the property that νn ≤ νn+1. In his
question 10, he asks the same question we do, but in the context of �0�1	d,
and explains why a good answer to the question would advance his program
of better understanding negative dependence.

A common way of checking stochastic monotonicity on partially ordered
sets is to apply Holley’s (1974) theorem, which appears as Theorem 2.9 of
Chapter II of Liggett (1985), or one of its extensions. See Preston (1974), Karlin
and Rinott (1980) and Theorem 4.E.5 of Shaked and Shanthikumar (1994), for
example. It states that a sufficient condition for µ ≤ ν is

µ�x�ν�y� ≤ µ�x ∧ y�ν�x ∨ y�� x� y ∈ S�

where x∧y and x∨y denote the coordinatewise minimum and maximum of x
and y, respectively. Note that this condition cannot be applied in the present
context, since if x ∈ Sn and y ∈ Sn+1, then x ∧ y and x ∨ y will typically not
be in Sn ∪ Sn+1, so the right side above will be zero when applied to µ = νn

and ν = νn+1.
Before proceeding with a statement of results, we will describe the example

that motivates this paper, and the application of our results to interacting
particle systems. Define a sequence �cn� n ≥ 0	 recursively by c0 = 1 and, for
n ≥ 1,

cn = ∑
x∈Sn

cx1
· · · cxd

�(1.2)

This sequence has various combinatorial interpretations, including the follow-
ing, which is especially relevant to this paper: let Td be the homogeneous tree
in which each vertex has d + 1 neighbors, and T∗

d be the tree whose root e
has degree d and all other vertices have degree d + 1. Then cn is the number
of connected subtrees of T∗

d containing e that have n vertices. In fact, (1.2) is
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simply the recursion that one gets if one tries to compute this number of sub-
trees recursively: e has d neighbors in T∗

d, and the summand on the right
side of (1.2) is the number of connected subtrees of T∗

d with n vertices that
contain e, and for which those of the d neighbors that are in the subtree have
x1 − 1� � � � � xd − 1 offspring in that subtree, respectively.

Puha (1999) shows that

cn = 1
�d − 1�n + 1

(
dn
n

)
�(1.3)

This also follows from Corollaries 2.4 and 2.7 of Hilton and Pedersen (1991).
An alternate direct proof is contained in Proposition 6.2 below—see the remark
following its proof. If d = 2, �cn� n ≥ 0	 are called the Catalan numbers. We
will refer to �cn� n ≥ 0	 for general d as d-ary Catalan numbers. Note that
this is not the only type of generalization of the Catalan numbers that has
been studied. For example, the q-Catalan numbers discussed in Fürlinger and
Hoffbauer (1985) are quite different.

Using the recursion (1.2), we can define a probability measure νn on Sn by

νn�x� = cx1
· · · cxd

cn

�(1.4)

To regard these as conditional measures in the present context, it suffices to
let X1� � � � �Xd be i.i.d. random variables with distribution

P�Xi = k� = cku
k∑

j≥0 cju
j

for some positive u that is sufficiently small so that the series in the denom-
inator converges. We are interested in showing that νn ≤ νn+1 for this choice,
because of its application to a problem in interacting particle systems. We
describe this problem next.

Puha (1999, 2000) are devoted to the study of a particular interacting par-
ticle system At on Td. The state of the system at time t is a finite, connected
subset of Td. Neighbors of At are added at rate β each, and leaves of At are
deleted at rate 1 each. (A leaf of At is a vertex in At with only one neighbor
in At. If At is a singleton, its single member is considered to be a leaf.) The
empty set is absorbing. The process At can be thought of as the contact process
with infection parameter β, modified so as not to allow recoveries that would
disconnect the infected set. [A treatment of the contact process on Td can be
found in Section 4 of Part I of Liggett (1999).] Just like the contact process,
this system has a critical value βc, which is defined by the requirement that

PA�At = � for some t�
{= 1� if β < βc,

< 1� if β > βc,

for each finite, connected, nonempty A ⊂ Td. Unlike the contact process, this
process is reversible (away from �), and that suggests the possibility of explicit
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evaluation of the critical value. In her 1999 paper, Puha proves that

βc ≥ 1
d

(
d − 1

d

)d−1

(1.5)

for any d. She proves equality for d = 2, and conjectures equality for d ≥ 3.
The process dies out when β is equal to the right side of (1.5), so establishing
the conjecture implies in particular that the critical process dies out. The right
side of (1.5) becomes a bit less mysterious when one applies Stirling’s formula
to (1.3), and observes that

cn ∼ C

n3/2

[
d

(
d

d − 1

)d−1
]n

�

Puha proved her results by giving a sufficient condition for equality to hold
in (1.5). It is valid for all d and is stated at the beginning of Section 7 of this
paper. It turns out that this sufficient condition is equivalent to νn ≤ νn+1,
n ≥ 1 for the νn’s given in (1.4), as we will prove in that section. Puha verified
her condition for d = 2, but was unable to check it for larger d. From our
current perspective, her verification of the condition for d = 2 can be viewed
as checking νn ≤ νn+1 by explicitly constructing a coupling measure. This
appears not to be possible for larger d. We prove νn ≤ νn+1 without constructing
a coupling measure, and hence a consequence of our results is that Puha’s
condition is satisfied for d ≥ 3 as well, and so equality holds in (1.5) for
general d.

Proving the monotonicity of νn in n for d = 2 is relatively simple. In fact, one
can easily give a necessary and sufficient condition for νn ≤ νn+1 in this case
[see (2.8) below]. This appears not to be possible for larger d, so we consider
other approaches for d = 2 that yield only sufficient conditions, but that have
a chance of generalizing to d > 2.

We begin with coupling, which is frequently a useful technique for proving
stochastic monotonicity. Examples of its use can be found in Chapter II of
Liggett (1985). In the present context, this approach would involve finding a
continuous time, irreducible Markov chain �Xt�Yt� on{�x�y� ∈ Sn × Sn+1:x ≤ y

}
with the property that the marginal processes Xt and Yt are irreducible
Markov chains with invariant measures νn and νn+1, respectively. A coupling
measure is provided by the stationary distribution of �Xt�Yt�. A natural first
attempt, then, is to check when simple choices of marginal processes can be
coupled to yield useful sufficient conditions for νn ≤ νn+1. Using this approach,
we will show in Section 2 that a sufficient condition for νn ≤ νn+1 in case
d = 2 is

νn+1�k + 2� n − k − 2�
νn+1�k + 1� n − k − 1� ≤ νn�k + 1� n − k − 2�

νn�k�n − k − 1� ≤ νn+1�k + 1� n − k − 1�
νn+1�k�n − k�(1.6)

for 0 ≤ k ≤ n − 2.
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Using a quite different argument, we will show there (again if d = 2) that
another sufficient condition for νn ≤ νn+1 is

νn�k�n − k − 1� ≥ max
{
νn+1�k�n − k�� νn+1�k + 1� n − k − 1�}�

0 ≤ k ≤ n − 1�
(1.7)

This is equivalent to saying that the ratios

νn�k�n − k − 1�
νn+1�k�n − k� and

νn�k�n − k − 1�
νn+1�k + 1� n − k − 1�(1.8)

are greater than or equal to 1, while (1.6) can be interpreted as saying that
the first of these ratios is decreasing in k, while the second is increasing in k.
Condition (1.7) will be used in the proof of our main result, Theorem 1.12
below.

If d = 2 and νn is given by (1.4), the ratios in (1.8) are
cn+1

cn

cn−k−1

cn−k

and
cn+1

cn

ck

ck+1
�

respectively. Thus in this case, (1.7) is equivalent to ck/ck+1 ↓, while (1.6) is
equivalent to ck/ck+1 ↑. However,

ck

ck+1
= k + 2

4k + 2
�

which is decreasing in k. Thus (1.7) is satisfied in this case, but (1.6) is not.
The following simple example should help the reader to understand the

differences between (1.6), (1.7) and the necessary and sufficient condition (2.8):
take d = 2 and n = 2 and suppose ν2 and ν3 are given by

ν2�0�1� = ν2�1�0� = 1
2 � ν3�0�2� = ν3�2�0� = a� ν3�1�1� = 1−2a� 0 ≤ a ≤ 1

2 �

Then (2.8) is satisfied for all such a, while (1.6) is satisfied if and only if
0 ≤ a ≤ 1

3 , and (1.7) is satisfied if and only if 1
4 ≤ a ≤ 1

2 . Thus the sufficient
conditions (1.6) and (1.7) are not comparable.

The balance of this paper is devoted to determining the extent to which the
simple approaches that led to sufficient conditions (1.6) and (1.7) can be made
to work for d > 2. The coupling technique used for (1.6) generalizes easily to
all d, though it becomes necessary to assume that the Xi’s are independent.
The following result is proved in Section 3. The process used in the proof is the
zero range process introduced by Spitzer (1970) and studied by many authors;
see Kipnis and Landim (1999), for example. The assumption of the theorem
amounts to saying that this process is attractive.

Theorem 1.9. Suppose that X1� � � � �Xd are independent. If

P�Xi = k�
P�Xi = k + 1� ↑ in k for each i�

then νn ≤ νn+1 for each n.
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This result is an almost direct consequence of attractiveness of the appro-
priate zero range processes. The result itself was first proved by Efron (1965),
though of course his proof used neither coupling nor the zero process. We
state the theorem here in order to be able to contrast it to Theorem 1.12
below, which is our main result. We include the proof partly because it is
different from Efron’s, but more importantly in order to explain that one can-
not do much better by considering more general couplings: we start with a
fairly general coupling and see why we are essentially forced to use the zero
range process. The word “essentially” is important here. Once we know that
νn ≤ νn+1, there is always a coupled Markov process that preserves the needed
inequality: simply jump into the (naturally coupled) stationary distributions
after an exponential time.

Note again that Theorem 1.9 does not apply to example (1.4), since

ρ�n� = cn

cn+1
= 1

d

d−1∏
j=1

�d − 1�n + j + 1
dn + j

(1.10)

is decreasing in n. Thus we are motivated to look for other sufficient conditions
that do apply to this example. It is not enough to simply reverse the direction of
the monotonicity assumption in Theorem 1.9, as the following example shows.

Example. If d = 2, X1�X2 are i.i.d., and n = 3, the necessary and suffi-
cient condition (2.8) becomes

P�X1 = 1�P�X1 = 3� ≤ 2
[
P�X1 = 2�]2�

Therefore, if we choose

P�X1 = 0� = 25
32

� P�X1 = 1� = 5
32

� P�X1 = n� = 1
2n+3

for n ≥ 2�

it follows that ν3 �≤ ν4, even though

P�X1 = k�
P�X1 = k + 1� decreases in k�

The extensions of the technique that led to (1.7) are somewhat harder than
the coupling approach, but of greater interest because they do apply to exam-
ple (1.4). We give two types of extension. The first applies only to the case
d = 3, but the second applies to all d. Here is the first result, which is proved
in Section 4. The first assumption in Theorem 1.11 is an obvious analogue of
(1.7). The theorem states that given this, in order to show νn�B� ↑ for every
increasing set B, it suffices to check it for all increasing sets of the special
form B = ��j� k� l�:j ≥ j0� k ≥ k0� l ≥ l0	.

Theorem 1.11. Suppose that d = 3. If

νn�j� k� l� ≥ max
{
νn+1�j + 1� k� l�� νn+1�j� k + 1� l�� νn+1�j� k� l + 1�}

for �j� k� l� ∈ Sn
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and ∑
j≥j0� k≥k0� l≥l0

νn�j� k� l� ≤ ∑
j≥j0� k≥k0� l≥l0

νn+1�j� k� l� for j0� k0� l0 ≥ 0�

then νn ≤ νn+1.

In Section 5, we prove the following result, which works for all d. It is the
main result of this paper and the one that leads to our solution of the moti-
vating problem for the growth model At. Note that if d = 2, the assumptions
of Theorem 1.12 reduce to (1.7) (for independent X1�X2).

Theorem 1.12. Suppose that X1� � � � �Xd are independent. If

P�Xi+1 = m�P�X1 + · · · + Xi+1 = l + m + 1�
≥ P�Xi+1 = m + 1�P�X1 + · · · + Xi+1 = l + m�

and

P�X1 + · · · + Xi = l�P�X1 + · · · + Xi+1 = l + m + 1�
≥ P�X1 + · · · + Xi = l + 1�P�X1 + · · · + Xi+1 = l + m�

for l�m ≥ 0 and 1 ≤ i ≤ d − 1. Then νn ≤ νn+1 for n ≥ 1.

Remark. The independence assumption above can be weakened some-
what, as explained in the course of the proof. Also, in the proof of this result,
sufficient condition (1.7) (for d = 2) is used in a critical way. Using the neces-
sary and sufficient condition (2.8) in its place would lead to a further weak-
ening of the hypotheses, but they would then become more cumbersome.

One situation in which νn ≤ νn+1 is obvious is that in which X1� � � � �Xd are
independent Poisson distributed random variables with parameters λ1� � � � � λd,
respectively, since then νn is the multinomial distribution with parameters
n − 1 and p1� � � � � pd, where

pi = λi

λ1 + · · · + λd

�

It is perhaps instructive to see what the hypotheses of Theorems 1.9 and 1.12
become in this case. In the context of Theorem 1.9,

P�Xi = k�
P�Xi = k + 1� = k + 1

λi

�

so the assumption of that theorem is automatically satisfied. The assumptions
of Theorem 1.12, on the other hand, become

m

l + 1
≤ λi+1

λ1 + · · · + λi

≤ m + 1
l

�
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which are not satisfied. This should not be regarded as implying that
Theorem 1.9 is more useful or important than Theorem 1.12. Rather, they
provide quite different types of sufficient conditions, with the latter being
more subtle.

Section 6 is devoted to applying Theorem 1.12 to the νn given in (1.4). The
observation that makes this possible is that, in this case, the distributions of
the partial sums X1 + · · · + Xi can be computed explicitly. The result is the
following.

Corollary 1.13. If νn is given by (1.4), then νn ≤ νn+1 for n ≥ 1.

In Section 7 we check that Puha’s sufficient condition for equality in (1.5)
is equivalent to νn ≤ νn+1 for the measures given in example (1.4). Combining
this with Corollary 1.13 and Puha’s work in her two papers, we obtain the
following.

Theorem 1.14. (a) The critical value βc for the process At is given by

βc = 1
d

(
d − 1

d

)d−1

�

(b) The survival probability for At starting from a singleton lies asymptot-
ically between constant multiples of(

β − βc

)7/2 and
(
β − βc

)5/2
as β ↓ βc.

Remark. In her paper, Puha uses the explicit coupling measure available
in case d = 2 to improve the power 7/2 significantly. Since our coupling is not
explicit, it does not appear to lead to a similar improvement for d ≥ 3. There
is some numerical evidence for the critical exponent to be 5

2 [Tretyakov and
Konno (2000)], and it would certainly be of interest to prove this, even for
d = 2.

2. The case d = 2. As mentioned in the introduction, it is easy to give
a necessary and sufficient condition for the monotonicity of νn in n in this
case, as we will do at the end of this section. Since this does not extend to
larger d, we begin by considering several different approaches to proving νn ≤
νn+1 in the case d = 2 in the hopes that they will be more generally useful.
We begin by carrying out the coupling proof that leads to condition (1.6). To
simplify notation, record only the first coordinate of a point in Sn, identifying
�k�n − k − 1� with k, so write Sn = �0� � � � � n − 1	. We will require that the
marginal chains move only to nearest neighbors, say for the process on Sn,

k → k + 1 at rate αn�k��
k → k − 1 at rate βn�k��
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Of course, αn�n − 1� = βn�0� = 0. In order that the chain have the right
stationary distribution, these rates must satisfy the following conditions:

αn�k�νn�k� = βn�k + 1�νn�k + 1��(2.1)

We will not make any special assumptions about the coupled chain, other
than those needed to make it couple the marginal processes correctly. The
coupled chain has state space

��k� k��0 ≤ k ≤ n − 1	 ∪ ��k� k + 1��0 ≤ k ≤ n − 1	�
and possible transitions

�k� k� → �k� k + 1� at rate ak�

�k� k� → �k − 1� k − 1� at rate bk�

�k� k� → �k + 1� k + 1� at rate ck�

�k� k� → �k − 1� k� at rate dk�

�k� k + 1� → �k� k� at rate ek�

�k� k + 1� → �k + 1� k + 1� at rate fk�

�k� k + 1� → �k − 1� k� at rate gk�

�k� k + 1� → �k + 1� k + 2� at rate hk�

In order for the transition rates of the marginal processes to be correct, the
following relations must be satisfied:

αn�k� = ck = fk + hk�

βn�k� = gk = bk + dk�

αn+1�k� = hk−1 = ak + ck�

βn+1�k� = bk = ek−1 + gk−1�

Solving these equations leads to

ck = αn�k�� gk = βn�k�� hk = αn+1�k + 1�� bk = βn+1�k��
fk = αn�k� − αn+1�k + 1�� dk = βn�k� − βn+1�k��
ak = αn+1�k� − αn�k�� ek = βn+1�k + 1� − βn�k��

These will be nonnegative provided that

αn+1�k + 1� ≤ αn�k� ≤ αn+1�k�� βn+1�k� ≤ βn�k� ≤ βn+1�k + 1��(2.2)

It is then not hard to check that it is possible to choose the α’s and β’s so that
(2.1) and (2.2) are satisfied if and only if

νn+1�k + 2�
νn+1�k + 1� ≤ νn�k + 1�

νn�k� ≤ νn+1�k + 1�
νn+1�k� �(2.3)
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This is exactly not the case of primary interest in this paper, as explained in
the introduction. Let us consider then another approach to proving νn ≤ νn+1
that will lead to the sufficient condition (1.7). To prove (1.1), it is enough to
prove

νn�B� ≤ νn+1�B�(2.4)

for all increasing B ⊂ S. Since νn concentrates on Sn, only B∩Sn and B∩Sn+1
are relevant in (2.4). Letting A = B ∩ Sn and

A∗ = ⋃
k∈A

�k� k + 1	 = A ∪ �A + 1� ⊂ B ∩ Sn+1�

we see that (2.4) is implied by

νn�A� ≤ νn+1�A∗�� A ⊂ Sn�(2.5)[
Since A∗ is a subset of Sn+1 rather than of Sn, perhaps one should clarify its

definition by writing

A∗ = {�k�n − k�� �k + 1� n − k − 1�: �k�n − k − 1� ∈ A
}
�
]

Writing A as a disjoint union of maximal intervals, we see that (2.5) will
hold for all A if it holds for all intervals. The important observation in checking
this is that if A = A1 ∪ A2 where A1 and A2 are separated in that k ∈ A1�
l ∈ A2 implies that �k − l� > 1, then A∗

1 ∩ A∗
2 = �, so that

νn�A1 ∪ A2� = νn�A1� + νn�A2� and νn+1�A∗
1 ∪ A∗

2� = νn+1�A∗
1� + νn+1�A∗

2��
Thus, it is enough to check

νn�Ac� ≥ νn+1
(�A∗�c)(2.6)

for all intervals A. But the complement of an interval is a union of (one or)
two intervals, so (2.6) will hold for all intervals if

νk�k� ≥ max
{
νn+1�k�� νn+1�k + 1�}� 0 ≤ k ≤ n − 1�(2.7)

But this is just (1.7) in the present notation.
The two techniques explained thus far are proposed as approaches that

might suggest ideas for use for larger d. When d = 2, it is easy to give a
necessary and sufficient condition for νn ≤ νn+1, as we now explain. Let the
coupling measure put mass

λk on �k� k��
ρk on �k� k + 1�

for 0 ≤ k ≤ n − 1. The marginals will be correct provided that

νn�k� = λk + ρk and νn+1�k� = ρk−1 + λk�
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where we have set ρ−1 = λn = 0. Solving for the λ’s and ρ’s leads to

λk =
k∑

j=0

νn+1�j� −
k−1∑
j=0

νn�j��

ρk =
k∑

j=0

νn�j� −
k∑

j=0

νn+1�j��

Thus, the necessary and sufficient condition for νn ≤ νn+1 is

k−1∑
j=0

νn�j� ≤
k∑

j=0

νn+1�j� ≤
k∑

j=0

νn�j�(2.8)

for 0 ≤ k ≤ n − 1.

3. The coupling condition. In this section, we take a general d ≥ 2 and
ask when one can prove νn ≤ νn+1 via a natural coupling argument. The result
will be a proof of Theorem 1.9. Let bi�x� = P�Xi = x� so that

νn�x� = Bnb1�x1� · · · bd�xd��
where

Bn =
[ ∑

x∈Sn

b1�x1� · · · bd�xd�
]−1

�

Let ei = �0� � � � �0�1�0� � � � �0� be the ith unit vector: the 1 appears as the
ith coordinate. Consider the continuous time Markov chain Xt on S that has
the transition

x → x − ei + ej

at rate σi�j�x� for x = �x1� � � � � xd� ∈ S and 1 ≤ i �= j ≤ d. Note that if
we interpret the coordinates xi of x as the numbers of particles at the sites
�1� � � � � d	, then this transition corresponds to moving a particle from site i to
site j. Initially, we will let the transition rates depend on the full configuration
x in an arbitrary way, and will not assume that νn has the product form given
above. Assume that σi�j�x� > 0 except when xi = 0, when it must be zero
since there is no particle at i to move. This guarantees that Xt is irreducible
when restricted to each Sn.

We will have proved that νn ≤ νn+1 if we can choose σi�j�x� so that the
following properties hold:

1. Xt is reversible with respect to νn for each n, that is,

νn�x�σi�j�x� = νn�x − ei + ej�σj� i�x − ei + ej�(3.1)

for x ∈ Sn� xi ≥ 1.
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2. If x ≤ y, then two copies Xt and Yt with initial states x and y, respectively,
can be coupled to preserve the relation Xt ≤ Yt. It is enough to carry out
this coupling in case y is obtained from x by adding 1 to a single component,
say y = x + ek. Then the most natural coupling would have transitions for
the joint process �Xt�Yt�,

�x� x + ek� → �x − ei + ej� x + ek − ei + ej� if i� j �= k�

�x� x + ek� → �x − ek + ej� x + ej� or �x� x + ej� if j �= k�

and

�x� x + ek� → �x − ei + ek� x − ei + 2ek� or �x − ei + ek� x + ek� if i �= k�

To carry out this coupling so that the marginals have the correct law, we need

σi�j�x� = σi�j�x + ek� for i� j �= k�

σk�j�x� ≤ σk�j�x + ek� for j �= k�

σi� k�x� ≥ σi�k�x + ek� for i �= k�

(3.2)

The first constraint in (3.2) says that σi�j�x� depends on x only through xi

and xj, so write

σi�j�x� = σi�j�xi� xj��
and then the other two constraints in (3.2) become

σi�j�u� v� is increasing in u and decreasing in v�(3.3)

In these terms, (3.1) becomes

νn�x�σi�j�xi� xj� = νn�x − ei + ej�σj� i�xj + 1� xi − 1��(3.4)

This forces σ to take a special form. To see this, take i� j� k distinct, and write
the following two relations of the form (3.4):

νn�x�σi�k�xi� xk� = νn�x − ei + ek�σk� i�xk + 1� xi − 1��
νn�x − ei + ek�σk�j�xk + 1� xj� = νn�x − ei + ej�σj�k�xj + 1� xk��

Combining these with (3.4) leads to

σj� i�xj + 1� xi − 1�
σi�j�xi� xj�

= σk� i�xk + 1� xi − 1�
σi�k�xi� xk�

σj�k�xj + 1� xk�
σk�j�xk + 1� xj�

�(3.5)

This says that the left side of (3.5) can be written in the form

σj� i�xj + 1� xi − 1�
σi�j�xi� xj�

= λj�xj�
λi�xi − 1�(3.6)

for some functions λi�u�. Using this in (3.4) leads to

νn�x�λi�xi − 1� = νn�x − ei + ej�λj�xj��
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Iterating this relation gives

νn�x� = Bn∏d
i=1

[∏xi−1
j=0 λi�j�] �

where Bn is the normalizing constant

Bn = ∑
x∈Sn

[ d∏
i=1

[xi−1∏
j=0

λi�j�
]]−1

�

This is of the form given at the beginning of this section, with

bi�k� =
[k−1∏

j=0

λi�j�
]−1

�

Given the λ’s, we can set

σi�j�k� l� = λi�k − 1��
This makes (3.6) hold, and then (3.3) is equivalent to

λi�k� increases in k�

Since

λi�k� = bi�k�
bi�k + 1� �

the proof of Theorem 1.9 is complete. The fact that the rate for a particle to
move from i to j depends only on the number of particles at i makes the
marginal processes zero range.

4. A sufficient condition when d = 3. This section is devoted to the
proof of Theorem 1.11. We assume throughout the hypotheses of that theorem.
The first part of the proof follows that of the sufficiency of (2.7) in d = 2. In
particular, in order to prove νn ≤ νn+1 in case d = 3, it suffices to check that

νn�A� ≤ νn+1�A∗�(4.1)

for all connected A ⊂ Sn. Here connectedness is to be interpreted in terms
of the graph structure on Sn in which two points x�y ∈ Sn are neighbors
if

∑d
i=1 �xi − yi� = 2, that is, if y can be obtained from x by reducing one

coordinate by one and increasing another coordinate by one. Given A�A∗ is
now defined by

A∗ = ⋃
�j� k� l�∈A

{�j + 1� k� l�� �j� k + 1� l�� �j� k� l + 1�}�
We begin with the part of the argument that requires d = 3. By an edge of
Sn, we will mean one of the sets{�j� k� l� ∈ Sn:j = 0

}
�
{�j� k� l� ∈ Sn:k = 0

}
�
{�j� k� l� ∈ Sn: l = 0

}
�

The corners of Sn are the points �0�0� n − 1�� �0� n − 1�0� and �n − 1�0�0�.
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Lemma 4.2. Suppose A and B are disjoint connected subsets of Sn. Then
it is not possible for both A and B to contain a point from each of the three
edges of Sn.

Proof. Assume that A and B are disjoint, connected, and contain a point
on each of the three edges of Sn. We want to reach a contradiction. First,
assume that one of the sets contains one of the corners of Sn, say �0�0� n−1� ∈
A. Then A must contain a point of the form �j�n − j − 1�0�. Since A is
connected, there must be a connected path through A joining �0�0� n−1� and
�j�n − j − 1�0�. But B cannot contain �0�0� n − 1�, so it contains two points
of the form �0� k� n − k − 1� and �l�0� n − l − 1� with k� l ≥ 1. Since B is
connected, there must be a connected path through B joining �0� k� n − k − 1�
and �l�0� n − l − 1�. But these two paths must intersect, and this gives the
required contradiction.

In the other case, neither A nor B contains a corner of Sn. Therefore, there
is a point �j� k� l� ∈ A that is connected via connected paths in A to points
in the interiors of each of the three edges of Sn. Without loss of generality,
these paths can be taken to be nonself-intersecting, and disjoint except for the
common point �j� k� l�. Then, we may take A to be the union of these paths.
In this case, Sn\A breaks up into three components, each including exactly
one of the corners of Sn. Since B is connected, it is contained in one of these
components, say the one that contains �0�0� n−1�. But then B cannot contain
any point whose third coordinate is zero. ✷

By a subsimplex of Sn, we will mean a subset of Sn of the form{�j� k� l� ∈ Sn:j ≥ j0� k ≥ k0� l ≥ l0
}

for some j0� k0� l0 ≥ 0. Note that this is naturally isomorphic to Sn−j0−k0−l0
.

Also, if A is a subsimplex of Sn, then A∗ is a subsimplex of Sn+1 (corresponding
to the same j0� k0� l0).

Proposition 4.3. If (4.1) holds for all subsimplices of Sn, then it holds for
all connected subsets of Sn.

Proof. Let A be a connected subset of Sn, and define B to be the smallest
subsimplex of Sn that contains A. By assumption, (4.1) holds with �A�A∗�
replaced by �B�B∗�, so it will be enough to show that

νn+1�B∗\A∗� ≤ νn�B\A��(4.4)

This is an analogue of (2.6).
We will prove (4.4) by finding an injective mapping

φ:B∗\A∗ → B\A
with the property that

φ�j� k� l� ∈ {�j − 1� k� l�� �j� k − 1� l�� �j� k� l − 1�}
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for every �j� k� l� ∈ B∗\A∗. By the first assumption of Theorem 1.11, it will
follow that

νn+1�j� k� l� ≤ νn

(
φ�j� k� l�)� �j� k� l� ∈ B∗\A∗�

Summing this expression leads to (4.4), since φ is injective.
To define φ, let C1� � � � � CN be the maximal connected components of B∗\A∗.

A given Ci cannot contain a point on each of the edges of B∗. To see this,
note that by the minimality of B�A∗ has a point on each edge of B∗, so
Ci cannot have that property by Lemma 4.2. (Recall that B∗ is isomorphic
to Sm for some m.) If Ci has no point whose first coordinate is zero, define
φ�j� k� l� = �j − 1� k� l� for �j� k� l� ∈ Ci. If it does contain a point with zero
first coordinate, but no point with zero second coordinate, define φ�j� k� l� =
�j� k − 1� l� for �j� k� l� ∈ Ci. Otherwise, Ci contains no point with zero third
coordinate, and then define φ�j� k� l� = �j� k� l − 1� for �j� k� l� ∈ Ci. Clearly,
the φ�j� k� l� defined in this way is in B\A, since if it were in A, we would
have �j� k� l� ∈ A∗.

We need to check that φ is injective. So, suppose that φ�j1� k1� l1� =
φ�j2� k2� l2� for two distinct points in B∗\A∗. Since φ is injective on each
Ci, there must be i1 �= i2 so that �j1� k1� l1� ∈ Ci1

and �j2� k2� l2� ∈ Ci2
.

Since φ�j1� k1� l1� = φ�j2� k2� l2�� �j1� k1� l1� and �j2� k2� l2� are neighbors in
B∗, and this means that Ci1

∪ Ci2
is connected, which contradicts the maxi-

mality of the Ci’s. ✷

Theorem 1.11 follows from Proposition 4.3, together with the remarks at
the beginning of this section.

5. A sufficient condition for general d. Here we prove Theorem 1.12.
Let B ⊂ S be an increasing set. We need to show that the conditional
probability

νn�B� = P�X ∈ B �X1 + · · · + Xd = n − 1�(5.1)

is an increasing function of n. To do so, for 1 ≤ i ≤ d, let

fi�k�j1� � � � � jd−1� =P
(
X ∈ B �X1 + · · · + Xi =k�Xi+1 =j1� � � � �Xd =jd−i

)
�

We will show by induction on i that fi is an increasing function of all of its
arguments. Note that

f1�k�j1� � � � � jd−i� =
{

1� if �k� j1� � � � � jd−1� ∈ B,

0� otherwise,

so f1 is increasing in its arguments because B is an increasing set. This gives
the basis step for the induction proof. On the other hand,

fd�k� = P�X ∈ B �X1 + · · · + Xd = k��
so that its monotonicity in k is exactly the statement that needs to be proved.
Thus it will suffice to carry out the induction argument.
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To carry out the induction step, write

fi+1�k�j1� � � � �jd−i−1�
= ∑

m

P
(
X ∈ B�Xi+1 = m � X1 +· · ·+Xi+1 = k�

Xi+2 = j1� � � � �Xd = jd−i−1
)

= ∑
m

[
fi�k−m�m�j1� � � � �jd−i−1�

×P�Xi+1 = m � X1 +· · ·+Xi+1 = k�Xi+2 = j1� � � � �Xd = jd−i−1�
]

= ∑
m

fi�k−m�m�j1� � � � �jd−i−1�µk�j1�����jd−i−1
�k−m�m��

where µk�j1�����jd−i−1
�·� ·� is the probability measure on ��p�q�:p+q = k	 defined

by the final identity

µk�j1�����jd−i−1
�k − m�m�

= P
(
Xi+1 = m � X1 + · · · + Xi+1 = k�Xi+2 = j1� � � � �Xd = jd−i−1

)
�

By the inductive hypothesis, fi is increasing in all of its variables, so it suffices
to show that the measure µk�j1�����jd−i−1

�·� ·� is increasing in k� j1� � � � � jd−i−1.
Up to this point, we have not used the independence of X1� · · · �Xd in

order to explain why we assume this, and to show that the argument does
work under slightly weaker hypotheses. When the j’s vary, the measures
µk�j1�����jd−i−1

�·� ·� are supported by the same set ��p�q�:p + q = k	. However,
the only way that two probability measures on this set can be stochastically
ordered is for them to be the same. To see this, note that a coupling measure
would have to concentrate on

{(�p1� q1�� �p2� q2�
)
:p1 + q1 = p2 + q2 = k�p1 ≤ p2� q1 ≤ q2

}
�

and any probability measure on this set has equal marginals. Thus one must
assume that these measures are independent of the jl variables. This is
weaker than independence of X1� � � � �Xd, but we will not pursue extensions
based on this observation.

Assuming now the independence of X1� � � � �Xd, we may eliminate the j
subscripts, and define

µk�l�m� = P�Xi+1 = m�P�X1 + · · · + Xi = l�
P�X1 + · · · + Xi+1 = l + m� � l + m = k�

To complete the proof, we need to check that µk ≤ µk+1 for all k. But the
hypotheses of Theorem 1.12 are exactly (1.7) for the measures µk. So the
proof of the induction step is complete, using the implication (2.7) [which is
the same as (1.7)] ⇒ (2.4) that was proved in Section 2.
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6. Application to example (1.4). In this section, d is general and cn and
νn are given by (1.2) [equivalently, (1.3)] and (1.4), respectively. We will prove
Corollary 1.13 by checking the hypotheses of Theorem 1.12 in this case. Since
these hypotheses involve the distributions of partial sums of Xi’s, we need to
consider convolutions of cn’s.

Define the i-fold convolutions c
�i�
n of cn with itself by

c
�0�
n =

{
1� if n = 0,

0� if n ≥ 1,

c
�1�
n = cn�

c
�i+1�
n =

n∑
k=0

c
�i�
n cn−k� i ≥ 0�

Note that by (1.2),

c
�d�
n = cn+1�(6.1)

It turns out that these convolutions can be computed explicitly.

Proposition 6.2.

c
�i�
n = i

(
nd + i − 1

i − 1

)
(

n�d − 1� + i
i − 1

)cn� i ≥ 1�(6.3)

Proof. We will prove (6.3) by induction on i. It is clearly true for i = 1. For
the induction step, it suffices to check that the ratio of the left side of (6.3)
for two successive values of i is the same as the ratio of the right side of
(6.3) for the same successive values of i. There is a lot of cancellation in the
ratio of the right sides, and this leads to the following: it suffices to show that

c
�i+1�
n

c
�i�
n

= i + 1
i

nd + i

n�d − 1� + i + 1
�(6.4)

Let

C�u� =
∞∑

n=0

cnu
n

be the generating function of the sequence cn. The radius of convergence of
the series is strictly positive by (1.3). Multiplying (1.2) by un−1 and summing
for n ≥ 1 gives

uCd�u� − C�u� + 1 = 0�(6.5)
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[See equation (4.3) of Puha (1999).] Since the generating function of a convo-
lution is the product of the corresponding generating functions,

∞∑
n=0

c
�i�
n un = Ci�u��(6.6)

Cross-multiplying (6.4), and then multiplying the result by un and summing
on n, we see that (6.4) is equivalent to

i
∞∑

n=0

[
n�d − 1� + i + 1

]
c
�i+1�
n un = �i + 1�

∞∑
n=0

�nd + i�c�i�
n un(6.7)

for all sufficiently small u. Let D denote differentiation with respect to u:

Df�u� = f′�u��
By (6.6), (6.7) can be written as

i�d − 1�uDCi+1�u� + i�i + 1�Ci+1�u� = �i + 1�duDCi�u� + i�i + 1�Ci�u��
By carrying out the differentiations and cancelling common factors, we see
that this is equivalent to

�d − 1�uC�u�C′�u� + C2�u� = duC′�u� + C�u��(6.8)

To check that (6.8) is true, differentiate (6.5),

Cd�u� + udCd−1�u�C′�u� − C′�u� = 0�

Then replace Cd�u� both places it appears in this expression by �C�u� − 1 /u,
which also comes from (6.5). The result is (6.8). ✷

Remark. We have used (1.3) only to conclude that C�u� has positive radius
of convergence. Puha (1999) gives a simple direct argument for this fact;
see (4.4) there. Given this, (6.1) and Proposition 6.2 provide an alternate proof
of (1.3),

cn+1 = c
�d�
n = d

(
nd + d − 1

d − 1

)
(

nd + d − n
d − 1

)cn = �d − 1�n + 1
�d − 1��n + 1� + 1

( �n + 1�d
n + 1

)
(

nd
n

) cn�

It follows that

cn

[�d − 1�n + 1
]/(

dn
n

)

is independent of n, and hence always equal to 1, since that is its value for
n = 1. Of course, once we know (1.3), it can be combined with (6.3) to write

c
�i�
n = i

nd + i

(
nd + i

n

)
�(6.9)

This equation [and working backward, (6.3) as well] can also be obtained from
Theorems 2.3 and 2.5 of Hilton and Pedersen (1991). Their results are proved
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via combinatorial arguments. We have included our simple analytic proof in
order to keep this paper self-contained.

Proof of Corollary 1.13. In this case,

P�X1 + · · · + Xi = n� = c
�i�
n un

Ci�u� �

where u > 0 is fixed, and small enough that C�u� < ∞. Therefore, the assump-
tions of Theorem 1.12 become

cmc
�i+1�
l+m+1 ≥ cm+1c

�i+1�
l+m and c

�i�
l c

�i+1�
l+m+1 ≥ c

�i�
l+1c

�i+1�
l+m �

respectively. These will both follow from

c
�i�
m c

�j�
n+1 ≥ c

�i�
m+1c

�j�
n � 1 ≤ i ≤ j ≤ d�0 ≤ m ≤ n�

This is just the statement that the ratios

c
�i�
m

c
�i�
m+1

(6.10)

are decreasing in m for m ≥ 0 and decreasing in i for 1 ≤ i ≤ d. Using (6.9),
we have

c
�i�
m

c
�i�
m+1

= �m + 1�
[�m + 1��d − 1� + i

] · · · [m�d − 1� + i + 1
]

[�m + 1�d + i − 1
] · · · �md + i 

= 1
d

i−1∏
j=1

�m + 1��d − 1� + j + 1
�m + 1�d + j

d−1∏
j=i

m�d − 1� + j + 1
md + j

�

Note that this generalizes (1.10). Each of the factors in the above products is
decreasing in m, so the monotonicity in m of the ratios in (6.10) is immediate.
The monotonicity in i is equivalent to

m�d − 1� + i + 1
md + i

≥ �m + 1��d − 1� + i + 1
�m + 1�d + i

�

which is easily checked. So, Corollary 1.13 follows from Theorem 1.12. ✷

7. Equivalent form of Puha’s condition. Puha (1999) proved that the
following is a sufficient condition for equality in (1.5); see her Lemma 15.
There exists nonnegative, permutation invariant functions αi�n�x� defined
for 1 ≤ i ≤ d�n ≥ 1� x ∈ Sn that satisfy

d∑
i=1

αi�m�x� = 1 and
d∑

i=1

αi�n�y − ei�
cyi

− 1

cyi

= cn

cn+1
(7.1)

for all x ∈ Sm�y ∈ Sn+1�m ≥ 1� n ≥ 1, where the cn’s are given by (1.3) for
n ≥ 0, and c−1 = 0. Here permutation invariant means that

ασ�i��n�σ�x�� = αi�n�x�
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for every permutation σ of �1� � � � � d	, and σ�x� is the vector obtained by
applying σ to the coordinates of x. [Actually, her condition is a bit weaker in
that the nonnegativity assumption is replaced by �αi�n�x�� ≤ 1. However, this
is implied by nonnegativity and the first equation in (7.1).]

Proposition 7.2. Let νn be defined by (1.4). Then there exists a nonnegative,
permutation invariant solution of (7.1) if and only if νn ≤ νn+1 for each n ≥ 1.

Proof. By Theorem 2.4 in Chapter II of Liggett (1985), νn ≤ νn+1 is equiv-
alent to the existence of a probability measure µ on{�x�y� ∈ Sn × Sn+1:x ≤ y

}
that satisfies

νn�x� = ∑
y∈Sn+1

µ�x�y� and νn+1�x� = ∑
x∈Sn

µ�x�y��(7.3)

Since νn and νn+1 are permutation invariant, the µ can also be taken to be
permutation invariant. (If µ is not already permutation invariant, replace it
by an appropriate average of permutations of µ.) Any �x�y� in the support of
µ must be of the form �x� x + ei� for some 1 ≤ i ≤ d, so given either µ or the
α’s we can define the other via

αi�n�x� = µ�x� x + ei�
νn�x� �

With this identification,

∑
y∈Sn+1

µ�x�y� =
d∑

i=1

µ�x� x + ei� = νn�x�
d∑

i=1

αi�n�x�

and

∑
x∈Sn

µ�x�y� =
d∑

i=1

µ�y − ei� y� =
d∑

i=1

αi�n�y − ei�νn�y − ei�

=
d∑

i=1

αi�n�y − ei�
cyi

− 1

cyi

νn+1�y�cn+1

cn

�

Therefore, (7.1) and (7.3) are equivalent. ✷
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