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INTERSECTING RANDOM HALF-SPACES: TOWARD THE
GARDNER–DERRIDA FORMULA1

By Michel Talagrand

University of Paris VI and Ohio State University

Gardner and Derrida have introduced a natural version of the problem
of the capacity of the binary perceptron “with temperature,” and they pro-
posed (based on “physical” methods) remarkable formulas for this model.
We give a complete rigorous proof that these formulas are correct at suffi-
ciently high temperature for a much larger class of models.

1. Introduction. Throughout the paper,N denotes a (very large) integer,
and �N denotes the discrete cube �−1�1�N. ConsiderM independent random
half-spaces through the origin. How large should M be so that their typical
intersection with �N be empty? This problem arises from the theory of neu-
ral networks, where it is known as the problem of the capacity of the binary
perceptron. More generally, what is the “typical size” of the intersection of �N
with these half-spaces? The point here is that “typical size” is very different
from “average size” (and usually much smaller). These important geometric
questions motivate the present paper. While they originated in the theory of
neural networks, we find that the appeal of these problems go well beyond
their origins, and the present paper certainly assumes no knowledge whatso-
ever about neural networks. (The reader is referred to [5] for an introduction
to these.) This paper is (at least in principle) self-contained. The approach and
its motivation will be briefly outlined below. The paper is, however, part of a
larger program that is described in [11].

Random half-spaces involve random directions. These are modeled by a
sequence ��k�k≤M independently uniformly distributed over �N. Equivalently,
�k = �ξki �i≤N, where the variables ξki are independent Bernoulli random vari-
ables, that is, take values 1 or −1 with equal probability 1/2. Corresponding
random half-spaces are then obtained as{

x ∈ �N	 �k ·x = ∑
i≤N
ξki xi ≥ 0

}



This definition of “random directions” is motivated by the origin of the question
(the binary perceptron). From the point of view of geometry, it would be more
natural to set �k = �gki �i≤N where �gki � are independent N�0�1�. For the
purpose of the present discussion, let us refer to this situation as the “Gaussian
model” in contrast with the previously defined “Bernoulli model” that will be
considered in this paper. It turns out that for the problems we will consider,
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726 M. TALAGRAND

the answers are the same in the Gaussian model and in the Bernoulli model,
but the Bernoulli model is technically harder. Thus the reader interested in the
Gaussian model should have no problem in adapting our results to this case.

Rather than simply trying to compute the typical size of the intersection
of �N with random half-spaces, it turns out to be very helpful to consider a
more general problem that we describe now. Consider a function u from � to
�, and the random function

HN�M��� =
∑
k≤M

u

(
�k ·�√
N

)
(1.1)

on �N. If we denote by µN the uniform probability on �N, we can then consider
the random probability G = GN�M on �N given by

GN�M
(���) = exp

(
HN�M���

)
Z

(1.2)

where Z = ZN�M is the normalizing factor

Z =
∫

exp
(
HN�M���

)
dµN���
(1.3)

Thus, in the “limiting case,”

eu�x� = 1�x≥κ�(1.4)

then

ZN�M = µN�H�κ���
where

H�κ� =
{
� ∈ �N� ∀ k ≤M� �k ·� ≥ κ

√
N
}

is the intersection of �N with M random half-spaces at distance κ from the
origin, and GN�M is the uniform probability on H�κ�.

It turns out that the interesting case is whenM is a proportion ofN. Given
a number α, and writing αN for �αN�, we are interested in computing

lim
N→∞

1
N
E logZN�αN
(1.5)

It turns out from general principles [8] that the random variable

1
N

logZN�M

is nearly constant for largeM, so that (1.5) somehow amounts to studying the
“typical value” of ZN�M.

In summary of this discussion, if we know how to compute (1.5) in the case
(1.4) [or at least in cases from which (1.4) could be recovered by a limiting
argument], we would know the typical value of N−1 logµN�H�κ��. Unfortu-
nately, we do not know how to do this in general. The main result of the
paper is the computation of (1.5) under conditions on α�u that amount to
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a “high temperature hypothesis” in statistical mechanics. The reader who is
familiar with statistical mechanics would expect, rather than (1.3), to read

Z =
∫

exp
(−βHN�M���

)
dµN����(1.6)

where β is a parameter that represents the inverse of the temperature. How-
ever, all our constructions will be made at fixed temperature, and the condi-
tions will be expressed in term of u, so that the study of (1.6) reduces to the
study of (1.5) by replacing u by −βu.

Since this is a domain where work of rather different nature to our own
has been done, we must comment on this even before we state our results.

The case that has been considered in the literature is

eu�x� = e−β + �1− e−β�1�x≥κ�(1.7)

for some parameters β�κ, of which (1.4) is itself the “limiting case” β = ∞.
Equivalently to (1.7) (since adding a constant to u changes nothing) is the
case

u�x� = −β1�x≥κ�
(1.8)

In cases (1.4) and (1.7), Gardner [3] and Gardner and Derrida [2] have pro-
posed formulas for (1.5). These formulas are derived using the replica method.
While replica formalism is certainly an impressive way to guess magic formu-
las, it is currently far from being a rigorous method. It is, in fact, to shed
light upon the magic formula of [3] that Mézard [7] proposed an alternative
approach to the problem using the “cavity method.” Mézard’s paper (which
had a considerable influence upon the present work) explains the mysteries
of Gardner’s formula, but makes no attempt to be rigorous. It seems to us
that replacing Mézard’s “physical” arguments by provable estimates is not a
trivial task, and that, in fact, his approach has to be considerably modified for
this purpose (perhaps beyond recognition). Most important, Mézard derives
his results from a condition that will be called here “the replica symmetric
condition” (the RS condition) and that we will explain below. This condition
physically means that “the system governed by the Gibbs measure (1.2) has
only one state” (to be precise, this statement is only part (1.10) of the condition
RS to be considered below) and is accepted by Mézard on physical grounds.
Our aim, on the other hand, is to prove that this condition holds. Doing this
rigorously requires a work of a different magnitude from just deriving the
value of (1.5) from this expression.

Let us now explain what the RS condition is and some of our notation. Aver-
ages with respect to the Gibbs measure (1.2) will be denoted by �·�. Expectation
and probability with respect to the variables �k (that we will call the disorder)
will be denoted byE andP, respectively. The idea of replicas simply consists in
taking products of the probability space (�N�G). Of importance in particular
is the function

����′� → 1
N

� ·�′
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on �2
N. The RS condition simply means that this function is essentially con-

stant, and more precisely,

There is a’ number q such that lim
N→∞

E

〈(
1
N

� ·�′ − q
)2〉

= 0
(1.9)

There, of course, the bracket �·� denotes a double integration∫ ∫ ( 1
N

� ·�′ − q
)2

dG���dG��′�


The limit in (1.9) is taken at M = αN. It will turn out to be convenient to
break (1.9) into two parts, namely,

lim
N→∞

E

〈(
1
N

� ·�′ − 1
N
�����2

)2〉
= 0�(1.10)

lim
N→∞

E

(
1
N
�����2 − q

)2

= 0
(1.11)

Condition (1.10) physically means that “the system has one single pure state”
as is explained in detail in [11]. Condition (1.11) means that the important
parameter �1/N��� ·�′� = �1/N������2 = �1/N�∑i≤N�σi�2 of the system is
essentially nonrandom.

When we consider the general case rather than simply the case (1.7), what
conditions is it reasonable to impose upon u? A case of particular interest
is when u�x� = βx2/2, the case of the famous Hopfield model [4]. A specific
feature of this case is that when � = �k, the contribution of the corresponding
term in (1.1) is already of order N, so that there is considerable “attraction”
of the system towards �k (an attraction that results in the system breaking
into a number of different states; see, e.g., [1], [9]). The case of (1.7) shows
that here we are not interested in this type of phenomenon, but rather in the
case where u is bounded.

We now formally state our results. Throughout the paper we assume

∀ x� �u�x�� ≤ D
(1.12)

Theorem 1.1. There is a number α0�D� > 0 with the following property.
Consider a function u: � → �, that satisfies (1.12), and that is continuous
except possibly at finitely many points. Consider α ≤ α0�D�, and the system of
equations

q = Eth2(z√q̂)�(1.13)

q̂ = αE�2(z√q� q)�(1.14)

where, for x ∈ �� y ∈ �0�1�,

��x�y� = Eh expu�x+ h√1− y�√
1− yE expu�x+ h√1− y�(1.15)
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and where h� z are N�0�1� random variables. Then this system has a unique
solution q = q�α�� q̂ = q̂�α�. Consider the function

RS�α� = 1
2 q̂�1− q� +E log

(
2 ch z

√
q̂
)

+ αE logEh expu
(
z
√
q+ h√1− q)�(1.16)

where Eh denotes expectation in h only. Then for α ≤ α0�D�� M = �αN� we
have

lim
N→∞

1
N
E logZN�M = RS�α�
(1.17)

In this theorem, we have not tried to reach the weakest possible regularity
conditions on u. Conditions (1.12) could be replaced by the condition

�u�x�� ≤ D�1+ �x�θ�
for θ < 2. It is however rather straightforward to do this, and certainly the
problem is difficult enough that there is no need to introduce secondary com-
plications. We do not know what is the best possible type of dependence of
α0�D� upon D. Our arguments currently give an estimate α0�D� ≥ exp�−LD�
where L is a number.

The reader observes that Theorem 1.1 does not say that (1.9) holds. In a
case where u is not smooth, such as (1.7), we do not know whether this is the
case, even when α is very small. In fact, it even seems to us that in this case,
the heuristic arguments of [7] (that do not attempt to prove (1.9) but attempt
only the easier task of drawing conclusions from this condition) rely upon a
mathematically unjustified inversion of limits. The way Theorem 1.1 will be
proved will be by first assuming that u is smooth enough (a condition that
allows power expansions) and then by proving that (1.9) holds for α ≤ α0�D�.
(A crucial difficulty there is that one has to reach a value of α that does not
depend upon the smoothness of u). After (1.9) has been proved, it is rather easy
to prove (1.17), and the case where u need not be smooth is then recovered by
an approximation procedure.

When u is smooth enough, we can rather precisely describe the structure
of Gibbs measure. There is “decoupling of chaos.” This means (in a sense that
the reader should have no problem in making formally precise) that given
any n, the law of �σ1� 
 
 
 � σn� under Gibbs measure is asymptotically a product
measure. It is thus determined by ��σ1�� 
 
 
 � �σn��. The law of �σ1�� 
 
 
 � �σn� is
asymptotically i.i.d. (with an explicit distribution). Decoupling of chaos seems
to be an automatic consequence of (1.9) and of the tools we have developed for
“computations in a pure state” (see, e.g., [11]) so we will not do the routine
job of proving this. But we do not know what happens without a smoothness
assumption on u.

There is a related model of interest, the “spherical model,” where �N is
replaced by SN = �� ∈ �N;

∑
i≤N σ

2
i =N� and µN is replaced by the homoge-

neous measure on SN. Physicists believe that the spherical model is simpler
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than the Ising model [because it is in a pure state for large β in the case (1.7),
while this is apparently not true for the Ising model]. Unfortunately, to study
the spherical model mathematically one has to show first that Gibbs measure
is essentially carried by the configurations for which maxi≤N �σi�2 is o�N�,
which seems difficult and is better left for further study.

2. Overview of proof. The paper relies on the “cavity method.” In our
previous work [8–11], this refers to induction uponN. This is how our approach
starts: the first step is to show that we can estimate averages with respect to
GN�M provided we know how to estimate averages for GN−1�M. This is done
in Section 5. This is where the smoothness of u is useful. The main tool is a
Taylor expansion, and identification of the leading terms. The remaining terms
become of lower order as N→∞, but how large N has to be taken seems to
depend not only upon D, but also upon the size of the first few derivatives
of u (so that we face a severe problem of interversion of limits when trying
to obtain results without a smoothness assumption on u). These calculations
(that are tedious and predictable) bring to light the importance of the vector A
given by

A =
(
u′�Sk�√
N

)
k≤M

�

where Sk =N−1/2∑
i≤N ξ

k
i σi. Here we already realize how dangerous the situ-

ation is because there is no possible way that the quantity N−1∑
k≤M u′�Sk�2

remains bounded (say, in expected thermal average) only in function of D,
and this makes it a priori difficult to reach values of α that depend only
upon D. What makes this at all possible is that, in certain respects, there is
some boundedness in A. More specifically, if A′ is an independent copy of A�
A ·A′ does remain bounded in function of D only. Of course, this cannot be
proved through induction uponN because we have no chance to make any rea-
sonable estimates this way before some type of boundedness has been proved
on A; but fortunately, we have succeeded in obtaining a priori estimates, using
essentially induction uponM. Quite logically, these should be presented before
any use of the cavity method, in Section 4. These estimates in turn rely upon
a few simple observations (making use of elementary theory of Gaussian pro-
cesses) that are amazingly effective, and crucial at several places. These basic
tools are thus presented in Section 3.

We find it convenient to consider three replicas, denoted �l �l ≤ 3� and to
consider the quantity

CN�M = E
〈( ��1 − �2� ·�3

N

)2〉
�(2.1)

where the bracket now represents an average for G⊗3
N�M. A basic idea there is,

of course, to replace the uninviting centering term in (1.10) by symmetrization.
The specific choice of CN�M is motivated in [11], where the reader might find
a useful overview of our approach to similar problems.
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While trying to compute CN�M in function of CN−1�M, we meet the quantity
DN−1�M, where

DN�M = E
〈( �A1 −A2� ·A3

N

)2〉

(2.2)

A similar situation was faced in the case of the Hopfield model by taking
advantage of the fact that u′�x� is particularly simple in that case. Possibly
this approach could also be used here (using Taylor expansion) but instead,
following Mézard [7], we will use induction upon M, relating now GN�M to
GN�M−1. The energy spent having to deal with a nonexplicit function such as
u was well used, because it brought to light some simple general facts that
allow simplifying computations even in the case where u is explicit. It is in
relatingDN�M that a crucial factor α appears to CN�M−1. This factor is related
to the fact that A hasM components, while there is a denominatorN in (2.2).
The induction upon M is developed in Section 6; combining the results of
Sections 5 and 6 we obtain a relation CN�M ≤ αK�D�CN−1�M−1 + o�1� where
limN→∞ o�1� = 0, and this implies (1.10) for α small. As explained at length in
[1], this is the crucial step. To prove (1.11), one has to prove that the variance
ofN−1∑

i≤N�σi�2 goes to zero. The proof of this is similar to the proof of (1.10)
but easier and also uses two stages. This is done in Section 7 and the proof of
Theorem 1.1 is finished in Section 8.

3. Basic lemmas. Consider an integer Q and a function f from �Q to �.
A recurring task we will face will be the estimation ofEf�g�where g = �gl�l≤Q
is a jointly Gaussian family. The basic idea will be to replace the family g by a
simpler family g′ = �g′l�l≤Q for which the estimation is easier, and to estimate
the error made when replacing g by g′. The basic principle is due to Kahane
[6] and was used in [10] in the same circle of ideas.

Lemma 3.1. Assume that f is twice differentiable (and of moderate growth).
Assume that the Gaussian families g′�g are independent of each other. Con-
sider, for 0 ≤ t ≤ 1, the function

ϕ�t� = Ef�g√t+ g′
√

1− t�

Then, for 0 < t < 1 we have

ϕ′�t� = 1
2

∑
l�m≤Q

(
E�glgm� −E�g′lg′m�

)
E

∂2f

∂xl∂xm

(
g
√
t+ g′

√
1− t)
(3.1)

Proof. We write

ϕ′�t� = 1
2

∑
l≤Q
E

((
gl√
t
− g′l√

1− t

)
∂f

∂xl

(
g
√
t+ g′

√
1− t))


We will use the elementary integration by parts formula,

E�gh�g�� = Eg2E�h′�g���(3.2)
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where h is smooth (of moderate growth) and g is Gaussian. For this we write
gm = ḡm+al�mgl where al�m = E�glgm�/E�g2

l �, and where ḡm is independent
of gl. We then use (5.2) conditionally upon �ḡm�m≤Q and g′ to get

Egl
∂f

∂xl

(
g
√
t+ g′

√
1− t) = √t ∑

m≤Q
E�glgm�E

∂2f

∂xl∂xm

(
g
√
t+ g′

√
1− t)

and we proceed similarly for the second term. ✷

We will combine (3.1) with the estimate

�ϕ�1� − ϕ�0�� ≤
∫ 1

0
�ϕ′�t��dt(3.3)

so that we see the need to control �E�∂2f/∂xl∂xm��g
√
t+g′√1− t��. A remark-

able fact is that under certain conditions, it will be possible to integrate by
parts again and to bound these quantities in function of �f�∞ = sup �f� only.
This is the purpose of the next lemma.

Lemma 3.2. There exists a number L with the following property. Consider
integersQ ≤ 6�Q′ ≤ 6�Q′′ = Q+Q′� �nl�l≤Q′′� �ml�l≤Q′′ with n =

∑
l≤Q′′ nl�m =∑

l≤Q′′ml�n�m ≤ 6. Consider jointly Gaussian r.v. �gl�l≤Q′′ with Eg2
l ≤ 1, and

assume that

inf

(
E

(∑
l≤Q
tlgl

)2

	 ∑
l≤Q
t2l = 1

)
≥ 1/4
(3.4)

Then for any smooth functions f on �Q� θ on �Q
′
, we have∣∣∣∣Egn1

1 ···g
nQ′′
Q′′

∂m

∂x
m1
1 ···∂xmQ′′Q′′

(
f�g1�


�gQ�θ�gQ+1�


�gQ′′ �

)∣∣∣∣≤L�f�∞�θ�∞�m�
where

�θ�∞�m = max

(∥∥∥∥ ∂pθ

∂x
p1
1 · · · ∂xpQ′Q′

∥∥∥∥
∞
	p = ∑

l≤Q′
pl ≤m

)



Comment. There exists a number L > 0 such that (3.4) holds provided
Eg2

l = 1 for l ≤ Q and �Eglgl′ � ≤ 1/L for 1 ≤ l < l′ ≤ Q.

Proof. If g = �g1� 
 
 
 � gQ�, there is a rotation R of �Q such that the
Gaussian vector h = R�g� has independent coordinates; moreover, for l ≤ Q,
we haveEh2

l ≥ 1/4 by (3.4). We consider the function f̄�x� = f�R−1�x�� on �Q,
so that f�y� = f�R�y��, and a partial derivative of f is a linear combination
(with coefficients bounded by 1) of partial derivatives of f̄ of the same order.
As a consequence we see that it is enough to prove the lemma when g1� 
 
 
 � gQ
are independent. However, all we have to do is perform successive integrations
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by parts in g1� 
 
 
 � gQ, using the fact that if g is Gaussian, v, w are smooth
functions, then

E�v′�g�w�g�� = E
(
g

Eg2
v�g�w�g� − v�g�w′�g�

)

 ✷

The following (obvious) simple observation will help to check (3.4).

Lemma 3.3. Consider two independent jointly Gaussian sequences �gl�l≤Q,
�g′l�l≤Q. If

∑
l≤Q
t2l = 1⇒ E

(∑
l≤Q
tlgl

)2

≥ 1
4 	E

(∑
l≤Q
tlg

′
l

)2

≥ 1
4 �

then for 0 ≤ t ≤ 1,

∑
l≤Q
t2l = 1⇒ E

(∑
l≤Q
tl�gl

√
t+ g′l

√
1− t�

)2

≥ 1
4 


4. A priori estimates. We start with a very simple (yet crucial)
observation.

Lemma 4.1. For t ≥ 0, we have

G2(����′	 �� ·�′� ≥ tN�) ≤ 2 exp
(
4MD− Nt

2

2

)

(4.1)

In particular we have

EG2(����′	 �� ·�′� ≥ 4N
√
αD�) ≤ exp

(
−N
K

)

(4.2)

There, as in the rest of the paper,K denotes a constant that does not depend
upon N, but that might depend upon α�D, etc.

Comment. This means in particular that in practice �� ·�′/N� is always
less than or equal to 1/2 if LαD ≤ 1.

Proof. Since �HN�M� ≤MD, we have Z ≥ 2N exp�−MD�. Now

card�����′�	 �� ·�′� ≥ tN� ≤ 22N+1 exp−Nt2/2
(a well-known bound on the tails of the binomial law) and thus

1
Z2

∑
exp

(
HN�M��� +HN�M��′�

) ≤ 2 exp
(
4MD− Nt

2

2

)
�

where the summation is over the couples ����′� with �� ·�′� ≥ tN. ✷
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From now on we assume that u is five times differentiable, and that for
0 ≤ l ≤ 5, we have

∀ x� �U�l��x�� ≤ D′
(4.3)

There is no loss of generality to assume D′ ≥ D. Our estimates will involve
both D and D′, but the terms containing D′ will go to zero as N → ∞. We
write

Sk =
1√
N

∑
i≤N
ξki σi� S′k =

1√
N

∑
i≤N
ξki σ

′
i�

A = (u′�Sk�)k≤M� A′ = (u′�S′k�)k≤M

Lemma 4.2. Assume LαD ≤ 1. Then there is a number N0 = N0�D′� α�

such that if �t�D′4 ≤ 1 and N ≥N0 we have

E�exp tNA ·A′� ≤ exp�Lt�M+ 1� exp 4D�
(4.4)

Using Chebyshev inequality, we get the following.

Corollary 4.3. If Lα exp 4D ≤ 1, for N large enough we have

EG2
n

(��A ·A′� ≥ Lα exp 4D�) ≤ exp−N
K

(4.5)

As pointed out in Section 2, the importance of (4.5) is that it is a kind of
boundedness property of A, under a smallness condition of α that depends
only upon D, while �A�2 is not governed by D, but can be very large.

Even though it would require less work to prove weaker statements than
(4.5) that are still suitable for our purposes, we decided to prove the cleaner
exponential inequality (4.5). The following simple observation will be crucial.

Lemma 4.4. Consider random variablesX� �Yk�k≤M on a probability space,
and �X′	 �Y′k�k≤M� an independent copy of the family �X	 �Yk�k≤M�. Then for
each n ≥ 0, we have

EXX′
( ∑
k≤M

YkY
′
k

)n
≥ 0


Proof. We have

EXX′
( ∑
k≤M

YkY
′
k

)n
= ∑
k1�


�kn

EXX′Yk1
Y′k1
� 
 
 
 �YknY

′
kn

= ∑
k1�


�kn

(
EXYk1

· · ·Ykn
)2 ≥ 0

by independence, where the sum is over all choices of k1� 
 
 
 � kn. ✷
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Proof of Lemma 4.2. We have

�expNtA ·A′� = ∑
n≥0

�Nt�n
n!

��A ·A′�n�

≤ ∑
n≥0

�N�t��n
n!

��A ·A′�n�

≤ �expN�t�A ·A′�
since (using Lemma 4.4 for the Gibbs measure with X = 1) we know that
��A ·A′�n� ≥ 0.

We consider the function

fN�M�t� = E�expNtA ·A′�
so that

f′N�M�t�=E�NA ·A′ expNtA ·A′�
=ME〈u′�SM�u′�S′M� expNtA ·A〉�(4.6)

using the symmetry in k ≤M. We now denote by �·�N�M−1 the Gibbs measure
relative to the Hamiltonian HN�M−1 =

∑
k≤M−1 u�Sk�. It should be obvious

that we have〈
u′�SM�u′�S′M� expNtA ·A′

〉
=
〈
u′�SM�u′�S′M� exp�u�SM� + u�S′M�� expNtA ·A′

〉
N�M−1〈

exp
(
u�SM� + u�S′M�

)〉
N�M−1



(4.7)

This formula is the first occurrence of “induction upon M,” a recurring
theme of the paper.

If we use Lemma 4.5 for GN�M−1 [with X = u′�SM� expu�SM�� we see
(expanding expNtA ·A′ in a power series) that the numerator of the right-
hand side of (4.7) is greater than or equal to 0. Thus we have〈

u′�SM�u′�S′M� expNtA ·A′
〉

≤ exp 2D
〈
u′�SM�u′�S′M� exp

(
u�SM� + u�S′M�

)
× exp tu′�SM�u′�S′M�U

〉
N�M−1�

(4.8)

where

U = exp t
∑

k≤M−1

u′�Sk�u′�S′k�


To get rid of the term exp tu′�SM�u′�S′M�, we use the fact that if tD
′2 ≤ 1

we have

� exp tu′�SM�u′�SM� − 1� ≤ 3tD
′2(4.9)
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so that if tD′4 ≤ 1 we have
f′N�M�t�

≤M
(
3e2DE�U�N�M−1 +E

〈
EM

(
u′�SM�u′�S′M� exp�u�SM�

+ u�S′M��U
)〉
N�M−1

)
�

(4.10)

where EM denotes expectation in the variables �ξMi �i≤N only.
To evaluate the term starting with EM, we use the tools of Section 3. The

variables SM� S
′
M are not Gaussian; they would be Gaussian, however, if the

variables �ξMi �i≤M were Gaussian. Thus the natural approach is to replace
successively, one at a time, the variables ξMi by i.i.d. standard normal r.v., a
procedure known as Trotter’s method, which is described in detail in [9]. The
procedure here implies

EM
(
u′�SM�u′�S′M� exp�u�SM� + u�S′M��

)
≤ K
N
+E�u′�g�u′�g′� exp�u�g� + u�g′����

(4.11)

where the variables g�g′ are jointly Gaussian, and satisfy E�g′ 2� = E�g2� =
1,Egg′ = � ·�′/N. Trotter’s method will always produce error terms that van-
ish as N→∞, and essentially we will be able in the rest of the paper to pre-
tend that the variables �ξMi �i≤N are i.i.d.N�0�1� [and independent of the �ξki ��
k < M]. (The use of Trotter’s method is of course not required in the case of
the Gaussian model.)

We now appeal to Lemma 3.2 (with Q = 2�Q′ = 0� n = 0�m1 = m2 = 1)
with the function f�x1� x2� = exp�u�x1� + u�x2�� to see that

�� ·�′� ≤N/2 ⇒
∣∣∣∣E ∂2

∂x1∂x2
f�g�g′�

∣∣∣∣ ≤ L exp 2D


The use of the condition �Egg′� = �� ·�′/N� ≤ 1/2 is of course to obtain (3.4).
Thus we have

E
〈
EM�u′�SM�u′�S′M�� exp�u�SM� + u�S′M��U1��� ·�′ �≤N/2�

〉
N�M−1

≤
〈
K

N
+L exp 2D

〉
E�U�N�M−1


(4.12)

Using (4.1) for t = 1/2, we see by trivial bounds that if N ≥K we have

E
〈
EM�u′�SM�u′�S′M�� exp�u�SM� + u�S′M��U1��� ·�′ �≥N/2�

〉
N�M−1

≤ 2D′ 2 exp
(
2D+ tMD′ 2 + 4MD− N

16

)



(4.13)

Combining (4.10) and (4.13), if N ≥N0 =N0�D′��100αD ≤ 1, we have

f′N�M�t� ≤M�L exp 2D�E�U�N�M−1

=M�D exp 2D�fN�M−1�t�
from which the result follows by induction upon M. ✷
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We now need a result of the same nature as Lemma 4.2, but where u′ is
replaced by

w�x� = u′′�x� + u′�x�2 − xu′�x�
(4.14)

The special form of w is rather important, in particular the fact that u′′ and
u′2 have the same coefficient. This will be used through the identity(

eu�x�
)′′ = (u′′�x� + u′2�x�)eu�x�
(4.15)

The interesting point is that the terms u′′ and u′2 in (4.14) will occur for
different reasons, yet they match perfectly.

We consider

W = (w�Sk�)k≤M	 W′ = (w�S′k�)k≤M

Lemma 4.5. There exist numbers t0 = t0�D′��N0 = N0�D′� such that if

0 ≤ �t� ≤ t0�N ≥N0 we have

E�exp tW ·W′� ≤ exp�tL�M+ 1� exp 4D�
(4.16)

Proof. It is very similar to that of Lemma 6.2, with only the extra diffi-
culty that w is not uniformly bounded.

Rather than a uniform bound such as (4.9), one uses that

EM�exp tw�SN�w�S′N� − 1�2 ≤ 1(4.17)

for �t� ≤ t0�D′�. The details are left to the reader. ✷

Corollary 4.6. We have

EG

({∣∣∣∣ 1N ∑
k≤M

w�Sk�
∣∣∣∣ ≥ Lα exp 2D

})
≤ exp

(
−N
K

)

(4.18)

Proof. We compute〈(
1
N

∑
k≤M

w�Sk�
)n〉

= 1
Nn

∑
k1�


�kn

�w�Sk1
� · · ·w�Skn��

≤M
n/2

Nn

( ∑
k1�


�kn

〈
w�Sk1

� · · ·w�Skn�
〉2)1/2

= α
n/2

Nn/2
��W ·W′�n�1/2�

(4.19)

where we have used Cauchy–Schwarz in the second line.
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By Chebyshev inequality we have, using (4.19),

EG

({∣∣∣∣ 1N ∑
k≤M

w�Sk�
∣∣∣∣ ≥ t

})
≤ t−nE

〈(
1
N

∑
w�Sk�

)n〉

≤
((

α

Nt2

)n
E
〈�W ·W′�n〉)1/2




(4.20)

It follows from Lemma 4.4 that for each n we have ��W ·W′�n� ≥ 0, and thus,
for each n, and each t0 > 0� we have

��W ·W′�n� ≤ n!
tn0
�exp t0W ·W′�

so that if we take for t0 the number of Lemma 4.4 we get that the right-hand
side of (4.20) is at most[(

αn

Nt0t
2

)n
exp�t0ML exp 4D�

]1/2

and the result follows by taking n �Nt0t2/eα and t = Lα exp 2D. ✷

The following result looks strange a priori, but the need for it will actually
occur quite naturally.

We consider four replicas, and Slk =N−1/2∑
i≤N ξ

k
i σ

l
i for l ≤ 4.

Lemma 4.7. If Lα expLD ≤ 1, for N large enough we have

EG4
N

({∣∣∣∣ 1
M

∑
k≤M

∏
l≤4

u′�Slk�
∣∣∣∣ ≥ L exp 8D

})
≤ exp−N

K

(4.21)

The proof is identical to that of Corollary 4.6 (proving first a suitable version
of Lemma 4.5).

5. Relating an N-spin system with an �N−1�-spin system. For � in
�N, we write � = �σi�i≤N−1 ∈ �N−1. If we define

Sk =
∑
i≤N

ξki σi√
N
� sk =

∑
i≤N−1

ξki σi√
N− 1

�

we then have

Sk = sk + x�(5.1)

where

x = sk
(√

1− 1
N
− 1

)
+ ξ

k
NσN√
N

(5.2)
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Using (4.3), we perform a Taylor expansion

u�Sk� = u�sk� + xu′�sk� +
x2

2
u′′�sk� +R1� k�(5.3)

where

�R1� k� ≤ D′�x�3
(5.4)

We use that ∣∣∣∣
√

1− 1
N
− 1+ 1

2N

∣∣∣∣ ≤ 1
N2
�

∣∣∣∣
√

1− 1
N
− 1

∣∣∣∣ ≤ 1
N

and we see that, since �sk� ≤
√
N,∣∣∣∣xu′�sk� − (− 1

2N
sku

′�sk� +
ξkNσN√
N
u′�sk�

)∣∣∣∣ ≤ D′ �sk�N2
�∣∣∣∣x2

2
u′′�sk� −

u′′�sk�
2N

∣∣∣∣ ≤ D′( s2kN2
+ 2�sk�
N3/2

)
≤ 3D′

�sk�
N3/2

�

�x3� ≤ L
( �sk�3
N3

+ 1
N3/2

)
≤ L

(
1
N3/2

+ �sk�
N2

)



Summation yields the following.

Lemma 5.1. We have∑
k≤M

u�Sk�=
∑
k≤M

u�sk� + σN
( ∑
k≤M

ξkMu
′�sk�√
N

)

+ 1
2N

∑
k≤M

�u′′�sk� − sku′�sk�� +R�
(5.5)

where R = R��� satisfies

�R� ≤ LD′
(
α√
N
+ 1
N3/2

∑
k≤M

�sk�
)

(5.6)

The following elementary fact is proved in particular in the Appendix of [9].

Lemma 5.2. There exists an event 80 (in the variables �k) such that

P�80� ≥ 1− exp−N/L(5.7)

while, on 80,

∀� ∈ �N−1�
∑
k≤M

s2k ≤ LN
(5.8)

For clarity, we will neglect exponentially small sets, so we will pretend that
(5.8) always hold. We then see from (5.6) that �R� ≤ LD′/√N.
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Theorem 5.3. Consider a function f on �−1�1�N. Then we have∣∣∣�f���� − 1
Z

Av��f�σ1� 
 
 
 � σN�� �0�
∣∣∣ ≤ K��f�∞�D′�√

N
�(5.9)

where

� = � ��� σN�= exp
(
σN

∑
k≤M

ξkNu
′�sk�√
N

+ 1
2N

∑
k≤M

�u′′�sk� − sku′�sk��
)

(5.10)

and

Z = Av�� �0
(5.11)

There, Av denotes average in σN = ±1, �·� denotes average with respect to
the Gibbs measure relative to the Hamiltonian HN�M given by (1.1), while �·�0
denotes average with respect to the Gibbs measure relative to the Hamiltonian
HN−1�M��� =

∑
k≤M u�sk�, for sk = sk��� =

∑
i≤N−1 ξ

k
i ηi/

√
N− 1.

Proof. If � =HN�M��� −HN−1�M���, then the relation

�f���� = 1
Z

Av�f�σ1� 
 
 
 � σN� exp��0
for Z = Av�exp��0, is an algebraic identity. In the beginning of this section
we proved that �� − log � � ≤ LD′/√N (on 80). It then follows that

� exp� − � � ≤ K�D
′�√

N
exp� �

where K�D′� depends upon D′ only. This implies (5.9) through elementary
estimates. ✷

We should point out that even though Theorem 5.3 is formally similar to
the corresponding result in the case of the Hopfield model, a new source of
difficulty is that it is much less obvious how to bound Z from below.

6. The cavity method: increasing N . This section contains a series of
estimates that culminate in Theorem 6.6. Throughout the paper, we write
�̃ = �1 − �2� �̃ = �1 − �2, etc.

Lemma 6.1. We have

CN�M = E
〈(

�̃ ·�3

N

)2〉
≤ K√

N
+E 1

Z

〈
�̃ · �3

N
Av σ̃Nσ

3
N�

〉
0
�

where Z = �Av� �30,

� = exp
(∑
l≤3

σlN� ·Al +
∑
l≤3

Bl
)
�

Al =
(

1√
N
u′
(
slk
))
k≤M

� Bl = 1
2N

∑
k≤M

(
u′′�slk� − slku′�slk�

)
�

slk =
1√
N− 1

∑
i≤N
ξki σ

l
i 
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Of course, in this lemma, �·� denotes average with respect to G⊗3
N�M

and �·�0 with respect to G⊗3
N−1�M� � = �ξk�k≤M is a sequence with P�ξk = 1� =

P�ξk = −1� = 1/2, independent of all other sequences, and � ·Al = N−1/2∑
k≤M ξku′�slk�. The notation Al is slightly abusive, since it relates to the quan-

tity denoted by A in the previous sections by a change of the factorN−1/2 into
�N+1�−1/2 and a replacement ofN byN−1. This abuse of notation hopefully
has no consequences.

Proof. We use that

�̃ ·�3 = ∑
i≤N
σ̃iσ

3
i

and the symmetry between sites to see that

CN�M = E
〈
σ̃Nσ

3
N

(
�̃ ·�3

N

)〉
≤ 4
N
+E

〈
σ̃Nσ

3
N

(
� ·�3

N

)〉



We conclude by applying (the obvious extension to 3-replicas of) Theorem 5.3.
✷

We now write

U =
〈
� ·�3

N
Av�σ̃Nσ3

N� �
〉
0
�(6.1)

Ẑ = (a ch�� ·C�)3�(6.2)

where for any l ≤ 3,

C = �Al�� a =
〈
exp

(�Al�2
2

− �C�
2

2
+Bl

)〉
0

(6.3)

The idea behind Ẑ is that this constitutes a fairly good candidate for an
approximation of Z. Since we will in the end assume that α expLD is small,
by Corollaries 4.3 and 4.6, we can assume that �C�2 ≤ 1� � 12�Al�2 + Bl� ≤ 1
(neglecting exponentially small sets). Thus, for instance,

a� a−1 ≤ L� 1

Ẑ
≤ L
(6.4)

Lemma 6.2. We have

CN�M ≤ E
U

Ẑ
+L

(
E

(
U

Z

)2)1/2(
E�Z− Ẑ�2)1/2 + K√

N

(6.5)
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Proof. We use Lemma 6.1 and we write

U

Z
= U
Ẑ
+ U
Z

�Ẑ−Z�
Ẑ


(6.6)

We use Cauchy–Schwarz on the last term and (6.4) to eliminate Ẑ from the
denominator. ✷

The approach above will offer the advantage of avoiding the problem of
bounding Z from below.

Lemma 6.3. We have

E
U

Ẑ
≤ LC1/2

N−1�MD
1/2
N−1�M�(6.7)

where DN�M is given by (2.2).

Proof. We denote by Eξ expectation in � only, and we write, using (6.4),

E
U

Ẑ
≤ L

(
�1

∣∣∣∣ �̃ ·�3

N

∣∣∣∣
∣∣∣∣EξAv σ̃Nσ

3
N�0

ch3� ·C

∣∣∣∣)
0
�(6.8)

where

�1 = exp
∑
l≤3

Bl� �0 = exp
∑
l≤3

σlN� ·Al


The main task is the estimation of Eξ�Av σ̃Nσ
3
N�0ch

−3� ·C�. As already
mentioned, using Trotter’s method we can assume that the variables �ξk�k≤M
are in fact i.i.d. N�0�1�, creating only an error K/N.

We first observe that

σ1
N − σ2

N "= 0 ⇒ σ1
N = −σ2

N

and thus

Av σ̃Nσ
3
N�0 = Av ε1ε2 exp

(
ε1� ·Ã + ε2� ·A3)�(6.9)

where on the right, the average is over ε1� ε2 = ±1.
Consider the function

f�x1� x2� x3� = Av ε1ε2
exp�ε1x1 + ε2x2�

ch3�x3�
�(6.10)

where the average is again over ε1� ε2 = ±1.
Using (6.9), we have

Eξ
Av σ̃Nσ

3
N�0

ch3� ·C = Eξf�g1� g2� g3��(6.11)

where

g1 = � ·Ã� g2 = � ·A3� g3 = � ·C
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Conditionally upon the r.v. involved in GN−1�M, and given �Al�l≤3, we define
a jointly Gaussian family �g′l�l≤3 (independent of the gl) such that

∀ l ≤ 3� Eξg
′ 2
l = Eξg2

l �

∀ l = 2�3� Eξg
′
1g

′
l = 0�

2 ≤ l� l′ ≤ 3 ⇒ Eξg
′
lg
′
l′ = Eξglgl′ 


[In other words, we make g1 independent of the couple �g2� g3�.] There, Eξ
denotes conditional expectation at all the r.v. occurring in GN−1�M fixed.

Consider the function

ϕ�t� = Eξf
(�gl√t+ g′l√1− t�l≤4

)



We will use the bound

�ϕ�1� − ϕ�0�� ≤
∫ 1

0
�ϕ′�t��dt
(6.12)

We show first that

ϕ�0� = 0
(6.13)

To see this, we integrate in g′1 first. Since g′1 is independent of g′2� g
′
3, we

have

ϕ�0� = Av ε1ε2Eξ
exp

( 1
2�Ãl�2 + ε2g′2�

ch3g′3
= 0

because Av ε1 = 0.
To control ϕ′�t�, we observe that for l� l′ ≤ 3 we have∣∣∣∣ ∂2f∂xl∂xl′

∣∣∣∣ ≤ LAv exp
∑
l≤2

εlxl

so that by Lemma 3.1 we have

�ϕ′�t�� ≤ ∑
l� l′≤3

∣∣Eξ�glgl′ � −Eξ�g′lg′l′ �∣∣
×Eξ Av exp

∑
l≤2

εl�gl
√
t+ g′l

√
1− t�


(6.14)

Now

Eξ exp
∑
l≤2

εl�gl
√
t+ g′l

√
1− t�

= exp

(
1
2

∑
l≤3

�Al�2 + tε1ε2Ã ·A3 − tA1 ·A2

)
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Since, by Corollary 4.3 we can pretend that �Al ·Al′ � ≤ 1 for l "= l′, we have
from (6.12), (6.14) that

�ϕ�1�� ≤ L ∑
l� l′≤3

∣∣Eξ�glgl′ � −Eξ�g′lg′l′ �∣∣ exp
(

1
2

∑
l≤3

�Al�2
)

(6.15)

and thus, recalling the values of E�glgl′ ��E�g′lg′l′ � and going back to (6.8),

E
U

Ẑ
≤ L

〈∣∣∣∣ �̃ ·�3

N

∣∣∣∣��Ã ·A3� + �Ã ·C���2

〉
0
�(6.16)

where

�2 = exp

(
1
2

∑
l≤3

�Al�2 +Bl
)



The term u′ 2�slk� coming from �Al�2 nicely combines with the term u′′�slk�
coming from Bl; we have

�2 = exp
∑
l≤3

1
2N

∑
k≤M

w
(
slk
)
�

so that by Corollary 4.6 we can pretend that �2 ≤ L. We then use Cauchy–
Schwarz, together with the elementary observation that〈�Ã ·C�2〉0 ≤ 〈�Ã ·A3�2〉0
 ✷

Lemma 6.4. We have

E
U2

Z2
≤ K√

N
+ 4CN�M


Proof. We have, since �σ̃Nσ3
N� ≤ 2,∣∣∣U

Z

∣∣∣ ≤ 2
�Av��̃ ·�3�� �0
N�Av� �0

≤ 4
N
+ 2

�Av��̃ ·�3�� �0
N�Av� �0

≤ K√
N
+ 2

〈∣∣∣∣ �̃ ·�3

N

∣∣∣∣〉

≤ K√
N
+ 2

〈(
�̃ ·�3

N

)2〉1/2
�

using (5.9) in the second line. ✷

Despite the somewhat optimistic description of Section 2, we are required,
besides CN�M and DN�M, to consider a new quantity, namely,

EN�M = E
〈(

1
N

∑
k≤M

(
w�Sk� −w�S′k�

))2〉

(6.17)
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Lemma 6.5. We have

E�Z− Ẑ�2 ≤ L�DN−1�M +EN−1�M�
(6.18)

Proof. We have

Z2 =
〈
Av exp

∑
l≤6

(
σlN� ·Al +Bl

)〉
0
�

so that

EξZ
2 = Av

〈
exp

[(∑
l≤6

�Al�2
2

+Bl
)
+ ∑

1≤l<l′≤6

σlNσ
l′
NA

l ·Al′
]〉

0




We have

EξẐ
2 = a6EξAv exp

∑
l≤6

σlN� ·C

= a6Av exp
(
3�C�2 + ∑

1≤l<l′≤6

σlNσ
l′
N�C�2

)



Thus

�EξZ2 −EξẐ2� ≤ Av
∣∣∣〈�expX��expY− expY′�〉0∣∣∣�(6.19)

where

X =∑
l≤6

�Al�2
2

+Bl�

Y = ∑
1≤l<l′≤6

σlNσ
l′
NA

l ·Al′�

Y′ = ∑
1≤l<l′≤6

σlNσ
l′
N�C�2


We observe (Corollaries 4.3 and 4.6) that we can pretend that �X�� �Y′�� �Y� ≤
L. We then write

� expY− expY′ − �Y−Y′� expY′� ≤ L�Y−Y′�2
and

�eX�Y−Y′� expY′ − e�X��Y−Y′� expY′� ≤ L�X− �X�� �Y−Y′�

Since �Y−Y′�0 = 0, we deduce from (6.19) that∣∣EξZ2 −EξẐ2

∣∣≤L(��Y−Y′�2�0 + ��X− �X�0�2�0
)

≤L��Ã ·A3�2�0 +L
〈(

1
N

∑
k≤M

(
w�s1k� −w�s2k�

))2〉
0

≤L(DN−1�M +EN−1�M
)



(6.20)

A similar bound for �EξZẐ−EξẐ2� then completes the proof. ✷
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Theorem 6.6. We have

CN�M ≤
1
2
CN−1�M +L

(
DN−1�M +EN−1�M

)+ K√
N



Proof. Combining the previous estimates, we have

CN�M≤
K√
N
+L(CN−1�MDN−1�M

)1/2
+LDN−1�M +LEN−1�M
 ✷

7. The Cavity method: increasing M. The purpose of this section is to
establish the bounds of Theorems 7.6 and 7.7. These are then combined with
Theorem 6.6 to prove (1.10). We start with the study of DN−1�M. The first
lemma holds no surprise.

Lemma 7.1. We have

DN−1�M ≤
K

N
+ αEU

Z
�(7.1)

where

U =
〈
ṽM v

3
Mã ·a3 exp

∑
l≤3

u�slM�
〉
1
�

Z =
〈
exp

∑
l≤3

u�slM�
〉
1
�

for ã = a1 − a2, al = �u′�slk��k≤M−1, v
l
M = v′�slM�, ṽM = v1

M − v2
M and where

�·�1 denotes integration with respect to GN−1�M−1.

Proof. We have

DN−1�M = E
1

N− 1

〈 ∑
k≤M

ṽkv
3
k Ã ·A3

〉
0

= M

M− 1
E
〈
ṽM v

3
M Ã ·A3

〉
0

≤ K
N
+ αE

〈
ṽM v

3
M ã ·a3

〉
0

One then relates �·�0 to �·�1 in the obvious manner. ✷

We consider

b = �bi�i≤N−1� bi =
1√
N− 1

�σi�1�

and �b�2 = ∑i≤N−1 b
2
i . We write � = �ξMi �i≤N−1. (Thus the precise meaning of

� in this section is different from its meaning in Section 6, but this should not
be confusing because the roles these two quantities play are identical.)
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We consider three independent N�0�1� r.v. �hl�l≤3, independent of all the
other r.v. considered, and we define

Ẑ = Eh exp
∑
l≤3

u
(
� ·b+ hl

√
1− �b�2

)
�(7.2)

where of course � ·b =∑i≤N−1 ξ
M
i bi.

Lemma 7.2. We have

E
U

Z
≤ EU

Ẑ
+ exp 3D

(
E

(
U

Z

)2
)1/2(

E
(
Z− Ẑ)2)1/2


(7.3)

Proof. As (6.5), using now that Ẑ ≥ exp−3D
 ✷

The reader has already guessed that the methods of this section will resem-
ble those of Section 6. This is true, but there will be significant differences.

Lemma 7.3. We have

E
U

Ẑ
≤ L expLD�CN−1�M−1DN−1�M−1�1/2
(7.4)

Proof. We will writeEξ for expectation in � (even though this was denoted
EM in Section 4). We will use techniques of Section 3 to estimate

Eξ
U

Ẑ
=
(
ã ·a3Eξ

(
ṽM v

3
M exp

∑
l≤3 u�slM�

Ẑ

))
1



We consider the function

f�x1� x2� x3� x4� =
�u′�x1� − u′�x2��u′�x3� exp

∑
l≤3 u�xl�

Ẑ�x4�
�

where

Ẑ�x4� = Eh exp
∑
l≤3

u
(
x4 + hl

√
1− �b�2

)



Using Trotter’s method, we can assume that the variables �ξMi �i≤N−1 are i.i.d.
N�0�1�. We then have to evaluate Eξf�g1� g2� g3� g4�, where

gl = � ·�l/
√
N− 1 for l ≤ 3� g4 = � ·b


conditionally upon the r.v. occurring in GN−1�M−1, and given ��l�l≤3, we intro-
duce a new jointly Gaussian family �g′l�l≤4, where

Eξg
′2
l = 1 if l ≤ 3� Eξg

′
lg
′
l′ = �b�2 if l < l′ or l′ = 4


We consider

ϕ�t� = Eξf
(�gl√t+ g′l√1− t�l≤4

)
and will again use (6.12).
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By symmetry between x1 and x2, it should be obvious that ϕ�0� = 0. To
control ϕ′�t�, we use Lemma 3.1 to see that

�ϕ′�t�� ≤ ∑
1≤l≤l′≤4

∣∣∣Eξ�glgl′ � −Eξ�g′lg′l′ �∣∣∣
×
∣∣∣∣Eξ ∂2

∂xl ∂xl′
f
(�gl√t+ g′l√1− t�l≤4

)∣∣∣∣

(7.5)

We will use Lemmas 3.3, 3.2 to prove that for ��l�l≤3 outside an exponentially
small set [depending upon the r.v. ��ki �i≤N−1� k≤M−1] we have∣∣∣∣Eξ ∂2

∂xl ∂xl′
f
(�gl√t+ g′l√1− t�l≤4

)∣∣∣∣ ≤ L expLD
(7.6)

The crucial observation is that

f�x1� x2� x3� x4� =
(

∂2

∂x1 ∂x2
− ∂2

∂x2 ∂x3

)(
f0�x1� x2� x3�θ�x4�

)
�

where

f0�x1� x1� x3� = exp
∑
l≤3

u�xl��

θ�x4� =
1

Ẑ�x4�



We will use Lemma 3.2 with Q = 3, Q′ = 1. We observe that by (6.1)
�E�glgl′ �� = ��l ·�l′ �/�N−1� can be assumed less than or equal to 10−2 outside
an exponentially small set, so that (3.4) will hold. Thus, to apply Lemma 3.2,
all we need is to control �θ�∞�4. Since exp−D < Ẑ < expD, it suffices to
show that �Ẑ�k��x�� ≤ expLD for all x and for k ≤ 4. But this follows from
integration by parts. For example,

Ẑ′�x� = Eh
(∑
l≤3

u′�x+ hl
√

1− �b�2�
)

exp
∑
l≤3

u
(
x+ hl

√
1− �b�2

)
= 1√

1− �b�2
Eh

(∑
l≤3

hl
)

exp
∑
l≤3

u
(
x+ hl

√
1− �b�2

)
and thus �Ẑ′�x�� ≤ L exp 3D. This proves (7.6).

Combining (7.5) and (7.6), we then have〈
�ã ·a3�

∣∣∣∣Eξ( ṽM v3
M exp

∑
l≤3 u�slM�

Ẑ

)∣∣∣∣〉
1

≤ L exp 3D
〈
�ã ·a3�

(∑
l<l′

∣∣∣∣�l ·�l′N− 1
− �b�2

∣∣∣∣+∑
l

∣∣∣∣ �l ·b√
N− 1

− �b�2
∣∣∣∣)〉

1

from which the result follows by Cauchy–Schwarz. ✷
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Lemma 7.4. We have

E
U2

Z2
≤ �L expLD�DN−1�M +

K

N2

(7.7)

Proof. We have∣∣∣∣UZ − 1
Z
�ṽM v3

MÃ ·A3 exp
∑
l≤3

u�slM��1
∣∣∣∣ ≤ KN

or, equivalently, ∣∣∣∣UZ − �ṽM v3
MÃ ·A3�0

∣∣∣∣ ≤ KN

Using replicas,

U2

Z2
≤ K

N2
+ 2

〈
ṽM v

3
Mv

∗
Mv

6
MÃ ·A3A∗ ·A6〉

0�(7.8)

where v∗M = u′�s4M� − u′�s5M�, and A∗ is defined similarly. Thus, by symmetry
between the values of k ≤M,

E
U2

Z2
≤ K

N2
+ 2E

〈(
1
M

∑
k≤M

ṽkv
3
kv
∗
kv

6
k

)
Ã ·A3A∗ ·A6

〉
0




We appeal to Lemma 4.7 to get

E
U2

Z2
≤ K
N2

+ 2 expLDE
〈∣∣Ã ·A3

∣∣〉2
0

≤ K
N2

+ 2 expLDE
〈∣∣Ã ·A3

∣∣2〉
0
 ✷

Lemma 7.5. We have

E�Z− Ẑ�2 ≤ �L expLD�CN−1�M−1 +
K

N



Proof. We will prove such a bound for �EZ2 − EẐ2�, �EZẐ − EẐ2�. We
consider only the first quantity; the case of the second is similar. We have

EZ2 = E�Eξf��gl�l≤6��1�
where f��xl�l≤6�= exp

∑
l≤6 u�xl�, and gl= � ·�l/√N−1. We consider another

jointly Gaussian family �g′l�l≤6 with Eξg
′2
l = 1, Eξg

′
lg
′
l′ = �b�2 if l < l′, and

the function

ϕ�t� = Eξf
((
gl
√
t+ g′l

√
1− t

)
l≤6

)



We will now use the bound∣∣ϕ�1� − ϕ�0� − ϕ′�0�∣∣ ≤ ∫ 1

0
�ϕ′′�t��dt
(7.9)
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First, we note that ϕ�0� = EẐ2. The reason for this is simply that if g,
�hl�l≤6 are i.i.d. N�0�1� and g′′l = g�b� + hl

√
1− �b�2, then the family �g′′l �

has the same distribution as �g′l�, so that

ϕ�0� = Eg
(
Eh exp

∑
l≤6

u
(
g�b� + hl

√
1− �b�2

))

= Eg
((
Eh exp

∑
l≤3

u
(
g�b� + hl

√
1− �b�2

))2
)
= EẐ2


Next, we show that �ϕ′�0��1 = 0. To see this, we use (3.1). We observe that
Eglgl′ − Eg′lg′l′ = 0 if l = l′ and = �N − 1�−1�l ·�l′ − �b�2 if l "= l′, so
that �Eglgl′ −Eg′lg′l′ �1 = 0; and we observe that �∂2/∂xl ∂xl′ �f��g′l�� does not
depent upon the quantities �l.

Thus, we now know from (7.9) that∣∣EZ2 −EẐ2
∣∣ ≤ E〈 ∫ 1

0
�ϕ′′�t��dt

〉
1

(7.10)

To estimate ϕ′′�t� we apply (3.1) twice. Then (using Cauchy–Schwarz) we see
that the issue is to prove that (possibly outside an exponentially small set)
we have ∣∣∣∣Eξ ∂4

∂xl1∂xl2 ∂xl3∂xl4
f
((
gl
√
t+ g′l

√
1− t)

l≤6

)∣∣∣∣ ≤ L expLD


This, however, follows from Lemmas 3.2, with Q = 6, Q′ = 0 and Lem-
ma 3.3. ✷

Combining the previous lemmas, we have the following theorem.

Theorem 7.6. We have

DN−1�M ≤
K√
N
+Lα expLD�CN−1�M−1 +DN−1�M−1 +DN−1�M�


We need a similar estimate for EN−1�M.

Theorem 7.7. We have

EN−1�M ≤
K√
N
+Lα expLD�CN−1�M−1 +EN−1�M−1 +EN−1�M�


The proof is almost identical to the proof of Theorem 7.6 (with obvious
changes, such as use of Corollary 4.6 rather than Lemma 4.7) so it is better
left to the reader.

We now reach our goal, the proof of (1.10).
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Theorem 7.8. There is a constant L such that if Lα expLD ≤ 1, then for
M = αN,

lim
N→∞

CN�M = 0� lim
N→∞

DN�M = 0� lim
N→∞

EN�M = 0
(7.11)

Proof. We then get from Theorems 7.6 and 7.7 that

DN−1�M =
K√
N
+Lα expLD�CN−1�M−1 +DN−1�M−1��

EN−1�M =
K√
N
+Lα expLD�CN−1�M−1 +EN−1�M−1�


Together with Theorem 6.6 this implies

CN�M ≤
K√
N
+ 1

2
CN−1�M +Lα expLD�CN−1�M−1 +DN−1�M−1 +EN−1�M−1�


When α expLD is small enough, we have

CN�M ≤
K√
N
+ 1

2
CN−1�M + 10−2�CN−1�M−1 +DN−1�M−1 +EN−1�M−1��

DN−1�M ≤
K√
N
+ 10−2�CN−1�M−1 +DN−1�M−1��

EN−1�M ≤
K√
N
+ 10−2�CN−1�M−1 +EN−1�M−1�


We observe that CN�M�DN�M�EN�M are bounded independently ofN (as long
as, say,M ≤N). It should then be obvious that the result follows by iteration
of the previous relations. ✷

8. Proof of Theorem 1.1. Now we have proved (1.10), we will be able to
do all kinds of computations that will readily lead us to (1.11) and to the proof
of Theorem 1.1.

The following is a special case of a general principle that is left to the reader
to formulate. We keep the notation of Section 6.

Proposition 8.1. Consider a bounded function h on �4
N that does not

depend upon �σlN�, l ≤ 4. Then

E�σ1
Nσ

2
Nh� = E��h�0 th2 �� ·C�� + o�1�
(8.1)

In the rest of the paper, o�1� denotes a quantity that goes to zero asN→∞.
It is always understood that M = αN, where α is small enough that Theo-
rem 7.8 holds.

Proof of Proposition 8.1. We use Theorem 5.3 to see that

E�f� = E�hAvσ1
Nσ

2
N� �0

Z
+ o�1��
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where

� = exp
∑
l≤4

�σlN � ·Al +Bl�

and Z = �Av� �0. Consider

Ẑ = ch4 � ·C
〈
exp

∑
l≤4

(�Al�
2

+Bl − �C�
2

2

)〉
0



Looking at Lemma 7.5, how we proved (7.3) and Theorem 7.8 we see that

E
�hAvσ1

Nσ
2
N� �0

Z
= E�hAvσ1

Nσ
2
N� �0

Ẑ
+ o�1�


If we apply the method of (6.10) and (6.14), it should be obvious that

E
�hAvσ1

Nσ
2
N� �0

Ẑ

= E
(
sh2 � ·C ch2 � ·C

〈
h exp

∑
l≤4
(�Al�2/2+Bl − �C�2/2)〉0

Ẑ

)
+ o�1��

because, thanks to Theorem 7.8, we know that the terms containing a factor
�Al ·Al′ −�C�2� are vanishing. Finally we use that limN→∞EN−1�M = 0, mean-
ing that the function

∑
l≤4
(�Al�2/2+Bl) is essentially constant, to obtain the

result. ✷

We now consider

qN�M =
1
N

∑
i≤N
�σi�2 =

1
N
�����2 =

〈
�1 ·�2

N

〉

(8.2)

Lemma 8.2. We have

EqN�M = E th2 �� ·C� + o�1��(8.3)

Eq2
N�M = E �qN−1�Mth2 �� ·C�� + o�1�
(8.4)

There of course C = ��u′�sk��0�k≤M.

Proof of Lemma 8.2. To prove (8.3) we write

EqN�M = E
〈
�1 ·�2

N

〉
= E�σ1

Nσ
2
N�

and we use (8.1) for h = 1. To prove (8.4) we write

Eq2
N�M = E�σN�2qN�M = E

〈
σ1
Nσ

2
N

�3 ·�4

N

〉
= o�1� +E

〈
σ1
Nσ

2
N

�3 ·�4

N

〉
and we use (8.1) for h = �3 ·�4/N. ✷
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We now introduce

q̂N�M =
1
N

∑
k≤M

�u′�sk��2
(8.5)

Lemma 8.3. We have

Var qN�M ≤ L�Var qN−1�MVar q̂N−1�M�1/2 + o�1�
(8.6)

Proof. We first observe that

EqN�M = EqN−1�M + o�1�
(8.7)

To see this, we note that

EqN�M = E�σ1
Nσ

2
N� = E

〈
�1 ·�2

N− 1

〉
and we use an obvious adaptation of Proposition 8.1. Now,

E
(�qN�M −EqN�M��th2 � ·C−E th2 � ·C�)
= E�qN−1�Mth2 � ·C� −EqN−1�ME th2 � ·C = Var qN�M + o�1�

(8.8)

by (8.3), (8.4), (8.7).
Since ξ is independent of all the other r.v., considering the function

ϕ�x� = Eg th2 �g√x�(8.9)

we see that the left-hand side of (8.8) is

E
(
�qN−1�M −EqN−1�M�

(
ϕ�q̂N−1�M� −Eϕ�q̂N−1�M�

))
and by Cauchy–Schwarz, this is at most

�Var qN−1�M�1/2�Varϕ�q̂N−1�M��1/2

Now integration by parts shows that ϕ′ is bounded, so that Varϕ�q̂N−1�M� ≤
LVar q̂N−1�M. (Note that 2VarX = E�X − Y�2 where Y is an independent
copy of X.) The result then follows from (8.8). ✷

At this point the reader guesses that we will have to use the “induction
upon M” version of what we did up to this point in this section. We start by
a principle similar to Proposition 8.1.

Proposition 8.4. Consider an integer p, a bounded function f on �
p
N−1,

that does not depend upon the variables ξMi . Then, for each collection of smooth
bounded functions �vl�l≤p we have

E

〈
f
∏
l≤p
vl�slM�

〉
1
= E

(
�f� ∏

l≤p
Ehvl

(
� ·b+ h

√
1− �b�2

))
+ o�1��

where b = ��σi�1/
√
N− 1�i≤N−1 and where h is N�0�1� independent of �.
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Proof. We write

E

〈
f
∏
l≤p
v�slM�

〉
1
= E

〈
fEξ

∏
l≤p
vl

(
� ·�l/

√
N− 1

)〉
1



Now

Eξ
∏
l≤p
vl

(
� ·�l/

√
N− 1

)
= Egθ��gl�l≤p��

where gl = � ·�l/√N− 1 and θ��xl�l≤p� =
∏
l≤p vl�xl�. Consider a jointly

Gaussian family �g′l�l≤p given by g′l = � ·b + hl
√

1− �b�2 where �hl�l≤p are
i.i.d. N�0�1�. Thus one sees that

Egθ��g′l�l≤p� = Eξ
∏
l≤p

(
Ehvl

(
� ·b+ h

√
1− �b�2

))



To conclude, we note that by (3.1), and since Eg′2l = 1, Eg′lg
′
l′ = �b�2 if l "= l′,

we have ∣∣Egθ��gl�� −Egθ��g′l��∣∣ ≤K�f�∑
l<l′

∣∣∣∣�l ·�l′N− 1
− �b�2

∣∣∣∣
and we use Theorem 7.8. ✷

Corollary 8.5. We have E�X−Y� → 0 where

X =
〈
f
∏
l≤p
vl�slM�

〉
1
�

Y = �f�1
∏
l≤p
Ehvl

(
� ·b+ h

√
1− �b�2

)



Proof. Proposition 8.4 implies EX = EY+ o�1�, and, using replicas, that
EX2 = EY2 + o�1�, EXY = EY2 + o�1�. ✷

Corollary 8.6. We have, if p′ ≤ p,

E

〈
f
∏
l≤p′
v�slM�

〉
0
= E��f�1Rp

′ � + o�1�

for

R =
Ehv

(
� ·b+ h

√
1− �b�2

)
expu

(
� ·b+ h

√
1− �b�2

)
Eh expu

(
� ·b+ h

√
1− �b�2

) 
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Proof. We write〈
f
∏
l≤p′
v�slM�

〉
0
=

〈
f
∏
l≤p′ v�slM� exp

(
u�slM�

)∏
p′<l≤p exp

(
u�slM�

)〉
1〈∏

l≤p exp
(
u�slM�

)〉
1

and we apply Corollary 8.5 to both numerator and denominator. ✷

We recall the function ��x�y� given by (1.15). Since we assume u differen-
tiable, we can integrate by parts the numerator and get

��x�y� = Ehu
′�x+ h√1− y� expu�x+ h√1− y�

Eh expu�x+ h√1− y� 
(8.10)

Lemma 8.7. We have

Eq̂N−1�M = αE�2 �� ·b� �b�� + o�1��(8.11)

Eq̂2
N−1�M = αE �q̂N−1�M�

2�� ·b� �b��� + o�1�
(8.12)

Proof. It is very similar to the proof of Lemma 8.2. We have

Eq̂N−1�M =
1

N− 1
E
∑
k≤M

〈
u′�sk�

〉2
0 = αE

〈
u′�s1M�u′�s2M�

〉
0 + o�1�

and we use Corollary 8.5 with p = 2, f = 1 to obtain (8.11). To obtain (8.12),
we proceed similarly, starting with the relation

Eq̂2
N−1�M = αE

〈
u′�s1M�u′�s2M�A3 ·A4〉

0 + o�1�
 ✷

We now consider a new N�0�1� variable z and the function

ψ�t� = Ez�2�z√t� t�
(8.13)

Lemma 8.7. We have

Var q̂N−1�M ≤ α
(
Var q̂N−1�M−1 Varψ��b��)1/2 + o�1�


The proof is similar to the proof of Lemma 8.3.

Lemma 8.8. If t ≤ 1/2 we have ψ′�t� ≤ L exp 2D.

Proof. This is straight computation. We start with

ψ′�t� = Ez
(
z

2
√
t
∂1�

2�z√t� t� + ∂2�2�z√t� t�
)

= Ez
(

1
2
∂21�

2�z√t� t� + ∂2�2�z√t� t�
)
�

which we compute using (1.15) and integrating by parts. ✷
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We know by Lemma 3.1 that (essentially) �b� ≤ 1/2 (for LαD ≤ 1). It then
follows from Lemma 8.7 that

Var q̂N−1�M ≤ Lα exp 2D�Var q̂N−1�M−1 Var qN−1�M−1�1/2 + o�1�
(8.14)

Theorem 8.9. If u is five times differentiable and if Lα expLD ≤ 1, then
the following holds:

lim
N→∞

Var qN�M = lim
N→∞

Var q̂N�M = 0
(8.15)

The system of equations (1.13), (1.14) has a unique solution q� q̂ and

lim
N→∞

EqN�M = q� lim
N→∞

Eq̂N�M = q̂
(8.16)

Proof. It should be obvious that (8.15) follows from (8.6), (8.14).
The system of equations (1.13), (1.14) has a unique solution because the

equation q = ϕ�αψ�q�� has a unique solution [where ϕ is given by (8.9)], since
x→ ϕ�αψ�x�� is a contraction. Moreover (8.15) and (8.3) imply

EqN�M = ϕ�Eq̂N−1�M� + o�1��
while (8.15) and (8.11) imply

Eq̂N−1�M = αψ�EqN−1�M−1� + o�1�
so that

EqN�M = ϕ�αψ�EqN−1�M−1�� + o�1�
from which the result follows by iteration. ✷

We now prove (1.17) under the conditions of Theorem 8.9. If we denote by
RS�α� q� q̂� the right-hand side of (1.16), a simple computation (integration
by parts) shows that (1.13) and (1.14), respectively, mean that

∂RS

∂q
�α� q� q̂� = 0�

∂RS

∂q̂
�α� q� q̂� = 0

so that, even through q� q̂ depend upon α, we have

∂RS

∂α
�α� q� q̂� = E logEh expu�z√q+ h

√
1− q�


Thus to prove (1.16), it suffices to prove that

lim
N→∞

E logZN−1�M −E logZN−1�M−1

= E logEh expu�z√q+ h
√

1− q�

(8.17)

(The index N− 1 rather than N is for consistency with our previous choices.)
The right-hand side of (8.17) is

E log�expu�sM��1
and (8.17) follows from Corollary 8.5 (for p = 1, f = 1, v1 = expu) and (8.15),
(8.16). ✷



INTERSECTING RANDOM HALF-SPACES 757

We can look to (1.16) as saying that

E logZN�M �N
(

1
2 q̂�1− q� +E log

(
2 ch z

√
q̂
))

+ME logEh expu
(
z
√
q+ h

√
1− q)


Thereby one should expect that, as N→∞,

E logZN�M −E logZN−1�M→ 1
2 q̂�1− q� +E log

(
2 ch z

√
q̂
)

(8.18)

The interesting fact is that this is true (of course) but far from being obvious.
To me, there is some algebraic mystery in formula (1.16), and if any reader
understands it, I would be grateful to have it explained to me. The left-hand
side of (1.18) is

E log
(
2
〈
Av exp�σN� ·A +B�

〉
0

)

(8.19)

The reader should have no problem showing that, following the idea of
Corollary 8.5,〈

Av exp�σN � ·A +B�〉0 � ch � ·C exp
(

1
2��A�2�0 + �B�0 − 1

2�C�2
)

and this yields that (8.19) is about

E log�2 ch z
√
q� + α

2

(
Eh�u′2�x�eu�x��

D
−
(
Eh�u′�x�eu�x��

)2
D2

+ Eh��u
′′�x� − xu′�x��eu�x��

D2

)
�

(8.20)

where x = z√q+h√1− q, D = Eheu�x�. It can be checked through integration
by parts that the coefficient of α is indeed equal to q̂�1 − q�, but this quite
miraculous computation is not really satisfying.

It now remains to prove Theorem 1.1; that is, we have to show that (1.16)
holds even when u is not five times differentiable, but has only finitely many
discontinuities. The natural regularity hypothesis of u is in fact to assume
that u is Riemann-measurable; that is, that the set of points of discontinuity
of u has measure zero. In this case, it is elementary to see that we can find
two sequences �un�� �vn� of �∞ functions

v1 ≤ · · ·vn ≤ vn+1 ≤ · · · ≤ u ≤ · · · ≤ un+1 ≤ un ≤ · · · ≤ u1�

such that �v1� ≤ 2D, �u1� ≤ 2D and vn�x�� un�x� → u�x� for x outside a set of
measure zero. With obvious notation, we have

ZN�M�vn� ≤ ZN�M�u� ≤ ZN�M�un��
so that all have to prove is that RS�vn� α� − RS�un� α� → 0. The function
�u�x�y� was only used in the proof for values of y ≤ 1/2. In this domain, inte-
gration by parts shows that the partial derivatives of all orders of �un�x�y�−
�vn�x�y� converge uniformly to zero, so that the values of qN�M� q̂N�M
corresponding to un, vn, respectively, have a common limit. The conclusion
is then obvious.
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