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Consider a catalytic super-Brownian motion X = X� with finite vari-
ance branching. Here “catalytic” means that branching of the reactant X
is only possible in the presence of some catalyst. Our intrinsic example of
a catalyst is a stable random measure � on R of index 0 < γ < 1. Con-
sequently, here the catalyst is located in a countable dense subset of R.
Starting with a finite reactant mass X0 supported by a compact set, X is
shown to die in finite time. We also deal with two other cases, with a power
low catalyst and with a super-random walk on Zd with an i.i.d. catalyst.

Our probabilistic argument uses the idea of good and bad historical
paths of reactant “particles” during time periods �Tn�Tn+1�. Good paths
have a significant collision local time with the catalyst, and extinction can
be shown by individual time change according to the collision local time
and a comparison with Feller’s branching diffusion. On the other hand,
the remaining bad paths are shown to have a small expected mass at time
Tn+1 which can be controlled by the hitting probability of point catalysts
and the collision local time spent on them.
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1. Introduction. Recently a number of papers have dealt with branch-
ing in catalytic media. These are models of chemical or biological reaction–
diffusion systems of two substances or species, respectively. One we call the
catalyst, and the other the reactant. The latter we model by a super-Brownian
motion (SBM) with “critical binary” branching, and its branching rate is given
by the catalyst.
In this paper we verify finite time extinction of the reactant for three differ-

ent types of catalysts, provided the reactant was started with a finite mass.
We begin with explaining the most interesting of these catalysts.

1.1. Model 1: stable catalyst � on R. Let X� = �X�
t � t ≥ 0	 denote a

continuous super-Brownian motion (SBM) with branching rate (catalyst) given
by a stable random measure

� =∑
i

αiδbi(1)

on the real line R with index 0 < γ < 1 [for the latter, see (21) below].
At an intuitive level, this model can be explained as follows. A huge num-

ber of small reactant “particles” move independently according to Brownian
motions in R. But if such a Brownian particle meets one of the point cata-
lysts αiδbi it may branch in a critical binary way. More precisely, branching is
governed by the collision local time

L�W���
ds� �= ds
∑
i

αiδbi
Ws�(2)

in the spirit of [1] of the Brownian reactant particle with path W and the
stable random measure �
db� describing the catalyst. Note that

L�W���
�0� t�� =
∑
i

αiLt
bi�� t ≥ 0�(3)

where Lt
b� denotes the Brownian local time at b by time t.
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This process X� was introduced as a Markov process by Dawson and
Fleischmann ([3], Lemma 2.3.5 and its application in Sections 2.4–2.5). The
existence of a continuous version follows from [5], Theorem 1b. The clumping
features of X� had been exhibited in [3] by a time-space-mass scaling limit
theorem. In [8] the states X�

t of X
� had been shown to be absolutely continu-

ous measures. Finally, in [9], the so-called compact support property has been
verified: if the finite initial measure X�

0 has compact support, then the range
of X� is compact, too.
Starting with a finite measure X�

0, and given �, the total mass process
t �→ X�

t 
R� is a continuous martingale, hence has a.s. a limit as t ↑ ∞
([5], Proposition 3). The main purpose of the present paper is to show that
if X�

0 is of compact support, the process X� dies in finite time (Theorem 6
below), just as in the constant medium case (the formal γ = 1 boundary case).
To illustrate the problems we encounter in the proof, we consider the fol-

lowing. Given the catalyst � and starting X� with a unit mass concentrated
at a, that is X�

0 = δa, the probability of extinction of X� at time t is given by

P�
0� δa

(
X�

t = 0
) = exp�−v∞
0� a � t� ����(4)

where for θ� t� � fixed, vθ = vθ
·� · � t� �� = �vθ
s� a � t� ��� 
s� a� ∈ �0� t� × R	
solves (formally) the following reaction–diffusion equation in the stable cat-
alytic medium �:

− ∂

∂s
vθ =

1
2
�vθ − �v2θ� vθ
s� a � t� ���s=t ≡ θ ≥ 0(5)

and v∞ �= limθ↑∞ vθ. Then, by Borel–Cantelli, it would suffice to show the
following extinction property of solutions to (5):

lim
t↑∞

lim
θ↑∞

vθ
0� a � t� �� = 0�(6)

However, we do not know how to attack this problem analytically. Recall that
the coefficient � of the reaction term (reaction rate) in (5) is the generalized
derivative of a (random) measure supported by a countable dense set in R,
hence is highly singular.
Instead, to prove finite time extinction we will use some probabilistic argu-

ments concerning the stochastic process X�, inspired by Fleischmann and
Mueller [20], which turns out to be a very flexible argument. (For another
recent application, see [18].)
At the same time, via the log-Laplace connection of X� to the partial dif-

ferential equation (5), our approach can be regarded as a probabilistic con-
tribution to the study of asymptotic properties [such as (6)] of solutions to
the reaction-diffusion equation (5) in the (random) heterogeneous singular
medium �.
Equations as (5) have attracted some attention and are relevant in par-

ticular from an applied point of view; see, for example, [27], [28]. For reac-
tion–diffusion equations in heterogenous media with different species and
where reaction may be concentrated on bounded interfaces, see [24]. Note
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that reaction–diffusion equations arise in many branches of technology, for
example, microelectronics.
The main ideas of our approach are as follows. First of all, since we start

with an initial measure X0 of compact support, and X� has the compact
support property ([9]), we may “essentially” restrict our attention to a finite
(space) interval 
−K�K� ⊂ R. Hence, by a stopping argument, the catalyst
may be extended periodically outside 
−K�K�. Next, the probability of extinc-
tion can be estimated below by using a smaller branching rate. Therefore, we
remove all atoms αiδbi of the catalyst with large “action weights” αi. Moreover,
the action weights αi belonging to �2−n�2−n+1� are replaced by 2−n, so that the
corresponding atoms form Poisson point processes in 
−K�K� of intensity c2γn

(with c an appropriate constant). Finally, “large” distances between neighbor-
ing points of this Poisson point process are exceptional. Therefore, we may
restrict to the situation where the empty intervals are at most of a size �n (to
be specified later). By the periodic expansion, then at the whole axis neighbor-
ing points are at most distance �n apart. Altogether, we then want to verify
finite time extinction of X� where the catalyst � is of the form

∑
n≥0 2−nπn

where πn is a periodic point measure with gaps between neighboring catalysts
bounded by �n.
The central idea is to look for a sequence times T1 < T2 < · · · with finite

accumulation point T∞ with the following property. At time Tn, we distin-
guish between “good and bad” historical paths of Brownian reactant particles,
starting from the state X

�
Tn

at time Tn, as we now explain.
The “good” paths are those which have a “significant” collision local time

with 2−nπn on the time interval �Tn�Tn+1� (so we take into account only that
part 2−nπn of �). Consider the total mass of the good paths. For the continuous
SBM with a uniform branching rate, the total mass process would have the
same distribution as the (critical) Feller’s branching diffusion which satisfies
the one-dimensional stochastic equation

dZr =
√
2ZrdWr� Z0 ≥ 0(7)

(with W a standard Brownian motion). It is well known that this diffusion is
absorbed at 0 in finite time. In our catalytic case, the total mass of the good
paths can in law be compared with Feller’s branching diffusion. But now its
time scale during �Tn�Tn+1� is, roughly speaking, individually given by the
collision local times of the good paths with the catalytic medium 2−nπn. Since
these collision local times are “significant” on the good paths, it follows that
the total mass of the good paths dies out by time Tn+1 with high probability.
The remaining “bad” paths may not die out by time Tn+1, but we can esti-

mate the probability that this mass is larger than a certain size at time Tn+1,
by using Markov’s inequality and the simple but powerful expectation for-
mula for (historical) superprocesses. Then we need to derive some estimates
concerning hitting probabilities of a neighboring point catalyst from 2−nπn,
and the Brownian (collision) local time spent on it.
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1.2. Model 2: i.i.d. uniform catalysts on the lattice Zd. In the other two
models we discuss, the basic ideas of distinguishing between good and bad
historical paths, and how to handle them, are the same. So here we only
introduce the models and indicate how to classify the paths.
For the second model, we replace the phase space R by the lattice Zd, and

Brownian motion by a continuous time simple random walk in Zd. The cat-
alysts ! = �!b� b ∈ Zd	 are i.i.d. random variables, uniform in the interval
(0, 1). So here the catalysts are present everywhere but again their action
weights !b fluctuate randomly. Given the catalyst !, the super-random walk
X! with catalyst ! can be defined by the following system of interacting dif-
fusions in R+:

dX
!
t 
b� = 1

2�X
!
t 
b�dt+

√
2!bX

!
t 
b�dWt
b��(8)

t > 0, b ∈ Zd, where � is the discrete Laplacian in Zd, and �W
b�� b ∈ Zd	 is a
family of independent one-dimensional (standard) Brownian motions. In other
words, we consider interacting Feller’s branching diffusions X! on Zd in the
catalytic medium !. Note that given the catalyst !, for each bounded initial
state X!

0 , a unique strong solution X! of (8) exists, that is, (8) is a well-posed
problem [31].
By the discreteness of Zd, and since masses can be arbitrarily small in

superprocesses, one does not expect that the compact support property holds.
Therefore, as opposed to Model 1, the super-random walk X! with catalyst !
may be influenced by large regions, where the catalysts are small. However,
calling paths “bad” which reach such a region, these paths should have a small
expected mass, and we will be able to show the finite time extinction property
for X! along the lines indicated.
Intuitively, it is clear that for these arguments the special form of the uni-

form density is not important. But boundedness away from zero and infinity
of the density of catalytic mass at a site seems to be essential.

1.3. Model 3: a deterministic power law catalyst χq. For the moment, con-
sider the continuous SBM with phase space R and uniform branching rate,
except on 
−1�1�. More precisely, we consider the branching rate χ = 1R\
−1�1�.
As we will see in the next subsection, if X0

−1�1�� > 0, then this superpro-
cesses does not die in finite time.
Motivated by this, for a fixed constant q > 0, we consider the truncated

power law branching rate

χ
b� = χq
b� �= �b�q ∧ 1� b ∈ R(9)

(see Figure 1). The SBMXχ with power law catalyst χq is covered, for instance,
by the class of models dealt with in [26].
We show that starting with a finite initial mass, Xχ dies in finite time, just

as in the constant branching rate case, despite the “depression” of branching
rate close to the origin, even if q is very large. Here the good historical paths
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Fig. 1. Variants of the power law catalyst.

are those which do not spend too much time near 0, where the catalytic mass
is small.

1.4. Finite time survival. If we change Model 1 so that the catalysts are
not dense, then the reactant mass fails to die out in finite time. In fact, if
I �= � is an open interval without catalysts, then a corresponding catalytic
SBMX is bounded below by the heat flow in I with absorption at the boundary
∂I, starting with X0
· ∩ I�. If now X0
I� > 0, then the L1-norm of that heat
solution decays according to �X0� ϕλ�e−λt with λ > 0 the first eigenvalue of
1
2� on I, and ϕλ the corresponding eigenfunction, hence is (strictly) positive
at any time t, that is Xt
I� > 0 for all t.
Note that catalytic SBMs with a gap cover the single point catalytic

SBM, where survival for all finite times was known from Fleischmann and
Le Gall [19].
It would be interesting to establish conditions on the catalytic medium

which are necessary and sufficient for extinction in finite time. Unfortunately,
our methods seem to be too crude for this. But in Section 4.3 below we will
complement our finite time extinction results by two nontrivial examples of
catalytic SBMs in R for which finite time extinction is violated. In fact, in
the first case, we replace the power law catalyst by one which has a still
“deeper depression” but the catalytic density is nevertheless positive every-
where except at 0. In the second example, the catalyst is dense at R but “very
sparse” in the sense that it can be considered as a γ = 0 boundary case of a
stable catalyst with index γ.

Remark 1 (Decomposition of initial measures). Suppose a finite decompo-
sition µ = ∑

i µi of the initial measure is given. If we can show finite time
extinction for each initial measure X0 = µi then the branching property
implies finite time extinction for X0 = µ.

1.5. Outline. To give a precise meaning to the above ideas, some technical
problems have to be overcome. For instance, to have access to reactant particle
paths, we will work with the historical catalytic SBM X̃� instead of X�. Or,
since we want to use time scales of individual reactant particles, we will exploit
Dynkin’s [14] framework of “stopped” historical superprocesses.
The outline of the paper is as follows. In the next section we recall the model

of continuous SBMX in Rd with branching rate functionalK as provided in [5]
(this goes back to [14]). ThenK is specialized to be the Brownian collision local
time K = L�W�ψ� of a (deterministic) locally finite measure ψ (catalyst) on R,
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also taken from [5]. Further specialized to ψ = �, our main result, Theorem 6
below, can be formulated.
In Section 3 we first recall the historical SBM X̃ in Rd with branching rate

functional K. For this model, we give an abstract sufficiency criterion (Theo-
rem 10) for finite time extinction based on the idea of good and bad paths. For
the extinction of good paths, a comparison with Feller’s branching diffusion is
provided (Proposition 12), as a refinement of an argument in [20]. This makes
use of Dynkin’s concept of (individually) “stopped” historical superprocesses.
Section 4 is devoted to two one-dimensional applications of the abstract

criterion:

(a) the power law catalyst χq of Model 3, and
(b) a (deterministic) point catalyst � = ∑

n≥N 2−nπn with dense locations
and gaps between neighboring catalysts in πn bounded by some �n.

In Section 5 we prove our main theorem, the finite time extinction for the
SBMX� with a stable catalytic rate � (Model 1). In fact, by periodic expansion
and a comparison argument, we reduce the problem to the case (b) above.
Finally, in Section 6, finite time extinction for the super-random walk X!

with i.i.d. uniform catalysts is derived.
For a brief introduction to the results presented in this paper, see [21]. For

recent surveys on catalytic branching models, we recommend [6] and [25].
We restrict our attention completely to finite measure-valued reactant pro-

cesses, although otherwise one could ask for local extinction in finite time (for
a study of this notion, see also [16] and references therein).

2. Stable catalysts: main result. Here we carefully introduce the con-
tinuous SBM X in Rd with a sufficiently nice branching rate functional K.
After specializations to Model 1, we will formulate our main result, Theorem 6
below.

2.1. Preliminaries: some spaces. Measurability is always meant with
respect to the related Borel fields. The lower index + refers to the subset
of all nonnegative members of a set.
Let��E1�E2� denote the set of allmeasurablemappings f�E1 → E2 where

E1�E2 are topological spaces. Write ��E1� instead of ��E1�E2� if E2 = R, the
real line, and only � if additionally E1 = Rd, d ≥ 1.
If we restrict our consideration to continuous functions f, the letter � is

replaced by � in the respective cases. If we restrict to bounded functions, we
write b� and b� , etc.
Fix a dimension d ≥ 1, and a constant p > d, and introduce the reference

function

φp
b� �= 
1+ �b�2�−p/2� b ∈ Rd�(10)

of p-potential decay at infinity. Denote by �p the set of all those ϕ ∈ � such
that �ϕ� ≤ cϕφp for some constant cϕ.
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Write �µ�f� for the integral ∫ µ
db�f
b�. Let �p = �p�Rd� denote the set
of all (nonnegative) measures µ defined on Rd satisfying �µ�φp� < ∞. We
endow this set �p of p-tempered measures with the weakest topology such
that all the maps µ �→ �µ�ϕ� are continuous, where ϕ ≥ 0 is continuous and
of compact support, or ϕ = φp. The set of all finite measures on a Polish space
E is denoted by �f�E� and equipped with the topology of weak convergence.
Write �µ� for the total mass µ
E� = �µ�1� of µ ∈ �f�E�.
Set �f = �f�Rd�, and denote by � �R+ × E� the set of all measures η

defined on R+ ×E such that η
�0� t� ×E� < ∞ for all t > 0.
With c we always denote a positive constant which may be different at var-

ious places. On the other hand, constants ci are fixed within each subsection.

2.2. Branching rate functional K and BCLT L�W�ψ�. Let W = �W�/s�a�

s ≥ 0� a ∈ Rd� denote the (standard) Brownian motion in Rd, on canonical
path space � �R+�Rd� of continuous functions w.

Remark 2 (Inhomogeneous setting). Although Brownian motion is time-
homogeneous, we use this inhomogeneous setting, and we read /s�aϕ
Wt� as
0 if s > t. This formalism looks artificial since charging the paths before time
s does not change the laws /s�a. The advantage becomes clear when we work
with historical SBM. Note that the measure /s�a is concentrated on the set of
paths �w ∈ � �R+�Rd�� ws = a	.

Write p for the continuous transition density function of W,

pt
a� b� = pt
b− a� = 
2πt�−d/2 exp
[
−
b− a�2

2t

]
� t > 0� a� b ∈ Rd(11)

and

/η �=
∫
η
ds�da�/s�a� η ∈ �

[
R+ ×Rd

]
(12)

for the “law” of W starting at time s in a point a where 
s� a� is “distributed”
according to the measure η.
For convenience, we introduce the following definition.

Definition 3 (Branching rate functional). A continuous additive func-
tional K = K�W� of Brownian motion W is called a branching rate functional
in Kν, for some ν > 0, if the following two conditions hold:

(a) It is locally admissible, that is,

sup
a∈Rd

/s�a

∫ t

s
K
dr�φp
Wr� −→

s→r0
t→r0

0� r0 ≥ 0�(13)

(For nonadmissible functionals, we refer to [7].)
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(b) For each N there is a constant cN > 0 such that

/s�a

∫ t

s
K
dr�φ2

p
Wr� ≤ cN�t− s�νφp
a�� 0 ≤ s ≤ t ≤ N�a ∈ Rd�(14)

To come to our main example of a branching rate functional, consider for
the moment d = 1 and fix ψ ∈ �p. Intuitively,

L�W�ψ�
dr� �= dr
∫
ψ
db�δb
Wr�(15)

is the Brownian collision local time (BCLT) of ψ. From [5], Corollary 2,
page 257, we immediately get the following statement. (For the more gen-
eral case if ! is also time-dependent or, in particular a path of ordinary SBM,
we refer to [17] and references therein.)

Lemma 4 (Brownian collision local time of !). Fix d = 1 and ψ ∈ �p. The
Brownian collision local time L�W�ψ� of ψ makes sense nontrivially as a con-
tinuous additive functional of (one-dimensional) Brownian motion W, and it
is a branching rate functional in Kν with ν = 1/2.

2.3. SBM X with branching rate functional K. A slight modification of
Proposition 12 (page 230) and Theorem 1 (page 234) in [5] gives the following
lemma.

Lemma 5 (Continuous SBM with branching rate functional K). Fix a di-
mension d ≥ 1, and K ∈ Kν for some ν > 0.

(a) (Existence) There exists a continuous �f-valued (time-inhomogeneous)
Markov process X = �X�Ps�µ� s ≥ 0� µ ∈ �f� with Laplace functional

Ps�µ exp�Xt�−ϕ� = exp�µ�−v
s� ·�t���(16)

0 ≤ s ≤ t� µ ∈ �f� ϕ ∈ b�+, where for t� ϕ fixed, v = v
·� ·�t� ≥ 0 is uniquely
determined by the log-Laplace equation

v
s� a� = /s�a

[
ϕ
Wt� −

∫ t

s
K
dr�v2
r�Wr�

]
�(17)

0 ≤ s ≤ t, a ∈ Rd.
(b) (Modification) To each η ∈ � �R+ × Rd�, there is an �f-valued Markov

process �X�Pη� such that

Pη exp�Xt�−ϕ� = exp�η�−v
·� ·�t��� t ≥ 0�(18)

with v
s� ·�t� from (a) if 0 ≤ s ≤ t, and v
s� ·�t� = 0 otherwise.
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(c) (Moments) �X�Ps�µ� has finite moments of all orders. In particular, for

η ∈ � �R+ × Rd� and ϕ1� ϕ2 ∈ b�+, as well as t1� t2 ≥ 0,

Pη�Xt1
�−ϕ1� = /ηϕ1
Wt1

��(19)

Covη��Xt1
� ϕ1�� �Xt2

� ϕ2��

= 2/η

∫
K
dr�1�r≤t1∧t2	

[
/r�Wr

ϕ1
Wt1
�][/r�Wr

ϕ2
Wt2
�]�(20)

(Recall that for formulas as in (c) the convention is in force that /s�aϕ
Wt� = 0
if s > t, introduced in Remark 2.)
This superprocess X is said to be the continuous SBM with branching rate

functionalK. Note that the lemma in particular applies in the case of a BCLT
K = L�W�ψ� according to Lemma 4, resulting in a time-homogeneous Markov
process.

2.4. Main result: finite time extinction of X�. Let d = 1. Fix a constant
0 < γ < 1, and a (not necessarily normalized) Lebesgue measure 3 on R. The
stable catalyst 
���� is by definition the stable random measure on R with
Laplace functional

� exp���−ϕ� = exp
[
−
∫
3
db�ϕγ
b�

]
� ϕ ∈ �+�(21)

Recall that � has independent increments, and that it allows a representation

� =∑
i

αiδbi(22)

with weights αi > 0, and where the set of locations bi is dense in R, with
�-probability 1.
We now additionally require p > 1/γ [for the exponent p of potential decay

occurring in the reference function (10)]. Then by (21), the realizations of
the catalyst � belong �-almost surely to �p. Hence we may apply the con-
structions of the previous two subsections to introduce the continuous SBM
X� = �X��P�

s�µ� s ≥ 0� µ ∈ �f� with stable catalyst �. More precisely, we use
the so-called quenched approach: first a realization � of the catalytic medium
is selected according to �, and then, given �, the continuous time-homogeneous
Markov process X� evolves, governed by the BCLT L�w���.
Note that by a formal differentiation of the log-Laplace equation (17) with

K = L�w��� of (15), using the semigroup of W, and replacing ϕ by the constant
function θ, we get back the reaction–diffusion equation (5) in the catalytic
medium �.
Now we are in a position to formulate our main result. Recall that d = 1.

Theorem 6 (Finite time extinction of X�). Fix µ ∈ �f with compact sup-
port. For �-almost all � the following holds:

P�
0� µ

(
X�

t = 0 for some t
)
= 1�(23)
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The proof of this theorem needs some preparation and is postponed until
Section 5.
It is reasonable to expect that in some “γ = 0 boundary cases” finite time

extinction is violated. More precisely, think of a catalyst which is a random
measure with independent increments which Lévy measure ν on R+ is infinite
but has a density with a growth to infinity at 0 of order r−1L
r� as r ↓ 0 with
L an appropriate slowly varying function (recall that in the γ-stable case the
density’s increase is of order r−1−γ as r ↓ 0). See Corollary 17(ii) below.

3. An abstract finite time extinction criterion. The purpose of this
section is to establish a general sufficient criterion for extinction in finite time
for a SBM X in Rd with branching rate functional K (see Theorem 10 below).
The central idea is to divide a finite time interval into an infinite number of
stages in such a way that all of the mass will be dead at the end of all these
stages. For this purpose, at each stage we distinguish between good and bad
historical paths. The good paths accumulate a “significant” rate of branching,
so that they die by the next stage, with high probability. The remaining bad
paths may not die, but by assumption they carry a small expected mass at the
beginning of the next stage.

3.1. Refinement: historical SBM X̃. To realize this concept, we have to
pass to a “historical” setting. That is, the measures Xt
db� on Rd are thought
to be projections of measures X̃t
dw� where w is a continuous function on the
interval �0� t�. Heuristically, a particle in Xt with position b is additionally
equipped with a path w� �0� t� → Rd with terminal point wt = b, which gives
the spatial past history of the particle and its ancestors. (For a more detailed
exposition, we refer, e.g., to [20].)
Equip C �= � �R+�Rd� with the topology of uniform convergence on all com-

pact subsets of R+. To each w ∈ C and t ≥ 0, we associate the stopped path
wt ∈ C by setting wt

s �= wt∧s� s ≥ 0. Write Ct for the closed subspace of C of all
these paths stopped at time t. Note that Ct could be regarded as � ��0� t��Rd�
(as we did in the previous paragraph) and C0 as Rd.
To every w ∈ C we associate the corresponding stopped path trajectory w̃ by

setting w̃t �= wt� t ≥ 0. Writing � · �∞ for the supremum norm, for 0 ≤ s ≤ t
we get

�w̃t − w̃s�∞ = �wt −ws�∞ = sup
s≤r≤t

�wr −ws� → 0 as t− s ↓ 0�

Hence, w̃ belongs to � �R+�C�.
The image of the Brownian motion W under the map w �→ w̃ is called the

Brownian path process

W̃ = [
W̃� /̃s�w� s ≥ 0� w ∈ Cs

]
�(24)

That is, at time s we start with a pathw = W̃s stopped at time s, and let a path
trajectory �W̃t� t ≥ s	 evolve with law /̃s�w determine by the path �Wt� t ≥ s	
starting at time s from ws.
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Note that if K belongs to Kν for some ν > 0, then K is also a continuous
additive functional with respect to the Brownian path process W̃.
Set

R−×̂C• �= {
s�w�� s ∈ R+� w ∈ Cs
}

(25)

and write � �R+×̂C•� for the set of all measures η on R+×̂C• which are finite
if restricted to a finite time interval. Moreover, let

/̃η �=
∫
η
ds�dw� /̃s�w� s ≥ 0� η ∈ � �R+×̂C•��(26)

W can be constructed from W̃ by projection: Wt �= 
W̃t�t. this will often be
used in the sequel.
Now we give the following historical version of Lemma 5, which follows

from a modification of Propositions 1 (page 225), 12 (page 230) and Lemma 4
(page 232) in [5].

Proposition 7 (Historical SBMwith branching rate functionalK). Let d≥
1, and fix K ∈ Kν for some ν > 0.

(a) (Existence) There exists a (time-inhomogeneous) Markov process

X̃ =
[
X̃� P̃s�µ� s ≥ 0� µ ∈ �f�Cs�

]
(27)

with states X̃t ∈ �f�Ct�� t ≥ s, and with Laplace functional

P̃s�µ exp�X̃t�−ϕ� = exp�µ�−v
s� · � t���(28)

0 ≤ s ≤ t, µ ∈ �f�Cs�, ϕ ∈ b�+�C�, where for t� ϕ fixed, v = v
·� ·�t� ≥ 0 is
uniquely determined by the log-Laplace equation

v
s�ωs� = /̃s�ωs

[
ϕ
W̃t� −

∫ t

s
K
dr�v2
r� W̃r�

]
�(29)

0 ≤ s ≤ t, ωs ∈ Cs.

(b) (Modification) To each η ∈ � �R+×̂C•� there is a Markov process �X̃� P̃η�
with states X̃t ∈ �f�Ct� and such that

P̃η exp�X̃t�−ϕ� = exp�η�−v
·� ·�t��� t ≥ 0�(30)

with v
s� · � t� from (a) if 0 ≤ s ≤ t, and v
s� · � t� = 0 otherwise.

(c) (Moments) 
X̃� P̃s�µ� has finite moments of all orders. In particular, for
η ∈ � �R+×̂C•� and ϕ1� ϕ2 ∈ b�+�C�, as well as t1� t2 ≥ 0,

P̃η�X̃t1
� ϕ1� = /̃ηϕ1
W̃t1

��(31)

C̃ovη
[�X̃t1

� ϕ1�� �X̃t2
� ϕ2�

]
= 2/̃η

∫
K
dr�1�r≤t1∧t2	

[
/̃r� W̃r

ϕ1
W̃t1
�][/̃r� W̃r

ϕ2
W̃t2
�]�(32)
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(Recall once more that for formulas as in (c) we use the convention introduced
in Remark 2 which by projection also applies for historical Brownian motion.)
We call this superprocess X̃ the historical SBM with branching rate func-

tion K.
Of course, X can be gained back from X̃ by projection:

Xt = X̃t

({
w ∈ Ct� wt ∈ 
·�})�(33)

3.2. Dynkin’s “stopped” measures X̃τ. We also have to recall Dynkin’s
[14, 15] concept of “stopped” historical superprocesses. We have two reasons
for this. First, to handle also the lattice Model 2, we have to allow the times
T1 < T2 < · · · mentioned in Section 1.1 to be Brownian stopping times. The
second reason is that we intend to scale the SBM along individual particles’
trajectories according to their accumulated rate of branching. Note that this
is related to the work of Perkins [29] where stochastic integrals are developed
along individual particles’ trajectories in the historical superprocess.
Roughly speaking, if τ is a Brownian stopping time, Dynkin’s “stopped”

measure X̃τ describes the population one gets, if each (individual) reactant
path is stopped in the moment τ. More precisely, X̃τ is a random measure in
� �R−×̂C•�. For a detailed development, we refer to [14], Section 1.5 and [15],
Section 1.10. For convenience, here we collect only the following facts.
Let τt� t ≥ 0, be stopping times with respect to the (natural) filtration of

Brownian motion W, satisfying τs ≤ τt if s ≤ t. Then there is a family{
X̃τt

� t ≥ 0
}
�(34)

of random measures in � �R+×̂C•�, the so-called “stopped” historical SBM
related to the family of Brownian stopping times �τt� t ≥ 0	. This family sat-
isfies the so-called special Markov property, which roughly says the following:
for s ≥ 0, let �τs

denote the pre-τs σ-field (concerning the historical super-
process X̃). Given �τs

, hence in particular X̃τs
=� ϑ, the “stopped” process

�X̃τt
� t ≥ s	 “starts anew” ([14], Theorem 1.6 and [15], Theorem 1.5), namely

based on the law P̃ϑ.
Similarly, the notation of a sequence �X̃τn

� n ≥ 1	 of “stopped” measures
related to Brownian stopping times τ1 ≤ τ2 ≤ · · · can be introduced.
In formal analogy with Proposition 7(b), we get the following log-Laplace

representation for the stopped historical SBM (see [15], Theorem 1.4). For
t ≥ 0 and η ∈ � �R+×̂C•� as well as ϕ in b�+�R+ ×C�,

P̃η exp�X̃τt
�−ϕ� = exp�η�−vt��(35)

where vt solves

vt
s�ωs� = /̃s�ωs
1�s≤τt	

[
ϕ
τt� W̃τt

� −
∫ τt

s
K
dr�v2t 
r� W̃r�

]
�(36)
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In particular, the following first two moment formulas hold ([14], (1.50a)):

P̃η�X̃τt
� ϕ� = /̃ηϕ
τt� W̃τt

��(37)

Ṽarη�X̃τt
� ϕ� = 2/̃η

∫
K
dr�1�r≤τt	

[
/̃r� W̃r

ϕ
τt� W̃τt
�]2�(38)

Finally, we adopt the convention to write, for (measurable) subsets E of C,

X̃τt

E� �= X̃τt

(
R+×̂C•� ∩ 
R+ ×E�)�(39)

3.3. The method of good and bad historical paths. Fix K ∈ Kν, for some
ν >0, and a finite measure µ on Rd. Consider the historical SBM X̃ of Prop-
osition 7 starting from X̃0 = µ. First we introduce some Brownian stopping
times and small constants.

Hypothesis 8 (Stage quantities). Let 0 < ε < 1 and N = N
ε� ≥ 0.

(a) (Stage duration) Consider Brownian stopping times

0 ≤ Tε
N < Tε

N+1 < · · · < Tε
∞ < ∞�(40)

where the bound Tε
∞ is nonrandom.

(b) (Constants) For n ≥ N = N
ε�, letMε
n, δ

ε
n, λ

ε
n, ξ

ε
n and, in addition, δ

ε
N−1

be (strictly) positive constants with the following properties:


b1� Mε
n ↓ 0 as n ↑ ∞�


b2� lim
ε↓0

(
δεN−1 +

∑
n≥N


δεn + λεn�
)
= 0�

Introduce the set Eε
n of so-called good historical paths (during �Tε

n�T
ε
n+1�),

Eε
n �=

{
w ∈ C�

∫ Tε
n+1

Tε
n

K
dr� ≥ ξεn

}
�(41)

that is, paths w with at least the amount ξεn of accumulated branching over
the time interval �Tε

n�T
ε
n+1�. We call 
Eε

n�c = C\Eε
n the set of bad paths. On

the good and bad paths we impose the following hypothesis.

Hypothesis 9 (Good and bad paths). Fix ε ∈ 
0�1�. First,
P̃0� µ

(∥∥X̃Tε
N

∥∥ > Mε
N

)
≤ δεN−1(42)

and for all n ≥ N = N
ε�,
P̃0� µ

{
X̃Tε

n+1
Eε
n� > 0

∣∣∣∥∥X̃Tε
n

∥∥ ≤ Mε
n

}
≤ δεn�(43)

P̃0� µ

{
X̃Tε

n+1

(
Eε
n�c
)∣∣∣∥∥X̃Tε

n

∥∥ ≤ Mε
n

}
≤ λεnM

ε
n+1(44)

[recall convention (39)].
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Here is our interpretation of Hypothesis 9. Recall that by Hypothesis 8(b)
the numbers Mε

n, δ
ε
N−1, δ

ε
n and λεn are small. So at the beginning of the Nth

stage, the total mass �X̃Tε
N
� is already small with a high P̃0� µ-probability.

Then starting with a small mass at the beginning of the nth stage, our condi-
tion (43) says that good paths survive only with a small (conditional) proba-
bility in the present stage, whereas (44) means that the (conditional) expected
mass of bad paths is small.
Our abstract criterion now reads as follows. Recall that d = 1, µ ∈ �f, and

that K ∈ Kν for some ν > 0.

Theorem 10 (Abstract criterion for finite time extinction). Impose Hypothe-

ses 8 and 9. Thenwith P̃0� µ-probability 1, X̃t = 0 for some t.

We mention that under additional conditions, estimate (43) can be obtained
by a comparison with Feller’s branching diffusion; see Section 3.5 below,
whereas the expectation formula for stopped historical SBM is available to
reduce assertion (44) to a statement on the probability of a path to be bad,
that is, to have a small accumulated rate of branching. In fact, by the special
Markov property and the expectation formula (37) applied to the indicator
function ϕ = 1R+×
Eε

η�c and the starting measure η = X̃Tε
n
, we have

P̃0� µ

{
X̃Tε

n+1

(
Eε
n�c
)∣∣∣�Tε

n

}
= /̃X̃Tεn

(
W̃Tε

n+1 ∈ 
Eε
n�c
)
�(45)

By definition, and since Eε
n only depends on �ws� Tε

n ≤ s ≤ Tε
n+1	, we can

continue with

=
∫
X̃Tε

n

ds�dw� /̃s�w

(
W̃Tε

n+1 ∈ 
Eε
n�c
)

=
∫
X̃Tε

n

ds�dw�/s�ws

(
W ∈ 
Eε

n�c
)
�

(46)

Combining (45) and (46) implies the following result.

Lemma 11 (Sufficient condition). If the estimate

/s�ws

(
W ∈ 
Eε

n�c
) ≤ λn

Mε
n+1

Mε
n

� 
s�w� ∈ suppXTε
n
�(47)

holds, then the conditional expectation estimate (44) is true.

3.4. Proof of the abstract criterion. Here we want to prove Theorem 10.
For 0 < ε < 1 and N = N
ε� ≥ 0, set

Aε
n �=

{∥∥X̃Tε
n

∥∥ ≤ Mε
n

}
� n ≥ N and Aε �= ⋂

n≥N
Aε

n�(48)

as well as

T
ε

∞ �= lim
n↑∞

Tε
n�(49)

Note that this limiting Brownian stopping time satifies T
ε

∞ ≤ Tε
∞ < ∞.
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1′ (Extinction on Aε). First, we show that for all ε ∈ 
0�1�,∥∥X̃T
ε

∞

∥∥ = 0 on Aε� P̃0� µ-a.s.(50)

Indeed, fix 0 < ε < 1 and a ζ > 0. Then by Markov’s inequality, for each
n ≥ N,

P̃0� µ

({∥∥X̃T
ε

∞

∥∥ > ζ
}
∩Aε

)
≤ ζ−1P̃0� µ1Aε

n

∥∥X̃T
ε

∞

∥∥�(51)

However, by the special Markov property, the expectation formula (37) and
the definition of Aε

n,

P̃0� µ

{
1Aε

n

∥∥X̃T
ε

∞

∥∥∣∣∣�Tε
n

}
= 1Aε

n
P̃X̃Tεn

∥∥X̃T
ε

∞

∥∥ = 1Aε
n

∥∥X̃Tε
n

∥∥ ≤ Mε
n�

Hence, estimate (51) can be continued with

≤ ζ−1Mε
n−→
n↑∞

0�(52)

by Hypothesis 8(b1). Thus,

P̃0� µ

({∥∥X̃T
ε

∞

∥∥ > ζ
} ∩Aε

)
= 0 ∀ ζ > 0(53)

and (50) follows.
2′ (Aε

n+1 fails with small conditional probability). From Markov’s inequal-
ity and the conditional expectation estimate (44) we get, for 0 < ε < 1 and
n ≥ N,

P̃0� µ

{
X̃Tε

n+1

(
Eε
n�c
)
> Mε

n+1
∣∣∣Aε

n

}
≤ λεn�(54)

Together with (43), we conclude for

P̃0� µ
{(
Aε

n+1
)c∣∣Aε

n

} ≤ δεn + λεn�(55)

3′ (Aε fails with small probability). Next we show that

lim
ε↓0

P̃0� µ
(
Aε�c) = 0�(56)

We decompose the complement 
Aε�c of Aε according to the smallest natural
number n ≥ N such that Aε

n fails:

P̃0� µ
(
Aε�c) = P̃0� µ

((
Aε

N

)c)+ ∑
n≥N

P̃0� µ
(
Aε

N ∩ · · · ∩Aε
n ∩ (Aε

n+1
)c)

≤ P̃0� µ
((
Aε

N

)c)+ ∑
n≥N

P̃0� µ
{(
Aε

n+1
)c∣∣Aε

n

}
�

(57)

Then (56) follows from (42), step 2′ and Hypothesis 8(b2).
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4′ (Conclusion). Let ε = k−1� k > 1. From (56) and the monotonicity prop-
erty of measures, we learn that the event that A1/k fails for all k, has P̃0� µ-
probability 0. In other words,

P̃0� µ

(⋃
k>1

A1/k
)
= 1�(58)

Then step 1′ implies that

∃k > 1 such that X̃
T
1/k
∞

= 0� P̃0� µ-a.s.(59)

Again applying the special Markov property, we obtain

∃k such that X̃
T
1/k
∞

= 0� P̃0� µ-a.s.(60)

Since T
1/k
∞ is nonrandom, the proof of our abstract Theorem 10 is finished. ✷

3.5. Scaled comparison with Feller’s branching diffusion. Consider a pair
of Brownian stopping times 0 ≤ T0 < T1, a constant ξ > 0, and define the set
of good historical paths

E �=
{
w ∈ C�

∫ T1

T0

K
dr� ≥ ξ

}
�(61)

We want to estimate a conditional probability as in (43) of Hypothesis 9 under
a mild additional assumption on the branching rate functional K. For this
purpose, we will compare with the survival probability in Feller’s branching
diffusion.
Recall that d ≥ 1, µ ∈ �f, and that �T0

denotes the pre-T0 σ-field.

Proposition 12 (Comparison with Feller’s branching diffusion). Assume
that the branching rate functional K ∈ Kν
ν > 0� is homogeneous and satisfies∫ t

0
K
dr�−→

t↑∞
∞� /0� a-a.s., a ∈ Rd�(62)

Then P̃0� µ-almost surely,

P̃0� µ
{
X̃T1


E� > 0
∣∣�T0

} ≤ 1
ξ

∥∥X̃T0

∥∥�(63)

We will prove Proposition 12 in the next subsection, using an idea from [20],
which was in turn inspired by a modulus of continuity technique of [10]. In fact,
since the paths in E have a “significant” accumulated rate of branching ξ over
the time interval �T0�T1� [recall (41)], we can compare (in law) X̃T1


E� with
the mass in Feller’s branching diffusion after an appropriate individual time
change. (Recall that the total mass of the classical super-Brownian motion is
equal in distribution to Feller’s branching diffusion.) But for Feller’s branching
diffusion, there is a well-known formula for the probability that the process
survives by a given time.
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Remark 13. We usually apply Proposition 12 for T0 = Tε
n, T1 = Tε

n+1,
ξ = ξεn and E = Eε

n, with fixed ε and n.

3.6. Proof of the comparison argument. Consider the process �X̃t� t ≥ T0	,
given �T0

. In particular, the starting measure X̃T0
=� ϑ is given. Note that

this (conditional) process has the law P̃ϑ, by the special Markov property. In
order to prepare for the proof of Proposition 12, we first intend to define a new
time scale denoted by r, dictated by the additive functional K. Given for the
moment a path w ∈ C, set

R
t� �=
∫ T0+t

T0

K
ds�� t ≥ 0�(64)

(recall that K is a continuous additive functional of Brownian motion W).
Note that R
t� ↑ ∞ as t ↑ ∞, /̃ϑ-almost everywhere [by assumption (62)] and
that R
t� depends continuously on t [by the continuity of K]. Define finite
(Brownian) stopping times τ
r� (converging to infinity as r ↑ ∞) by

τ
r� �= inf
{
t > 0� R
t� ≥ r

}
� r ≥ 0�(65)

Consider the stopped historical SBM r �→ X̃T0+τ
r�. Put

Zr �=
∥∥X̃T0+τ
r�

∥∥� r ≥ 0�(66)

for its total mass process. This leads us to Feller’s branching diffusion (without
drift).

Lemma 14 (“Embedded” Feller’s branching diffusion). P̃0� µ-a.s., under the

probability laws P̃ϑ with ϑ = X̃T0
, the process r �→ Zr satisfies equation (7)

with Z0 = �ϑ�.

Proof. The initial condition is trivially fulfilled. To simplify notation, we
write �r for the pre-�T0+τ
r�� σ-field. It is sufficient to show that P̃0� µ-almost
surely, Z is a 
P̃ϑ� 
�r�r≥0�-martingale with square variation

��Z��r = 2
∫ r

0
dsZs� r ≥ 0�(67)

This would be verified if we proved that for 0 ≤ r < r′,

P̃ϑ

{
Zr′

∣∣�r

} = Zr�(68)

P̃ϑ

{
Z2

r′ − 2
∫ r′

r
dsZs

∣∣∣�r

}
= Z2

r�(69)

By the special Markov property, statement (68) follows from the expectation
formula (37). But then (69) reduces to

Ṽarϑ
r�Zr′ = 2
r− r′�Zr(70)
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with ϑ
r� �= X̃T0+τ
r�. But from the variance formula (38), the left-hand side
of (70) equals

2/̃ϑ
r�
∫ τ
r′�

τ
r�
K
ds��(71)

Using the definition (65) of τ
r�, by a change of variables; see, for example, [30],
Proposition (0.4.9), we can continue with

= 2/̃ϑ
r�
∫ r′

r
ds = 2
r′ − r��ϑ
r���(72)

getting the right-hand side of (70). This completes the proof. ✷

Completion of Proof of Proposition 12. Recall that the left-hand side
in (63) can be written as P̃ϑ
X̃T1


E� > 0� with ϑ = X̃T0
. Consider the event

X̃T1

E� > 0. This means that at time T1 there are historical paths alive which

have at least an accumulated rate of branching of ξ. Trivially, these paths must
be alive in the moment T0+τ
ξ� when the accumulated rate of branching just
reaches ξ. Consequently, Zξ = �X̃T0+τ
ξ�� > 0. But by the embedded Feller’s
branching diffusion according to Lemma 14,

P̃ϑ
Zξ > 0� = 1− exp
[− ξ−1�ϑ�] ≤ ξ−1�ϑ��(73)

and the claim (63) follows. ✷

4. Two applications of the abstract criterion. Here we want to apply
our abstract finite time extinction criterion, combined with the comparison
with Feller’s branching diffusion, to two one-dimensional models, namely SBM
with the power law catalyst χq of Model 3, and with a certain point catalyst
� with atoms whose locations are dense in R (we will need � later on).
To contrast our results, we will add also two “counterexamples”, that is,

nontrivial examples of catalytic super-Brownian motions where finite time
extinction is violated; see Section 4.3 below.

4.1. Power law catalyst χq (Model 3). In the power law catalyst model, the
branching rate functional K is given by the BCLT L�W�ψ� (recall Lemma 4).
Here the measure ψ
db� ∈ �p� p > 1, has a density function χq
b� = �b�q ∧1,
b ∈ R, with respect to the (normalized) Lebesgue measure db, as introduced
in (9) (where the exponent q > 0 is a fixed constant).
Since the catalyst is small only near the origin b = 0, the bad historical

paths will be those which spend a large amount of time near 0. To estimate
the probability of such paths, we need the following lemma. Let Lt
b� denote
the local time at b ∈ R of a (one-dimensional standard) Brownian path W, up
to time t.
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Lemma 15 (Brownian local time large deviations I). There exists a constant
c0 > 0 such that for all θ ∈ 
0�1�, and for all a ∈ R, the following holds:

/0� a

( ∫ θ

−θ
dbLt
b� ≥

t

2

)
≤ exp

[
− c0t

θ2

]
� t ≥ 0�(74)

Proof. By Brownian scaling, we have

/0� a

( ∫ θ

−θ
dbLt
b� ≥

t

2

)
= /0� a/θ

( ∫ 1

−1
dbLt/θ2
b� ≥

t

2θ2

)
�(75)

So it suffices to prove the claim for θ = 1. But then we may apply Lemma 2.2
of Donsker and Varadhan [12] withA there the set of subprobability measures
ν on R such that ν
�−1�1�� ≥ 1/2. ✷

In order to specify the quantities entering in Hypotheses 8 and 9, fix a
constant α > 0 and a β ∈ 
0�2α�. For n ≥ N
ε� ≡ 0, and 0 < ε < 1, put

θn �= e−αn� Mε
n ≡ Mn �= exp
−
1+ β+ αq�n��(76)

tεn �= ε−1e−βn� ξεn �= 1
2t

ε
nθ

q
n� δεn �= Mn/ξ

ε
n� δε−1 �= ε�(77)

and finally,

λεn �= Mn

Mn+1
exp

[
− c0

θ2n
tεn

]
(78)

(with c0 from Lemma 15). We will use the deterministic times

Tε
n+1 �= Tε

n + tεn� Tε
0 �= 0�(79)

By Remark 1 we may assume without loss of generality that µ
R� ≤ 1. Then
the “starting condition” (42) is trivially satisfied.
Note that these constants satisfy Hypothesis 8. In fact, the series in condi-

tion (b2) can be estimated from above by

c
∑
n≥0

[
εe−n + exp

[−c0ε−1 exp(
2α− β�n)]]�(80)

Since e
2α−β�n ≥ cn, this bond is of order ε, and property (b2) follows.
By the choice of δεn, inequality (43) concerning the good paths holds by the

comparison Proposition 12.
It remains to verify the conditional expectation estimate (44) for the mass of

bad paths at timeTε
n−1, for which we will use Lemma 11. By time-homogeneity

and definition (41) of Eε
n, for s = Tε

n and a ∈ R,

/s�a

(
W ∈ 
Eε

n�c
) = /0� a

( ∫ tεn

0
K
dr� ≤ ξεn

)
(81)

and ∫ tεn

0
K
dr� =

∫ tεn

0
drχq
Wr� =

∫
dbχq
b�Ltεn


b� ≥
∫
�b�≥θn

db θqnLtεn

b��
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Thus, the probability expression in (81) can be estimated from above by

/0� a

( ∫
�b�≥θn

dbLtεn

b� ≤ tεn

2

)
= /0� a

( ∫
�b�≤θn

dbLtεn

b� ≥ tεn

2

)
�(82)

Hence, by Lemma 15, we get

/Tε
n� a

(
W ∈ (Eε

n

)c) ≤ exp
[
− c0

θ2n
tεn

]
= Mn+1

Mn

λεn�(83)

where we used (78). In other words, (47) in Lemma 11 holds, and (44) is valid.
Altogether, we showed that all requirements for the abstract criterion

Theorem 10 are satisfied, hence finite time extinction holds for the SBM with
power law catalyst χq for any finite initial measure µ on R. ✷

It is reasonable to expect that finite time extinction will fail if we replace
catalyst’s depression at 0 by a still deeper one with an adequate exponential
decay instead of the power law; see Corollary 17(i) below.

4.2. A point catalyst with dense locations. Now we consider the case

K = L�W��� with � =
∞∑

n=N
2−nπn�(84)

for a fixedN ≥ 0, independent of ε. Here πn is assumed to be a (two-sided infi-
nite, locally finite, deterministic) point measure on R such that all neighboring
points have a distance of at most �n, where, for some β ∈ 
0�1�,

�n �= e−βn� n ≥ N�(85)

We claim that the continuous SBM X� with catalyst � has the finite time
extinction property. This will follow from our abstract extinction criterion The-
orem 10 once we have found the appropriate quantities Tε

n, M
ε
n, δ

ε
n, λ

ε
n, ξ

ε
n

entering into Hypotheses 8 and 9.

1′ (Some constants). Choose α ∈ 
β/2� β�. For n ≥ N and 0 < ε < 1, set

mε
n �=

[
eαn

ε

]
� sεn �= e−βn

ε2
� tεn �= 2mε

ns
ε
n� Mε

n ≡ Mn �= 2−n(86)

(where �z� denotes the integer part of z). We again use deterministic times
Tε

n+1 �= Tε
n + tεn, T

ε
N �= 0. Note that by our choice of tn they satisfy (40). The

quantities ξεn, δ
ε
n, λ

ε
n will be defined in (100), (101) and (107), respectively.

Assume without loss of generality that µ
R� ≤ 2−N. Then, if we set δεN−1 = ε,
the starting condition (42) is trivially satisfied.

2′ (Partitioning). For n ≥ N and 0 < ε < 1 fixed, our next aim is to intro-
duce a partition of the time period �Tε

n�T
ε
n+1� by means of some Brownian

stopping times. This construction allows us to consider hitting times of neigh-
boring points of πn and local times spent on them.
Given ϑn �= X̃Tε

n
(which we do not need to consider as a stopped measure

since Tε
n is deterministic), and a path w “distributed” according to ϑn
dw�,
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we consider the Brownian path process W̃ distributed according to /̃Tε
n�w

, and
its projection t �→ 
W̃t�t = Wt with law

/Tε
n�w
Tε

n� =� /�(87)

(For typographical simplicity, sometimes we write w
t� instead of wt, etc.)

Set κ0 �= Tε
n. For m ≥ 1, we inductively define (Brownian) stopping times

κm = κεm�n
W� and κm = κεm�n
W� as follows. Given κm−1, let κm denote the
first time point t ≥ κm−1 such that W hits one of the atoms of πn. Given κm,
we simply define κm = κm + sεn [with sεn > 0 introduced in (86)].
Write Hm = Hε

m�n for the hitting time κm − κm−1 of πn (starting at time
κm−1). Recall that by definition the distance between neighboring atoms of
πn is at most �n. Let H denote the first time t that �Wt� = �n. Set f
t� x� �=
/0� x
H ≥ t�� t > 0. Then

/
Hm ≥ sεn� ≤ f
sεn�0��(88)

But f satisfies the heat equation

∂f

∂t
= 1
2
�f on 
0�∞�× 
−�n��n�(89)

with initial condition f
0� ·� = 1 and Dirichlet boundary condition f
·�−�n+�=
f
·� �n−� = 0. Then (see, for example, [13], Section 1.8.4) we get the following
eigenfunction representation

f
t� x� =
∞∑
k=1

ck cos
(
kπx

�n

)
exp

[−k2π2t

�2n

]
�(90)

where the constants ck satisfy
∑∞

k=1 �ck� < ∞. Thus

f
t�0� ≤ c−10 exp
[−c0 t

�2n

]
� t > 0�(91)

for some constant c0 > 0. Hence, together with (88),

/
(
Hm ≥ sεn

) ≤ c−10 exp
[
− c0 s

ε
n

�2n

]
� m ≥ 0� n ≥ N�(92)

Therefore,

/

(
mε

n∑
m=1

Hm ≥ mε
ns

ε
n

)
≤ c−10 mε

n exp
[
− c0 s

ε
n

�2n

]
=� ζεn(93)

[with �n, sεn, m
ε
n introduced in (85) and (86)].

Now write Lm = Lε
m�n for the (Brownian) local time spent by W at the site

W
κm� during the time interval �κm� κm� of length sεn. That is, symbolically,

Lm �=
∫ κm

κm

dr δW
κm�
Wr��(94)
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Recall that at this site W
κm� there is an atom of πn, and that the mass 2
−n

is attached to it. Therefore, using the integers mε
n introduced in (86), for the

BCLT L�W��� of � ≥ 2−nπn we get∫ κmε
n

Tε
n

L�W���
dr� ≥ 2−n
mε

n∑
m=1

Lm�(95)

Clearly, the Lm are i.i.d. (with respect to /). Moreover, Lm is equal in law to

sup
0≤t≤sεn

W0
t �(96)

where W0 is distributed according to /0�0 (see, e.g., [30], Theorem (6.2.3)).
Scaling time, we find that 
sεn�−1/2Lm is equal in law to

L0 �= sup
0≤t≤1

W0
t(97)

(which is independent of n and ε). Set a �= 1
2/0�0L

0. Since L0 has finite
exponential moments, by standard large deviation estimates (see, e.g., [2],
Theorem 9.3) there exists a constant c1 > 0 such that

/

(

sεn�−1/2

k∑
m=1

Lm < ak

)
≤ exp
−2c1k�� k ≥ 1�(98)

Combining with (95), we thus have

/

(∫ κmε
n

Tε
n

L�W���
dr� < ξεn

)
≤ exp�−2c1mε

n��(99)

where

ξεn �= amε
n
sεn�1/22−n�(100)

3′ (Good and bad historical paths). Recall the set Eε
n of good paths intro-

duced in formula line (41) [based on tεn defined in (86) and entering into (79),
as well as ξεn from (100)]. Since the BCLT L�W��� satisfies (62), by Proposi-
tion 12 we get the survival probability estimate (43) for the good paths, if we
set

δεn �= Mn/ξ
ε
n�(101)

On the other hand, in order to calculate the expected mass of bad paths as
required in (44), we look at

/
(
Eε

n�c
)
�(102)

In order to further estimate this, consider two cases. First let w have “large”
hitting times, that is,

mε
n∑

m=1
Hm ≥ mε

ns
ε
n�(103)
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By (93), this occurs with a /-probability bounded by ζεn. In the opposite case
of (103), by the definition of Tε

n+1 we have

κmε
n
= Tε

n +mε
ns

ε
n +

mε
n∑

m=1
Hm < Tε

n+1(104)

[recall (86) and (79)]. Hence here W ∈ 
Eε
n�c implies, by the definition (41) of

Eε
n, that ∫ κmε

n

Tε
n

L�W���
dr� < ξεn�(105)

The /-probability of this event is estimated in (99). Altogether, for (102) we
get the bound

ζεn + exp�−2c1mε
n�(106)

[with ζεn from (93)]. If we now set

λεn �= Mn

Mn+1

[
ζεn + exp�−2c1mε

n�
]
�(107)

we obtain (47) in Lemma 11 which gives (44).
4′ (Verification of the stage quantities). It remains to check that δεn and λεn

introduced in (101) and (107), respectively, satisfy Hypothesis 8(b2). First, by
(101) and (100), δεn approximately equals

cε2 exp
[
−
(
α− β

2

)
n

]
�(108)

hence its sum over n is of order ε2. Next, since mε
n ≥ cε−1n, the second term

of λεn is bounded by exp�−cε−1n�, except a constant factor. Summing over n we
arrive at a term of order ε. Finally, by (93), the first term of λεn is bounded
from above by

c−10 ε−1 exp
[
αn− c0ε

−2eβn
]
�(109)

But

ε−1
∫ ∞

1
dx exp

[
αx− c0ε

−2eβx
] ≤ 
βε�−1

∫ ∞

1
dyy

α
β−1 exp

[−c0ε−2y]�
and y

α
β−1 ≤ 1 by our assumptions on α�β�y. Hence, it suffices to consider

ε−1
∫ ∞

1
dy exp

[−c0ε−2y](110)

which is of order ε. Consequently, the series in Hypothesis 8(b2) is bounded
by cε, hence this hypothesis is satisfied in the present case.

Summarizing, the catalytic SBM X� dies in finite time, for any finite start-
ing measure µ on R.
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4.3. Nontrivial examples for finite time survival. In this subsection we
present the announced counterexamples for finite time extinction of super-
Brownian motion in R with some nontrivial catalysts. For simplicity, we always
start with a unit mass at zero.
Recalling Lemma 4, consider the SBM X = Xψ with catalyst ψ ∈ �p,

that is, with branching rate functional given by the Brownian collision local
time L�W�ψ�.

Proposition 16 (Finite time survival). Assume that the (random) catalyst
ψ in �p satisfies the following condition: for all K ≥ 1,

lim
ε↓0

ψ
(
−ε� ε�)

exp�−K/ε2� = 0 a�s�(111)

and for all Borel subsets � of R of Lebesgue measure zero,

ψ
�� = 0 a�s�(112)

Then, for almost all realizations ψ of the catalyst, the SBM X = Xψ survives
for all finite times,

P0� δ0

(
X

ψ
t �= 0

)
= 1� t ≥ 0�(113)

Roughly speaking, if the catalyst ψ has a “superexponential depression” at
0 in the sense of (111), then in particular the related catalytic SBMXψ cannot
die in finite time. The proof of this proposition is postponed to the end of this
subsection.

Corollary 17 (Special cases). The SBMs with the following catalysts ψ
survive for all finite times.

(i) (Absolutely continuous catalyst with superexponential depression.) Let
ψ ∈ �p be deterministic and have a bounded density function also denoted by
ψ which is strictly positive on R\�0	 and which satisfies

lim
b→0

ψ
�b��
exp

[−K/�b�2] = 0� k > 0�(114)

(ii) (Catalyst with dense and rarified atoms.) Let ψ be the homogeneous
random measure on R with independent increments which has no deterministic
part and the Lévy measure

ν
db� �= 1
0�1/2�
b�
1

b log
1/b�db�(115)

Proof. We will verify the assumptions in Proposition 16. Since part (i) is
trivial, we only deal with (ii). First of all, note that ν

0�1/2�� = ∞, hence
ψ has atoms which are dense in R. On the other hand, the support of ψ is
countable. Furthermore, its law is shift invariant. Thus, with probability 1,
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this support does not hit a fixed null set � as in the proposition, that is, (112)
holds. To show that ψ satisfies (111) almost surely, it suffices to verify

lim sup
ε↓0

ψ
(
−ε� ε�)

exp
[−K/ε2

] < ∞ a.s., K ≥ 1�(116)

since K ≥ 1 is arbitrary in both statements. For fixed K ≥ 1, set h
ε� �=
exp�−K/ε2�. By Theorem 1 of [22], it is enough to show that for the inverse
function h−1 of h, ∫ 1/2

0
ν
db�h−1
b� < ∞�(117)

But

h−1
b� =
√
K√

log
1/b�(118)

and ∫ 1/2

0
db

1

b
(
log
1/b�)3/2 < ∞�(119)

completing the proof. ✷

To prepare for the proof of Proposition 16, we first introduce another result
on the Brownian local time Lt
b� (at b up to time t). For ε > 0, let τε =
τε
W� denote the first time that Brownian motion W (with law /0�0) hits the
boundary of the interval 
−ε� ε�.

Lemma 18 (Brownian local time large deviations II). There exist constants
c0 > 0 and T > 0 such that

/0�0

(
sup
b∈R

Lt
b� ≤
c0t

ε
� τε > t

)
≥ exp

[
− c0t

ε2

]
� t ≥ T� 0 < ε ≤ 1�

Proof. For t > 0 fixed, we will consider t−1Lt as a probability measure
on R. (Note that in the articles quoted in this proof the normalized local time
is denoted by Lt instead.) Let β be the probability measure on R having the
density function (also denoted by β)

β
b� �= 5
√
21
−1/2�1/2�
b�

( 1
2 − �b�)3/2� b ∈ R�(120)

LetG denote a weak neighborhood of the law β. According to [12], Lemma 2.12
and [11], Section 4,

lim inf
t↑∞

1
t
log/0�0

(
t−1Lt ∈ G� τ1 > t

) ≥ −I
β��(121)

where

I
β� �= 1
8

∫
db

�β′
b��2
β
b�(122)
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is a positive constant. Hence, there is a (positive) constant c0 such that

/0�0
τ1 > t� ≥ exp
−c0t� for all large t�(123)

On the other hand, for δ > 0, let V
t� δ� denote the event that for each
a and b in R with �a − b� < 2δ, we have �Lt
a� − Lt
b�� ≤ t. Then by [12],
Theorem 3.5,

lim
δ↓0

lim sup
t↑∞

1
t
log/0�0

(
V
t� δ�c) = −∞�(124)

In particular,

/0�0
(
V
t� δ�c) ≤ exp
−2c0t� for all large t and small δ > 0�(125)

Using (123), there exists a constant, again denoted by c0, such that

/0�0
(
V
t� δ� ∩ �τ1 > t	) ≥ /0�0

(
τ1 > t

)−/0�0
(
V
t� δ�c) ≥ exp
−c0t�

for all sufficiently large t and small δ > 0. Fix such a δ. Now on the event
V
t� δ� ∩ �τ1 > t	 we have Lt
b� ≤ 2t/δ since Lt vanishes outside of 
−1�1�
and by the definition of V
t� δ�. Thus besides c0 there is a constant c1 = 2/δ
such that

/0�0

(
sup
b

Lt
b� ≤ c1t� τ1 > t
)
≥ exp
−c0t��(126)

for all t > T, say. By monotonicity, we may assume that c1 = c0. Replacing
t by t/ε2 for t ≥ T and 0 < ε ≤ 1, and passing from Wr/ε2 to ε−1Wr by self-
similarity, changes τ1 > t/ε2 to τε > t, and Lt/ε2
b� to ε−1Lt
εb�. Therefore,

/0�0

(
ε−1 sup

b

Lt
b� ≤
c0t

ε2
� τε > t

)
≥ exp

[
− c0t

ε2

]
�(127)

completing the proof. ✷

Proof of Proposition 16. By monotonicity in t, it suffices to show the
identity in (113) for each fixed t ≥ T, with T from Lemma 18, for almost all
ψ. For this purpose, fix t ≥ T from now on. Since

P0� δ0
Xt �= 0� ≥ P̃0� δ0

(
X̃t
An� > 0

)
� n ≥ 1�(128)

with

An �=
{
w ∈ C� sup

b

Lt
b� ≤ c0tn� τ1/n > t
}

(129)

where c0 is from Lemma 18, it is enough to demonstrate that for almost all ψ,

lim inf
n↑∞

P̃0� δ0

(
X̃t
An� > 0

) = 1�(130)

To obtain this, fix n ≥ 1 for the moment, and use the elementary inequality

P̃0� δ0

(
X̃t
An� > 0

) ≥ [
P̃0� δ0X̃t
An�

]2
P̃0� δ0

[
X̃t
An�

]2 �(131)
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By the expectation formula (31),

P̃0� δ0X̃t
An� = /̃0�0
(
W̃t ∈ An

)
�(132)

On the other hand, by the covariance formula (32),

Ṽar0� δ0 X̃t
An� ≤ 2/̃0�0

∫ t

0
L�W�ψ�
dr�/̃r� W̃r

(
W̃t ∈ An

) = 2�ψ�fn��(133)

where

fn
b� �= /̃0�0

∫ t

0
drLr
b� /̃r� W̃r

(
W̃t ∈ An

)
� b ∈ R� n ≥ 1�(134)

(depending also on t). Assume for the moment that

fn ∈ L∞
R� and 0 < �fn�∞ ≤ c0tn /̃0�0
(
W̃t ∈ An

)
� n ≥ 1�(135)

with c0 from Lemma 18. Then (133) implies

Ṽar0�0 X̃t
An�

≤ 2�ψ�fn�
�fn�∞ exp�−2c0tn2�

c0tn /̃0�0
(
W̃t ∈ An

)
exp

[− 2c0tn
2]�(136)

for all n ≥ 1. Note that fn vanishes outside the interval 
−1/n�1/n�, by the
definition of An. Set

� �= ⋃
n≥1

{
b ∈ R� �fn
b�� > �fn�∞

}
�(137)

Fix now a realization ψ of the catalyst such that ψ
�� = 0 [recall (135)
and (112)] and such that the identity in (111) is true for K = 2c0t. Since

�ψ�fn� =
∫

−1/n�1/n�\�

ψ
db�fn
b� ≤ �fn�∞ψ
(
−1/n�1/n�)�(138)

for a given δ > 0, we have

2�ψ�fn�
�fn�∞ exp�−2c0tn2�

≤ δ(139)

for all n sufficiently large, by the limit statement in (111). Additionally, we
may choose n so large that

c0tn exp�−c0tn2� ≤ δ�(140)

Then, using Lemma 18 for the remaining term exp�−c0tn2�, for these n,
from (136) we get

Ṽar0�0X̃t
An� ≤ δ2
[
/̃0�0

(
W̃t ∈ An

)]2
�(141)

Therefore, by (132),

P̃0� δ0

[
X̃t
An�

]2 ≤ [
/̃0�0

(
W̃t ∈ An

)]2
1+ δ2��(142)
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Hence, from (131) we obtain

lim inf
n↑∞

P̃0� δ0

(
X̃t
An� > 0

) ≥ 1
1+ δ2

� δ > 0�(143)

which then yields (130).
It remains to verify (135) for n ≥ 1 fixed. Let us first do this by a formal

calculation using δ-functions. In fact, by the definition (134) of fn, formally

fn
b� = /̃0�0

∫ t

0
drδb
Wr� /̃r� W̃r

1An

W̃t�

=
∫ t

0
dr /̃0�0 /̃r� W̃r

δb
Wr�1An

W̃t�

= /̃0�0Lt
b� 1An

W̃t��

(144)

But on An [defined in (129)], Lt
b� ≤ c0tn, and (135) follows (the positivity of
�fn�∞ is obvious).
To make the previous argument rigorous, we consider the functional

F
g� �=
∫
db g
b�fn
b�� g ∈ L1
R��(145)

We want to show that g �→ F
g� is a bounded linear functional on L1
R� with
operator norm

�F� ≤ c0tn /̃0�0
(
W̃t ∈ An

)
�(146)

Then, by the Riesz representation theorem, (135) is true. Now from the defi-
nition (134) of fn,

�F
g�� ≤
∫
db �g
b�� /̃0�0

∫ t

0
drLr
b� /̃r� W̃r

1An

W̃t�

= /̃0�0

∫ t

0
dr �g
Wr�� /̃r� W̃r

1An

W̃t�

=
∫ t

0
dr /̃0�0 /̃r� W̃r

�g
Wr�� 1An

W̃t�

= /̃0�0

∫ t

0
dr �g
Wr�� 1An


W̃t��

(147)

But on An, ∫ t

0
dr �g
Wr�� =

∫
db Lt
b� �g
b�� ≤ c0tn�g�1�(148)

Hence, from (147),

�F
g�� ≤ c0tn�g�1 /̃0�0
(
W̃t ∈ An

)
�(149)

and the claim (146) follows. This completes the proof. ✷
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5. Proof of the main result. The proof of Theorem 6 concerning finite
time extinction of the one-dimensional SBMX� with a stable catalyst proceeds
in several steps. Since here we start with an initial measure µ of compact sup-
port, andX� has the compact support property [9], by some stopping argument
we will pass to a periodic catalyst �K . Moreover, because the survival prob-
ability is monotone in the catalyst, we will switch to a smaller catalyst, as
already explained in Section 1.1. Altogether we will reduce to the case of a
point catalyst � with dense locations as dealt with in Section 4.2.

5.1. Passing to a periodic catalyst. Recall that the historical catalytic SBM
X̃� exists for �-almost all �. Fix an initial measure µ ∈ �f with compact
support. We want to show that

lim
t↑∞

P̃�
0� µ

(
X̃�

t �= 0
)
= 0� �-a.s.(150)

For K ≥ 1, set

CK �= {
w ∈ C� �ws� < K� ∀ s ≥ 0

}
�(151)

According to the compact support property established in [9],

lim
K↑∞

inf
t≥0

P̃�
0� µ

(
suppX̃�

t ⊆ CK
) = 1 for each t ≥ 0� �-a.s.(152)

For the further proof, fix such a sample �. By (152), instead of (150) it suffices
to show that

lim
t↑∞

P̃�
0� µ

(
X̃�

t �= 0 and suppX̃�
t ⊆ CK

) = 0 for all large K�(153)

However, under this restriction to historical paths w living in CK , we may
change the catalyst outside of �−K�K� without affecting the latter probability.
This will be formalized in the following considerations.
Fix K ≥ 1 such that the initial measure µ is supported by 
−K�K�, and that

there is no catalyst’s atom at the boundary �−K�K	 of the interval 
−K�K�,
that is, �
�−K�K	� = 0 (this holds with �-probability 1). Consider the hitting
time τK of �−K�K	 and the stopped historical SBM t �→ X̃�

t∧τK , as in (34).
We need also another stopped historical SBM: t �→ X̃�K

t∧τK . Here �K denotes
the periodic extension of the restriction �

·� ∩ 
−K�K�� of � to 
−K�K� to all
of R (for the fixed �).

Lemma 19 (Passing to a periodic catalyst). Fix K ≥ 1 such that the initial
measure µ is supported by 
−K�K�. Given �,

P̃�
0� µ

(
X̃�

t∧τK ∈ ·
)
= P̃�K

0� µ

(
X̃�K

t∧τK ∈ ·
)
� t ≥ 0�(154)
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Proof. Apply the log-Laplace representation (35) and (36) withK=L�W���
and K = L�W��K �, respectively, and employ the identity

1�s≤t∧τK	L�W���
ds� = 1�s≤t∧τK	L�W��K �
ds��(155)

This immediately gives the claim. ✷

Now we use the latter lemma to pass in (153) from � to the periodic �K . In
fact, suppX̃�

t ⊆ CK implies that for w ∈ suppX̃�
t we have τK > t, hence τK ∧t =

t, consequently in (153) we can replace X̃�
t by X̃�

t∧τK
. But then by Lemma 19,

we may pass even to X̃�K

t∧τK
and going back to X̃�K

t by the same reasoning, we
see that instead of (153) it suffices to show

lim
t→∞

P̃�K

0� µ

(
X̃�K

t �= 0
)
= 0�(156)

for each fixed K ≥1 such thatµ is supported by 
−K�K� and that �
�−K�K	�=0.
In other words, we want to show finite time extinction of the historical cat-
alytic SBM X̃�K

with fixed periodic catalyst �K , which will be done in the next
subsection.

5.2. Completion of the proof of the main theorem. In order to apply later on
the result of Section 4.2, we further use the fact that the collision local times
L�W�ψ� are nondecreasing in ψ ∈ �p. That is, ψ1 ≤ ψ2 implies L�W�ψ1� ≤ L�W�ψ2�.
Therefore the corresponding solutions vψ of the log-Laplace equation (29) with
K replaced by L�W�ψ� are nonincreasing: vψ

1 ≥ vψ
2
. But this yields that the

extinction probability is nondecreasing in ψ [recall (4)].

Lemma 20 (Comparison of extinction probabilities). Let ψ1 and ψ2 belong
to �p and satisfy ψ1 ≤ ψ2. Then

P̃
ψ1
0� µ

(
X̃t = 0

) ≤ P̃
ψ2
0� µ

(
X̃t = 0

)
(157)

for all µ ∈ �f and t ≥ 0.

Hence, for our purpose of verifying (156), we may replace the periodic
catalyst �K by a smaller measure.
To this end, as already mentioned in Section 1.1, we first drop all the “big”

point catalysts: For the moment, fix N ≥ 0 (independent of ε) and remove
all those atoms αiδbi of �

K [or �, recall the representation (22)] with action
weight αi ≥ 2−N+1. Next, for each n ≥ N, we replace the action weights
αi ∈ �2−n�2−n+1� by 2−n. Note that with respect to �, the positions bi ∈ 
−K�K�
of the related atoms are distributed as a Poisson point process with intensity
measure cγ2γn1
−K�K�
b�3
db�. Here the constant cγ is given by

cγ �= γ−1
1− 2−γ�
(∫ ∞

0
drr−1−γ
1− e−r�

)−1
(158)
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(see, e.g., [4]). Let πn denote the periodic extension of this Poisson point pro-
cess, extension from 
−K�K� to all of R.
What remains for the reduction to Section 4.2 is to show that �-a.s. in πn

neighboring catalysts have a distance of at most �n = e−βn, for all n ≥ N, for
N ≥ 0 appropriately chosen. For this purpose, we fix

β ∈ 
0� γ log 2��(159)

By Borel–Cantelli, it suffices to show that the quantities

�
(∃ two neighboring points in πn with a distance larger than e−βn

)
(160)

are summable in n ≥ 1. But each of these probabilities is bounded from above
by

�
(

max
1≤i≤Jn+1

ξi > e−βn
)
�(161)

where Jn is the Poissonian number of points in 
−K�K� with expectation an �=
2Kcγ2γn, and the ξ1� ξ2� � � � are i.i.d. exponentials with parameter an. Now the
Jn satisfy a standard large deviation principle as n ↑ ∞, hence,

�
Jn + 1 > 2an� ≤ exp�−c2γn�(162)

for all sufficiently large n. Since the right-hand side is summable in n, in
the probability expression (161) we may additionally restrict to Jn + 1 ≤ 2an.
Consequently, instead of (161) we look at

�
(
max

1≤i≤2an
ξi > e−βn

)
�(163)

By scaling, we may switch to

�
(
max

1≤i≤2an
ξ′i > ane

−βn
)
�(164)

where the ξ′i are now i.i.d. standard exponentials (under the law denoted
by � ).
Next we use the fact that all x ≥ 0 and m ≥ 2,∣∣∣∣� (max1≤i≤m

ξ′i − logm > x
)
− 
1− exp�−e−x��

∣∣∣∣ ≤ 2e−2x(165)

(see Example 2.10.1 in [23]; take q = 1
2 there). Now, for all n sufficiently large,

m = �2an� and
x = ane

−βn − log
2an� = c exp
n
γ log 2− β�� − log
4Kcγ� − nγ log 2(166)

satisfy these conditions [recall (159)]. Thus, for (164) we get the bound

1− exp�−e−x� + 2e−2x ≤ 3e−x�(167)

which for x from (166) is summable in n.
This completes the proof of Theorem 6. ✷
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6. The lattice model. Now consider the model with random catalysts on
the lattice Zd. Recall that ! = �!b	b∈Zd , the catalysts, are i.i.d. random vari-
ables which are uniformly distributed on �0�1�. Instead of Brownian motions,
the motion process is now given by a continuous time simple random walk
on Zd, which moves to a neighboring site at rate 1. In other words, the times
between jumps are i.i.d. exponential waiting times with mean 1.
We use symbols analogous to the ones in earlier sections. In particular,

� denotes the law of the catalyst, W = �W�/s�a� s ≥ 0� a ∈ Zd� the simple
random walk in Zd on canonical Skorohod path space D = � �R+�Zd� of cadlag
functions, and

X̃! = [
X̃!� P̃!

s�µ� s ≥ 0� µ ∈ �f�Ds�](168)

the historical simple super-random walk on Zd (also called simple interact-
ing Feller’s branching diffusion) with catalyst !. Note that Proposition 7,
Theorem 10, Lemma 11 and Proposition 12 remain valid (with the obvious
changes).
For simplicity, we now assume that X0 = δ0. Our aim is to show the finite

time extinction property for X̃!, for �-a.a. !. In this case, the bad historical
paths are those which spend a large amount of time at sites b ∈ Zd where !b

is small. We will choose time TN so that, with high probability, most of the
mass is dead by this time [in the sense of (42)]. This is the hardest part of the
argument. Bounding the mass after this uses similar but easier ideas.
We also need the following crude estimate on the distance traveled by the

simple random walk W in time t. Let Jt denote the number of jumps taken
by W by time t. Since Jt is Poisson with parameter t, for k ≥ 0 we have

/0�0

(
sup
0≤s≤t

�Ws� ≥ k
)
≤ /0�0
Jt ≥ k� = e−1

∞∑
i=k

ti

i!

≤ e−1
tk

k!

∞∑
i=0

ti

i!
= tk

k!
≤
(
te

k

)k


2πk�−1/2�
(169)

the latter by Stirling’s approximation.
For n ≥ 0, let Dn denote the cube

Dn = {
b1� � � � � bd� ∈ Zd� max
�b1�� � � � � �bd�� ≤ 2n
}

(170)

in Zd having 
2n+1 + 1�d sites. For a given path w ∈ D, let τn = τn
w� denote
the first time t ≥ 0 that wt does not belong to Dn. We intend to use Dynkin’s
special Markov property to start the stopped historical super-random walk
�X̃o

τn
� n≥0	 afresh at the times τn.

We define in this proof that the quantities Mε
n� λ

ε
n� ξ

ε
n� δ

ε
n�T

ε
n and Eε

n enter-
ing in Hypotheses 8 and 9 to be independent of ε, and therefore we omit the
index ε. On the other hand, for 0 < ε < 1, we will choose N = N
ε� ≥ 1
later, such that limε↓0 N
ε� = ∞. To be more specific, N must be so large
that all of the statements involving the phrase “for N sufficiently large” are
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satisfied. Set

δN−1 �= 2−N/4� TN �= 2N

6
∧ τN(171)

and for n ≥ N = N
ε�, let

Mn �= 2−n
d+3�� λn �= 2−2
n

� δn �= 2−n�(172)

ξn �= 2−n
d+2�� Tn+1 �= 
Tn + 2−n� ∧ τn+1�(173)

Note that δN−1 and TN implicitly depend on ε via N
ε�. One can easily show
that Tn+1 > Tn� /0�0-a.s. Clearly (b1) and (b2) of Hypothesis 8 are satisfied.
We need the following large deviations lemma on the simple random walk

W. We say that a nonempty subset S ⊂ Zd is connected if any two elements
a� b ∈ S are connected by a chain a = z0� � � � � zk = b of elements of S, such
that for 1 ≤ i ≤ k the points zi−1� zi are nearest neighbors. That is, they are
distance 1 apart.

Lemma 21 (Large deviations). Fix m ≥ 1. Suppose that S ⊂ Zd has the
property that no connected subset of S has cardinality larger than m. Then
there exist constants α0� c0 > 0 (depending on m) such that for all t ≥ 1,

sup
a∈Zd

/0� a

( ∫ t

0
ds 1�Ws∈Sc	 ≤ α0t

)
≤ c−10 e−c0t�(174)

Proof. By monotonicity in m, we may enlarge m if necessary, so we can
assume that m is even. To each a ∈ Zd, there exists a chain consisting of
points a = z0� � � � � zm such that zi−1� zi are nearest neighbors for 1 ≤ i ≤ m,
and zm = zm
a� ∈ Sc. In fact, if a ∈ S, this follows from our assumption on
S. Otherwise, let b be one of the nearest neighbors of a, and set z2k �= a,
z2k+1 �= b for 0 ≤ k < m/2.
Suppose that W0 = a. Let ηa denote the first time t that Wt = zm
a�.

(If there is no such time, set ηa = ∞.) Let F = F
a� denote the event that
ηa < 1/2 and that Ws = zm
a� for ηa ≤ s ≤ 1. By the properties of our
continuous-time simple random walk, using the constructed chain, there exists
α0 > 0 such that for all a ∈ Zd,

/0� a
F
a�� ≥ 8α0�(175)

Let Fi �= θiF� i ≥ 0, where θs is the time-shift operator on paths. By the
Markov property and (175), given a ∈ Zd there exists a sequence of indepen-
dent events Fi such that Fi ⊂ Fi and /0� a
Fi� = 8α0, for each i. Set

Gk �=
k−1∑
i=0

1Fi
�(176)
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By Chernoff ’s large deviations theorem (see [2], Theorem 9.3), there exist a
constant c0 > 0 such that for all a ∈ Zd, we have

/0� a

(
Gk

k
≤ 4α0

)
≤ c−10 exp
−c0k�� k ≥ 0�(177)

Note that ∫ i+1

i
ds1�Ws∈Sc	 ≥ 1/2 on Fi�(178)

Indeed, if Fi occurs, then Ws ∈ Sc for s ∈ 
i + 1/2� i + 1�. Suppose that
Gk/k ≥ 4α0. Then there are at least 4α0k indices i ≤ k − 1 such that Fi

occurs, and hence Fi occurs. In that case, by (178),∫ k

0
ds1�Ws∈Sc	 ≥ 2α0k�(179)

Hence, for a ∈ Zd and k ≥ 0,

/0� a

(
Gk

k
> 4α0

)
≤ /0� a

( ∫ k

0
ds1�Ws∈Sc	 ≥ 2α0k

)
�(180)

Interpolating, we have that for all a ∈ Zd and t ≥ 1,

/0� a

( ∫ t

0
ds1�Ws∈Sc	 < α0t

)
≤ /0� a

( ∫ �t�

0
ds1�Ws∈Sc	 < α0
�t� + 1�

)
≤ c−10 e−c0t�

completing the proof of Lemma 21. ✷

Next we want to show that the event that the catalyst is small on large
connected sets has small probability; see (191) below. For m ≥ 1� 0 < ε < 1�
n ≥ N = N
ε� ≥ 1, and 0 ≤ ζ ≤ 1, let A
m�n� ζ� denote the (catalyst) event
that there is no connected subset S ⊂ Dn with cardinality m, on which all
of the catalysts satisfy !b ≤ ζ. Note that there is a finite number c
m�d� of
connected sets of cardinality m, which contain a given point. Then we have

�
(
Ac
m�n� ζ�) ≤ (

2n+1 + 1
)d
c
m�d�

(
�
!b ≤ ζ�

)m
= (

2n+1 + 1
)d
c
m�d�ζm�

(181)

In particular, if

ζ = ζn = 2−
n−1�
d+1��(182)

then

�
(
Ac
1� n� ζn�

) ≤ c2nd2−
n−1�
d+1� = c2−n�(183)

For m = 1, all catalysts in Dn are greater than ζ on A
1� n� ζ�. Put

A1
n� �=
∞⋂
k=n

A
1� k� ζk�(184)



638 D. A. DAWSON, K. FLEISCHMANN AND C. MUELLER

and note that

�
(
Ac

1
n�
) ≤ c12

−n(185)

for some constant c1.
From now on, let

m = 2
d+ 1��(186)

and take

ζ = ζn = 2−n/2�(187)

Then, by (181), we have,

�
(
Ac
m�n� ζn�

)
≤ c2−n�(188)

Let

A2
n� �=
∞⋂
k=n

A
(
m�k� ζk

)
(189)

and note that

�
(
Ac

2
n�
) ≤ c22

−n(190)

for some constant c2. Fix ε > 0. Using (185) and (190), we choose n = n
ε� so
large that

�
(
Ac

1
n� ∪Ac
2
n�

) ≤ 
c1 + c2�2−n < ε�(191)

We will apply our general Theorem 10 with N chosen to satisfy N =
N
ε� ε� ≥ n. We will conclude that for catalysts ! in A1
n� ∩ A2
n�, finite
time extinction occurs with P̃

!
0� µ-probability 1. Therefore, with �-probability

at least 1− ε, finite time extinction occurs. Since ε is arbitrary, our proof will
then be finished.
From now on we assume that the catalyst ! belongs to the setA1
n�∩A2
n�.

In order to verify the starting condition (42) in Hypothesis 9, we extend the
definition (41) of good historical paths in writing EN−1 for the set of paths w
such that ∫ TN

0
L�w�!�
ds� ≥ ξN−1 �=

α02N/2

6
(192)

with α0 from Lemma 21. Let TN �= 2N/6. Recall that TN = TN∧τN, and note
that ξN−1 = α0TNζN with ζN from (187). Then

/0�0
Ec
N−1� ≤ /0�0

( ∫ TN

0
L�W�!�
ds� ≤ α0TNζN

)
≤ /0�0
τN ≤ TN�

+/0�0

( ∫ TN

0
L�W�!�
ds� ≤ α0TNζN� τN > TN

)
�
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Hence,

/0�0
Ec
N−1� ≤ /0�0
τN ≤ TN� +/0�0

( ∫ TN

0
L�W�!�
ds� ≤ α0TNζN

)
�(193)

Below we will use (169) to handle the first term at the right-hand side. In order
to deal with the second term, let ! = !
N� be obtained from ! as follows. Put
!b �= !b if b ∈ DN. Otherwise, set !b �= 1. Let SN denote the collection of sites
b ∈ Zd such that ! ≤ ζN [recall notation (187)]. Note that by the definition
of A
m�N� ζN� ⊇ A2
n�, there is no connected subset of SN with cardinality
N. Thus, by Lemma 21,

/0�0

( ∫ TN

0
ds1�Ws∈Sc	 ≤ α0TN

)
≤ c−10 exp�−c0TN��(194)

By the definition of SN.∫ TN

0
ds1�Ws∈Sc

N	 > α0TN implies
∫ TN

0
L�w�!�
ds� > α0TNζN�

and so

/0�0

( ∫ TN

0
L�W�!�
ds� ≤ α0TNζN

)
≤ /0�0

( ∫ TN

0
ds1�Ws∈Sc

N	 ≤ α0TN

)
�

(195)

Therefore,

/0�0

( ∫ TN

0
L�W�!�
ds� ≤ α0TNζN

)
≤ c−10 exp�−c0TN��(196)

Now (193) and the previous estimate combined with (169) gives

/0�0
(
Ec

N−1
)≤/0�0

(
τN ≤ TN

)+ c−10 exp
[− c0TN

]
≤
(
2N
e/6�
2N

)2N(
2π2N

)−1/2 + c−10 exp
[
− c0

2N

6

]
≤ exp

[− 2c3 2
N
](197)

for some constant c3 (increasing N if necessary). Therefore, by Markov’s
inequality, and the “stopped expectation” formula (37),

P̃
!
0� δ0

(
X̃

!
TN


Ec
N−1� > exp

[− c32
N
]) ≤ exp

[− c32
N
]
�(198)

Next we consider X̃!
TN


EN−1�. We wish to show that in the caseK = L�W�!�,
condition (62) in Proposition 12 holds �-a.s. By Fubini’s theorem, it suffices to
verify it /0�0 ×�-a.s. First note that with /0�0-probability 1 the range 	
W�
of the random walk W is infinite. For each site b ∈ 	
W�, let Yb �= σb!b,
where σb is the amount of time which W spends at b between the time of first
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arrival at b and the first subsequent departure. Then the Yb are i.i.d. with
positive /0�0 × �-expectation. Therefore, by the strong law,∫ ∞

0
L�W�!�
ds� ≥

∑
b∈	
W�

Yb = ∞� /0�0 × �-a.s.�(199)

giving (62).
By Proposition 12 with

T0 = 0� T1 = TN−1� ξ = ξN−1 =
α0
6
2N/2 and E = EN−1�

we obtain

P̃
!
0� δ0

(
X̃

!
TN


EN−1� > 0
) ≤ 1

ξN−1
= 6

α0
2−N/2�(200)

IfN is large enough, we haveMN ≥ exp
[−c32N

]
. Hence, by (198) and (200),

P̃
!
0� δ0

(�X̃!
TN

� > MN

) ≤ P̃
!
0� δ0

(
X̃

!
TN

(
Ec

N−1
)
> exp

[−c32N])
+P̃!

0� δ0

(
X̃

!
TN

(
EN−1

)
> 0

)
≤ exp

[− c32
N
]+ 6

α0
2−N/2 ≤ 2−N/4 = δN−1�

This implies the starting condition (42) in Hypothesis 9.
Now we consider the other time intervals �Tn�Tn+1�� n ≥ N. To deal with

these times, we no longer consider clusters of sites where the catalyst is small,
but consider just single sites. Recall that we are on the set A1
n� and that
n ≥ N ≥ n. Note that on A1
n+ 1� ⊇ A1
n� we have !b > ζn+1, for b ∈ Dn+1.
Therefore, if Ws ∈ Dn+1 for Tn ≤ s ≤ Tn + 2−n, then Tn+1 = Tn + 2−n and∫ Tn+1

Tn

L�W�!�
ds� ≥ 2−nζn+1 = ξn(201)

[recall (182)]. Hence,

/Tn�a

Ec

n� ≤ /Tn�a

(
Ws �∈ Dn+1 for some s ∈ [Tn�Tn + 2−n

])
� a ∈ Dn�

The strong Markov property applied to Tn gives

/Tn�a

Ec

n� ≤ /0�0

(
sup
s≤2−n

�Ws� > 2n
)
�(202)

From our “traveling estimate” (169), it follows that forN large enough, n ≥ N
implies

/Tn�a

Ec

n� ≤
(
2−ne
2n

)2n

2π2n�−1/2 ≤ c2−2·2

n ≤ λn
Mn+1
Mn

�

Thus, Lemma 11 gives the conditional expectation estimate (44).
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Again, for 0 ≤ s ≤ 2−n, Proposition 12 yields

P̃
!
0� δ0

{
X̃

!
Tn

En� > 0

∣∣ ∥∥X̃!
Tε

n

∥∥ ≤ Mn

}
≤ Mn

ξn
= δn�(203)

This proves the good paths estimate (43).
So Hypothesis 9 is satisfied, and finite time extinction for the lattice model

follows from the abstract Theorem 10. ✷
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