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BOUNDS FOR STABLE MEASURES OF CONVEX SHELLS
AND STABLE APPROXIMATIONS

By V. Bentkus,1�3 A. Juozulynas1�2 and V. Paulauskas

Vilnius Institute of Mathematics and Informatics, University of Vilnius
and University of Vilnius

The standard normal distribution � on �d satisfies � ��∂C�ε� ≤ cdε,
for all ε > 0 and for all convex subsets C ⊂ �d, with a constant cd which
depends on the dimension d only. Here ∂C denotes the boundary of C, and
�∂C�ε stands for the ε-neighborhood of ∂C. Such bounds for the normal
measure of convex shells are extensively used to estimate the accuracy of
normal approximations.

We extend the inequality to all (nondegenerate) stable distributions on
�d, with a constant which depends on the dimension, the characteristic
exponent and the spectral measure of the distribution only. As a corollary
we provide an explicit bound for the accuracy of stable approximations on
the class of all convex subsets of �d.

1. Introduction and formulation of results. Let �d denote the stan-
dard real Euclidean space with the norm defined by �x�2 = x21 + · · · + x2d and
the corresponding inner product 	x� x
 = �x�2. Let X1�X2� � � � be a sequence
of independent identically distributed (i.i.d.) �d-valued random vectors with
distribution F. Denote by Fn the distribution of the sum

a−1
n

n∑
i=1

Xi − bn�

where an > 0 and bn ∈ �d are normalizing constants and centering vectors.
It is well known that if Fn, as n → ∞, converge weakly to a distribution, say
G, it has to be a stable distribution with a characteristic exponent 0 < α ≤ 2.
The case α = 2 corresponds to a Gaussian law.

The characteristic function ϕ�t� = ∫
�d exp�i	t� x
�G�dx� of a stable law G

can be written as

ϕ�t� = exp
{
i	t� a
 −

∫
Sd−1

∣∣	t� y
∣∣αN�y�α���dy�
}

(1.1)
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with

N�y�α� ≡ N�t� y� α� = 1− i sign �	t� y
� tan πα

2
� α �= 1�

N�y�α� = 1+ i
2
π
sign �	t� y
� log �	t� y
�� α = 1�

(1.2)

where a ∈ �d and � denotes a finite nonnegative σ-additive measure on the
unit sphere Sd−1 = �x ∈ �d� �x� = 1�. The measure � is called the spectral
measure of a stable distribution. The triple �a� α� �� completely characterizes
the stable distribution. Since all our results are independent of shifts of dis-
tributions, without loss of generality throughout we assume that a = 0. We
write Gα��� ϕα, etc., in cases where we want to emphasize the dependence on
the characteristic exponent α or on the spectral measure �. We denote the den-
sity of G with respect to the Lebesgue measure on �d as g (if it exists). For
more information about multivariate stable laws we refer to Samorodnitsky
and Taqqu (1994).

A rather general formulation of the problem of convergence rates in the
central limit theoremmay be stated as follows [see, e.g., Bhattacharya and Rao
(1976), Paulauskas (1975), Sazonov (1968)]. Let � be a class of measurable
functions f� �d → � such that the integral in (1.3) below exists. The goal is
to estimate

�n�� � �= sup
f∈�

∣∣∣∣ ∫
�d

f�x��Fn −G��dx�
∣∣∣∣�(1.3)

for example, as follows:

�n�� � ≤ cdζ�� �G�ν�F�G�δn(1.4)

with some δn such that δn → 0, as n → ∞. The constant ζ�� �G� depends on
� and G, and ν�F�G� usually is a moment or pseudo-moment related to the
distributions F and G.

Classes of indicator functions I�x�A� of subsets A ⊂ �d are of special inter-
est. We define I�x�A� = 1 if x ∈ A, and I�x�A� = 0 otherwise. A natural
correspondence between classes � of Borel sets A ∈ � and classes � of indi-
cator functions is given by A ↔ I�·�A�. Hence, for such classes we can rewrite
(1.3) as

�n�� � �= sup
A∈�

∣∣Fn�A� −G�A�∣∣�(1.5)

The constant ζ�� �G� = ζ�� �G� in (1.4) usually depends on the quantities

η�� �G� ε� �= sup
A∈�

G��∂A�ε�� ε > 0�

η�� �G� �= sup
ε>0

η�� �G� ε�/ε�
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χ�g�w1� � � � �ws� �=
∫
�d

∣∣g�s��x�w1� � � � �ws

∣∣dx� w1� � � � �ws ∈ �d�(1.6)

χs�g� �= sup�χ�g�w1� � � � �ws�� �wi� ≤ 1 for all i��(1.7)

where g�s��x� denotes the Fréchet derivative. Using the directional derivatives,

dwg�x� �= lim
t→0

�g�x+ tw� − g�x��/t�

we have

g�s��x�w1 · · ·ws = dw1
· · ·dws

g�x��

The boundary of a set A we denote as ∂A, and �∂A�ε is the ε-neighborhood
of ∂A.

In the case of the standard normal distribution G = �, the quantities χ
in (1.6) and (1.7) are obviously finite. However, one needs a special proof in
order to show that η��c��� < ∞ for the class �c of convex subsets of �d [see
Bahr (1967), Bhattacharya and Rao (1976), Sazonov (1981)]. In the stable case
α < 2, the existence of χs�g� and η��c�G� was either imposed as a condition
[see Paulauskas (1975), Bloznelis (1988)], or special cases were considered
such that it was possible to show the existence of η and χ. A list of the special
cases consists of (1) the class �r of rectangles [Banys (1971)]; (2) spherically
symmetric distributions [see Bloznelis (1989), Paulauskas (1975), Mikhailova
(1983)]; (3) the two-dimensional case d = 2 [Paulauskas (1975)]; (4) stable
random vectors with independent coordinates [Paulauskas (1975)]. The con-
dition χs�g� < ∞ is used to ensure the existence of some metrics related to
stable distributions; see Chapter 14 in Rachev (1991).

The aim of the present paper is to show that all aforementioned quantities
exist, for the class �c of convex subsets and for any stable distribution which
is nondegenerate in a subspace of �d. Furthermore, we obtain explicit bounds
for these quantities.

A distribution G we call nondegenerate if G�L� = 0, for any linear subspace
L ⊂ �d such that dimL < d. A stable nondegenerate distribution is absolutely
continuous and, hence has a density g. Write

*��� �= inf
�t�=1

( ∫
Sd−1

∣∣	t� y
∣∣α��dy�)1/α

� *0��� �= ��Sd−1��(1.8)

Note that *��� > 0 if and only if the stable distribution G = G� is nondegen-
erate, and *0��� < ∞ for any stable distribution. Write

Kα��� = *d
0 ���*−dα−1���� α �= 1�(1.9)

Kα��� = *d
0 ���*−d−1���

(
1+ ∣∣ log *���∣∣)d

� α = 1�(1.10)
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If the distribution G is symmetric, that is, the function N�·� α� in the char-
acteristic function (1.1) satisfies N�·� α� ≡ 1 or the measure � is symmetric,
then we define Kα��� by (1.9), for all 0 < α ≤ 2.

Theorem 1. LetG be a nondegenerate stable distribution. Then χs�g� < ∞,
for s = 1�2� � � � Moreover, we have

χ1�g� ≤ c�α�d�Kα����(1.11)

where Kα��� is defined in (1.9)–(1.10), and

χs�g� ≤ �s1/αχ1�g��s for s = 2�3� � � � �(1.12)

In particular, g ∈ C∞��d�, for all α, and g is an analytic function, for α ≥ 1.

Theorem 1 refines a result of Bogachev (1986) who showed that χ1�g� exists.
This fact easily implies (1.12) and the analyticity for α ≥ 1. Also it is necessary
to note that in Bogachev 1986 is asserted only the existence of χ1�g� while
we provide a constructive proof and an explicit bound. To have a constructive
proof is necessary in applications such as simulations of stable random vectors
by LePage series in the multidimensional case [see Bentkus, Juozulynas and
Paulauskas (1999b); in Ledoux and Paulauskas (1996), Bentkus, Götze and
Paulauskas (1996) the case d = 1 is considered]. The constant c�α�d� in (1.11)
allows the following explicit bound

c�α�d� ≤ 12�50/α�2d�2d�2d/α�1/α�2/α�1+ � tan�πα/2���d� α �= 1�

c�1� d� ≤ 18�8d�3d� α = 1�
(1.13)

If the distribution G is symmetric, then

c�α�d� ≤ 12�50/α�2d�2d�2d/α�1/α�2/α�(1.14)

Note that the bound (1.13), for α �= 1, is uniform in α from any compact subset
of (0,1) ∪ (1,2], and it degenerates when α ↓ 0 or α → 1. It seems that the
degeneration at α = 1 is an artifact of our methods and is related to the
parameterization (1.1) of stable laws, which is discontinuous as α → 1. In
the symmetric case the bound (1.14) is satisfactory since it degenerates only
as α ↓ 0. Of course, the bounds (1.13) and (1.14) are not optimal. Writing them
down, we tried to reflect the uniformity in α and preferred simplicity of the
form to accuracy.

Write

ζ�� �G� �= sup
A∈�

∫
∂A

g�x�ds�

where ds denotes the surface area element on ∂A.
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Theorem 2. Let G be an arbitrary distribution on �d such that its density
g exists and is a continuous function. Then

η��c�G� = 2ζ��c�G��(1.15)

Let G be an arbitrary distribution on �d such that χ1�g� exists. Then
η��c�G� ≤ 4d3/2χ1�g��(1.16)

In particular, any stable nondegenerate G satisfies

η��c�G� ≤ 4d3/2c�α�d�Kα���
with c�α�d� as in �1�13� and �1�14� and Kα��� as in �1�9� and �1�10�.

Using Theorem 2, the bounds for the accuracy of stable approximations in
�d obtained by Paulauskas (1975) and by Bloznelis (1988) extended to the
whole class of nondegenerate stable distributions; see Theorem 3 below.

We hope that using (1.16) and applying the method used to proveTheorem 1,
one can derive results similar to Theorem 2 for some classes of infinity divisible
distributions. As an initial step in this direction we provide an extension to
the case of mixtures of stable distributions with the varying α; see Theorem 4
below.

In the special case of the standard normal distribution G = �, simple cal-
culations show that χ1�g� ≤ �2/π�1/2 and the estimate (1.16) yields

η��c��� ≤ �32/π�1/2d3/2�(1.17)

which is worse than the best known estimate η��c��� ≤ 8d1/4 [see Ball
(1993)]. A precise dependence of η��c��� on dimension is not known and
would be of interest in the context of estimates of normal approximations [see
Bentkus (1986)]. The bound (1.17) depends on d3/2 which is worse than d1/2 in
Bhattacharya and Rao (1976), where a proof adapted to the structure of � is
provided. Our proof applies to arbitrary G such that χ1�g� < ∞ and seems to
be simpler.

Recall that X1�X2� � � � denote i.i.d. random vectors with common distribu-
tion F. Let henceforth Fn denote the distribution of the sum n−1/α ∑n

i=1Xi.
Assume that ∫

�d
	t� x
�F−G��dx� = 0 for all t ∈ �d�(1.18)

If α > 1 then assume in addition that∫
�d

	t� x
	s� x
�F−G��dx� = 0 for all t� s ∈ �d�(1.19)

Introduce the uniform distance

ρ = ρ�F�G� = sup
{�F�A� −G�A��� A ∈ �c

}
between distributions F and G on the class �c of convex sets.



BOUNDS FOR STABLE MEASURES 1285

The class Hr��d�� r > 0, consists of the functions f� �d → � such that f is
m times Fréchet differentiable and the derivative f�m� satisfies

sup
�w1�=···=�wm�=1

∣∣f�m��x�w1 · · ·wm − f�m��y�w1 · · ·wm

∣∣ ≤ ∣∣x− y
∣∣θ�

where a nonnegative integerm and a positive θ satisfy r = m+θ and 0 < θ ≤ 1.
Introduce the metric

ζr = ζr�F�G� = sup
{∣∣∣∣ ∫

�d
f�x��F−G��dx�

∣∣∣∣� f ∈ Hr��d�
}

and pseudo-moments

νr = νr�F�G� =
∫
�d

�x�r∣∣F−G
∣∣�dx��

where �F−G� denotes the variation of the signed measure F−G. Note that
ζ1 ≤ ν1. We have as well that ζ1+α ≤ ν1+α, for 0 < α ≤ 1, if (1.18) is fulfilled,
and for 1 < α ≤ 2, if both (1.18) and (1.19) hold.

Theorem 3. Assume that G is a stable nondegenerate distribution with the
characteristic function given by �1�1� and �1�2�. If α �= 1 then

�n��c� ≤ cα�dn
−1/α

(
ρ+Kα���ζ1 +Kα+1

α ���ζ1+α

)
�(1.20)

For α = 1 the bound �1�20� holds for strictly stable G.

The quantities �n��c� and Kα��� are defined by (1.5) and (1.9) and (1.10),
respectively. We shall derive (1.20) combining a bound proved by Bloznelis
(1988) and Theorems 1 and 2. Recall that G is strictly stable if the distribu-
tion of the sum n−1/α ∑n

i=1Yi equals G when Y1� � � � �Yn are i.i.d. with the
distribution G. As it is well known, for α �= 1, the strict stability means that
the shift a from (1.1) and (1.2) equals zero. For α = 1, it is equivalent to a = 0
and

∫
Sd−1

	t� y
��dy� = 0, for all t ∈ �d. The requirement of the strict stabil-
ity in Theorem 3 seems to be superfluous and is inherited from the bound of
Bloznelis. The constant in (1.20) satisfies

cα�d ≤ cc�α��20�1/αd3/2�1+ c�α�d��α+1

with c�α�d� defined by (1.13) and (1.14), where c is an absolute constant and
c�α� = 1, for α ≤ 1� c�α� = α − 1, for α > 1. Once again, the bound for cα�d
degenerates as α ↓ 0 or α → 1.

We conclude the introduction with the aforementioned extension to mix-
tures of one-dimensional stable distributions with varying α. Consider a
measurable function α� Sd−1 → �0�2�. Let Gm (respectively, gm) denote a
distribution (respectively, its density) which has the characteristic function
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defined by (1.1) and (1.2) with α and N�y�α� replaced by α�y� and N�y�α�y��,
respectively. Note that Gm can be interpreted as a mixture of one-dimensional
stable distributions, say Gα�L�, with the varying characteristic exponent α =
α�L� such that Gα�L� degenerates in a one-dimensional subspace L ⊂ �d, and
any stable distribution G = Gα as a similar mixture with the constant α.

Let

ω��� τ� = inf
�t�=1

∫
Sd−1

∣∣	t� y
∣∣α�y�τα�y���dy�� τ > 0�(1.21)

If α is constant then ω���1� = *α��� [cf. (1.8)]. Let τ��� denote a solution of
the equation ω��� τ� = 1. Define the following counterpart of Kα��� [cf. (1.9)]:

K��� = *d
0 ���max�τ2d+1���� τδd+1�����(1.22)

Theorem 4. Assume that ω���1� > 0 and that 2 ≥ α�y� ≥ δ > 0, for some
δ > 0. Then there exists a unique solution, say τ���, of the equation ω��� τ� = 1
and

min
{
ω−1/δ�ω−1/2} ≤ τ��� ≤ max

{
ω−1/δ�ω−1/2}� ω �= ω���1��(1.23)

Furthermore, assume that either Gm is a mixture of symmetric distributions
�i.e., N�y�α�y�� ≡ 1�� or that �α�y�− 1� > δ, for all y ∈ Sd−1. Then there exists
a constant c�δ�d� such that

χ1�gm� ≤ c�δ�d�K����(1.24)

η��c�Gm� ≤ c�δ�d�K����(1.25)

2. Proofs. We start this section with an auxiliary lemma. Fourier trans-
forms we denote as

f̂�t� �=
∫
�d

f�x� exp�i	x� t
�dx�

In particular, we have ϕ = ĝ [see (1.1) and (1.2)].

Lemma 5. LetG be a stable nondegenerate distribution on �d. Then its den-
sity g is a function of the class C∞��d�. Furthermore, the derivatives g�s��x�×
w1 · · ·ws as functions of x are square integrable and vanish as �x� → ∞, for
any w1� � � � �ws ∈ �d.

Proof. Without loss of generality we can assume that �wj� ≤ 1, for all j.
Then ∣∣	t�w1
 · · · · · 	t�ws
ϕ�t�

∣∣ ≤ �t�s∣∣ϕ�t�∣∣ ≤ �t�s exp�−*α����t�α��(2.1)

The bound (2.1) implies that the functions t �→ 	t�w1
· · · · ·	t�ws
ϕ�t�� �d → �
are in L2��d� ∩L1��d�. Hence, g�x� = �2π�−d

∫
�d ĝ�t� exp�−i	t� x
�dt almost

everywhere. Differentiating under the sign of the integral, we see that g ∈ C∞.
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The Parseval’s equality shows that g and its derivatives are square integrable.
Finally, due to the Riemann–Lebesgue theorem, these functions vanish as
�x� → ∞. ✷

Unfortunately, Lemma 5 does not imply directly the integrability of the
derivatives of g. A proof of this integrability is rather involved; see the proof
of Theorem 1 below.

Proof of Theorem 1. The estimate (1.12) and the analyticity of g is con-
tained as Theorem 1 in Bogachev (1986). For the sake of completeness, we
prove (1.12). Let Y�Y1� � � � �Ys be i.i.d. random vectors such that � �Y� = G.
Since G is α-stable, we have � �s−1/α�Y1+· · ·+Ys�� = G, for any s ∈ �. Hence,
the function g is an s-fold convolution, say g∗s

s , of the function

gs�x� �= sd/αg�s1/αx��

Using  f∗g 1 ≤  f 1 g 1, where  f 1 denotes the L1��d�-norm of f, we have

χ�g�w1� � � � �ws� =
∫
�d

∣∣dw1
· · ·dws

�g∗s
s �x��∣∣dx =

∫
�d

∣∣(dw1
gs ∗ · · · ∗ dws

gs

)�x�∣∣dx
≤

s∏
j=1

 dwj
gs 1 ≤

(
s1/αχ1�g��s�

whence (1.12) follows.

It remains to prove the bound (1.11) for χ1�g�. Let us describe the idea
of the proof. It is based on integration by parts, repeating this integration
d times. In the case of the standard Gaussian distribution G = � one can
proceed as follows. Write

Î�t�A� = �1− ��d Î∗�t�A�

with

I∗�x�A� �= I�x�A�/�1+ �x�2�d�
where Î�t�A� denotes the Fourier transform of the function x �→ I�x�A� and
� is the Laplace operator. The function I∗ is integrable and

∣∣̂I∗�t�∣∣ ≤ cd with
some constant cd depending on the dimension. Integrating by parts we reduce
[cf. (2.9)–(2.14)] the estimation of χ1�g� to a proof that

sup
�w�=1

∫
�d

∣∣�1− ��d	t�w
ϕ�t�∣∣dt ≤ cd�

which clearly holds since ϕ�t� = exp�−�t�2/2�. In the non-Gaussian case α < 2
such simple arguments are not applicable since the characteristic function
ϕ is not sufficiently smooth. For example, for α < 1, it is differentiable at
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most once. This nondifferentiability enforce us to use a complicated construc-
tion of a sequence of (measurable) vector fields, say b1� � � � � bd. Each of the
fields bj depends on b1� � � � � bj−1 and on many other variables related to the
construction. Instead of �1 − ��d we take a differential operator of the form
P�∂� �= �1+ idb1

� · · · �1+ idbd
�, and instead of I∗ we use a function of the type

I�x�A�
d∏

i=1
�1+ �	x� bi
��−1�(2.2)

We choose the fields bj such that the function (2.2) is in Lp��d�, for some
p > 1. Furthermore, we have to construct the operator P�∂� such that the
expression P�∂�ϕ�t� depends only on the first-order derivatives of logϕ�t�.

Let us return to the proof of (1.11). Consider the normalized measure σ =
�/*α��� and define the function

ψ�t� = exp
{
−

∫
Sd−1

H�	t� y
�σ�dy�
}

(2.3)

with

H�z� = �z�α(1− i sign�z� tan�πα/2�)� α �= 1�(2.4)

H�z� = �z�
(
1+ �2i/π� sign�z� log ∣∣z/*���∣∣)� α = 1�(2.5)

Notice that *�σ� = 1 and *0�σ� = *0���/*α���.
Introduce the class D ⊂ C∞��d� of the functions v which satisfy∣∣v�s��t�w1 · · ·ws

∣∣ ≤ 1+ �t� for all s = 0�1� � � � and �wi� ≤ 1�

Assuming that a Borel set A ⊂ �d is bounded, define

J0�A� �= sup
v∈D

∣∣∣∣ ∫
�d

¯̂I�t�A�v�t�ψ�t�dt
∣∣∣∣�(2.6)

By Î�t�A� we denote the Fourier transform of the function x �→ I�x�A�, and
z̄ is the complex conjugate of z. Let us show that (1.11) is implied by the
following bounds

J0�A� ≤ 2−1�2π�−dc�α�d�*d
0 �σ�� α �= 1�(2.7)

J0�A� ≤ 2−1�2π�−dc�1� d�*d
0 �σ�

(
1+ ∣∣ log *���∣∣)d

� α = 1�(2.8)

respectively, where the constant c�α�d� satisfies (1.13) [we shall prove (2.7)
and (2.8) below, for any bounded measurable subset A ⊂ �d]. The definition
(1.7) yields

χ1�g� = sup�χ1�g�w�� w ∈ �d� �w� = 1��(2.9)
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It is clear that

χ1�g�w� =
∫
�d

�dwg�x�
∣∣dx = sup

A

∫
A
�dwg�x�

∣∣dx
≤ 2 sup

A

∣∣∣∣ ∫
A
dwg�x�dx

∣∣∣∣ = 2J∗

(2.10)

with

J∗ = sup
A

∣∣∣∣ ∫
�d
I�x�A�dwg�x�dx

∣∣∣∣�(2.11)

where supA is taken over all bounded Borel sets A ⊂ �d. Parseval’s equality
and the well-known properties of the Fourier transforms imply

J∗ = �2π�d sup
A

∣∣∣∣ ∫
�d

¯̂I�t�A�	t�w
ϕ�t�dt
∣∣∣∣�(2.12)

Changing variables t = u/*��� in (2.12), we obtain

J∗ = �2π�d*−1���J∗∗(2.13)

with

J∗∗ = sup
A

∣∣∣∣ ∫
�d

¯̂I�t�A�	t�w
ψ�t�dt
∣∣∣∣�(2.14)

where ψ is defined by (2.3). Obviously, the function t �→ 	t�w
 belongs to the
class D since �w� = 1. Hence, J∗∗ ≤ supA J0�A�. This inequality combined
with (2.9)–(2.14) and *0�σ� = *0���/*α��� shows that instead of (1.11) it suf-
fices to prove the estimates (2.7) and (2.8).

Let us prove (2.7) and (2.8). We shall integrate by parts d times. Let us
start with a description of the first integration by parts. Choose any vector
b1 ∈ Rd such that �b1� = 1. Splitting the set A = B1 ∪B2, where

B1 = �u� 	b1� u
 ≥ 0� ∩A and B2 = �u� 	b1� u
 < 0� ∩A�

we can write the following obvious identity

I�x�A� = I1�x�B1��1+ 	b1� x
� + I1�x�B2��1− 	b1� x
�(2.15)

with

I1�x�C� = I�x�C�
1+ �	b1� x
�

� C = B1�B2�

Using the well-known properties of the Fourier transform, the identity (2.15)
yields

Î�t�A� = �1− idb1
�̂I1�t�B1� + �1+ idb1

�̂I1�t�B2��(2.16)
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Let h�z� = H
′ �z� denote the derivative of the function H�z� defined by (2.4)

and (2.5), that is,

h�z� = α�z�α−1 sign�z��1− i sign�z� tan (
πα/2�)� α �= 1�(2.17)

h�z� = sign�z� + �2i/π� + �2i/π� log ∣∣z/*���∣∣� α = 1�(2.18)

Using (2.6) and (2.16), we obtain

J0�A� ≤ 2 max
B=B1�B2

sup
v∈D

�Q1 +Q2��(2.19)

where

Q1 =
∣∣∣ ∫

�d

¯̂I1�t�B�v�t�ψ�t�dt
∣∣∣� Q2 =

∣∣∣ ∫
�d

db1

¯̂I1�t�B�v�t�ψ�t�dt
∣∣∣�

The case d = 2 is somewhat simpler compared to the general case d > 2
although it involves already some essential features of the general proof. In
order to explain compact notation used in the general case, we provide a sketch
of the proof for d = 2.

The case d = 2. We shall show that J0�A� ≤ M, where M is a generic
constant depending on d�α and �. We shall integrate by parts twice.

Integrating by parts, using �b1� = 1� db1
�vψ� = �db1

v�ψ+vdb1
ψ and db1

v ∈ D
together with

db1
ψ�t� =

∫
S1

ψ�t�h(	t� y1

)	y1� b1
σ�dy1��

we have

Q2 ≤
∫
S1

Q3σ�dy1� + sup
v∈D

Q1

with

Q3 =
∣∣ ∫

�2

¯̂I1�t�B�v�t�ψ�t�h�	t� y1
�	y1� b1
dt
∣∣�

Hence

J0�A� ≤ 4 sup
∗

Q1 + 2
∫
S1

sup
∗

Q3σ�dy1��(2.20)

where we write sup
∗

= maxB=B1�B2
supv∈D.

In the second integration by parts the choice of the second direction b2 (such
that �b2� = 1� depends on the integral under the consideration. In the case of
Q1 we choose a unit vector b2 to be orthogonal to b1. Repeating the procedure
which allowed us to derive (2.20) from (2.19), we obtain

Q1 ≤ 4 sup
∗

R1 + 2
∫
S1

sup
∗

R2σ�dy2�(2.21)
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with

R1 =
∣∣∣∫

�2

¯̂I2�t�B�v�t�ψ�t�dt
∣∣∣� R2 =

∣∣∫
�2

¯̂I2�t�B�v�t�ψ�t�h�	t� y2
�	y2� b2
dt
∣∣

and

I2�x�B� = I�x�B�(1+ ∣∣	x� b1
∣∣)−1(1+ ∣∣	x� b2
∣∣)−1�(2.22)

In order to estimate Q3 we choose a direction b2 = b2�y1� ∈ �2 depending on
y1 such that

�b2� = 1 and 	y1� b2
 = 0�(2.23)

Our choice of b2 ensures that db2
h�	t� y1
� ≡ 0. Indeed, in the orthogonal

basis �y1� b2� of �2 we may write t = t1y1 + t2b2 with some t1� t2 ∈ �, and
	t� y1
 = t1 yields db2

t1 = �∂/∂t2�t1 ≡ 0. Integrating by parts and repeating
again the procedure which allowed us to derive (2.20) from (2.19), we obtain

Q3 ≤ 4 sup
∗

R3 + 2
∫
S1

sup
∗

R4σ�dy2�(2.24)

with R3 defined as R2 replacing 	t� y2
 and 	y2� b2
 by 	t� y1
 and 	y1� b1
,
respectively, and

R4 =
∣∣ ∫

�2

¯̂I2�t�B�v�t�ψ�t�VWdt
∣∣�

where we writeV = h�	t� y1
�h�	t� y2
� andW = 	y1� b1
	y2� b2
. The function¯̂I2 is given by (2.22) with b2 from (2.23).
Collecting the bounds (2.20), (2.21) and (2.24), we obtain

J0�A� ≤ 16 sup
∗

R1 + 8
∫
S1

sup
∗

R2σ�dy2�

+8
∫
S1

sup
∗

R3σ�dy1� + 4
∫
S1

∫
S1

sup
∗

R4σ�dy1�σ�dy2��

To conclude the sketch of the proof, it suffices to verify that Ri ≤ M, for all
i. Let us consider the most involved case of R4 only. To simplify the consider-
ations we shall assume as well that α �= 1. Using the Cauchy inequality and

Parseval’s equality  ¯̂I2 2 =  I2 2, we have

R2
4 ≤ W2 I2 22I with I =

∫
�2

�v�t��2�ψ�t��2�V�2 dt�(2.25)

In the case 	y1� b1
 = 0 or 	y2� b2
 = 0 we have that R4 = 0. Hence, while esti-
mating R4, we may assume that both 	y1� b1
 and 	y2� b2
 are nonzero. By our
choice, �y1� b2� is an orthonormal basis of �2. Let x�1�� x�2� ∈ �

be the coordinates of x ∈ �2 in this basis. Changing the variables
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u1 = 	x� b1
 ≡ 	b1� y1
x�1� + 	b1� b2
x�2� and u2 = 	x� b2
 ≡ x�2�, we obtain

 I2 22 ≤ M
∫
�2

dx

�1+ 	x� b1
2��1+ 	x� b2
2�

= M

�	y1� b1
�
( ∫

�

ds

1+ s2

)2
≤ M

�	y1� b1
�
�

(2.26)

To estimate the integral I we use the basis �y1� b2� again. Let t�1�� t�2� ∈ � be
the coordinates of t ∈ �2. Introduce the variables

u1 = 	t� y1
 ≡ t�1�� u2 = 	t� y2
 ≡ 	y2� y1
t�1� + 	y2� b2
t�2��

Notice that the vector u = �u1� u2� satisfies �u�2 ≤ 2�t�2 since y1� y2 ∈ S1. Using
in addition the bounds �v�t��2 ≤ M�1 + �t�2� and �h�s�� ≤ M�s�α−1, estimating
ψ�t� ≤ exp�−ε�t�α� with some ε = ε�d�α� �� > 0, we get

I ≤ M
∫
�2
exp�−ε�u�α/4�h2�u1�h2�u2�du/�	y2� b2
�

= M

��y2� b2��
( ∫

�
exp�−εsα/4�h2�s�ds

)2
≤ M

�	y2� b2
�
�

(2.27)

provided that α > 1/2. Combining (2.25)–(2.27), we obtain

R4 ≤ M�W�/
√
�	y1� b1
	y2� b2
� = M

√
�W� ≤ M

since �	yi� bi
� ≤ 1 and therefore �W� ≤ 1. The case 0 < α ≤ 1/2 may be con-
sidered similarly, just replacing Cauchy’s inequality and Parseval’s equality
used in (2.25) by Hölder’s and Hausdroff–Young inequalities, respectively; see
(2.41)–(2.43).

The case d > 2. Introducing the Dirac measure δb on �d such that
δb�C� = I�b ∈ C�, for C ⊂ �d, we can write

Q1 =
∫
Sd−1

∣∣∣ ∫
�d

¯̂I1�t�B�v�t�ψ�t�	y1� b1
dt
∣∣∣δb1

�dy1�(2.28)

since 	b1� b1
 = 1. Integrating by parts, using �b1� = 1 and db1
v ∈ D together

with

db1
ψ�t� =

∫
Sd−1

ψ�t�h�	t� y1
�	y1� b1
σ�dy1��

we have

Q2 ≤
∫
Sd−1

∣∣ ∫
�d

¯̂I1�t�B�v�t�ψ�t�h�	t� y1
�	y1� b1
dt
∣∣σ�dy1�

+ sup
v∈D

Q1�
(2.29)
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In order to rewrite the bounds (2.19), (2.28) and (2.29) in a more compact
form and to proceed with integration by parts, let us introduce additional
notation. We shall denote by D ⊂ Dj a subset of the set Dj = �1�2� � � � � j�.
Collecting (2.19), (2.28) and (2.29), we obtain

J0�A� ≤ 6J1�A��(2.30)

where

J1�A� = max
D⊂D1

sup
v∈D

sup
B⊂A

∫
Sd−1

∣∣J∗
1�B�∣∣ ∏

k∈D
σ�dyk�

∏
l∈D1\D

δbl
�dyl�

with

J∗
1�B� =

∫
�d

¯̂I1�t�B�v�t�ψt	y1� b1

∏
k∈D

h�	t� yk
�dt�

The inequality (2.30) provides the result of the first integration by parts. Let
2 ≤ j ≤ d and y1� � � � � yd ∈ Sd−1. In order to describe further integrations by
parts, consider vector valued measurable functions

b1� b2 = b2�y1�� � � � � bd = bd�y1� � � � � yd−1�(2.31)

such that bj ∈ Sd−1 and

	bj� yl
 = 0�(2.32)

for all 1 ≤ j ≤ d and 1 ≤ l ≤ j − 1. It is clear that such functions bj exist.
Denote

Jj�A� = max
D∈Dj

sup
v∈D

sup
B⊂A

∫
Sd−1

· · ·
∫
Sd−1

×∣∣J∗
j�B�∣∣ ∏

k∈D
σ�dyk�

∏
l∈Dj\D

δbt
�dyl��

(2.33)

where Dj = �1� � � � � j�, and

J∗
j�B� =

∫
�d

¯̂Ij�t�B�v�t�ψ�t�
j∏

l=1
	yl� bl


∏
k∈D

h�	t� yk
�dt

with

Ij�x�B� = I�x�B�
j∏

i=1
�1+ �	x� bi
��−1�

The integrals Jj�A� defined by (2.33) satisfy

Jj−1�A� ≤ 6Jj�A� for all j = 1� � � � � d�(2.34)
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To see that (2.34) holds indeed, notice that our choice of bj as in (2.31) and
(2.32) guarantees that

dbj

∏
k∈D

h
(	t� yk


) = 0 for D ⊂ Dj−1�

Hence, in order to prove (2.34) we can estimate Jj−1�A� proceeding similarly
as in (2.19), (2.28) and (2.29), which led to the bound (2.30) for J0�A�.

In particular, the bound (2.34) yields

J0�A� ≤ 6dJd�A��(2.35)

where Jd�A� is defined by (2.33) with j = d and

J∗
d�B�

d∏
l=1

	yl� bl

∫
�d

¯̂Id�t�B�v�t�ψ�t� ∏
k∈D

h
(	t� yk


)
dt�(2.36)

We shall prove that∣∣J∗
d�B�∣∣ ≤ c∗�α�d�� α �= 1(2.37)

and ∣∣J∗
d�B�∣∣ ≤ c∗�1� d�

(
1+ ∣∣ log *���∣∣)d

� α = 1�

The constant c∗�α�d� is specified below, [see (2.52) and the text below], where
estimates (1.13) and (1.14) for c�α�d� are proved. Using the definition (2.33)
of Jd�A� and integrating the bounds (2.37) with respect to the measure σ on
Sd−1, we obtain

Jd�A� ≤ c∗�α�d� max
1≤i≤d

*i
0�σ� ≤ c∗�α�d�*d

0 �σ�� α �= 1�(2.38)

which combined with the inequality (2.35) proves (2.7). While proving (2.38)
we used 1 = *�σ� ≤ *α

0�σ�. Similarly, integrating the second inequality in
(2.37), we derive (2.8).

To conclude the proof of the theorem we have to verify (2.37). Consider
the matrix Ɛ = �	yi� bj
�i� j=1�����d. By our choice [see (2.31) and (2.32)] of the
vectors bj all entries above the diagonal of the matrix Ɛ are equal to zero.
Therefore,

det Ɛ =
d∏

l=1
	yl� bl
(2.39)

and it is clear that

�det Ɛ� ≤ 1(2.40)

since �	yl� bl
 ≤ 1, for �bl� = �yl� = 1.
If det Ɛ = 0 then J∗

d�B� = 0 [cf. (2.36) and (2.39)] and (2.37) is obviously
fulfilled. Hence, without loss of generality we may assume in the proof of
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(2.37) that det Ɛ �= 0. Let  f p stand for the Lp��d� norm of a function f.
Using Hölder’s inequality with 1/p+ 1/q = 1 such that 1 < p ≤ 2� q ≥ 2, the
relation (2.36) yields ∣∣J∗

d�B�∣∣ ≤ ∣∣det Ɛ∣∣ ̂Id�·�B� q ϑ p�(2.41)

where we denote for brevity

ϑ�t� = v�t�ψ�t� ∏
k∈D

h�	t� yk
��

To estimate  ̂Id�·�B� q we shall use the fact that the Fourier transform is
a bounded operator from Lp��d� to Lq��d�� 1 ≤ p ≤ 2. The inequality of
Hausdroff–Young says that  f̂ q ≤  f p [see Chapter 5 in Stein and Weiss
(1971)], whence

 ̂Id�·�B� q ≤  Id�·�B� p�
Changing variables t = u with u = �u1� � � � � ud� such that ui = 	t� bi
 and
introducing the matrix

� �= �bi� j�i� j=1� ���� d� bi = �bi�1� � � � � bi� d��(2.42)

we obtain

 ̂Id�·�B� q ≤  Id�·�B� p ≤ �det��−1/pc0(2.43)

with

c0 =
(∫

�
�1+ �u��−p du

)d/p

= (
2/�p− 1�)d/p�(2.44)

Let us estimate  ϑ p. The function v belongs to the class D and *�σ� = 1.
Therefore �ψ�t�� ≤ exp�−�t�α� and we get

�v�t���ψ�t�� ≤ �1+ �t���ψ�t�� ≤ c1 exp�−�t�α/2��(2.45)

where c1 = 1+ α−1/α. The estimate (2.45) and the obvious inequality

d�t�α =
d∑

i=1
�t�α ≥

d∑
i=1

�	t� yi
�α for �yi� = 1�(2.46)

yield

 ϑ pp ≤ c
p
1

∫
�d

d∏
j=1

exp
{
− p

2d
�	t� yj
�α

} ∏
k∈D

�h�	t� yk
��p dt�(2.47)

Changing in (2.47) variables t = u with u = �u1� � � � � ud� such that ui = 	t� yi

and introducing the matrix

	 �= �yj� i�i� j=1�����d� yi = �yi�1� � � � � yi�d��(2.48)
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we get (notice that 0 ≤ �D� ≤ d and use aβbγ ≤ a + b, for nonnegative β and
γ such that β+ γ = 1)

 ϑ p ≤ ∣∣det 	∣∣−1/pc1c�D�/p
2 c

�d−�D��/p
3 ≤ ∣∣det 	∣∣−1/pc1(cd/p2 + c

d/p
3

)
�(2.49)

where

c2 =
∫
�
exp

{
− p

2d
�u�α

}
�h�u��p du� c3 =

∫
�
exp

{
− p

2d
�u�α

}
du�(2.50)

Multiplying the matrices 	 and � we see that 	� = Ɛ. In particular, both
changes (2.42) and (2.48) of variables are well defined since det Ɛ = det 	 ×
det� and we assume that det Ɛ �= 0. The relation det 	 det � = det Ɛ com-
bined with the inequalities (2.41), (2.43), (2.49) yields∣∣J∗

d�B�∣∣ ≤ c0c1
(
c
d/p
2 + c

d/p
3

)∣∣det Ɛ∣∣1−1/p ≤ c0c1
(
c
d/p
2 + c

d/p
3

)
�(2.51)

since (2.40) implies �det Ɛ�1−1/p ≤ 1, for p ≥ 1. The inequality (2.37) follows
from (2.51) with

c∗�α�d� = c0c1
(
c
d/p
2 + c

d/p
3

)
� α �= 1�

c∗�1� d� = sup
*���

(�1+ ∣∣ log *���∣∣�−dc0c1
(
c
d/p
2 + c

d/p
3

))
� α = 1�

(2.52)

and with c∗�α�d� as in (2.52) in the symmetric case, for all α. The bound (2.37)
yields (2.7) and (2.8) with

c�α�d� ≤ 2�12π�dc∗�α�d��
In order to prove bounds (1.13) and (1.14) for c�α�d� we have to estimate

c∗�α�d�. To bound c∗�α�d� it suffices to estimate constants c2 and c3 [they are
defined in (2.50)] since c0 is given by explicit formula (2.44) and c1 = 1+α−1/α.
The estimation of c2 and c3 is in essence elementary, although somewhat cum-
bersome. Therefore we shall provide only a sketch of this estimation. Recall
that 1 < p ≤ 2. The constant c3 is obviously finite and can be simply esti-
mated. Using (2.50) and the definition (2.17) and (2.18) of the function h, we
have

c2 =
∫
�
exp

{
− p

2d
�u�α

}
�h�u��p du

≤ αp
(
1+ � tan�πα/2��)p ∫

�
exp

{
− p

2d
�u�α

}
�u�p�α−1� du�

(2.53)

for α �= 1, and

c2 ≤ 4p
(
1+ ∣∣ log *���∣∣)p ∫

�
exp

{
− p�u�

2d

}
du

+2p
∫
�
exp

{
− p�u�

2d

}
� log �u��p du�

(2.54)
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for α = 1. The integrals in (2.53) and (2.54) exist if p�α− 1� > −1. Therefore,
we can choose

p = 2 for α ≥ 1� p = 3
2

for
1
2
≤ α < 1�

p = 1
2

(
1+ 1

1− α

)
for 0 < α <

1
2
�

(2.55)

Then, in particular, we change the variables cuα = y and apply the following
inequality yβ exp�−y� ≤ c�β� exp�−y/2�. The symmetric case is less compli-
cated since in this case h�z� = α�z�α−1 which is simpler than h defined by
(2.17) and (2.18). ✷

Proof of Theorem 2. We shall use a reduction to polyhedrons with finite
number of faces as in Bhattacharya and Rao (1976). A convex set P is called
a polyhedron if there exist distinct unit vectors u1� � � � � um ∈ Sd−1 and d1� � � � �
dm ∈ � such that

P = �x ∈ �d� 	uj� x
 ≤ dj�1 ≤ j ≤ m��(2.56)

Let 
 denote the class of compact sets of the form (2.56) with nonempty
interior. An inspection of the prof of Theorem 3.1 in Bhattacharya and Rao
(1976) shows that

1
2ε

∫
�∂A�ε

g�x�dx ≤ ζ�
 � g�� ε > 0�(2.57)

for A ∈ �c and continuous g.
Let us prove (1.15). Taking in (2.57) the limit as ε → 0 yields ζ��c� g� ≤

ζ�
 � g�, which together with the obvious reverse inequality ζ��c� g� ≥ ζ�
 � g�
implies the relation ζ��c� g� = ζ�
 � g�. Dividing by 2ε the inequality∫

�∂A�ε
g�x�dx ≤ εη��c� g� for A ∈ �c�

and passing to the limit as ε → 0 yields ζ��c� g� ≤ η��c� g�/2. The inequality
(2.57) means that η��c� g� ≤ 2ζ�
 � g� = 2ζ��c� g�, and (1.15) follows.

Let us prove (1.16). Due to (1.15) and ζ��c� g� = ζ�
 � g� it suffices to verify
that

∫
∂P

g�x�ds ≤ 2d3/2χ1�g� for P ∈ 
 �(2.58)

Let n�x� denote the unit outer normal vector of ∂P at point x ∈ ∂P. The normal
is defined for almost all x ∈ ∂P with respect to the surface measure ds on ∂P.
Let � be the set of x ∈ ∂P such that n�x� is not defined. Introducing the
standard orthonormal vectors e1� � � � � ed in �d and writing e−i = −ei� e0 = 0,
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it is clear that

∂P
∖
� ⊂

d⋃
i=−d

Qi where Qi = �x ∈ ∂P� 	n�x�� ei
 ≥ d−1/2��(2.59)

since any vector n ∈ Sd−1 has at least one coordinate, say nj, such that �nj� ≥
d−1/2. Using the representation (2.59) and

∫
N g�x�ds = 0, we have

∫
∂P

g�x�ds ≤
d∑

i=−d

∫
Qi

g�x�ds�(2.60)

The inequality 	n�x�� ei
 ≥ d−1/2 yields∫
Qi

g�x�dx ≤ d1/2
∫
Qi

	n�x�� ei
g�x�ds�(2.61)

According to the construction (2.59) of the surface Qi, it is the graph of a
piecewise linear function, say xi = f�x1� � � � � xi−1� xi+1� � � � � xd�. Introducing
the subgraph Vi = Qi + �−∞�0�ei of the graph of f and applying Stokes’
theorem or just using Fubini’s theorem and integrating with respect to the
ith coordinate of x, we have∫

Qi

	n�x�� ei
g�x�ds =
∫
∂Vi

	n�x�� ei
g�x�ds =
∫
Vi

dei
g�x�dx

≤
∫
�d

�dei
g�x��dx ≤ χ1�g��

(2.62)

Combining (2.60)–(2.62), we obtain (2.58). ✷

Proof of Theorem 3. Write a = η��c�G� and B = χ1�g�. Theorem 1 in
Bloznelis (1988) says that

�n��c� ≤ cc�α��20�1/αn−1/α�ρ+ aζ1 +Rαζ1+α��(2.63)

where c is an absolute constant,

Rα = a+ �a+ 1��B+B2�� α ≤ 1�

Rα = �a+ �a+ 1��B+B2��B� 1 < α ≤ 2�

and c�α� = 1, for α ≤ 1� c�α� = α − 1, for α > 1. Let a random variable Y
have the distribution G. Notice that �n��c� does not change if we replace
X1� � � � �Xn by τX1� � � � � τXn and the distribution G by the distribution of τY,
respectively, for any fixed τ > 0. Similarly, the metric ρ remains invariant
under this scale transform. The quantities a = η��c�G��B = χ1�g� and ζ1+α

are transformed to a/τ�B/τ and τ1+αζ1+α, respectively. Hence, the bound (2.63)
yields an estimate for �n��c� as (2.63) but with Rα replaced by τα+1Rα�τ�,
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where

Rα�τ� = a/τ + �a/τ + 1��B/τ +B2/τ2�� α ≤ 1�

Rα�τ� = �a/τ + �a/τ + 1��B/τ +B2/τ2��B/τ� 1 < α ≤ 2�

Choosing τ = B, we see that (2.63) holds with Rα replaced by

Bα+1Rα�B� ≤ 3�a+B�Bα�

By Theorems 1 and 2 we can estimate

a ≤ cd3/2c�α�d�Kα���� B ≤ c�α�d�Kα���

and Theorem 3 follows. ✷

Proof of Theorem 4. To prove (1.23) it suffices to use the definition (1.21)
of ω��� τ�. The bound (1.24) together with the estimate (1.16) yields (1.25).
Therefore we have to prove (1.24) only. We may proceed similarly to the proof
of Theorem 1 replacing everywhere α by α�y�; for details see a paper of the
authors (1999a).
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