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Say that a graph has persistent transition if the Ising model on the
graph can exhibit a phase transition (nonuniqueness of Gibbs measures)
in the presence of a nonzero external field. We show that for nonamenable
graphs, for Bernoulli percolation with p close to 1, all the infinite clusters
have persistent transition. On the other hand, we show that for transi-
tive amenable graphs, the infinite clusters for any stationary percolation
do not have persistent transition. This extends a result of Georgii for the
cubic lattice. A geometric consequence of this latter fact is that the infinite
clusters are strongly amenable (i.e., their anchored Cheeger constant is 0).
Finally we show that the critical temperature for the Ising model with no
external field on the infinite clusters of Bernoulli percolation with parame-
ter p, on an arbitrary bounded degree graph, is a continuous function of p.

1. Introduction. A great deal of interest has recently been dedicated to
the study of statistical mechanics type processes on (infinite, locally finite,
connected) graphs other than Euclidean lattices. Particularly important are
the ways in which the geometry of the graph is reflected in the behavior of
the process. Two of the most important models which are being studied in this
context are percolation (see, e.g., [42, 43, 25, 44, 58, 45, 60, 7, 27, 40, 3, 4, 5,
26, 30, 51, 52, 31, 6, 47, 29, 15, 9]; see also [8] for an on-line, continuously
updated, account of progress in this area, as well as for links to various related
Web sites), and the Ising model (for the Ising model on homogeneous trees,
see, e.g., [22], Chapter 12 and the references provided there, as well as the
papers [11] and [33] that appeared afterwards; for the Ising model on more
general graphs, see, e.g., [42, 54, 49, 1, 58, 59, 34, 53, 36, 29, 17]).

In this paper we are concerned with these two processes and also with their
interrelations. Primarily we study the Ising model on a diluted graph, that is,
a graph from which sites have been randomly removed (in a quenched fashion,
in the language of physics). As a by-product, we obtain a new result about the
geometry of infinite clusters; in this way this paper provides one more link
between the theory of percolation and the Ising model.

There are various ways in which one can look at our investigation. On one
hand, the study of Ising models on diluted graphs can be seen as a chapter
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in the study of statistical mechanics models in random environments, a very
fundamental and active area of research. From this perspective we mention
the papers [24], [18], [19], [20], [21], [14] and [2], where this problem was
addressed primarily on Euclidean lattices and where one can find further
references to this type of work, and the paper [42], where the problem was
addressed on trees.

On the other hand, our investigation can be seen as part of the large project
of understanding the properties of infinite clusters in percolation and how
these properties relate to the properties of the graph on which percolation
is being performed. From this perspective it is natural to look at the phase
diagram of statistical mechanics models on the infinite clusters and also to
ask if the features of such phase diagrams unveil facts about the clusters’
geometry. Such issues are akin to the study of random walks on graphs and
Brownian motion on manifolds and the question of how their behaviors are
related to the geometry of the underlying space.

2. Strong amenability and weak nonamenability. Throughout this
paper, G = �V�E� will be an infinite, locally finite, connected graph. IfW ⊂ V
is finite, let ∂W = �u ∈ V \W� ∃v ∈W� v ∼ u� where v ∼ u means that v and
u are neighbors. We write ∂GW if we need to make the graph G explicit. In
the above, locally finite means that for each x ∈ V, �∂�x�� < ∞. If for some
finite D, for each x ∈ V, �∂�x�� ≤ D, then the graph is said to be of bounded
degree.

Write Aut�G� for the group of graph automorphisms of the graph G.

Definition 2.1. A graph G = �V�E� is called transitive if for any x�y ∈
V there exists a γ ∈ Aut�G� which maps x to y. In other words, G is transitive
if Aut�G� acts transitively on V; that is, it produces a single orbit. A graph
G = �V�E� is called quasi-transitive if Aut�G� acting on V produces a finite
number of orbits.

In general, qualitative features of transitive graphs are also shared by
quasi-transitive graphs. For simplicity we will only consider transitive ones
below, even when the statements could be extended to quasi-transitive graphs.

Definition 2.2. Let G = �V�E� be an infinite, locally finite, connected
graph. The Cheeger constant κ�G� for G, is defined by

κ�G� �= inf

{
�∂W�
�W� :W ⊆ V� 0 < �W� <∞

}
�

If κ�G� = 0, G is said to be amenable, and if κ�G� > 0, G is said to be
nonamenable.

It is a well-established fact that that the (non-)amenability of a graph has
important consequences for the behavior of various probabilistic processes
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associated with the graph. For instance, in the case of random walks and their
spectral gaps, this relation goes back to [38] and [39] (see, e.g., [4] for refer-
ences to the subsequent developments on this relationship). In the current
surge of interest in probabilistic processes on graphs, a driving force has been
establishing many more relationships between the behavior of probabilistic
processes and the amenability of the underlying graph (see e.g., [4, 36, 35]),
while other relations are being conjectured (e.g., that for Bernoulli percola-
tion on transitive graphs amenability is a necessary and sufficient condition
for the absence of a phase with infinitely many infinite clusters; the sufficiency
is known from the methods in [12]).

We should mention that the definition of the Cheeger constant varies some-
what from paper to paper, in that sometimes the vertex boundary used in the
definition above is replaced with the edge boundary. This distinction is only
important when the graph is not of bounded degree or when the Cheeger
constant is used in numerical estimates (e.g., of a spectral gap, or a critical
point), but is irrelevant in regard to the definition of amenability of graphs of
bounded degree. Some other variations in the definition of amenability are also
immaterial and are discussed in the Appendix. In contrast, the next definition
produces an essentially distinct notion.

Definition 2.3. Let G = �V�E� be an infinite, locally finite, connected
graph. Fix a vertex 0 ∈ V. The anchored Cheeger constant κ∗�G� for G, is
defined by

κ∗�G� �= lim
n→∞ inf

{
�∂W�
�W� � 0 ∈W ⊆ V�W connected, n ≤ �W� <∞

}
�

If κ∗�G� = 0, G is said to be strongly amenable, and if κ∗�G� > 0, G is said to
be weakly nonamenable.

It is easy to see that the value of κ∗�G�, and hence also the notion of strong
amenability, does not depend on the choice of 0 in V. It is also clear that
κ�G� ≤ κ∗�G� and hence strong amenability implies amenability, or equiva-
lently nonamenability implies weak nonamenability. A graph that is amenable
but not strongly amenable can be obtained by attaching a sequence of paths of
lengths 1�2� � � � at a very sparse sequence of vertices of a nonamenable graph.
In contrast, it is elementary to see that a transitive amenable graph is strongly
amenable (see the Appendix). As we will also mention in the Appendix, replac-
ing “limn→∞” with “infn” in the definition of κ∗�G� will not affect its positivity
(although there will then be a dependence on the vertex 0).

The anchored Cheeger constant was introduced in [6], [Section 6], where
one can find a detailed discussion of the motivation in introducing this object,
references to earlier work which motivated this definition and conjectures on
how it relates to random walks on the graph. It was further studied in [15] and
[56]. In these two papers some fundamental questions from [6] were answered,
including a proof in the former paper that nondegenerate Galton–Watson trees
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are weakly nonamenable and a proof in the latter paper that the lim inf speed
of the symmetric random walk on any weakly nonamenable infinite connected
graph of bounded degree is almost surely strictly positive.

It is usually equally natural to consider site or bond percolation on a graph.
Except in Section 6, we will in this paper only consider site percolation. Results
similar to the ones stated in this context hold also for bond percolation, either
because the same proofs apply, or because bond percolation on a given graph
is identical to site percolation on its cover (line) graph (and the cover graph
of a quasi-transitive graph is also quasi-transitive). Recall that an induced
subgraph is a graph obtained by taking a subset of the vertices and then all
edges between these vertices which were present in the original graph.

In Bernoulli (i.e., i.i.d.) site percolation with retention parameter p ∈ �0�1�
on G = �V�E�, each vertex (site) is independently assigned the value 1 (occu-
pied, open) with probability p, and the value 0 (vacant, closed) with probabil-
ity 1 − p. We write PG

p , or simply Pp, for the resulting probability measure
on �0�1�V. Clusters are the connected components of the graph obtained by
deleting from G all the vacant vertices and all the edges incident to these
vertices. C�x� will denote the cluster containing x (which might be empty). By
Kolmogorov’s zero–one law, the existence of at least one infinite cluster has
probability 0 or 1, and one defines

pc�G� = inf�p ∈ �0�1�� PG
p �∃ an infinite cluster� = 1��

In this paper we will also consider more general stationary (or invariant)
percolation processes on a transitive graph. Such a process can be seen as
simply a probability measure on �0�1�V which is invariant under Aut�G�.
This binary random field is then interpreted in the same way as in the case of
Bernoulli percolation, with clusters having the same definition as above. One
says that the finite energy condition holds if on any finite set of vertices each
configuration of occupied and vacant vertices has positive conditional proba-
bility given any configuration outside of this set. The arguments in [48] show
that for any stationary finite energy percolation on a transitive graph, the
number of infinite clusters is a.s. 0, 1 or ∞. The arguments of [12] show that
if the graph is also amenable, then for any stationary finite energy percolation,
the number of infinite clusters is a.s. 0 or 1.

In both the amenable and nonamenable cases, there has been recent inter-
est in the structure and properties of the infinite cluster(s) that arise from
percolation. For example, in [47] and [6], it is studied whether clusters are
transient for simple random walk. For another example, in [30] and [51] it is
shown that for Bernoulli percolation on a transitive graph G with retention
parameter p > pc�G� every infinite cluster C has pc�C� = pc�G�/p. Other
results concerning properties of infinite clusters can be found, for example, in
[27], [4], [31] and [47] (number of topological ends of the infinite clusters), in
[5] (presence of infinitely many so-called encounter points in infinite clusters),
and in [31] (number of infinite clusters in Bernoulli percolation performed on
the infinite clusters). An interesting type of result obtained in various levels
of generality in [30], [47] and [31], is that, under certain conditions, certain
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types of properties are shared by all the infinite clusters, in that with proba-
bility 1, either they all have the property or they all do not have the property.
This is referred to as indistinguishability. We will return to this type of result
in Section 4.

It is natural to ask whether the amenability or nonamenability of a graph is
“inherited” by the infinite clusters on this graph, at least in the Bernoulli case.
The answer is trivially “yes” when p = 1, but otherwise, and if the graph is of
bounded degree, it is negative, since it is not hard to see that all the infinite
clusters then a.s. contain arbitrarily large chains of vertices with degree 2
(see, e.g., [51], proof of Lemma 1), and therefore are always amenable.

In [6], Question 6.5, it is asked whether for Bernoulli percolation on a non-
amenable graph all the infinite clusters are always weakly nonamenable. In
[15] this is proved to be the case if p is large. On the other hand we observe
here that in general this cannot be the case for reasons that we explain next.
First, we recall that a weakly nonamenable graph has pc < 1, as can be seen,
for example, from [7], proof of Theorem 2. Second, we recall that it is also
known that there exist nonamenable graphs (of bounded degree) on which at
the critical point there is a.s. an infinite cluster. (For this we can take G as
a spherically symmetric tree, meaning that all vertices at the same distance
from a given vertex, called the root, have the same degree, constructed as fol-
lows. Choose the degree of the vertices at distance n from the root recursively
in n, either as 3, if the number of such vertices is more than 2n22n, or as 4,
otherwise. It is clear that for large n, the number of vertices at distance n
from the root will be in the interval �n22n� 4n22n�. Then it is clear that G is
nonamenable, and from [44], Theorem 2.1 we obtain that pc�G� = 1/2 and
that there is percolation on G at criticality.) Now, if such an infinite cluster at
criticality were weakly nonamenable, by performing Bernoulli percolation on
it with a large retention parameter, we would obtain infinite clusters. But then
a standard coupling argument shows that our original nonamenable graph has
infinite clusters at a retention parameter smaller than its critical point, and
this is a contradiction. A minor modification of this example shows that one
can also obtain strongly amenable infinite clusters for Bernoulli percolation
on a nonamenable graph G with retention parameter p > pc�G�. For this
purpose it is enough to connect, by means of a single extra edge, two disjoint
nonamenable graphs, one of which is the one of the previous argument, while
the other has a strictly smaller critical point.

Combining the above-mentioned result from [15] with one of our contribu-
tions in this paper, we state the following result.

Theorem 2.4. Let G be an infinite, locally finite, connected graph.

(i) [15] If G is weakly nonamenable, then for p close to 1, a.s., all the
infinite clusters for Bernoulli percolation on G are weakly nonamenable.

(ii) If G is transitive and amenable, then for any stationary percolation on
G, a.s. all the infinite clusters (if any exist) are strongly amenable.
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The proof of (ii) will be explained after we state Theorem 3.4.
It is clear that the assumption of transitivity cannot be removed in (ii), since

by connecting, by means of a single extra edge, two disjoint graphs, exactly
one of which is amenable, one obtains an amenable graph which will, with
positive probability, contain weakly nonamenable infinite clusters for large p
[as follows by using (i) above].

To put part (ii) of Theorem 2.4 in the proper perspective, we note the fol-
lowing easy result. In this statement, the meaning of subexponential growth
is, as usual, that the number of vertices within distance n from a given vertex
is bounded above by functions of the form C1 exp�C2n�, with C2 arbitrarily
close to 0.

Proposition 2.5. Let G be an infinite, locally finite, connected graph of
subexponential growth. Then every infinite connected subgraph of G is strongly
amenable.

To see why this proposition is true, note that if a graph has subexponential
growth, then all its connected subgraphs also have subexponential growth. On
the other hand, if a graph is weakly nonamenable, then it is clear that the
number of vertices at distance exactly n + 1 from a given vertex 0 is larger
than a fixed positive fraction of the number of vertices within distance n from
0. Hence the number of vertices within distance n from 0 grows exponentially
fast with n.

Proposition 2.5 renders part (ii) of Theorem 2.4 interesting only in the case
of transitive amenable graphs of exponential growth. A well-known example
of such a graph is the so-called lamplighter graph (see, e.g., [37] or [46]). This
graph is known to have induced subgraphs which are Fibonacci trees, in which
vertices have degree 2 or 3, with each vertex of degree 2 connected to at least
one vertex of degree 3. This assures that the Cheeger constant (and hence
that the anchored Cheeger constant) of such a tree is positive. Therefore part
(ii) of Theorem 2.4 contains nontrivial information in this case.

In view of the remarks and results above, it is natural to replace [6],
Question 6.5 with the following one.

Question 2.6. IfG is transitive and nonamenable, is it the case that all the
infinite clusters for any Bernoulli percolation on G are weakly nonamenable?

Note that a positive answer to this question would imply absence of perco-
lation at criticality, by the reasoning explained above. Absence of percolation
at criticality for transitive nonamenable graphs has been established in the
case of graphs with unimodular automorphism groups, in [4] and [5], but the
general transitive nonamenable case remains open.

In the case in which G is a tree, Question 2.6 was answered affirmatively
in [15], Corollary 1.3.

Regarding stationary percolation on nonamenable transitive graphs, it is
not hard to find examples in which there are strongly amenable infinite
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clusters. For instance [27], Examples 6.1–6.3 are all examples of invariant
percolations on homogeneous trees in which all infinite clusters have one or
two topological ends. Such infinite clusters are clearly strongly amenable.

3. Ising model on infinite clusters and persistent transition. We
shall study some aspects of the phase diagram for the Ising model on the
infinite clusters (viewed as graphs in themselves) of a percolation process. In
this section we are mainly interested in whether the phase coexistence region
contains some pair �h�J� with h �= 0. Throughout this paper, we assume
J ≥ 0.

Definition 3.1. Let G = �V�E� be an infinite locally finite graph. Let ν
be a probability measure on �−1�1�V and let X be a random element chosen
according to ν. We say that ν is a Gibbs measure for the Ising model on G
with external field h and coupling constant J if, for all finite sets W ⊆ V, all
ω′ ∈ �−1�1�W and ν-a.a. ω′′ ∈ �−1�1�V\W, we have

P�X�W� = ω′�X�V \W� = ω′′� = 1
Zω′′
W�h�J

exp�haW�ω′� +JbW�ω′�ω′′���(1)

where aW�ω′� = ∑
v∈Wω′�v�, bW�ω′�ω′′� = ∑

u� v∈W∪∂W� u∼v ω�u�ω�v�, Zω′′
W�h�J is

a normalization constant, and ω ∈ �−1�1�V is defined by letting ω�v� be ω′�v�
for v ∈W and ω′′�v� for v ∈ V \W.

It is well known (see, e.g., [22] page 71) that for any infinite graph G,
and for any parameters h and J, there exists a least one Gibbs measure.
The fundamental question of interest is whether there exists more than one
Gibbs measure. When this is the case, we say that phase transition or phase
coexistence occurs. Another well-known result (see, e.g., [16], page 152) is that
in the case of the d-dimensional integer lattice G = Zd, phase transition
cannot occur if h �= 0, whereas if G is the binary tree, then there can be
phase transition for h �= 0 (see [22], page 250). It is natural to ask (in greater
generality) which graphs can have a phase transition for h �= 0; this problem
is studied in [36].

Definition 3.2. We say that a graph G satisfies persistent transition if
for some �h�J� with h �= 0, the Ising model on G with parameters J and h
exhibits phase transition.

Theorem 3.3 [36]. Let G be an infinite, locally finite, connected graph.

(i) If G is weakly nonamenable, then G has persistent transition.
(ii) If G is transitive and amenable, then G does not have persistent

transition.
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In fact, part (i) of this theorem is stated in [36] under the hypothesis that
G is nonamenable, rather than just weakly nonamenable, but in its proof only
weak nonamenability is used. Moreover in [36] the graph is assumed to be of
bounded degree, but this hypothesis can be avoided by using [15], Lemma 2.1
in place of [36], Lemma 3.1 (in conjunction with the inequality �∂W� ≤ �∂EW�,
for an arbitrary set of vertices W, where ∂EW is the edge boundary of W).

Here we extend parts (i) and (ii) of Theorem 3.3 by introducing dilution on
the graph.

Theorem 3.4. Let G be an infinite, locally finite, connected graph.

(i) If G is weakly nonamenable, then for p sufficiently close to 1, a.s. all the
infinite clusters for Bernoulli percolation on G have persistent transition.

(ii) If G is transitive and amenable, then for any stationary percolation on
G, a.s. all the infinite clusters (if any exist) do not have persistent transition.

Part (i) of Theorem 3.4 is an immediate consequence of part (i) of Theorem
2.4 and part (i) of Theorem 3.3. In Section 2, we prove part (ii) of Theorem 3.4.
Part (ii) of Theorem 2.4 is an immediate consequence of part (ii) of Theorem
3.4 and part (i) of Theorem 3.3.

In [19], part (ii) of Theorem 3.4 is proved for the special case G = Zd.
Note that in (ii) under the extra assumption of finite energy there is at most

one infinite cluster to which the statement applies. But this is not necessarily
the case without this extra assumption, and one can have exactly k infinite
clusters for any k ∈ �0�1�2� � � �� ∪ �∞�; see, for example, [13].

Note. When we first proved part (ii) of Theorem 2.4, it was surprising to
us that this geometric statement was proved as a corollary to a statement con-
cerning the Ising model on the infinite clusters. After receiving the first version
of this paper, Oded Schramm (personal communication) found an alternative,
more direct proof of it.

Question 3.5. Is there an analogue of Proposition 2.5 regarding persistent
transition? More precisely, is it the case that if G has subexponential growth,
then every subgraph ofG does not have persistent transition? Surprisingly, even
for the graph Zd, with d > 1, it appears to be difficult to establish whether any
of its subgraphs have persistent transition.

4. The phase diagram of the Ising model on the infinite clusters.
In this section we are concerned with some further properties of the phase
diagram of the Ising model on the infinite clusters of Bernoulli percolation on
a transitive graph H.

Given an infinite, locally finite, connected graph G (not necessarily transi-
tive), define its phase coexistence region as

Coex�G� = ��h�J�� the �h�J�-Ising model on G has phase transition��
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Question 4.1. Consider Bernoulli percolation on a transitive graph. Is it
the case that, when infinite clusters are present, the phase coexistence region of
the Ising model on each one of them is the same?

We are only able to provide some partial answers to this question, as we
explain next.

Theorem 4.2. Let H be an infinite, locally finite, connected transitive
graph. For Bernoulli percolation on H with retention parameter p > pc�H�,
and arbitrary fixed values of h and J, one of the following alternatives holds:
either

PH
p (the (h,J)-Ising model on each infinite cluster has phase transition) = 1�

or else

PH
p (the (h,J)-Ising model on each infinite

cluster does not have phase transition) = 1�

This result is a consequence of [31], Theorem 1.8, concerning indistinguisha-
bility of robust properties. To apply [31], Theorem 1.8, we recall that (in the
context of site percolation) a property � of infinite connected subgraphs of a
transitive graphH is said to be robust if for every infinite connected subgraph
C of H and every vertex x of C, we have the equivalence: C satisfies � iff
there is an infinite connected component of the subgraph of H obtained from
C by deleting from it the vertex x and all edges incident to x that satisfies � .
The robustness of the property that the �h�J�-Ising model has phase transi-
tion on a connected subgraph of H is proved in [19], Theorem 3.1 (for a more
general result, from which this robustness can also be easily derived, see [22],
Theorem 7.33). Theorem 4.2 is therefore established.

For any infinite locally finite connected graph H, and p > pc�H�, define
Coex�H�p� �= ��h�J�:PH

p �the �h�J�-Ising model on some infinite
cluster has phase transition� > 0��(2)

By the robustness property discussed in the previous paragraph and
Kolmogorov’s zero–one law, an equivalent definition would be to require that
the PH

p -probability in (2) is 1. It is an easy consequence of robustness that (2)
is also equivalent to requiring that for any fixed x ∈ V,

PH
p �the �h�J�-Ising model on C�x� has phase transition� > 0�(3)

In the case where H is transitive, the set in (2) is (by Theorem 4.2) the same
as

��h�J�:PH
p �the �h�J�-Ising model on each infinite

cluster has phase transition� = 1��
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For H transitive, it is tempting to conjecture that

PH
p �each infinite cluster C has Coex�C� = Coex�H�p�� = 1�(4)

but we have no proof of this.
Next, set for arbitrary H:

Coex�h� ·��H� = �J: �h�J� ∈ Coex�H���
Coex�h� ·��H�p� = �J: �h�J� ∈ Coex�H�p���

Coex�·�J��H� = �h: �h�J� ∈ Coex�H���
Coex�·�J��H�p� = �h: �h�J� ∈ Coex�H�p���

For arbitrary G, it is well known that Coex�0� ·��G� is an infinite interval
although M. Salzano has an example which shows that Coex�h� ·��G� is not
necessarily an interval if h �= 0. From [53] it is also known that, for each J,
Coex�·�J��G� is an interval. Therefore the following is an easy consequence of
Theorem 4.2.

Corollary 4.3. Let H be an infinite, locally finite, connected transitive
graph. For Bernoulli percolation on H with retention parameter p > pc�H�,

PH
p �each infinite cluster C has Coex�0� ·��C� = Coex�0� ·��H�p�� = 1�

and, for each value of J,

PH
p �each infinite cluster C has Coex�·�J��C� = Coex�·�J��H�p�� = 1�

Given a graph H, it is natural to define

Jc�H�p� = inf Coex�0� ·��H�p�
and

hc�H�p�J� = supCoex�·�J��H�p�
and to ask how these critical values behave. Also set Jc�H� = Jc�H�1�; that
is, Jc�H� is the critical value for the Ising model with zero external field onH.
From [2] and comparison results between site and bond percolation (see [26]
or [29]) we know also that if H has bounded degree, then for p > pc we have
Jc�H�p� < ∞, and limp↘pc�H�Jc�H�p� = ∞. It is well known that Jc�G�
is nonincreasing in G, and therefore Jc�H�p� is nonincreasing in p. Fur-
thermore, it is also known (see, e.g., [14], page 403) that from the arguments
in [18] one can obtain the inequality Jc�H�p� ≥ Jc�H�/p. Applying this
inequality to the infinite clusters at level p2, one obtains, for 0 < p1 < p2 ≤ 1,
Jc�H�p1� ≥ Jc�H�p2�p2/p1, which in particular implies that Jc�H�p� is
strictly decreasing in p in the interval �pc�1�. We will prove, the following
theorem in Section 6,

Theorem 4.4. Let H be any infinite, connected graph of bounded degree.
Then Jc�H�p� is a continuous function of p on the interval �pc�1�.
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This result is different in spirit from our other results, in that it has little
to do with the geometry of H. We do not know whether the bounded degree
assumption is essential (with bond percolation instead of site percolation, it
is not; see Theorem 6.1).

Regarding the behavior of hc�H�p�J�, one can ask similar questions.

Question 4.5. Let H be any infinite, locally finite, connected graph. For
fixed J, is hc�H�p�J� a continuous function of p? Is it a (strictly) decreasing
function of p on �pc�H��1�? If this is false, then perhaps it is true for graphs
of bounded degree, or at least for transitive graphs.

Note that it is not even clear whether hc�H�p�J� is decreasing in p. Indeed,
in [53] it was shown that it is possible for a subgraph to have an Ising model
phase coexistence region larger than the full graph.

5. No persistent transition in the amenable case. In this section we
prove part (ii) of Theorem 3.4. There is no loss of generality in assuming that
our percolation process is ergodic, that is, that the σ-algebra of automorphism
invariant events is trivial under the law of the percolation process. (This is
because stationary processes are mixtures of the ergodic ones. See, e.g., [22],
Section 14.1.) So in this section we add the assumption of ergodicity.

Given an arbitrary graph G (infinite, locally finite and connected as above),
let ν+�J�hG �ν−�J�hG � be the plus (minus) measure for the Ising model with param-
eters J and h on G. These are the measures obtained by taking plus (minus)
boundary conditions on an increasing sequence of sets and taking the limit.
Having phase transition is equivalent to having ν−�J�hG = ν

+�J�h
G (see, e.g., [16,

36 or 53] for details).
We need to create an automorphism invariant measure which represents

our first performing percolation and then to couple monotonically the plus and
minus measures for each of the infinite clusters.

To do this, we first need to construct a canonical coupling of ν+�J�hG and
ν
−�J�h
G for an arbitrary graph G = �V�E� (and for any values for the param-
eters J and h). We do this by considering a Markov chain which has the two
measures above as stationary distributions and by using ideas based on the
Propp–Wilson coupling-from-the-past algorithm (see [50] and [10]).

Let �Ai� t�Ui� t�i∈V� t∈Z� t<0 be independent random variables with P�Ai� t =
1� = 1 − P�Ai� t = 0� = 1/2 and Ui� t uniform on �0�1� for each i and t. The
coupling of ν+�J�hG and ν

−�J�h
G that we will obtain will be measurable with

respect to the above random variables. For t < 0, let ft be the (random) map
from �±1�V to itself given by

�ft�η��i =

ηi� if Ai� t = 0 or Aj� t = 1 for some j ∼ i �∗�,
+1� if �∗� fails and Ui� t < a�η� i�,
−1� if �∗� fails and Ui� t ≥ a�η� i��
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where a�η� i� is the conditional probability, with respect to any Gibbs measure
with parameters J and h, of having a 1 at i given its neighbors agree with η.
It is straightforward (using arguments in [10]) to show that

lim
n→∞�f−1 ◦ f−2 ◦ · · ·f−n�+�� f−1 ◦ f−2 ◦ · · ·f−n�−��

exists always, where + �−� denote the configuration of all 1’s (all −1’s), and
that the distribution of this limit is a coupling of ν+�J�hG and ν

−�J�h
G with the

former coupled stochastically above the latter.
We denote the coupling of ν+�J�hG and ν

−�J�h
G that we have just constructed

by ν+−�J�hG .

Remark. The above immediately yields what we feel is the simplest proof
that the plus and minus states for the Ising model at any temperture for an
amenable group are Bernoulli shifts (in the sense of ergodic theory), a result
originally due to D. Ornstein and B. Weiss for Zd and later extended by S.
Adams to amenable groups.

Lemma 5.1. Fix a transitive graph G = �V�E�, a stationary ergodic per-
colation µ, J ≥ 0, h ≥ 0 and let S �= �0�++�+−�−−�. Then there exists an

automorphism invariant measure µ
J�h
G on SV such that

(i) �x� η�x� ∈ S \ �0�� is equal in distribution to the union of the infinite
components of a µ-percolation on G, and

(ii) Given that the infinite components of �x� η�x� ∈ S\�0�� are �Ci�i∈I, the
distribution of η on the �Ci�’s are conditionally independent with the condi-
tional distribution of η on Ci being such that �x ∈ Ci� η�x� ∈ �++�+−�� is

the same as the distribution of 1’s in ν
+� J�h
Ci

and the conditional distribution

of �x ∈ Ci� η�x� ∈ �++�� is the same as the distribution of 1’s in ν
−�J�h
Ci

.

Proof. If �Ci�i∈I are nonadjacent infinite (induced) subgraphs of G, let
ν
+−�J�h
�Ci� be the measure on SV which is 0 on V\⋃i∈I Ci and is ν+−�J�hCi

on each

Ci, independent for different Ci’s. Finally let µ
J�h
G �= ∫

ν
+−�J�h
�Ci� dP��Ci�� where

P is the distribution of the union of the infinite components of µ-percolation
on G. It is clear that µJ�hG is automorphism invariant and satisfies (1) and (2).

✷

Definition 5.2. Given a (possibly disconnected) graph G = �V�E�, we
call a sequence �Fn�n≥1 of subsets of V a Følner sequence for G if

lim
n→∞

�∂Fn�
�Fn�

= 0�

We write Fn ↗ V if F1 ⊂ F2 ⊂ · · · and ⋃∞
n=1Fn = V.

Lemma 5.3. Let G = �V�E� be a transitive and amenable graph, µ a
stationary ergodic percolation on G and � be the union of the infinite clusters
for µ. Suppose that µ is such that a.s. � is not empty. If �Fn�n≥1 is a Følner
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sequence for G, such that Fn ↗ V, then there exists n1� n2� � � �→ ∞ such that
a.s.,

�Fni
∩ � �i≥1

is a Følner sequence for � , and Fn ∩ � ↗ V ∩ � .

Proof. Let 0 ∈ V be an arbitrary vertex. We have that P�0 ∈ � � > 0.
Theorem A.5 in the Appendix implies that

lim
n→∞

�Fn ∩ � �
�Fn�

= P�0 ∈ � ��
in probability. Hence there exist n1� n2� � � �→∞ such that

lim
i→∞

�Fni
∩ � �

�Fni
� = P�0 ∈ � �

a.s. It is easy to see that

∂� �Fn ∩ � � ⊆ ∂G�Fn��
Hence

�∂� �Fni
∩ � ��

�Fni
∩ � � ≤ �∂G�Fni

��
�Fni

∩ � � =
�∂G�Fni

��
�Fni

�
�Fni

�
�Fni

∩ � � �

Since the first factor approaches 0 and the second factor remains bounded a.s.
the first statement is proved. The second statement that Fn ∩ � ↗ V ∩ � is
trivial. ✷

Proof of Theorem 3.4 (ii). Let µ denote the distribution of the stationary
percolation process and denote by P the measure µJ�hG on SV introduced in
Lemma 5.1. We also let E denote expectation with respect to P. Let x ∈ V be
arbitrary; we are done if we can show that P�η�x� = +−� = 0. For the sake
of deriving a contradiction, we assume that P�η�x� = +−� > 0.

Let Ux = I�η�x�=+−�. From Proposition A.1 and Lemma 5.3, there exists a
Følner sequence �Fn� for G, with the properties that Fn ↗ V and �Fn∩� �n≥1
is a Følner sequence for � µ a.s. where � is the union of the infinite clusters
for µ. By Theorem A.5, we have that

lim
n→∞

1
�Fn�

∑
v∈Fn

Uv = E�U0�� ��

in probability, where E�U0�� � is the projection of U0 onto the automorphism
invariant functions. Hence we can choose ni →∞ such that

lim
i→∞

1
�Fni

�
∑

v∈Fni

Uv = E�U0�� �

a.s. Since Uv = 1 implies that v ∈ � and E�U0�� � is not a.s. 0 [as P�U0 =
1� > 0], we get

lim inf
i→∞

1
�Fni

∩ � �
∑

v∈Fni
∩�
Uv > 0�(5)
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on a set of positive probability. It follows that there exists an integer N and
γ > 0 such that

P�A� ≥ γ�(6)

where

A �=
{

1
�Fni∩� �

∑
v∈Fni

∩�
Uv ≥ γ ∀ i ≥N

}
�

On the other hand, if we condition on � , then the fact that �Fni
∩ � �i≥1

is a Følner sequence for � a.s. allows us to use [36], Proposition 3.2 (applied
to � and the Følner sequence �Fni

∩ � �i≥1, where one also needs to observe
that this proposition holds even if the graph is not connected) to conclude that
there exists a random subsequence �n′

i� = �n′
i�ω�� of �ni� with

lim
i→∞

E

[
1

�Fn′
i
∩ � �

∑
v∈Fn′

i
∩�
Uv

∣∣∣∣∣�
]
= 0

a.s. and hence, by the bounded convergence theorem, we get

lim
i→∞

E

[
1

�Fn′
i
∩ � �

∑
v∈Fn′

i
∩�
Uv

]
= 0�

Hence there exists r ≥N such that

P�B� < γ�(7)

where

B �=
{

1
�Fn′

r
∩ � �

∑
v∈Fn′r∩�

Uv ≥ γ

}
�

However, r ≥N implies that n′
r ≥ nr ≥ nN and hence A ⊆ B, contradicting

equations (6) and (7). ✷

6. Continuity of Jc�H�p�. In this section, we prove Theorem 4.4. We
will first prove an analogous result (without the bounded degree assumption)
with bond percolation instead of site percolation; this is Theorem 6.1 below. For
p ∈ �0�1� andH = �V�E�, write PH

p�bond for the probability measure on �0�1�E
where each edge independently takes value 1 (occupied) or 0 (vacant) with
respective probabilities p and 1 − p. Let pc�bond = pc�bond�H� be the critical
value for bond percolation onH. DefineCoex�H�p�bond� asCoex�H�p�with
PH
p�bond in place of PH

p . Also set Jc�H�p�bond� = inf Coex�0� ·��H�p� bond�. As
Jc�H�p�, the function Jc�H�p�bond� is nonincreasing in p. We shall prove
the following.

Theorem 6.1. Let H be any infinite, locally finite connected graph. Then
Jc�H�p�bond� is a continuous function of p on the interval �pc�bond�1�.
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An important tool in analyzing the Ising model with zero external field is
the (Fortuin–Kasteleyn) random-cluster model; see, for example, [28] for an
introduction to this technique.

Definition 6.2. The random-cluster measure φr�q
G with parameters r ∈

�0�1� and q > 0 for a finite graph G = �V�E�, is the probability measure on
�0�1�E which to each η ∈ �0�1�E assigns probability

φ
r�q
G �η� = rn1�η��1− r�n0�η�qk�η�

Z
r�q
G

�

where n0�η� (resp. n1�η�) is the number of edges taking value 0 (resp. 1) in η,
k�η� is the number of connected components in η and Z

r�q
G is a normalizing

constant.

The key to drawing conclusions about the Ising model from the random-
cluster model is the following well-known result. (Note that the Ising model
on a finite graph of course has a unique Gibbs measure.)

Proposition 6.3. Let G = �V�E� be a finite graph, fix r ∈ �0�1� and con-
sider the following way of picking a random spin configuration X ∈ �−1�1�V.
First, pick a random edge configuration Y ∈ �0�1�E according to the random-

cluster measure φ
r�2
G . Then toss an independent fair coin for each connected

componentC inY to decide whether all vertices v ∈ C should take valueX�v� =
−1, or whether they all should take value +1. Then X is distributed according
to the Gibbs measure for the Ising model on G with J = −1/2 log�1 − r� and
h = 0.

Next, we consider another model living on the edge set of G, which we
can view as an edge-diluted random-cluster model. Fix p� r ∈ �0�1�, and let
ψ
r�2� p
G be the probability measure on �−1�0�1�E corresponding to first assign-

ing value −1 independently to each edge with probability 1 − p, and then
assigning values 0 and 1 to the remaining edges according to the random-
cluster measure with parameters r and q = 2 on the subgraph of G obtained
by deleting all edges with value −1.

Also let ψ̃r�2� p
G be the probability measure on �0�1�E corresponding to first

picking Y ∈ �−1�0�1�E according to ψr�2� p
G , and then obtaining Ỹ ∈ �0�1�E

by letting Ỹ�e� = max�0�Y�e�� for each e ∈ E (i.e., by changing all −1’s to 0’s
in Y).

Suppose now that we pick Ỹ ∈ �0�1�E according to ψ̃r�2� p
G , and then pick

X ∈ �0�1�V by assigning independent random spins (−1 or 1 with probability
1
2 each) to the connected components of Ỹ. It follows from the construction
and Proposition 6.3 that X has the same distribution as the Ising model with
parameters J = − 1

2 log�1−r� and h = 0 on the percolation clusters of G under
PG
p�bond. [This fact will be implicitly used in (14) below.]
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Next, we need to discuss stochastic domination in some detail. For two con-
figurations η�η′ ∈ �0�1�E, we write η " η′ if η�e� ≤ η′�e� for all e ∈ E. For two
probability measures P and P′ on �0�1�E, we say that P is stochastically dom-
inated by P′, writing P "� P′, if there exists a pair �Y�Y′� of �0�1�E-valued
random variables such that (i) Y has distribution P, (ii) Y′ has distribution
P′ and (iii) Y " Y′ with probability 1.

The following stochastic domination result is a major step towards proving
Theorem 6.1.

Proposition 6.4. Let G = �V�E� be a finite graph, and fix r� r′ ∈ �0�1�
such that r < r′. We then have

φ
r�2
G

�" ψ̃r′�2� p

whenever

p ≥ r

r′
�(8)

The proof of this result is based on Holley’s lemma [32], a close variant of
which we state (and will use) next; see also [28] for a formulation (and a proof)
which includes the variant stated here.

Lemma 6.5 [32]. Let P and P′ be two probability measures on �0�1�E,
where E is any finite set, and assume that P and P′ both assign positive
probability to every element of �0�1�E. Let Y and Y′ be �0�1�E-valued ran-
dom objects with distributions P and P′. Suppose that for every e ∈ E and all
η�η′ ∈ �0�1�E\�e� such that η " η′ we have

P�Y�e� = 1�Y�E \ �e�� = η� ≤ P′�Y′�e� = 1�Y′�E \ �e�� = η′��
Then P "� P′.

Proof of Proposition 6.4. Fix G�r� r′ and p as in the proposition. Fix an
edge e ∈ E connecting two vertices x�y ∈ V. For η ∈ �0�1�E\�e�, write x↔η y
(resp. x �↔η y) to indicate that there exists (resp. does not exist) a path of
open edges in η from x to y. It is immediate from Definition 6.2 that

φ
r�2
G �Y�e� = 1 � Y�E \ �e�� = η� =

{
r� if x↔η y,
r

2−r if x�↔ηy.
(9)

Since the event x ↔η y is increasing in η, we are done (using Lemma 6.5) if
we can show that

ψ̃
r′�2� p
G �Ỹ�e� = 1 � Ỹ�E \ �e�� = η� ≥ r on the event x↔ηy(10)

and

ψ̃
r′�2� p
G �Ỹ�e� = 1 � Ỹ�E \ �e�� = η� ≥ r

2− r
on the event x�↔ηy�(11)
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To prove (10), it suffices to show that

ψr′�2� p�Y�e� = 1 � Y�E \ �e�� = η� ≥ r

for all η ∈ �−1�0�1�E\�e� such that x ↔η y (where an edge e′ counts as open
in η if and only if η�e′� = 1). Fix such an η. From the construction of ψr′�2� p,
it is immediate that

ψr′�2� p�Y�e� = 1 � Y�E \ �e�� = η�
ψr′�2� p�Y�e� = 0 � Y�E \ �e�� = η� =

r′

1− r′
�(12)

Next, let ˜̃
Y denote the �−1�0�E-valued random element obtained by picking

Y ∈ �−1�0�1�E according to ψr′�2� p and then letting ˜̃
Y�e′� = min�Y�e′��0� for

each e′ ∈ E (so that ˜̃Y indicates only which edges are removed in the dilution
step). We obtain ˜̃η from η similarly. Note that for any finite graph H, the
random-cluster measure with given parameter values on H conditioned on a
given edge e′ being absent, is the same as the (unconditioned) random-cluster
measure with the same parameter values on the graph obtained from H by
removing e′. Hence,

ψr′�2� p
(
Y�E \ �e�� = η � Y�e� = 0� ˜̃Y�E \ �e�� = ˜̃η

)
ψr′�2� p

(
Y�E \ �e�� = η � ˜̃Y�e� = −1� ˜̃Y�E \ �e�� = ˜̃η

) = 1�

Note also that

ψr′�2� p
(
Y�e� = 0 � ˜̃Y�e� = 0� ˜̃Y�E \ �e�� = ˜̃η

)
≥ 1− r′

using (9). Combining these observations, we get

ψr
′�2�p

(
Y�e�=0�Y�E\�e��=η � ˜̃Y�e�=0� ˜̃Y�E\�e��= ˜̃η

)
ψr

′�2�p
(
Y�E\�e��=η � ˜̃Y�e�=−1� ˜̃Y�E\�e��= ˜̃η

)

=
ψr

′�2�p
(
Y�E\�e��=η �Y�e�=0� ˜̃Y�E\�e��= ˜̃η�ψr′�2�p�Y�e�=0 � ˜̃Y�e�=0� ˜̃Y�E\�e��= ˜̃η

)
ψr

′�2�p
(
Y�E\�e��=η � ˜̃Y�e�=−1� ˜̃Y�E\�e��= ˜̃η

)
≥ 1−r′�
It follows that
ψr

′�2�p�Y�e�=0 �Y�E\�e��=η�
ψr

′�2�p�Y�e�=−1 �Y�E\�e��=η� =
ψr

′�2�p�Y�e�=0�Y�E\�e��=η��
ψr

′�2�p�Y�e�=−1�Y�E\�e��=η��

= ψr
′�2�p�˜̃Y�e�=0� ˜̃Y�E\�e��= ˜̃η�ψr′�2�p�Y�e�=0�Y�E\�e��=η � ˜̃Y�e�=0� ˜̃Y�E\�e��= ˜̃η�
ψr

′�2�p�˜̃Y�e�=−1� ˜̃Y�E\�e��= ˜̃η�ψr′�2�p�Y�E\�e��=η � ˜̃Y�e�=−1� ˜̃Y�E\�e��= ˜̃η�

≥ p�1−r′�
1−p �
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Combining this with (12), we get

ψr′�2� p�Y�e� = 1 � Y�E \ �e�� = η�

≥ 1

1+ 1−r′
r′ �1+ 1−p

p�1−r′� �
= pr′ ≥ r�

where we used (8). So (10) is established. A similar calculation shows that (11)
holds whenever (8) holds, so that the proposition follows. ✷

Now let H = �V�E� be an infinite locally finite connected graph as in
Theorem 6.1. Let F1�F2� � � � be a sequence of finite subsets of V such that
F1 ⊂ F2 ⊂ · · · and ⋃∞

i=1Fi = V. For each i, let 7i be the (finite) graph whose
vertex set V7i

is Fi ∪�8�, where 8 is an auxiliary vertex, and whose edge set
E7i

consists of:

(i) The edges in E that connect two vertices in Fi, and
(ii) For each edge in E that connects some x ∈ Fi to some y ∈ V \Fi, we

include an edge $x�8% in E7i
.

Fix x ∈ F1. It is well known (see e.g., [28]) and easy to show using Proposi-
tion 6.3, that the Ising model onH with coupling constant J and zero external
field, has phase transition if and only if

lim
i→∞

φ
r�2
7i

�x↔ 8� > 0�(13)

where r = 1 − e−2J. By similar arguments, it is easy to see that the Ising
model with coupling constant J′ and zero external field on the union of the
clusters ofH obtained with Bernoulli percolation with parameter p, has phase
transition if and only if

lim
i→∞

ψ̃
r′�2� p
7i

�x↔ 8� > 0�(14)

where r′ = 1 − e−2J
′
. [That the limits in (13) and (14) exist follows from

standard stochastic monotonicity arguments based on Holley’s lemma.]
Suppose now that

J′ ≥ −1
2
log

(
e−2J + p− 1

p

)
�

which is equivalent to p ≥ r/r′. By Proposition 6.4, we then have that

φ
r�2
7i

�x↔ 8� ≤ ψ̃
r′�2� p
7i

�x↔ 8��

By letting i → ∞ and using (13) and (14), we arrive at the conclusion that
if the �0�J�-Ising model on H has phase transition, then so does the �0�J′�-
Ising model on the union of the clusters ofH obtained from Bernoulli (p) bond
percolation. This immediately implies the following result.
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Lemma 6.6. Let H = �V�E� be an infinite, locally finite connected graph
satisfying Jc�H� <∞. For any p > 1− exp�−2Jc�H��, we have

Jc�H�p�bond� ≤ −1
2
log

(
exp�−2Jc�H�� + p− 1

p

)
�(15)

In particular,

lim
p↗1

Jc�H�p�bond� = Jc�H��

Proof of Theorem 6.1. Continuity of Jc�H�p�bond� at p = 1 was estab-
lished in Lemma 6.6; what remains is to prove continuity for p ∈ �pc�1�. Fix
such a p. Let ε > 0 be arbitrary and let J = Jc�H�p�bond� + ε. Now fix an
arbitrary x ∈ V and define the event

Ex �= �Jc�C�x�� ≤ J��
Then, by (3), we have PH

p�bond�Ex� > 0. Note that for p′ < p, Bernoulli (p′) bond
percolation onH can be obtained by first performing Bernoulli (p) percolation
on H, and then doing Bernoulli (p′/p) percolation on the clusters of the first
percolation. If ρ > 1 − e−2J, then ρ > 1 − exp�−2Jc�C�x��� for ω ∈ Ex and
hence by (15), we have that for ω ∈ Ex,

Jc�C�x�� ρ�bond� ≤ −1
2
log

(
exp�−2Jc�C�x��� + ρ− 1

ρ

)
≤ −1

2
log

(
e−2J + ρ− 1

ρ

)
�

Hence by (3), for ω ∈ Ex,

PC�x�
ρ�bond

(
Jc�C̃�x�� ≤ −1

2
log

(
e−2J + ρ− 1

ρ

)
+ ε

)
> 0�

where C̃�x� is the cluster of x when performing ρ percolation on C�x� and so

PH
pρ�bond

(
Jc�C�x�� ≤ −1

2
log

(
e−2J + ρ− 1

ρ

)
+ ε

)
> 0�

This gives that

Jc�H�pρ�bond� ≤ −1
2
log

(
e−2J + ρ− 1

ρ

)
+ ε�

which establishes the left continuity, as ε > 0 is arbitrary.
As for the right continuity, assume for contradiction that for some p > pc,

we have that

δ �= Jc�H�p�bond� − lim
ε↘0

Jc�H�p+ ε�bond� > 0�
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For any ε > 0, we then have by (3) that

PH
p+ε�bond

(
Jc�C�x�� ≤ Jc�H�p�bond� − 3δ

4

)
> 0�

Choose ε > 0 such that
p

p+ ε
> 1− exp

(
−2

[
Jc�H�p�bond� − 3δ

4

])
and

−1
2
log

(
exp�−2�Jc�H�p�bond� − �3δ�/4�� + �p/�p+ ε�� − 1

�p/p+ ε�
)

+ε < Jc�H�p�bond� − δ

2
�

LetE be the event that under (p+ε) percolation, Jc�C�x�� ≤ Jc�H�p�bond�−
3δ/4. On E (which has positive probability), we have that

p

p+ ε
> 1− exp�−2Jc�C�x����

Hence, on the event E, (15) [together with (3)] implies that when we perform
Bernoulli (p/p+ ε) percolation on C�x�, the (new, smaller) cluster of x has a
Jc value smaller than

−1
2
log

(
exp�−2Jc�C�x��� + �p/p+ ε� − 1

�p/p+ ε�
)
+ ε

with positive probability. On E, the latter is at most

−1
2
log

(
exp�−2�Jc�H�p�bond� − 3δ/4�� + �p/p+ ε� − 1

�p/p+ ε�
)
+ ε�

which in turn is less thanJc�H�p�bond�−δ/2. Hence, under PH
p�bond,Jc�C�x��

is less than Jc�H�p�bond� − δ/2 with positive probability, contradicting the
definition of Jc�H�p�bond�. ✷

We finally want to bring Lemma 6.6 and Theorem 6.1 over to a site perco-
lation setting. To this end, we want to be able to stochastically compare site
percolation on H to bond percolation on H. It is not immediately clear what
such a stochastic domination should mean, since the measures PH

p and PH
p�bond

are defined on different spaces (�0�1�V and �0�1�E, respectively). However,
a site percolation process is naturally identified with a (usually dependent)
bond percolation process in which a bond e = $x�y% is considered to be open
if and only if the two vertices x and y are open. We denote by P̃H

p′ the prob-
ability measure for a bond model which arises from an i.i.d. site model with
parameter p′ in this way. Note that the components in a site model are always
induced subgraphs, while for bond models this is not true. However, a bond
model constructed from a site model as above has all of its components being
induced subgraphs and moreover, the infinite components in this bond model
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are precisely the same as the infinite components in the original site model.
With this identification in mind, we have the following stochastic domination.

Lemma 6.7. Let H = �V�E� be a bounded degree graph in which each
vertex has at most D neighbors. If p and p′ satisfy

p′ = 1− �1−√
p�D�(16)

then

PH
p�bond

�" P̃H
p′ �(17)

For the proof, see ([47], Remark 6.2), which was motivated by the results
in [41].

Lemma 6.8. LetH = �V�E� be an infinite, locally finite graph with degrees
bounded by D and Jc�H� <∞. For any p′ satisfying(

1− �1− p′�1/D
)2

> 1− exp�−2Jc�H���

we have

Jc�H�p′� ≤ −1
2
log

(
exp�−2Jc�H�� + �1− �1− p′�1/D�2 − 1

�1− �1− p′�1/D�2
)
�(18)

In particular,

lim
p′↗1

Jc�H�p′� = Jc�H��

Proof. Choose p so that (16) holds. A simple computation shows that
p = (

1− �1− p′�1/D)2 and so Lemma 6.6 gives

Jc�H�p�bond� ≤ −1
2
log

(
exp�−2Jc�H�� + p− 1

p

)
�

which equals

−1
2
log

(
exp�−2Jc�H�� + �1− �1− p′�1/D�2 − 1

�1− �1− p′�1/D�2
)
�

By Lemma 6.7 (and the comments above it), we have that Jc�H�p′� ≤ Jc�H�
p�bond�, completing the proof. ✷

Proof of Theorem 4.4. This follows by applying Lemma 6.8 in the same
way that Lemma 6.6 was used to prove Theorem 6.1.
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APPENDIX

Remarks on the definition of amenability and strong amenability,
and a mean ergodic theorem. It is clear that according to Definition 2.2
an infinite, locally finite, connected graph G = �V�E� is amenable iff there
exists a Følner sequence for it, that is, a sequence �Wn�n≥1 of finite subsets of
V such that

lim
n→∞

�∂Wn�
�Wn�

= 0�(19)

Note that clearly we must have limn→∞ �Wn� = ∞, for (19) to hold. The proposi-
tions below address the issue of whether additional conditions can be imposed
on the sequence �Wn�n≥1. As before, we write Wn ↗ V if W1 ⊂ W2 ⊂ · · · and
∪∞
n=1Wn = V.

Proposition A.1. Suppose that G = �V�E� is an infinite, locally finite,
connected graph. Then G is amenable iff there exists a sequence �Wn�n≥1 of
finite subsets of V such that Wn ↗ V and (19) holds.

Proof. We know that there exists a sequence of finite subsets of V,
�W′

n�n≥1, such that

lim
n→∞

�∂W′
n�

�W′
n�

= 0 and lim
n→∞ �W′

n� = ∞�(20)

Fix an arbitrarily 0 ∈ V and let B�r� be the set of vertices within distance r
of 0. Given a sequence of integers �nk� going to infinity, define �Wk� by

Wk �=Wk−1 ∪B�k� ∪W′
nk
�

For any sequence �nk�, it is clear that Wk ↗ V. In addition, it is easy to see
that if the nk’s are chosen sufficiently sparsely, then �Wk� will be a Følner
sequence. ✷

Proposition A.2. Suppose that G = �V�E� is an infinite, connected graph
of bounded degree. Then G is amenable iff there exists a sequence �Wn�n≥1 of
connected finite subsets of V such that (19) holds.

Proof. We know that there exists a sequence �W′
n�n≥1 such that (20) holds.

Write W′
n = ∪i∈InW′

n� i, where W′
n� i, i ∈ In are the connected components

of W′
n.

We claim that there exists a sequence �in�n≥1, in ∈ In, such thatWn =W′
n� in

satisfies (19). To justify this claim, suppose otherwise. Then there exists ε > 0
and a strictly increasing sequence �nj�j≥1, limj→∞ nj = ∞, such that for all
j and all i ∈ Inj , we would have �∂W′

nj� i
� ≥ ε�W′

nj� i
�.

Let D be the maximal degree of G. Then

�∂W′
nj
� ≥ 1

D

∑
i∈Inj

�∂W′
nj� i

� ≥ ε

D

∑
i∈Inj

�∂W′
nj� i

� = ε

D
�W′

nj
��

which contradicts (20). ✷
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The conditions in the two propositions above cannot be combined, since we
know that strong amenability is distinct from amenability. However, Proposi-
tion A.1 has the following analogue for strong amenability.

Proposition A.3. Suppose thatG = �V�E� is an infinite, locally finite, con-
nected graph. Then G is strongly amenable iff there exists a sequence �Wn�n≥1
of finite connected subsets of V such that Wn ↗ V and (19) holds.

Also regarding the notion of strong amenability, it is worth mentioning that
instead of using the anchored Cheeger constant, it can be defined in terms of
the constant

κ′�G� �= inf
{ �∂W�
�W� � 0 ∈W ⊆ V�W connected, �W� <∞

}
�

Clearly κ�G� ≤ κ′�G� ≤ κ∗�G�, with strict inequalities being possible. More-
over, the value of κ′�G� depends on the choice of 0, while that of κ∗�G� does
not. For these reasons, κ∗�G� is generally a better constant than κ′�G� when
one is interested in estimating critical points and other numerical features of
the graph. But note that κ∗�G� = 0 iff κ′�G� = 0, so that κ′�G� = 0 is an equiv-
alent definition of strong amenability. This observation provides the following
corollary to Proposition A.2.

Proposition A.4. Suppose that G is an infinite, locally finite, transitive
graph. Then G is amenable iff it is strongly amenable.

The following is a mean ergodic theorem for stationary processes on amen-
able transitive graphs. It might be well known but we include it here, since
we could not find it in the literature.

Theorem A.5. Let G = �V�E� be an infinite locally finite transitive amen-
able graph, and 0 be a fixed element ofV. Let �S�� � be a measurable space and
µ be an automorphism invariant probability measure on �SV�� V� such that∫ �η0�2dµ�η� < ∞. If �Fn�n≥1 is a Følner sequence for G, such that Fn ↗ V,
then

lim
n→∞

1
�Fn�

∑
v∈Fn

ηv = E�η0�� �

in L2�SV�� V�µ�, where � is the σ-algebra of invariant events in � V.

Proof. Let = be the set of automorphisms of G, with the topology of point-
wise convergence. It is well known (see, e.g., [57]) that = is a locally compact
group with a subbasis for its topology given by the countable collection of
open-compact sets =u�v = �γ ∈ G� γ�u� = v�� u� v ∈ V.

In [55] (see also [4]), it is shown that G being amenable and transitive
implies that = is unimodular, measuring that a left Haar measure, m�·�, is
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also a right Haar measure. Choose a representative, gv, from each =0� v. Since
=u�v = gv=0�0g

−1
u , it follows that

m�=u�v� does not depend on u� v ∈ V�(21)

Set =v = =0� v and

F̃n �= �γ ∈ =� γ−1�0� ∈ Fn� =
⋃
v∈Fn

=−1v �

Then each F̃n is a compact set and F̃n ↗ =. Moreover, using (21) and the fact
that the Fn’s are a Følner sequence for G, one can show that �F̃n�n≥1 is a
Følner sequence for = in the sense that

lim
n→∞

m�KF̃n'F̃n�
m�F̃n�

= 0�

for any compact set K in =. A proof of this claim is contained in the proof of
the “if” part of [4], Theorem 3.9 (in this proof the authors assume that the set
K contains the identity; to see that no generality is lost see [23], Lemma 4.2).

We can now apply [23] Corollary 3.4, to get

lim
n→∞

1

m�F̃n�
∫
F̃n

ηγ−1�0� dm�γ� = E�η0�� ��

in L2. ([23] Corollary 3.4 does not identify the limit in this fashion, but by
applying it to the random variables η01A, with A ∈ � , and taking expecta-
tions, one can see that the limit fits the definition of E�η0�� �.)

By decomposing F̃n into a union of sets =−1v = =v�0 and using (21), one can
easily show that for any n,

1

m�F̃n�
∫
F̃n

ηγ−1�0� dm�γ� = 1
�Fn�

∑
v∈Fn

ηv�

giving us the result. ✷

The mean ergodic theorem above can be extended to quasi-transitive
graphs, by combining the arguments in its proof with [4], Lemma 3.10 and
Proposition 3.6. The result can be stated as follows, where we are using nota-
tion introduced in the proof above.

Theorem A.6. Let G = �V�E� be an infinite locally finite quasi-transitive
amenable graph, and �01� � � � �0L� be a complete set of representatives in V of
the orbits of the automorphism group of G. Let �S�� � be a measurable space,
and µ be an automorphism invariant probability measure on �SV�� V� such
that

∫ �η0i�2 dµ�η� < ∞, i = 1� � � � �L. If �Fn�n≥1 is a Følner sequence for G,
such that Fn ↗ V, then

lim
n→∞

1
�Fn�

∑
v∈Fn

ηv =
L∑
i=1

E�η0i �� �
m�=0i�

�
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in L2�SV�� V�µ�, where � is the σ-algebra of invariant events in � V, and
m�·� is normalized in such a way that

∑
i=1� ����L�m�=0i��−1 = 1.
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34 151–178.
[41] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product mea-

sures. Ann. Probab. 25 71–95.
[42] Lyons, R. (1989). The Ising model and percolation on trees and tree-like graphs. Comm.

Math. Phys. 125 337–353.
[43] Lyons, R. (1990). Random walk and percolation on trees. Ann. Probab. 18 931–958.
[44] Lyons, R. (1992). Random walk, capacity and percolation on trees. Ann. Probab. 20

2043–2088.
[45] Lyons, R. (1995). Random walks and the growth of groups. C. R. Acad. Sci. Paris Ser. I

Math. 320 1361–1366.
[46] Lyons, R., Pemantle, R. and Peres, Y. (1996). Random walks on the lamplighter group.

Ann. Probab. 24 1993–2006.
[47] Lyons, R. and Schramm, O. (1999). Indistinguishability of percolation clusters. Ann.

Probab. 27 1809–1836.



ISING MODEL ON GRAPHS 1137

[48] Newman, C. M. and Schulman, L. S. (1981). Infinite clusters in percolation models.
J. Statist. Phys. 26 613–628.

[49] Newman, C. M. and Wu, C. C. (1990). Markov fields on branching planes. Probab. Theory
Related Fields 85 539–552.

[50] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures Algorithms 9 223–252.

[51] Schonmann, R. H. (1999). Stability of infinite clusters in supercritical percolation. Probab.
Theory Related Fields 113 287–300.

[52] Schonmann, R. H. (1999). Percolation in ∞+ 1 dimensions at the uniqueness threshold.
In Perplexing Probability Problems: Festschrift in Honor of Harry Kesten (M. Bramson
and R. Durrett, eds.) 53–67. Birkhäuser, Boston.
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