BOUNDS FOR STABLE MEASURES OF CONVEX SHELLS AND STABLE APPROXIMATIONS

By V. Bentkus, ${ }^{1,3}$ A. Juozulynas ${ }^{1,2}$ and V. Paulauskas
Vilnius Institute of Mathematics and Informatics, University of Vilnius and University of Vilnius
The standard normal distribution Φ on \mathbb{R}^{d} satisfies $\Phi\left((\partial C)^{\varepsilon}\right) \leq c_{d} \varepsilon$, for all $\varepsilon>0$ and for all convex subsets $C \subset \mathbb{R}^{d}$, with a constant c_{d} which depends on the dimension d only. Here ∂C denotes the boundary of C, and $(\partial C)^{\varepsilon}$ stands for the ε-neighborhood of ∂C. Such bounds for the normal measure of convex shells are extensively used to estimate the accuracy of normal approximations.
We extend the inequality to all (nondegenerate) stable distributions on \mathbb{R}^{d}, with a constant which depends on the dimension, the characteristic exponent and the spectral measure of the distribution only. As a corollary we provide an explicit bound for the accuracy of stable approximations on the class of all convex subsets of \mathbb{R}^{d}.

1. Introduction and formulation of results. Let \mathbb{R}^{d} denote the standard real Euclidean space with the norm defined by $|x|^{2}=x_{1}^{2}+\cdots+x_{d}^{2}$ and the corresponding inner product $\langle x, x\rangle=|x|^{2}$. Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed (i.i.d.) \mathbb{R}^{d}-valued random vectors with distribution F. Denote by F_{n} the distribution of the sum

$$
a_{n}^{-1} \sum_{i=1}^{n} X_{i}-b_{n}
$$

where $a_{n}>0$ and $b_{n} \in \mathbb{R}^{d}$ are normalizing constants and centering vectors. It is well known that if F_{n}, as $n \rightarrow \infty$, converge weakly to a distribution, say G, it has to be a stable distribution with a characteristic exponent $0<\alpha \leq 2$. The case $\alpha=2$ corresponds to a Gaussian law.

The characteristic function $\varphi(t)=\int_{\mathbb{R}^{d}} \exp \{i\langle t, x\rangle\} G(d x)$ of a stable law G can be written as

$$
\begin{equation*}
\varphi(t)=\exp \left\{i\langle t, a\rangle-\int_{S_{d-1}}|\langle t, y\rangle|^{\alpha} N(y, \alpha) \Gamma(d y)\right\} \tag{1.1}
\end{equation*}
$$

Received April 1999; revised March 2000.

${ }^{1}$ Supported in part by SFB 343 in Bielefeld.
${ }^{2}$ Supported in part by DELTA-Stiftung in Mannheim.
${ }^{3}$ Supported in part by NSF Grant DMS-99-71608.
AMS 1991 subject classifications. Primary 60E07; secondary 60F05.
Key words and phrases. Stable measure, ε-strip, convex set, convex shell, stable approximations, convergence rates.
with

$$
\begin{align*}
& N(y, \alpha) \equiv N(t, y, \alpha)=1-i \operatorname{sign}(\langle t, y\rangle) \tan \frac{\pi \alpha}{2}, \quad \alpha \neq 1, \\
& N(y, \alpha)=1+i \frac{2}{\pi} \operatorname{sign}(\langle t, y\rangle) \log |\langle t, y\rangle|, \quad \alpha=1, \tag{1.2}
\end{align*}
$$

where $a \in \mathbb{R}^{d}$ and Γ denotes a finite nonnegative σ-additive measure on the unit sphere $S_{d-1}=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$. The measure Γ is called the spectral measure of a stable distribution. The triple (α, α, Γ) completely characterizes the stable distribution. Since all our results are independent of shifts of distributions, without loss of generality throughout we assume that $a=0$. We write $G_{\alpha, \Gamma}, \varphi_{\alpha}$, etc., in cases where we want to emphasize the dependence on the characteristic exponent α or on the spectral measure Γ. We denote the density of G with respect to the Lebesgue measure on \mathbb{R}^{d} as g (if it exists). For more information about multivariate stable laws we refer to Samorodnitsky and Taqqu (1994).

A rather general formulation of the problem of convergence rates in the central limit theorem may be stated as follows [see, e.g., Bhattacharya and Rao (1976), Paulauskas (1975), Sazonov (1968)]. Let \mathscr{F} be a class of measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that the integral in (1.3) below exists. The goal is to estimate

$$
\begin{equation*}
\Delta_{n}(\mathscr{F}):=\sup _{f \in \mathscr{F}}\left|\int_{\mathbb{R}^{d}} f(x)\left(F_{n}-G\right)(d x)\right|, \tag{1.3}
\end{equation*}
$$

for example, as follows:

$$
\begin{equation*}
\Delta_{n}(\mathscr{F}) \leq c_{d} \zeta(\mathscr{F}, G) \nu(F, G) \delta_{n} \tag{1.4}
\end{equation*}
$$

with some δ_{n} such that $\delta_{n} \rightarrow 0$, as $n \rightarrow \infty$. The constant $\zeta(\mathscr{F}, G)$ depends on \mathscr{F} and G, and $\nu(F, G)$ usually is a moment or pseudo-moment related to the distributions F and G.

Classes of indicator functions $\mathbf{I}(x ; A)$ of subsets $A \subset \mathbb{R}^{d}$ are of special interest. We define $\mathbf{I}(x ; A)=1$ if $x \in A$, and $\mathbf{I}(x ; A)=0$ otherwise. A natural correspondence between classes \mathscr{A} of Borel sets $A \in \mathscr{A}$ and classes \mathscr{T} of indicator functions is given by $A \leftrightarrow \mathbf{I}(\cdot ; A)$. Hence, for such classes we can rewrite (1.3) as

$$
\begin{equation*}
\Delta_{n}(\mathscr{A}):=\sup _{A \in \mathscr{A}}\left|F_{n}(A)-G(A)\right| . \tag{1.5}
\end{equation*}
$$

The constant $\zeta(\mathscr{F}, G)=\zeta(\mathscr{A}, G)$ in (1.4) usually depends on the quantities

$$
\begin{aligned}
\eta(\mathscr{A}, G, \varepsilon) & :=\sup _{A \in \mathscr{A}} G\left((\partial A)^{\varepsilon}\right), \quad \varepsilon>0, \\
\eta(\mathscr{A}, G) & :=\sup _{\varepsilon>0} \eta(\mathscr{A}, G, \varepsilon) / \varepsilon,
\end{aligned}
$$

$$
\begin{align*}
\chi\left(g, w_{1}, \ldots, w_{s}\right) & :=\int_{\mathbb{R}^{d}}\left|g^{(s)}(x) w_{1}, \ldots, w_{s}\right| d x, \quad w_{1}, \ldots, w_{s} \in \mathbb{R}^{d}, \tag{1.6}\\
\chi_{s}(g) & :=\sup \left\{\chi\left(g, w_{1}, \ldots, w_{s}\right):\left|w_{i}\right| \leq 1 \text { for all } i\right\}, \tag{1.7}
\end{align*}
$$

where $g^{(s)}(x)$ denotes the Fréchet derivative. Using the directional derivatives,

$$
d_{w} g(x):=\lim _{t \rightarrow 0}(g(x+t w)-g(x)) / t,
$$

we have

$$
g^{(s)}(x) w_{1} \cdots w_{s}=d_{w_{1}} \cdots d_{w_{s}} g(x)
$$

The boundary of a set A we denote as ∂A, and $(\partial A)^{\varepsilon}$ is the ε-neighborhood of ∂A.

In the case of the standard normal distribution $G=\Phi$, the quantities χ in (1.6) and (1.7) are obviously finite. However, one needs a special proof in order to show that $\eta\left(\mathscr{A}_{c}, \Phi\right)<\infty$ for the class \mathscr{A}_{c} of convex subsets of \mathbb{R}^{d} [see Bahr (1967), Bhattacharya and Rao (1976), Sazonov (1981)]. In the stable case $\alpha<2$, the existence of $\chi_{s}(g)$ and $\eta\left(\mathscr{A}_{c}, G\right)$ was either imposed as a condition [see Paulauskas (1975), Bloznelis (1988)], or special cases were considered such that it was possible to show the existence of η and χ. A list of the special cases consists of (1) the class \mathscr{A}_{r} of rectangles [Banys (1971)]; (2) spherically symmetric distributions [see Bloznelis (1989), Paulauskas (1975), Mikhailova (1983)]; (3) the two-dimensional case $d=2$ [Paulauskas (1975)]; (4) stable random vectors with independent coordinates [Paulauskas (1975)]. The condition $\chi_{s}(g)<\infty$ is used to ensure the existence of some metrics related to stable distributions; see Chapter 14 in Rachev (1991).

The aim of the present paper is to show that all aforementioned quantities exist, for the class \mathscr{A}_{c} of convex subsets and for any stable distribution which is nondegenerate in a subspace of \mathbb{R}^{d}. Furthermore, we obtain explicit bounds for these quantities.

A distribution G we call nondegenerate if $G(L)=0$, for any linear subspace $L \subset \mathbb{R}^{d}$ such that $\operatorname{dim} L<d$. A stable nondegenerate distribution is absolutely continuous and, hence has a density g. Write

$$
\begin{equation*}
\varkappa(\Gamma):=\inf _{|t|=1}\left(\int_{S_{d-1}}|\langle t, y\rangle|^{\alpha} \Gamma(d y)\right)^{1 / \alpha}, \quad \varkappa_{0}(\Gamma):=\Gamma\left(S_{d-1}\right) . \tag{1.8}
\end{equation*}
$$

Note that $\varkappa(\Gamma)>0$ if and only if the stable distribution $G=G_{\Gamma}$ is nondegenerate, and $\chi_{0}(\Gamma)<\infty$ for any stable distribution. Write

$$
\begin{align*}
& K_{\alpha}(\Gamma)=\varkappa_{0}^{d}(\Gamma) \varkappa^{-d \alpha-1}(\Gamma), \quad \alpha \neq 1, \tag{1.9}\\
& K_{\alpha}(\Gamma)=\varkappa_{0}^{d}(\Gamma) \varkappa^{-d-1}(\Gamma)(1+|\log x(\Gamma)|)^{d}, \quad \alpha=1 . \tag{1.10}
\end{align*}
$$

If the distribution G is symmetric, that is, the function $N(\cdot, \alpha)$ in the characteristic function (1.1) satisfies $N(\cdot, \alpha) \equiv 1$ or the measure Γ is symmetric, then we define $K_{\alpha}(\Gamma)$ by (1.9), for all $0<\alpha \leq 2$.

Theorem 1. Let G be a nondegenerate stable distribution. Then $\chi_{s}(g)<\infty$, for $s=1,2, \ldots$ Moreover, we have

$$
\begin{equation*}
\chi_{1}(g) \leq c(\alpha, d) K_{\alpha}(\Gamma), \tag{1.11}
\end{equation*}
$$

where $K_{\alpha}(\Gamma)$ is defined in (1.9)-(1.10), and

$$
\begin{equation*}
\chi_{s}(g) \leq\left(s^{1 / \alpha} \chi_{1}(g)\right)^{s} \quad \text { for } s=2,3, \ldots \tag{1.12}
\end{equation*}
$$

In particular, $g \in C^{\infty}\left(\mathbb{R}^{d}\right)$, for all α, and g is an analytic function, for $\alpha \geq 1$.
Theorem 1 refines a result of Bogachev (1986) who showed that $\chi_{1}(g)$ exists. This fact easily implies (1.12) and the analyticity for $\alpha \geq 1$. Also it is necessary to note that in Bogachev 1986 is asserted only the existence of $\chi_{1}(g)$ while we provide a constructive proof and an explicit bound. To have a constructive proof is necessary in applications such as simulations of stable random vectors by LePage series in the multidimensional case [see Bentkus, Juozulynas and Paulauskas (1999b); in Ledoux and Paulauskas (1996), Bentkus, Götze and Paulauskas (1996) the case $d=1$ is considered]. The constant $c(\alpha, d)$ in (1.11) allows the following explicit bound

$$
\begin{align*}
& c(\alpha, d) \leq 12(50 / \alpha)^{2 d}(2 d)^{2 d / \alpha}(1 / \alpha)^{2 / \alpha}(1+|\tan (\pi \alpha / 2)|)^{d}, \quad \alpha \neq 1, \tag{1.13}\\
& c(1, d) \leq 18(8 d)^{3 d}, \quad \alpha=1 .
\end{align*}
$$

If the distribution G is symmetric, then

$$
\begin{equation*}
c(\alpha, d) \leq 12(50 / \alpha)^{2 d}(2 d)^{2 d / \alpha}(1 / \alpha)^{2 / \alpha} \tag{1.14}
\end{equation*}
$$

Note that the bound (1.13), for $\alpha \neq 1$, is uniform in α from any compact subset of $(0,1) \cup(1,2]$, and it degenerates when $\alpha \downarrow 0$ or $\alpha \rightarrow 1$. It seems that the degeneration at $\alpha=1$ is an artifact of our methods and is related to the parameterization (1.1) of stable laws, which is discontinuous as $\alpha \rightarrow 1$. In the symmetric case the bound (1.14) is satisfactory since it degenerates only as $\alpha \downarrow 0$. Of course, the bounds (1.13) and (1.14) are not optimal. Writing them down, we tried to reflect the uniformity in α and preferred simplicity of the form to accuracy.

Write

$$
\zeta(\mathscr{A}, G):=\sup _{A \in \mathscr{A}} \int_{\partial A} g(x) d s,
$$

where $d s$ denotes the surface area element on ∂A.

Theorem 2. Let G be an arbitrary distribution on \mathbb{R}^{d} such that its density g exists and is a continuous function. Then

$$
\begin{equation*}
\eta\left(\mathscr{A}_{c}, G\right)=2 \zeta\left(\mathscr{A}_{c}, G\right) . \tag{1.15}
\end{equation*}
$$

Let G be an arbitrary distribution on \mathbb{R}^{d} such that $\chi_{1}(g)$ exists. Then

$$
\begin{equation*}
\eta\left(\mathscr{A}_{c}, G\right) \leq 4 d^{3 / 2} \chi_{1}(g) . \tag{1.16}
\end{equation*}
$$

In particular, any stable nondegenerate G satisfies

$$
\eta\left(\mathscr{A}_{c}, G\right) \leq 4 d^{3 / 2} c(\alpha, d) K_{\alpha}(\Gamma)
$$

with $c(\alpha, d)$ as in (1.13) and (1.14) and $K_{\alpha}(\Gamma)$ as in (1.9) and (1.10).
Using Theorem 2, the bounds for the accuracy of stable approximations in \mathbb{R}^{d} obtained by Paulauskas (1975) and by Bloznelis (1988) extended to the whole class of nondegenerate stable distributions; see Theorem 3 below.

We hope that using (1.16) and applying the method used to proveTheorem 1 , one can derive results similar to Theorem 2 for some classes of infinity divisible distributions. As an initial step in this direction we provide an extension to the case of mixtures of stable distributions with the varying α; see Theorem 4 below.

In the special case of the standard normal distribution $G=\Phi$, simple calculations show that $\chi_{1}(g) \leq(2 / \pi)^{1 / 2}$ and the estimate (1.16) yields

$$
\begin{equation*}
\eta\left(\mathscr{A}_{c}, \Phi\right) \leq(32 / \pi)^{1 / 2} d^{3 / 2}, \tag{1.17}
\end{equation*}
$$

which is worse than the best known estimate $\eta\left(\mathscr{A}_{c}, \Phi\right) \leq 8 d^{1 / 4}$ [see Ball (1993)]. A precise dependence of $\eta\left(\mathscr{A}_{c}, \Phi\right)$ on dimension is not known and would be of interest in the context of estimates of normal approximations [see Bentkus (1986)]. The bound (1.17) depends on $d^{3 / 2}$ which is worse than $d^{1 / 2}$ in Bhattacharya and Rao (1976), where a proof adapted to the structure of Φ is provided. Our proof applies to arbitrary G such that $\chi_{1}(g)<\infty$ and seems to be simpler.

Recall that X_{1}, X_{2}, \ldots denote i.i.d. random vectors with common distribution F. Let henceforth F_{n} denote the distribution of the sum $n^{-1 / \alpha} \sum_{i=1}^{n} X_{i}$. Assume that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\langle t, x\rangle(F-G)(d x)=0 \quad \text { for all } t \in \mathbb{R}^{d} . \tag{1.18}
\end{equation*}
$$

If $\alpha>1$ then assume in addition that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\langle t, x\rangle\langle s, x\rangle(F-G)(d x)=0 \quad \text { for all } t, s \in \mathbb{R}^{d} . \tag{1.19}
\end{equation*}
$$

Introduce the uniform distance

$$
\rho=\rho(F, G)=\sup \left\{|F(A)-G(A)|: A \in \mathscr{A}_{c}\right\}
$$

between distributions F and G on the class \mathscr{A}_{c} of convex sets.

The class $H^{r}\left(\mathbb{R}^{d}\right), r>0$, consists of the functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that f is m times Fréchet differentiable and the derivative $f^{(m)}$ satisfies

$$
\sup _{\left|w_{1}\right|=\cdots=\left|w_{m}\right|=1}\left|f^{(m)}(x) w_{1} \cdots w_{m}-f^{(m)}(y) w_{1} \cdots w_{m}\right| \leq|x-y|^{\theta},
$$

where a nonnegative integer m and a positive θ satisfy $r=m+\theta$ and $0<\theta \leq 1$. Introduce the metric

$$
\zeta_{r}=\zeta_{r}(F, G)=\sup \left\{\left|\int_{\mathbb{R}^{d}} f(x)(F-G)(d x)\right|: f \in H^{r}\left(\mathbb{R}^{d}\right)\right\}
$$

and pseudo-moments

$$
\nu_{r}=\nu_{r}(F, G)=\int_{\mathbb{R}^{d}}|x|^{r}|F-G|(d x),
$$

where $|F-G|$ denotes the variation of the signed measure $F-G$. Note that $\zeta_{1} \leq \nu_{1}$. We have as well that $\zeta_{1+\alpha} \leq \nu_{1+\alpha}$, for $0<\alpha \leq 1$, if (1.18) is fulfilled, and for $1<\alpha \leq 2$, if both (1.18) and (1.19) hold.

Theorem 3. Assume that G is a stable nondegenerate distribution with the characteristic function given by (1.1) and (1.2). If $\alpha \neq 1$ then

$$
\begin{equation*}
\Delta_{n}\left(\mathscr{A}_{c}\right) \leq c_{\alpha, d} n^{-1 / \alpha}\left(\rho+K_{\alpha}(\Gamma) \zeta_{1}+K_{\alpha}^{\alpha+1}(\Gamma) \zeta_{1+\alpha}\right) \tag{1.20}
\end{equation*}
$$

For $\alpha=1$ the bound (1.20) holds for strictly stable G.
The quantities $\Delta_{n}\left(\mathscr{L}_{c}\right)$ and $K_{\alpha}(\Gamma)$ are defined by (1.5) and (1.9) and (1.10), respectively. We shall derive (1.20) combining a bound proved by Bloznelis (1988) and Theorems 1 and 2. Recall that G is strictly stable if the distribution of the sum $n^{-1 / \alpha} \sum_{i=1}^{n} Y_{i}$ equals G when Y_{1}, \ldots, Y_{n} are i.i.d. with the distribution G. As it is well known, for $\alpha \neq 1$, the strict stability means that the shift a from (1.1) and (1.2) equals zero. For $\alpha=1$, it is equivalent to $a=0$ and $\int_{S_{d-1}}\langle t, y\rangle \Gamma(d y)=0$, for all $t \in \mathbb{R}^{d}$. The requirement of the strict stability in Theorem 3 seems to be superfluous and is inherited from the bound of Bloznelis. The constant in (1.20) satisfies

$$
c_{\alpha, d} \leq c c(\alpha)(20)^{1 / \alpha} d^{3 / 2}(1+c(\alpha, d))^{\alpha+1}
$$

with $c(\alpha, d)$ defined by (1.13) and (1.14), where c is an absolute constant and $c(\alpha)=1$, for $\alpha \leq 1, c(\alpha)=\alpha-1$, for $\alpha>1$. Once again, the bound for $c_{\alpha, d}$ degenerates as $\alpha \downarrow 0$ or $\alpha \rightarrow 1$.

We conclude the introduction with the aforementioned extension to mixtures of one-dimensional stable distributions with varying α. Consider a measurable function $\alpha: S_{d-1} \rightarrow[0,2]$. Let G_{m} (respectively, g_{m}) denote a distribution (respectively, its density) which has the characteristic function
defined by (1.1) and (1.2) with α and $N(y, \alpha)$ replaced by $\alpha(y)$ and $N(y, \alpha(y)$), respectively. Note that G_{m} can be interpreted as a mixture of one-dimensional stable distributions, say $G_{\alpha(L)}$, with the varying characteristic exponent $\alpha=$ $\alpha(L)$ such that $G_{\alpha(L)}$ degenerates in a one-dimensional subspace $L \subset \mathbb{R}^{d}$, and any stable distribution $G=G_{\alpha}$ as a similar mixture with the constant α.

Let

$$
\begin{equation*}
\omega(\Gamma, \tau)=\inf _{|t|=1} \int_{S_{d-1}}|\langle t, y\rangle|^{\alpha(y)} \tau^{\alpha(y)} \Gamma(d y), \quad \tau>0 . \tag{1.21}
\end{equation*}
$$

If α is constant then $\omega(\Gamma, 1)=\varkappa^{\alpha}(\Gamma)$ [cf. (1.8)]. Let $\tau(\Gamma)$ denote a solution of the equation $\omega(\Gamma, \tau)=1$. Define the following counterpart of $K_{\alpha}(\Gamma)$ [cf. (1.9)]:

$$
\begin{equation*}
K(\Gamma)=\chi_{0}^{d}(\Gamma) \max \left\{\tau^{2 d+1}(\Gamma), \tau^{\delta d+1}(\Gamma)\right\} . \tag{1.22}
\end{equation*}
$$

Theorem 4. Assume that $\omega(\Gamma, 1)>0$ and that $2 \geq \alpha(y) \geq \delta>0$, for some $\delta>0$. Then there exists a unique solution, say $\tau(\Gamma)$, of the equation $\omega(\Gamma, \tau)=1$ and

$$
\begin{equation*}
\min \left\{\omega^{-1 / \delta}, \omega^{-1 / 2}\right\} \leq \tau(\Gamma) \leq \max \left\{\omega^{-1 / \delta}, \omega^{-1 / 2}\right\}, \quad \omega:=\omega(\Gamma, 1) . \tag{1.23}
\end{equation*}
$$

Furthermore, assume that either G_{m} is a mixture of symmetric distributions [i.e., $N(y, \alpha(y)) \equiv 1$], or that $|\alpha(y)-1|>\delta$, for all $y \in S_{d-1}$. Then there exists a constant $c(\delta, d)$ such that

$$
\begin{align*}
\chi_{1}\left(g_{m}\right) & \leq c(\delta, d) K(\Gamma), \tag{1.24}\\
\eta\left(\mathscr{A}_{c}, G_{m}\right) & \leq c(\delta, d) K(\Gamma) . \tag{1.25}
\end{align*}
$$

2. Proofs. We start this section with an auxiliary lemma. Fourier transforms we denote as

$$
\hat{f}(t):=\int_{\mathbb{R}^{d}} f(x) \exp \{i\langle x, t\rangle\} d x .
$$

In particular, we have $\varphi=\hat{g}$ [see (1.1) and (1.2)].
Lemma 5. Let G be a stable nondegenerate distribution on \mathbb{R}^{d}. Then its density g is a function of the class $C^{\infty}\left(\mathbb{R}^{d}\right)$. Furthermore, the derivatives $g^{(s)}(x) \times$ $w_{1} \cdots w_{s}$ as functions of x are square integrable and vanish as $|x| \rightarrow \infty$, for any $w_{1}, \ldots, w_{s} \in \mathbb{R}^{d}$.

Proof. Without loss of generality we can assume that $\left|w_{j}\right| \leq 1$, for all j. Then

$$
\begin{equation*}
\left|\left\langle t, w_{1}\right\rangle \cdots \cdots \cdot\left\langle t, w_{s}\right\rangle \varphi(t)\right| \leq|t|^{s}|\varphi(t)| \leq|t|^{s} \exp \left\{-\varkappa^{\alpha}(\Gamma)|t|^{\alpha}\right\} . \tag{2.1}
\end{equation*}
$$

The bound (2.1) implies that the functions $t \mapsto\left\langle t, w_{1}\right\rangle \cdots \cdots\left\langle t, w_{s}\right\rangle \varphi(t): \mathbb{R}^{d} \rightarrow \mathbb{C}$ are in $L_{2}\left(\mathbb{R}^{d}\right) \cap L_{1}\left(\mathbb{R}^{d}\right)$. Hence, $g(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \hat{g}(t) \exp \{-i\langle t, x\rangle\} d t$ almost everywhere. Differentiating under the sign of the integral, we see that $g \in C^{\infty}$.

The Parseval's equality shows that g and its derivatives are square integrable. Finally, due to the Riemann-Lebesgue theorem, these functions vanish as $|x| \rightarrow \infty$.

Unfortunately, Lemma 5 does not imply directly the integrability of the derivatives of g. A proof of this integrability is rather involved; see the proof of Theorem 1 below.

Proof of Theorem 1. The estimate (1.12) and the analyticity of g is contained as Theorem 1 in Bogachev (1986). For the sake of completeness, we prove (1.12). Let Y, Y_{1}, \ldots, Y_{s} be i.i.d. random vectors such that $\mathscr{L}(Y)=G$. Since G is α-stable, we have $\mathscr{L}\left(s^{-1 / \alpha}\left(Y_{1}+\cdots+Y_{s}\right)\right)=G$, for any $s \in \mathbb{N}$. Hence, the function g is an s-fold convolution, say $g_{s}^{* s}$, of the function

$$
g_{s}(x):=s^{d / \alpha} g\left(s^{1 / \alpha} x\right)
$$

Using $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$, where $\|f\|_{1}$ denotes the $L_{1}\left(\mathbb{R}^{d}\right)$-norm of f, we have

$$
\begin{aligned}
\chi\left(g, w_{1}, \ldots, w_{s}\right) & =\int_{\mathbb{R}^{d}}\left|d_{w_{1}} \cdots d_{w_{s}}\left(g_{s}^{* s}(x)\right)\right| d x=\int_{\mathbb{R}^{d}}\left|\left(d_{w_{1}} g_{s} * \cdots * d_{w_{s}} g_{s}\right)(x)\right| d x \\
& \leq \prod_{j=1}^{s}\left\|d_{w_{j}} g_{s}\right\|_{1} \leq\left(s^{1 / \alpha} \chi_{1}(g)\right)^{s},
\end{aligned}
$$

whence (1.12) follows.
It remains to prove the bound (1.11) for $\chi_{1}(g)$. Let us describe the idea of the proof. It is based on integration by parts, repeating this integration d times. In the case of the standard Gaussian distribution $G=\Phi$ one can proceed as follows. Write

$$
\widehat{\mathbf{I}}(t ; A)=(1-\Delta)^{d} \widehat{\mathbf{I}}_{*}(t ; A)
$$

with

$$
\mathbf{I}_{*}(x ; A):=\mathbf{I}(x ; A) /\left(1+|x|^{2}\right)^{d},
$$

where $\widehat{\mathbf{I}}(t ; A)$ denotes the Fourier transform of the function $x \mapsto \mathbf{I}(x ; A)$ and Δ is the Laplace operator. The function \mathbf{I}_{*} is integrable and $\left|\widehat{\mathbf{I}}_{*}(t)\right| \leq c_{d}$ with some constant c_{d} depending on the dimension. Integrating by parts we reduce [cf. (2.9)-(2.14)] the estimation of $\chi_{1}(g)$ to a proof that

$$
\sup _{|w|=1} \int_{\mathbb{R}^{d}}\left|(1-\Delta)^{d}\langle t, w\rangle \varphi(t)\right| d t \leq c_{d}
$$

which clearly holds since $\varphi(t)=\exp \left\{-|t|^{2} / 2\right\}$. In the non-Gaussian case $\alpha<2$ such simple arguments are not applicable since the characteristic function φ is not sufficiently smooth. For example, for $\alpha<1$, it is differentiable at
most once. This nondifferentiability enforce us to use a complicated construction of a sequence of (measurable) vector fields, say b_{1}, \ldots, b_{d}. Each of the fields b_{j} depends on b_{1}, \ldots, b_{j-1} and on many other variables related to the construction. Instead of $(1-\Delta)^{d}$ we take a differential operator of the form $P(\partial):=\left(1+i d_{b_{1}}\right) \cdots\left(1+i d_{b_{d}}\right)$, and instead of \mathbf{I}_{*} we use a function of the type

$$
\begin{equation*}
\mathbf{I}(x ; A) \prod_{i=1}^{d}\left(1+\left|\left\langle x, b_{i}\right\rangle\right|\right)^{-1} . \tag{2.2}
\end{equation*}
$$

We choose the fields b_{j} such that the function (2.2) is in $L_{p}\left(\mathbb{R}^{d}\right)$, for some $p>1$. Furthermore, we have to construct the operator $P(\partial)$ such that the expression $P(\partial) \varphi(t)$ depends only on the first-order derivatives of $\log \varphi(t)$.

Let us return to the proof of (1.11). Consider the normalized measure $\sigma=$ $\Gamma / \varkappa^{\alpha}(\Gamma)$ and define the function

$$
\begin{equation*}
\psi(t)=\exp \left\{-\int_{S_{d-1}} H(\langle t, y\rangle) \sigma(d y)\right\} \tag{2.3}
\end{equation*}
$$

with

$$
\begin{align*}
& H(z)=|z|^{\alpha}(1-i \operatorname{sign}(z) \tan (\pi \alpha / 2)), \quad \alpha \neq 1, \tag{2.4}\\
& H(z)=|z|(1+(2 i / \pi) \operatorname{sign}(z) \log |z / x(\Gamma)|), \quad \alpha=1 . \tag{2.5}
\end{align*}
$$

Notice that $\chi(\sigma)=1$ and $\chi_{0}(\sigma)=x_{0}(\Gamma) / \varkappa^{\alpha}(\Gamma)$.
Introduce the class $D \subset C^{\infty}\left(\mathbb{R}^{d}\right)$ of the functions v which satisfy

$$
\left|v^{(s)}(t) w_{1} \cdots w_{s}\right| \leq 1+|t| \quad \text { for all } s=0,1, \ldots \text { and }\left|w_{i}\right| \leq 1
$$

Assuming that a Borel set $A \subset \mathbb{R}^{d}$ is bounded, define

$$
\begin{equation*}
J_{0}(A):=\sup _{v \in D}\left|\int_{\mathbb{R}^{d}} \overline{\overline{\mathbf{I}}}(t ; A) v(t) \psi(t) d t\right| . \tag{2.6}
\end{equation*}
$$

By $\widehat{\mathbf{I}} t ; A)$ we denote the Fourier transform of the function $x \mapsto \mathbf{I}(x ; A)$, and \bar{z} is the complex conjugate of z. Let us show that (1.11) is implied by the following bounds

$$
\begin{align*}
& J_{0}(A) \leq 2^{-1}(2 \pi)^{-d} c(\alpha, d) \varkappa_{0}^{d}(\sigma), \quad \alpha \neq 1, \tag{2.7}\\
& J_{0}(A) \leq 2^{-1}(2 \pi)^{-d} c(1, d) \varkappa_{0}^{d}(\sigma)(1+|\log \varkappa(\Gamma)|)^{d}, \quad \alpha=1, \tag{2.8}
\end{align*}
$$

respectively, where the constant $c(\alpha, d)$ satisfies (1.13) [we shall prove (2.7) and (2.8) below, for any bounded measurable subset $\left.A \subset \mathbb{R}^{d}\right]$. The definition (1.7) yields

$$
\begin{equation*}
\chi_{1}(g)=\sup \left\{\chi_{1}(g, w): w \in \mathbb{R}^{d},|w|=1\right\} \tag{2.9}
\end{equation*}
$$

It is clear that

$$
\begin{gather*}
\chi_{1}(g, w)=\int_{\mathbb{R}^{d}}\left|d_{w} g(x)\right| d x=\sup _{A} \int_{A}\left|d_{w} g(x)\right| d x \\
\leq 2 \sup _{A}\left|\int_{A} d_{w} g(x) d x\right|=2 J_{*} \tag{2.10}
\end{gather*}
$$

with

$$
\begin{equation*}
J_{*}=\sup _{A}\left|\int_{\mathbb{R}^{d}} \mathbf{I}(x ; A) d_{w} g(x) d x\right| \tag{2.11}
\end{equation*}
$$

where $\sup _{A}$ is taken over all bounded Borel sets $A \subset \mathbb{R}^{d}$. Parseval's equality and the well-known properties of the Fourier transforms imply

$$
\begin{equation*}
J_{*}=(2 \pi)^{d} \sup _{A}\left|\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}(t ; A)\langle t, w\rangle \varphi(t) d t\right| \tag{2.12}
\end{equation*}
$$

Changing variables $t=u / \varkappa(\Gamma)$ in (2.12), we obtain

$$
\begin{equation*}
J_{*}=(2 \pi)^{d} \varkappa^{-1}(\Gamma) J_{* *} \tag{2.13}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{* *}=\sup _{A}\left|\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}(t ; A)\langle t, w\rangle \psi(t) d t\right|, \tag{2.14}
\end{equation*}
$$

where ψ is defined by (2.3). Obviously, the function $t \mapsto\langle t, w\rangle$ belongs to the class D since $|w|=1$. Hence, $J_{* *} \leq \sup _{A} J_{0}(A)$. This inequality combined with (2.9)-(2.14) and $\varkappa_{0}(\sigma)=\varkappa_{0}(\Gamma) / \varkappa^{\alpha}(\Gamma)$ shows that instead of (1.11) it suffices to prove the estimates (2.7) and (2.8).

Let us prove (2.7) and (2.8). We shall integrate by parts d times. Let us start with a description of the first integration by parts. Choose any vector $b_{1} \in R^{d}$ such that $\left|b_{1}\right|=1$. Splitting the set $A=B_{1} \cup B_{2}$, where

$$
B_{1}=\left\{u:\left\langle b_{1}, u\right\rangle \geq 0\right\} \cap A \quad \text { and } \quad B_{2}=\left\{u:\left\langle b_{1}, u\right\rangle<0\right\} \cap A
$$

we can write the following obvious identity

$$
\begin{equation*}
\mathbf{I}(x ; A)=\mathbf{I}_{1}\left(x ; B_{1}\right)\left(1+\left\langle b_{1}, x\right\rangle\right)+\mathbf{I}_{1}\left(x ; B_{2}\right)\left(1-\left\langle b_{1}, x\right\rangle\right) \tag{2.15}
\end{equation*}
$$

with

$$
\mathbf{I}_{1}(x ; C)=\frac{\mathbf{I}(x ; C)}{1+\left|\left\langle b_{1}, x\right\rangle\right|}, \quad C=B_{1}, B_{2}
$$

Using the well-known properties of the Fourier transform, the identity (2.15) yields

$$
\begin{equation*}
\widehat{\mathbf{I}}(t ; A)=\left(1-i d_{b_{1}}\right) \widehat{\mathbf{I}}_{1}\left(t ; B_{1}\right)+\left(1+i d_{b_{1}}\right) \widehat{\mathbf{I}}_{1}\left(t ; B_{2}\right) \tag{2.16}
\end{equation*}
$$

Let $h(z)=H^{\prime}(z)$ denote the derivative of the function $H(z)$ defined by (2.4) and (2.5), that is,

$$
\begin{align*}
& h(z)=\alpha|z|^{\alpha-1} \operatorname{sign}(z)(1-i \operatorname{sign}(z) \tan (\pi \alpha / 2)), \quad \alpha \neq 1 \tag{2.17}\\
& h(z)=\operatorname{sign}(z)+(2 i / \pi)+(2 i / \pi) \log |z / x(\Gamma)|, \quad \alpha=1 \tag{2.18}
\end{align*}
$$

Using (2.6) and (2.16), we obtain

$$
\begin{equation*}
J_{0}(A) \leq 2 \max _{B=B_{1}, B_{2}} \sup _{v \in D}\left(Q_{1}+Q_{2}\right) \tag{2.19}
\end{equation*}
$$

where

$$
Q_{1}=\left|\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}_{1}(t ; B) v(t) \psi(t) d t\right|, \quad Q_{2}=\left|\int_{\mathbb{R}^{d}} d_{b_{1}} \overline{\widehat{\mathbf{I}}}_{1}(t ; B) v(t) \psi(t) d t\right|
$$

The case $d=2$ is somewhat simpler compared to the general case $d>2$ although it involves already some essential features of the general proof. In order to explain compact notation used in the general case, we provide a sketch of the proof for $d=2$.

The case $d=2$. We shall show that $J_{0}(A) \leq M$, where M is a generic constant depending on d, α and Γ. We shall integrate by parts twice.

Integrating by parts, using $\left|b_{1}\right|=1, d_{b_{1}}(v \psi)=\left(d_{b_{1}} v\right) \psi+v d_{b_{1}} \psi$ and $d_{b_{1}} v \in D$ together with

$$
d_{b_{1}} \psi(t)=\int_{S_{1}} \psi(t) h\left(\left\langle t, y_{1}\right\rangle\right)\left\langle y_{1}, b_{1}\right\rangle \sigma\left(d y_{1}\right)
$$

we have

$$
Q_{2} \leq \int_{S_{1}} Q_{3} \sigma\left(d y_{1}\right)+\sup _{v \in D} Q_{1}
$$

with

$$
Q_{3}=\left|\int_{\mathbb{R}^{2}} \overline{\overline{\mathbf{I}}}_{1}(t ; B) v(t) \psi(t) h\left(\left\langle t, y_{1}\right\rangle\right)\left\langle y_{1}, b_{1}\right\rangle d t\right|
$$

Hence

$$
\begin{equation*}
J_{0}(A) \leq 4 \sup _{*} Q_{1}+2 \int_{S_{1}} \sup _{*} Q_{3} \sigma\left(d y_{1}\right) \tag{2.20}
\end{equation*}
$$

where we write sup $=\max _{B=B_{1}, B_{2}} \sup _{v \in D}$.
In the second integration by parts the choice of the second direction b_{2} (such that $\left|b_{2}\right|=1$) depends on the integral under the consideration. In the case of Q_{1} we choose a unit vector b_{2} to be orthogonal to b_{1}. Repeating the procedure which allowed us to derive (2.20) from (2.19), we obtain

$$
\begin{equation*}
Q_{1} \leq 4 \sup _{*} R_{1}+2 \int_{S_{1}} \sup _{*} R_{2} \sigma\left(d y_{2}\right) \tag{2.21}
\end{equation*}
$$

with

$$
R_{1}=\left|\int_{\mathbb{R}^{2}} \overline{\overline{\hat{I}_{\mathbf{2}}}}(t ; B) v(t) \psi(t) d t\right|, \quad R_{2}=\left|\int_{\mathbb{R}^{2}} \overline{\hat{\mathbf{I}}}(t ; B) v(t) \psi(t) h\left(\left\langle t, y_{2}\right\rangle\right)\left\langle y_{2}, b_{2}\right\rangle d t\right|
$$

and

$$
\begin{equation*}
\mathbf{I}_{2}(x ; B)=\mathbf{I}(x ; B)\left(1+\left|\left\langle x, b_{1}\right\rangle\right|\right)^{-1}\left(1+\left|\left\langle x, b_{2}\right\rangle\right|\right)^{-1} . \tag{2.22}
\end{equation*}
$$

In order to estimate Q_{3} we choose a direction $b_{2}=b_{2}\left(y_{1}\right) \in \mathbb{R}^{2}$ depending on y_{1} such that

$$
\begin{equation*}
\left|b_{2}\right|=1 \quad \text { and } \quad\left\langle y_{1}, b_{2}\right\rangle=0 . \tag{2.23}
\end{equation*}
$$

Our choice of b_{2} ensures that $d_{b_{2}} h\left(\left\langle t, y_{1}\right\rangle\right) \equiv 0$. Indeed, in the orthogonal basis $\left\{y_{1}, b_{2}\right\}$ of \mathbb{R}^{2} we may write $t=t_{1} y_{1}+t_{2} b_{2}$ with some $t_{1}, t_{2} \in \mathbb{R}$, and $\left\langle t, y_{1}\right\rangle=t_{1}$ yields $d_{b_{2}} t_{1}=\left(\partial / \partial t_{2}\right) t_{1} \equiv 0$. Integrating by parts and repeating again the procedure which allowed us to derive (2.20) from (2.19), we obtain

$$
\begin{equation*}
Q_{3} \leq 4 \sup _{*} R_{3}+2 \int_{S_{1}} \sup _{*} R_{4} \sigma\left(d y_{2}\right) \tag{2.24}
\end{equation*}
$$

with R_{3} defined as R_{2} replacing $\left\langle t, y_{2}\right\rangle$ and $\left\langle y_{2}, b_{2}\right\rangle$ by $\left\langle t, y_{1}\right\rangle$ and $\left\langle y_{1}, b_{1}\right\rangle$, respectively, and

$$
R_{4}=\left|\int_{\mathbb{R}^{2}} \overline{\overline{\mathbf{I}}}_{2}(t ; B) v(t) \psi(t) V W d t\right|,
$$

where we write $V=h\left(\left\langle t, y_{1}\right\rangle\right) h\left(\left\langle t, y_{2}\right\rangle\right)$ and $W=\left\langle y_{1}, b_{1}\right\rangle\left\langle y_{2}, b_{2}\right\rangle$. The function $\overline{\hat{\mathbf{I}}}_{2}$ is given by (2.22) with b_{2} from (2.23).

Collecting the bounds (2.20), (2.21) and (2.24), we obtain

$$
\begin{aligned}
J_{0}(A) \leq & 16 \sup _{*} R_{1}+8 \int_{S_{1}} \sup _{*} R_{2} \sigma\left(d y_{2}\right) \\
& +8 \int_{S_{1}} \sup _{*} R_{3} \sigma\left(d y_{1}\right)+4 \int_{S_{1}} \int_{S_{1}} \sup _{*} R_{4} \sigma\left(d y_{1}\right) \sigma\left(d y_{2}\right) .
\end{aligned}
$$

To conclude the sketch of the proof, it suffices to verify that $R_{i} \leq M$, for all i. Let us consider the most involved case of R_{4} only. To simplify the considerations we shall assume as well that $\alpha \neq 1$. Using the Cauchy inequality and Parseval's equality $\|\overline{\overline{\hat{I}}}\|_{2}=\left\|\mathbf{I}_{2}\right\|_{2}$, we have

$$
\begin{equation*}
R_{4}^{2} \leq W^{2}\left\|\mathbf{I}_{2}\right\|_{2}^{2} I \quad \text { with } I=\int_{\mathbb{R}^{2}}|v(t)|^{2}|\psi(t)|^{2}|V|^{2} d t . \tag{2.25}
\end{equation*}
$$

In the case $\left\langle y_{1}, b_{1}\right\rangle=0$ or $\left\langle y_{2}, b_{2}\right\rangle=0$ we have that $R_{4}=0$. Hence, while estimating R_{4}, we may assume that both $\left\langle y_{1}, b_{1}\right\rangle$ and $\left\langle y_{2}, b_{2}\right\rangle$ are nonzero. By our choice, $\left\{y_{1}, b_{2}\right\}$ is an orthonormal basis of \mathbb{R}^{2}. Let $x_{(1)}, x_{(2)} \in \mathbb{R}$ be the coordinates of $x \in \mathbb{R}^{2}$ in this basis. Changing the variables
$u_{1}=\left\langle x, b_{1}\right\rangle \equiv\left\langle b_{1}, y_{1}\right\rangle x_{(1)}+\left\langle b_{1}, b_{2}\right\rangle x_{(2)}$ and $u_{2}=\left\langle x, b_{2}\right\rangle \equiv x_{(2)}$, we obtain

$$
\begin{align*}
\left\|\mathbf{I}_{2}\right\|_{2}^{2} & \leq M \int_{\mathbb{R}^{2}} \frac{d x}{\left(1+\left\langle x, b_{1}\right\rangle^{2}\right)\left(1+\left\langle x, b_{2}\right\rangle^{2}\right)} \tag{2.26}\\
& =\frac{M}{\left|\left\langle y_{1}, b_{1}\right\rangle\right|}\left(\int_{\mathbb{R}} \frac{d s}{1+s^{2}}\right)^{2} \leq \frac{M}{\left|\left\langle y_{1}, b_{1}\right\rangle\right|}
\end{align*}
$$

To estimate the integral I we use the basis $\left\{y_{1}, b_{2}\right\}$ again. Let $t_{(1)}, t_{(2)} \in \mathbb{R}$ be the coordinates of $t \in \mathbb{R}^{2}$. Introduce the variables

$$
u_{1}=\left\langle t, y_{1}\right\rangle \equiv t_{(1)}, \quad u_{2}=\left\langle t, y_{2}\right\rangle \equiv\left\langle y_{2}, y_{1}\right\rangle t_{(1)}+\left\langle y_{2}, b_{2}\right\rangle t_{(2)}
$$

Notice that the vector $u=\left(u_{1}, u_{2}\right)$ satisfies $|u|^{2} \leq 2|t|^{2}$ since $y_{1}, y_{2} \in S_{1}$. Using in addition the bounds $|v(t)|^{2} \leq M\left(1+|t|^{2}\right)$ and $|h(s)| \leq M|s|^{\alpha-1}$, estimating $\psi(t) \leq \exp \left\{-\varepsilon|t|^{\alpha}\right\}$ with some $\varepsilon=\varepsilon(d, \alpha, \Gamma)>0$, we get

$$
\begin{align*}
I & \leq M \int_{\mathbb{R}^{2}} \exp \left\{-\varepsilon|u|^{\alpha} / 4\right\} h^{2}\left(u_{1}\right) h^{2}\left(u_{2}\right) d u /\left|\left\langle y_{2}, b_{2}\right\rangle\right| \\
& =\frac{M}{\left|\left(y_{2}, b_{2}\right)\right|}\left(\int_{\mathbb{R}} \exp \left\{-\varepsilon s^{\alpha} / 4\right\} h^{2}(s) d s\right)^{2} \leq \frac{M}{\left|\left\langle y_{2}, b_{2}\right\rangle\right|} \tag{2.27}
\end{align*}
$$

provided that $\alpha>1 / 2$. Combining (2.25)-(2.27), we obtain

$$
R_{4} \leq M|W| / \sqrt{\left|\left\langle y_{1}, b_{1}\right\rangle\left\langle y_{2}, b_{2}\right\rangle\right|}=M \sqrt{|W|} \leq M
$$

since $\left|\left\langle y_{i}, b_{i}\right\rangle\right| \leq 1$ and therefore $|W| \leq 1$. The case $0<\alpha \leq 1 / 2$ may be considered similarly, just replacing Cauchy's inequality and Parseval's equality used in (2.25) by Hölder's and Hausdroff-Young inequalities, respectively; see (2.41)-(2.43).

ThE CASE $d>2$. Introducing the Dirac measure δ_{b} on \mathbb{R}^{d} such that $\delta_{b}(C)=\mathbf{I}(b \in C)$, for $C \subset \mathbb{R}^{d}$, we can write

$$
\begin{equation*}
Q_{1}=\int_{S_{d-1}}\left|\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}_{1}(t ; B) v(t) \psi(t)\left\langle y_{1}, b_{1}\right\rangle d t\right| \delta_{b_{1}}\left(d y_{1}\right) \tag{2.28}
\end{equation*}
$$

since $\left\langle b_{1}, b_{1}\right\rangle=1$. Integrating by parts, using $\left|b_{1}\right|=1$ and $d_{b_{1}} v \in D$ together with

$$
d_{b_{1}} \psi(t)=\int_{S_{d-1}} \psi(t) h\left(\left\langle t, y_{1}\right\rangle\right)\left\langle y_{1}, b_{1}\right\rangle \sigma\left(d y_{1}\right)
$$

we have

$$
\begin{align*}
Q_{2} & \leq \int_{S_{d-1}}\left|\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}_{1}(t ; B) v(t) \psi(t) h\left(\left\langle t, y_{1}\right\rangle\right)\left\langle y_{1}, b_{1}\right\rangle d t\right| \sigma\left(d y_{1}\right) \tag{2.29}\\
& +\sup _{v \in D} Q_{1}
\end{align*}
$$

In order to rewrite the bounds (2.19), (2.28) and (2.29) in a more compact form and to proceed with integration by parts, let us introduce additional notation. We shall denote by $\Omega \subset \Omega_{j}$ a subset of the set $\Omega_{j}=\{1,2, \ldots, j\}$. Collecting (2.19), (2.28) and (2.29), we obtain

$$
\begin{equation*}
J_{0}(A) \leq 6 J_{1}(A) \tag{2.30}
\end{equation*}
$$

where

$$
J_{1}(A)=\max _{\Omega \subset \Omega_{1}} \sup _{v \in D} \sup _{B \subset A} \int_{S_{d-1}}\left|J_{1}^{*}(B)\right| \prod_{k \in \Omega} \sigma\left(d y_{k}\right) \prod_{l \in \Omega_{1} \backslash \Omega} \delta_{b_{l}}\left(d y_{l}\right)
$$

with

$$
J_{1}^{*}(B)=\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}_{1}(t ; B) v(t) \psi t\left\langle y_{1}, b_{1}\right\rangle \prod_{k \in \Omega} h\left(\left\langle t, y_{k}\right\rangle\right) d t .
$$

The inequality (2.30) provides the result of the first integration by parts. Let $2 \leq j \leq d$ and $y_{1}, \ldots, y_{d} \in S_{d-1}$. In order to describe further integrations by parts, consider vector valued measurable functions

$$
\begin{equation*}
b_{1}, b_{2}=b_{2}\left(y_{1}\right), \ldots, b_{d}=b_{d}\left(y_{1}, \ldots, y_{d-1}\right) \tag{2.31}
\end{equation*}
$$

such that $b_{j} \in S_{d-1}$ and

$$
\begin{equation*}
\left\langle b_{j}, y_{l}\right\rangle=0 \tag{2.32}
\end{equation*}
$$

for all $1 \leq j \leq d$ and $1 \leq l \leq j-1$. It is clear that such functions b_{j} exist. Denote

$$
\begin{align*}
J_{j}(A)= & \max _{\Omega \in \Omega_{j}} \sup _{v \in D} \sup _{B \subset A} \int_{S_{d-1}} \cdots \int_{S_{d-1}} \tag{2.33}\\
& \times\left|J_{j}^{*}(B)\right| \prod_{k \in \Omega} \sigma\left(d y_{k}\right) \prod_{l \in \Omega_{j} \backslash \Omega} \delta_{b_{t}}\left(d y_{l}\right)
\end{align*}
$$

where $\Omega_{j}=\{1, \ldots, j\}$, and

$$
J_{j}^{*}(B)=\int_{\mathbb{R}^{d}} \overline{\widehat{\mathbf{I}}}_{j}(t ; B) v(t) \psi(t) \prod_{l=1}^{j}\left\langle y_{l}, b_{l}\right\rangle \prod_{k \in \Omega} h\left(\left\langle t, y_{k}\right\rangle\right) d t
$$

with

$$
\mathbf{I}_{j}(x ; B)=\mathbf{I}(x ; B) \prod_{i=1}^{j}\left(1+\left|\left\langle x, b_{i}\right\rangle\right|\right)^{-1}
$$

The integrals $J_{j}(A)$ defined by (2.33) satisfy

$$
\begin{equation*}
J_{j-1}(A) \leq 6 J_{j}(A) \quad \text { for all } j=1, \ldots, d \tag{2.34}
\end{equation*}
$$

To see that (2.34) holds indeed, notice that our choice of b_{j} as in (2.31) and (2.32) guarantees that

$$
d_{b_{j}} \prod_{k \in \Omega} h\left(\left\langle t, y_{k}\right\rangle\right)=0 \quad \text { for } \Omega \subset \Omega_{j-1} .
$$

Hence, in order to prove (2.34) we can estimate $J_{j-1}(A)$ proceeding similarly as in (2.19), (2.28) and (2.29), which led to the bound (2.30) for $J_{0}(A)$.

In particular, the bound (2.34) yields

$$
\begin{equation*}
J_{0}(A) \leq 6^{d} J_{d}(A), \tag{2.35}
\end{equation*}
$$

where $J_{d}(A)$ is defined by (2.33) with $j=d$ and

$$
\begin{equation*}
J_{d}^{*}(B) \prod_{l=1}^{d}\left\langle y_{l}, b_{l}\right\rangle \int_{\mathbb{R}^{d}} \overline{\hat{\mathbf{I}}}_{d}(t ; B) v(t) \psi(t) \prod_{k \in \Omega} h\left(\left\langle t, y_{k}\right\rangle\right) d t . \tag{2.36}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\left|J_{d}^{*}(B)\right| \leq c_{*}(\alpha, d), \quad \alpha \neq 1 \tag{2.37}
\end{equation*}
$$

and

$$
\left|J_{d}^{*}(B)\right| \leq c_{*}(1, d)(1+|\log \varkappa(\Gamma)|)^{d}, \quad \alpha=1 .
$$

The constant $c_{*}(\alpha, d)$ is specified below, [see (2.52) and the text below], where estimates (1.13) and (1.14) for $c(\alpha, d)$ are proved. Using the definition (2.33) of $J_{d}(A)$ and integrating the bounds (2.37) with respect to the measure σ on S_{d-1}, we obtain

$$
\begin{equation*}
J_{d}(A) \leq c_{*}(\alpha, d) \max _{1 \leq i \leq d} \varkappa_{0}^{i}(\sigma) \leq c_{*}(\alpha, d) \varkappa_{0}^{d}(\sigma), \quad \alpha \neq 1, \tag{2.38}
\end{equation*}
$$

which combined with the inequality (2.35) proves (2.7). While proving (2.38) we used $1=\varkappa(\sigma) \leq \varkappa_{0}^{\alpha}(\sigma)$. Similarly, integrating the second inequality in (2.37), we derive (2.8).

To conclude the proof of the theorem we have to verify (2.37). Consider the matrix $\mathbb{E}=\left(\left\langle y_{i}, b_{j}\right\rangle\right)_{i, j=1, \ldots, d}$. By our choice [see (2.31) and (2.32)] of the vectors b_{j} all entries above the diagonal of the matrix \mathbb{E} are equal to zero. Therefore,

$$
\begin{equation*}
\operatorname{det} \mathbb{E}=\prod_{l=1}^{d}\left\langle y_{l}, b_{l}\right\rangle \tag{2.39}
\end{equation*}
$$

and it is clear that

$$
\begin{equation*}
|\operatorname{det} \mathbb{E}| \leq 1 \tag{2.40}
\end{equation*}
$$

since $\mid\left\langle y_{l}, b_{l}\right\rangle \leq 1$, for $\left|b_{l}\right|=\left|y_{l}\right|=1$.
If $\operatorname{det} \mathbb{E}=0$ then $J_{d}^{*}(B)=0$ [cf. (2.36) and (2.39)] and (2.37) is obviously fulfilled. Hence, without loss of generality we may assume in the proof of
(2.37) that $\operatorname{det} \mathbb{E} \neq 0$. Let $\|f\|_{p}$ stand for the $L_{p}\left(\mathbb{R}^{d}\right)$ norm of a function f. Using Hölder's inequality with $1 / p+1 / q=1$ such that $1<p \leq 2, q \geq 2$, the relation (2.36) yields

$$
\begin{equation*}
\left|J_{d}^{*}(B)\right| \leq|\operatorname{det} \mathbb{E}|\left\|\widehat{\mathbf{I}}_{d}(\cdot ; B)\right\|_{q}\|\vartheta\|_{p} \tag{2.41}
\end{equation*}
$$

where we denote for brevity

$$
\vartheta(t)=v(t) \psi(t) \prod_{k \in \Omega} h\left(\left\langle t, y_{k}\right\rangle\right)
$$

To estimate $\left\|\widehat{\mathbf{I}}_{d}(\cdot ; B)\right\|_{q}$ we shall use the fact that the Fourier transform is a bounded operator from $L_{p}\left(\mathbb{R}^{d}\right)$ to $L_{q}\left(\mathbb{R}^{d}\right), 1 \leq p \leq 2$. The inequality of Hausdroff-Young says that $\|\hat{f}\|_{q} \leq\|f\|_{p}$ [see Chapter 5 in Stein and Weiss (1971)], whence

$$
\left\|\widehat{\mathbf{I}}_{d}(\cdot ; B)\right\|_{q} \leq\left\|\mathbf{I}_{d}(\cdot ; B)\right\|_{p}
$$

Changing variables $t=u$ with $u=\left(u_{1}, \ldots, u_{d}\right)$ such that $u_{i}=\left\langle t, b_{i}\right\rangle$ and introducing the matrix

$$
\begin{equation*}
\mathbb{B}:=\left(b_{i, j}\right)_{i, j=1, \ldots, d}, \quad b_{i}=\left(b_{i, 1}, \ldots, b_{i, d}\right), \tag{2.42}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left\|\widehat{\mathbf{I}}_{d}(\cdot ; B)\right\|_{q} \leq\left\|\mathbf{I}_{d}(\cdot ; B)\right\|_{p} \leq|\operatorname{det} \mathbb{B}|^{-1 / p} c_{0} \tag{2.43}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{0}=\left(\int_{\mathbb{R}}(1+|u|)^{-p} d u\right)^{d / p}=(2 /(p-1))^{d / p} \tag{2.44}
\end{equation*}
$$

Let us estimate $\|\vartheta\|_{p}$. The function v belongs to the class D and $\chi(\sigma)=1$. Therefore $|\psi(t)| \leq \exp \left\{-|t|^{\alpha}\right\}$ and we get

$$
\begin{equation*}
|v(t)||\psi(t)| \leq(1+|t|)|\psi(t)| \leq c_{1} \exp \left\{-|t|^{\alpha} / 2\right\} \tag{2.45}
\end{equation*}
$$

where $c_{1}=1+\alpha^{-1 / \alpha}$. The estimate (2.45) and the obvious inequality

$$
\begin{equation*}
d|t|^{\alpha}=\sum_{i=1}^{d}|t|^{\alpha} \geq \sum_{i=1}^{d}\left|\left\langle t, y_{i}\right\rangle\right|^{\alpha} \quad \text { for }\left|y_{i}\right|=1 \tag{2.46}
\end{equation*}
$$

yield

$$
\begin{equation*}
\|\vartheta\|_{p}^{p} \leq c_{1}^{p} \int_{\mathbb{R}^{d}} \prod_{j=1}^{d} \exp \left\{-\frac{p}{2 d}\left|\left\langle t, y_{j}\right\rangle\right|^{\alpha}\right\} \prod_{k \in \Omega}\left|h\left(\left\langle t, y_{k}\right\rangle\right)\right|^{p} d t . \tag{2.47}
\end{equation*}
$$

Changing in (2.47) variables $t=u$ with $u=\left(u_{1}, \ldots, u_{d}\right)$ such that $u_{i}=\left\langle t, y_{i}\right\rangle$ and introducing the matrix

$$
\begin{equation*}
\mathbb{A}:=\left(y_{j, i}\right)_{i, j=1, \ldots, d}, \quad y_{i}=\left(y_{i, 1}, \ldots, y_{i, d}\right), \tag{2.48}
\end{equation*}
$$

we get (notice that $0 \leq|\Omega| \leq d$ and use $a^{\beta} b^{\gamma} \leq a+b$, for nonnegative β and γ such that $\beta+\gamma=1$)

$$
\begin{equation*}
\|\vartheta\|_{p} \leq|\operatorname{det} \mathbb{A}|^{-1 / p} c_{1} c_{2}^{|\Omega| / p} c_{3}^{(d-|\Omega|) / p} \leq|\operatorname{det} \mathbb{A}|^{-1 / p} c_{1}\left(c_{2}^{d / p}+c_{3}^{d / p}\right), \tag{2.49}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{2}=\int_{\mathbb{R}} \exp \left\{-\frac{p}{2 d}|u|^{\alpha}\right\}|h(u)|^{p} d u, \quad c_{3}=\int_{\mathbb{R}} \exp \left\{-\frac{p}{2 d}|u|^{\alpha}\right\} d u . \tag{2.50}
\end{equation*}
$$

Multiplying the matrices \mathbb{A} and \mathbb{B} we see that $\mathbb{A} \mathbb{B}=\mathbb{E}$. In particular, both changes (2.42) and (2.48) of variables are well defined since $\operatorname{det} \mathbb{E}=\operatorname{det} \mathbb{A} \times$ $\operatorname{det} \mathbb{B}$ and we assume that $\operatorname{det} \mathbb{E} \neq 0$. The relation $\operatorname{det} \mathbb{A} \operatorname{det} \mathbb{B}=\operatorname{det} \mathbb{E}$ combined with the inequalities (2.41), (2.43), (2.49) yields

$$
\begin{equation*}
\left|J_{d}^{*}(B)\right| \leq c_{0} c_{1}\left(c_{2}^{d / p}+c_{3}^{d / p}\right)|\operatorname{det} \mathbb{E}|^{1-1 / p} \leq c_{0} c_{1}\left(c_{2}^{d / p}+c_{3}^{d / p}\right), \tag{2.51}
\end{equation*}
$$

since (2.40) implies $|\operatorname{det} \mathbb{E}|^{1-1 / p} \leq 1$, for $p \geq 1$. The inequality (2.37) follows from (2.51) with

$$
\begin{align*}
& c_{*}(\alpha, d)=c_{0} c_{1}\left(c_{2}^{d / p}+c_{3}^{d / p}\right), \quad \alpha \neq 1, \\
& c_{*}(1, d)=\sup _{\chi(\Gamma)}\left((1+|\log \chi(\Gamma)|)^{-d} c_{0} c_{1}\left(c_{2}^{d / p}+c_{3}^{d / p}\right)\right), \quad \alpha=1, \tag{2.52}
\end{align*}
$$

and with $c_{*}(\alpha, d)$ as in (2.52) in the symmetric case, for all α. The bound (2.37) yields (2.7) and (2.8) with

$$
c(\alpha, d) \leq 2(12 \pi)^{d} c_{*}(\alpha, d) .
$$

In order to prove bounds (1.13) and (1.14) for $c(\alpha, d)$ we have to estimate $c_{*}(\alpha, d)$. To bound $c_{*}(\alpha, d)$ it suffices to estimate constants c_{2} and c_{3} [they are defined in (2.50)] since c_{0} is given by explicit formula (2.44) and $c_{1}=1+\alpha^{-1 / \alpha}$. The estimation of c_{2} and c_{3} is in essence elementary, although somewhat cumbersome. Therefore we shall provide only a sketch of this estimation. Recall that $1<p \leq 2$. The constant c_{3} is obviously finite and can be simply estimated. Using (2.50) and the definition (2.17) and (2.18) of the function h, we have

$$
\begin{align*}
c_{2} & =\int_{\mathbb{R}} \exp \left\{-\frac{p}{2 d}|u|^{\alpha}\right\}|h(u)|^{p} d u \tag{2.53}\\
& \leq \alpha^{p}\left(1+\left.|\tan (\pi \alpha / 2)|\right|^{p} \int_{\mathbb{R}} \exp \left\{-\frac{p}{2 d}|u|^{\alpha}\right\}|u|^{p(\alpha-1)} d u,\right.
\end{align*}
$$

for $\alpha \neq 1$, and

$$
\begin{align*}
c_{2} \leq & 4^{p}(1+|\log \varkappa(\Gamma)|)^{p} \int_{\mathbb{R}} \exp \left\{-\frac{p|u|}{2 d}\right\} d u \tag{2.54}\\
& +\left.2^{p} \int_{\mathbb{R}} \exp \left\{-\frac{p|u|}{2 d}\right\}|\log | u\right|^{p} d u,
\end{align*}
$$

for $\alpha=1$. The integrals in (2.53) and (2.54) exist if $p(\alpha-1)>-1$. Therefore, we can choose

$$
\begin{align*}
& p=2 \quad \text { for } \alpha \geq 1, \quad p=\frac{3}{2} \quad \text { for } \frac{1}{2} \leq \alpha<1, \\
& p=\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right) \quad \text { for } 0<\alpha<\frac{1}{2} . \tag{2.55}
\end{align*}
$$

Then, in particular, we change the variables $c u^{\alpha}=y$ and apply the following inequality $y^{\beta} \exp (-y) \leq c(\beta) \exp (-y / 2)$. The symmetric case is less complicated since in this case $h(z)=\alpha|z|^{\alpha-1}$ which is simpler than h defined by (2.17) and (2.18).

Proof of Theorem 2. We shall use a reduction to polyhedrons with finite number of faces as in Bhattacharya and Rao (1976). A convex set P is called a polyhedron if there exist distinct unit vectors $u_{1}, \ldots, u_{m} \in S_{d-1}$ and d_{1}, \ldots, $d_{m} \in \mathbb{R}$ such that

$$
\begin{equation*}
P=\left\{x \in \mathbb{R}^{d}:\left\langle u_{j}, x\right\rangle \leq d_{j}, 1 \leq j \leq m\right\} . \tag{2.56}
\end{equation*}
$$

Let \mathscr{P} denote the class of compact sets of the form (2.56) with nonempty interior. An inspection of the prof of Theorem 3.1 in Bhattacharya and Rao (1976) shows that

$$
\begin{equation*}
\frac{1}{2 \varepsilon} \int_{(\partial A)^{\varepsilon}} g(x) d x \leq \zeta(\mathscr{P}, g), \quad \varepsilon>0 \tag{2.57}
\end{equation*}
$$

for $A \in \mathscr{A}_{c}$ and continuous g.
Let us prove (1.15). Taking in (2.57) the limit as $\varepsilon \rightarrow 0$ yields $\zeta\left(\mathscr{A}_{c}, g\right) \leq$ $\zeta(\mathscr{P}, g)$, which together with the obvious reverse inequality $\zeta\left(\mathscr{L}_{c}, g\right) \geq \zeta(\mathscr{P}, g)$ implies the relation $\zeta\left(\mathscr{A}_{c}, g\right)=\zeta(\mathscr{P}, g)$. Dividing by 2ε the inequality

$$
\int_{(\partial A)^{\varepsilon}} g(x) d x \leq \varepsilon \eta\left(\mathscr{A}_{c}, g\right) \quad \text { for } A \in \mathscr{A}_{c},
$$

and passing to the limit as $\varepsilon \rightarrow 0$ yields $\zeta\left(\mathscr{A}_{c}, g\right) \leq \eta\left(\mathscr{A}_{c}, g\right) / 2$. The inequality (2.57) means that $\eta\left(\mathscr{A}_{c}, g\right) \leq 2 \zeta(\mathscr{P}, g)=2 \zeta\left(\mathscr{A}_{c}, g\right)$, and (1.15) follows.

Let us prove (1.16). Due to (1.15) and $\zeta\left(\mathscr{A}_{c}, g\right)=\zeta(\mathscr{P}, g)$ it suffices to verify that

$$
\begin{equation*}
\int_{\partial P} g(x) d s \leq 2 d^{3 / 2} \chi_{1}(g) \quad \text { for } P \in \mathscr{P} . \tag{2.58}
\end{equation*}
$$

Let $n(x)$ denote the unit outer normal vector of ∂P at point $x \in \partial P$. The normal is defined for almost all $x \in \partial P$ with respect to the surface measure $d s$ on ∂P. Let \mathscr{N} be the set of $x \in \partial P$ such that $n(x)$ is not defined. Introducing the standard orthonormal vectors e_{1}, \ldots, e_{d} in \mathbb{R}^{d} and writing $e_{-i}=-e_{i}, e_{0}=0$,
it is clear that

$$
\begin{equation*}
\partial P \backslash \mathbb{N} \subset \bigcup_{i=-d}^{d} Q_{i} \quad \text { where } Q_{i}=\left\{x \in \partial P:\left\langle n(x), e_{i}\right\rangle \geq d^{-1 / 2}\right\} \tag{2.59}
\end{equation*}
$$

since any vector $n \in S_{d-1}$ has at least one coordinate, say n_{j}, such that $\left|n_{j}\right| \geq$ $d^{-1 / 2}$. Using the representation (2.59) and $\int_{N} g(x) d s=0$, we have

$$
\begin{equation*}
\int_{\partial P} g(x) d s \leq \sum_{i=-d}^{d} \int_{Q_{i}} g(x) d s \tag{2.60}
\end{equation*}
$$

The inequality $\left\langle n(x), e_{i}\right\rangle \geq d^{-1 / 2}$ yields

$$
\begin{equation*}
\int_{Q_{i}} g(x) d x \leq d^{1 / 2} \int_{Q_{i}}\left\langle n(x), e_{i}\right\rangle g(x) d s \tag{2.61}
\end{equation*}
$$

According to the construction (2.59) of the surface Q_{i}, it is the graph of a piecewise linear function, say $x_{i}=f\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)$. Introducing the subgraph $V_{i}=Q_{i}+(-\infty, 0] e_{i}$ of the graph of f and applying Stokes' theorem or just using Fubini's theorem and integrating with respect to the i th coordinate of x, we have

$$
\begin{align*}
\int_{Q_{i}}\left\langle n(x), e_{i}\right\rangle g(x) d s & =\int_{\partial V_{i}}\left\langle n(x), e_{i}\right\rangle g(x) d s=\int_{V_{i}} d_{e_{i}} g(x) d x \tag{2.62}\\
& \leq \int_{\mathbb{R}^{d}}\left|d_{e_{i}} g(x)\right| d x \leq \chi_{1}(g)
\end{align*}
$$

Combining (2.60)-(2.62), we obtain (2.58).

Proof of Theorem 3. Write $a=\eta\left(\mathscr{A}_{c}, G\right)$ and $B=\chi_{1}(g)$. Theorem 1 in Bloznelis (1988) says that

$$
\begin{equation*}
\Delta_{n}\left(\mathscr{A}_{c}\right) \leq c c(\alpha)(20)^{1 / \alpha} n^{-1 / \alpha}\left(\rho+a \zeta_{1}+R_{\alpha} \zeta_{1+\alpha}\right) \tag{2.63}
\end{equation*}
$$

where c is an absolute constant,

$$
\begin{aligned}
& R_{\alpha}=a+(a+1)\left(B+B^{2}\right), \quad \alpha \leq 1 \\
& R_{\alpha}=\left(a+(a+1)\left(B+B^{2}\right)\right) B, \quad 1<\alpha \leq 2
\end{aligned}
$$

and $c(\alpha)=1$, for $\alpha \leq 1, c(\alpha)=\alpha-1$, for $\alpha>1$. Let a random variable Y have the distribution G. Notice that $\Delta_{n}\left(\mathscr{A}_{c}\right)$ does not change if we replace X_{1}, \ldots, X_{n} by $\tau X_{1}, \ldots, \tau X_{n}$ and the distribution G by the distribution of τY, respectively, for any fixed $\tau>0$. Similarly, the metric ρ remains invariant under this scale transform. The quantities $a=\eta\left(\mathscr{A}_{c}, G\right), B=\chi_{1}(g)$ and $\zeta_{1+\alpha}$ are transformed to $a / \tau, B / \tau$ and $\tau^{1+\alpha} \zeta_{1+\alpha}$, respectively. Hence, the bound (2.63) yields an estimate for $\Delta_{n}\left(\mathscr{A}_{c}\right)$ as (2.63) but with R_{α} replaced by $\tau^{\alpha+1} R_{\alpha}(\tau)$,
where

$$
\begin{aligned}
& R_{\alpha}(\tau)=a / \tau+(a / \tau+1)\left(B / \tau+B^{2} / \tau^{2}\right), \quad \alpha \leq 1, \\
& R_{\alpha}(\tau)=\left(a / \tau+(a / \tau+1)\left(B / \tau+B^{2} / \tau^{2}\right)\right) B / \tau, \quad 1<\alpha \leq 2 .
\end{aligned}
$$

Choosing $\tau=B$, we see that (2.63) holds with R_{α} replaced by

$$
B^{\alpha+1} R_{\alpha}(B) \leq 3(a+B) B^{\alpha} .
$$

By Theorems 1 and 2 we can estimate

$$
a \leq c d^{3 / 2} c(\alpha, d) K_{\alpha}(\Gamma), \quad B \leq c(\alpha, d) K_{\alpha}(\Gamma)
$$

and Theorem 3 follows.

Proof of Theorem 4. To prove (1.23) it suffices to use the definition (1.21) of $\omega(\Gamma, \tau)$. The bound (1.24) together with the estimate (1.16) yields (1.25). Therefore we have to prove (1.24) only. We may proceed similarly to the proof of Theorem 1 replacing everywhere α by $\alpha(y)$; for details see a paper of the authors (1999a).

REFERENCES

BAHR, X. (1967). On the central limit theorem in R^{k}. Ark. Mat. 7 61-69.
BALL, K. (1993). The reverse isoperimetric problem for Gaussian measure. Discrete Comput. Geom. 10 411-420.
BANYS, I. (1971). An estimate of the rate of convergence in the multidimensional integral limit theorem in the case of convergence to a stable symmetric law. Litovsk. Mat. Sb. 11 497-509.
Bentrus, V. (1986). Dependence of the Berry-Esseen estimate on the dimension. Lithuanian Math. J. 26 110-114.
Bentkus, V., Götze, F., and Paulauskas, V. (1996). Bounds for the accuracy of Poissonian approximations of satble laws, Stochastic Process. Appl. 65 55-68.
Bentkus, V., Juozulynas A. and Paulauskas V. (1999a). Bounds for stable measures of convex shells and stable approximations. Preprint SFB 343, Univ. Bielefeld. Available at http://www.mathematik.unibielefeld.de/sfb343/preprints.html.
Bentkus, V., Juozulynas, A. and Paulauskas, V. (1999b). Lévy-LePage series representation of stable vectors. Convergénce in variation, Preprint SFB 343, Univ. Bielefeld. Available at http:// www.mathematik.uni-bielefeld.de/sfb343/preprints.html.
Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York.
Bloznelis, M. (1988). Rate of convergence to a stable law in the spece \mathbb{R}^{d}. Lithuanian Math. J. 28 21-29.
BlozNELIS, M. (1989). Nonuniform estimate of the rate of convergence to a stable law in the multidimensional central limit theorem. Lithuanian Math. J. 29 97-109.
Bogachev, V. I. (1986). Some results on differentiable measures. Math. USSR Sb. 55 335-349.
Ledoux, M. and Paulauskas, V. (1996). A rate of convergence in the Poissonian representation of stable distributions. Lithuanian Math. J. 36 388-399.
Mikhallova, I. Yu. (1983). The rate of approximation by a multidimensional stable law. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. 3 60-62.

Paulauskas, V. (1975). The rate of convergence in the multidimensional limit theorem in the case of a stable limit law. Litovsk. Mat. Sb. 15 207-228.
Rachev, S. T. (1991). Probability metrics and the stability of stochastic models. Wiley, New York. SAmorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes (Stochastic Models with Infinite Variance). Chapman and Hall, New York.
SAZONOV, V. (1968). The rate of convergence in the multidimensional central limit theorem. Teor. Verojatnost. i Primenen. 13 191-194.
SAZONOV, V. V. (1981). Normal approximation-some recent advances. Lecture Notes in Math. 879. Springer, Berlin.

Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press.

V. Bentikus	A. JUozulynas
Institute of Mathematics and Information	V. Paulauskas
Akademirjos 4	Department of Mathematics
322600 Vilnius	University of Vilnius
Lithuania	NaUgarduko 24
E-MAIL: bentkus@mathematik.uni-bielefeld.de	2006 Vilnius
bentkus@sci.kun.nl	Lithuania
	E-mAIL: almas@ieva.maf.vu.lt paul@ieva.maf.vu.lt

