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LONG-RANGE DEPENDENCE AND APPELL RANK

By Donatas Surgailis

Vilnius Institute of Mathematics and Informatics

We study limit distributions of sums S�G�N = ∑N
t=1G�Xt� of nonlinear

functions G�x� in stationary variables of the form Xt = Yt + Zt, where
�Yt� is a linear (moving average) sequence with long-range dependence,
and �Zt� is a (nonlinear) weakly dependent sequence. In particular, we
consider the case when �Yt� is Gaussian and either (1) �Zt� is a weakly de-
pendent multilinear form in Gaussian innovations, or (2) �Zt� is a finitely
dependent functional in Gaussian innovations or (3) �Zt� is weakly depen-
dent and independent of �Yt�. We show in all three cases that the limit
distribution of S�G�N is determined by the Appell rank of G�x�, or the lowest
k ≥ 0 such that ak = ∂kE�G�X0 + c��/∂ck�c=0 	= 0.

1. Introduction and the main results. A strictly stationary time series
Xt� t ∈ Z is said to be long-range dependent (LRD) if its covariance function
r�t� = Cov�X0�Xt� is not summable and decreases as a power of the lag; more
precisely, if

r�t� = L�t�t−θ�(1.1)

t ≥ 1, where θ ∈ �0�1� and L�x� is a function, slowly varying at infinity. In
the last decade, there has been considerable interest in LRD processes and
statistical inference for such processes; see, for example, Beran (1992) and
the references therein. There, many problems deal with the existence and
description of limit distributions of sums

S
�G�
N �t� =

�Nt
∑
s=1

G�Xs�� t ≥ 0�(1.2)

whereG�x�, x ∈ R is a (nonlinear) function withE�G�X0�� = 0�E�G2�X0�� <
∞. For Gaussian LRD processXt, this problem was first considered by Rosen-
blatt (1961) and later solved in full generality by Dobrushin and Major (1979)
and Taqqu (1979), who showed that the limit in distribution of suitably nor-
malized sums S�G�

N �t� (1.2) is determined by the Hermite rank k∗ = 1�2� � � � of
G�x�, or the index of the first nonzero coefficient in the Hermite expansion

G�x� =
∞∑
k=0

gk

k!
Hk�x�σ�(1.3)
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in Hermite polynomials Hk�x�σ� = �−1�kσ2k exp�x2/2σ2�dk�exp�−x2/2σ2��/
dxk� k = 0�1� � � �, where σ2 = E�X2

0�. Namely, if θk∗ < 1, then
D−1

N�k∗S
�G�
N �t� ⇒ gk∗�k∗�t��(1.4)

where DN�k = c�k� θ�L�N�k/2N1−θk/2� c�k� θ� = �2/�k!�1− kθ��2− kθ���1/2�⇒
stands for weak convergence of finite-dimensional distributions, and �k�t� is
the Hermite process of order 1 ≤ k < 1/θ (see Section 2.5 for the definition). It
was proved somewhat later [Breuer and Major (1983), Giraitis and Surgailis
(1985)] that in the case θk∗ > 1, and more generally, if

∑
t∈Z �Cov�G�X0��

G�Xt��� <∞, then S
�G�
N �t� converge to the Brownian motion, under the usual√

N-normalization.
However, the “nonlinear LRD-behavior” of non-Gaussian processes is much

less understood. One of the most studied models of non-Gaussian LRD pro-
cesses is the linear (moving average) process,

Xt =
∑
i≥0

biζt−i� t ∈ Z�(1.5)

where ζi� i ∈ Z is an i.i.d. sequence with zero mean and variance 1, and
bi� i ≥ 0 are (deterministic) weights of the form

bi = L1�i�i−�1+θ�/2� i ≥ 1�(1.6)

where θ∈ �0�1� and whereL1�x� is a function slowly varying at infinity. Linear
processes of the type (1.5)–(1.6) include several important parametric classes
such as fractional ARIMA and differenced fractional noise.
Limit distributions of sums S

�G�
N �t� of polynomials G�x� of linear process

(1.5)–(1.6) were first studied by Surgailis (1982). It turned out that these dis-
tributions are the same as in the Gaussian case, with the only difference that
the Hermite rank k∗ of G�x� has to be replaced by the lowest k ≥ 0 such that

ak ≡ E�G�k��X0�� 	= 0�(1.7)

whereG�k��x�=dkG�x�/dxk. Later, Giraitis and Surgailis (1986, 1989), Avram
and Taqqu (1987) observed that ak are related to the Appell expansion

G�x� = ∑
k≥0

ak
k!

Ak�x�(1.8)

in Appell polynomials Ak�x�� k = 0�1� � � �, defined by the formal power series∑
k≥0

zk

k!
Ak�x� =

ezx

E�ezX0� �(1.9)

Recently, limit distribution of sums and quadratic forms of Appell polynomi-
als in linear variables (1.5)–(1.6) was studied by Giraitis and Taqqu (1997),
Giraitis, Taqqu and Terrin (1998). On the other hand, the asymptotics of
S
�G�
N �t� for nonsmooth G�x�, in particular for indicator functions Gy�x� =
1�x ≤ y�� y ∈ R of linear process (1.5)–(1.6) were obtained by Ho and Hs-
ing (1996), Koul and Surgailis (1997). The above-mentioned papers provide a
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number of important applications of the limit theorems to statistical inference.
However, the applicability of these results is limited to linear or Gaussian LRD
time series, which is often unrealistic or hard to verify in practice.
The natural question is what happens if the LRD process Xt is nonlinear,

in particular, if the Appell expansion (1.8) can be used to characterize scaling
limits of S�G�

N �t� as above. Such a possibility is not obvious, since Ak�x�� k ≥
0 depend on the marginal distribution of Xt and hence on its “short-range
dependent” behavior, which seems unrelated to long-range dependence.
In this paper we study this question in the case when the underlying process

Xt can be written as

Xt = Yt +Zt� t ∈ Z�(1.10)

where Yt� t ∈ Z is a linear LRD process of the form (1.5)–(1.6) and Zt� t ∈ Z
is a nonlinear weakly dependent process of a certain type. More concretely,
we consider three types of the weakly dependent component Zt in (1.10), for
which we can prove the limit distribution of S�G�

N �t� (Theorems 1–3 below). In
all three cases, this distribution is of the same type as above and is determined
by

k∗ = min�k ≥ 0: ak 	= 0��(1.11)

where

ak = ∂kE�G�X0 + c��/∂ck�c=0�(1.12)

We call k∗ �1�11� the Appell rank ofG�x�. It is clear that ifG�x� is a polynomial,
then (1.12) coincides with (1.7). It is easy to show that if X0 ∼ � �0� σ2� then
ak (1.12) coincide with gk in the Hermite expansion (1.3) and, in this case,
Appell and Hermite ranks coincide.
Let us formulate the main results of the paper. We assume below that

Yt� t ∈ Z is a linear process
Yt =

∑
i≥0

biζt−i� t ∈ Z�(1.13)

where bi are given by (1.6) and ζi� i∈Z are i.i.d. random variables,
with zero mean, variance 1 and finite moments of arbitrary order. Note
Cov�Y0�Yt� = L2�t�t−θ�t ≥ 1�, where L2�t� is a slowly varying function such
that limt→∞L2�t�/L21�t� = c ∈ �0�∞�. Below, DN�k = c�k� θ�L2�N�k/2N1−kθ/2.

Theorem 1. Let Xt = Yt +Zt, where Yt� t ∈ Z is a linear LRD process of
(1.13), and Zt� t ∈ Z is a multilinear form

Zt =
n∑

k=1

∑
i1�����ik∈Z

b
�k�
i1�����ik

ζt−i1 · · · ζt−ik � t ∈ Z(1.14)

in the i.i.d. variables ζi� i ∈ Z, with summable coefficients∑
i1�����ik∈Z

�b�k�i1�����ik
� <∞� k = 1� � � � � n�(1.15)
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Let G�x� be a polynomial with E�G�X0�� = 0�E�G2�X0�� <∞, and let θk∗ <
1. Then

D−1
N�k∗S

�G�
N �t� ⇒ ak∗�k∗�t��(1.16)

Theorem 2. Let Xt = Yt+Zt, where Yt� t ∈ Z is a Gaussian LRD process
of (1.13), ζi ∼ � �0�1� and let

Zt = V�ζt� ζt−1� � � � � ζt−m�� t ∈ Z�(1.17)

where m < ∞ and where V�z0� � � � � zm� is an arbitrary measurable function
on Rm+1.
Let G�x� be an arbitrary measurable function with E�G�X0��=0�

E�G2�X0��<∞, whose Appell rank k∗ satisfies θk∗<1. Then the conver-
gence (1.16) holds true.

Theorem 3. Let Xt = Yt+Zt, where Yt� t ∈ Z is a Gaussian LRD process
of (1.13), andZt� t ∈ Z is a strictly stationary sequence, independent ofYt� t ∈ Z
and such that, for any measurable function λ�x� with E�λ2�Z0�� <∞,∑

t∈Z

∣∣Cov�λ�Z0�� λ�Zt��
∣∣ <∞�(1.18)

Let G�x� satisfy the same conditions as in Theorem 2. Then the convergence
(1.16) holds true.

Remark 1. Note E�Z2
0� < ∞ and E�X2

0� < ∞ in Theorem 1. Moreover,
condition (1.15) guarantees that �Zt� is weakly dependent in the sense that∑

t∈Z �Cov�Z0�Zt�� <∞.

Remark 2. Theorems 2 and 3 do not assume any moment restrictions on
the marginal distribution ofZ0. In particular, Theorem 3 is valid for stationary
sequences of the formXt = Yt+Zt, where �Yt� is a Gaussian LRD process of
(1.13), and �Zt� is an arbitrary i.i.d. sequence, independent of �Yt�. Clearly,
this allowsE�X2

0� = ∞ and evenE��X0�p� = ∞ for each p > 0. In such a case,
the definition (1.1) of long-range dependence does not apply. As an indication
of long-range dependence of �Xt�, one may consider the regular growth of the
variance

Var�S�G�
N � ≈ a21L2�N�N2−θ� N→∞�(1.19)

where G�x� belongs to a certain class of square integrable functions
�E�G2�X0�� <∞� of Appell rank 1; the symbol ≈ means “asymptotically pro-
portional to.” Relation (1.19) follows easily from the proofs of Theorems 1–3;
see Corollary 4.1 below.
On the other hand, if E�Z2

0� <∞, then the covariance r�t� = Cov�X0�Xt�
is well defined, and one may ask if Xt is LRD in the sense of (1.1). While
this can be easily seen to be true for Xt of Theorem 2, in the remaining two
situations (Theorems 1 and 3) additional assumptions onZt seem necessary to
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guarantee the validity of (1.1). However, one can easily verify Var�∑N
t=1Xt� ≈

L2�N�N2−θ, under the premises of either Theorems 1, 2 or 3.
Theorems 1–3 show that the reduction principle by Taqqu (1979) holds

for a large class of non-Gaussian processes. They also suggest that some re-
sults in asymptotic inference of LRD time series may be “structurally sta-
ble” with respect to certain additive nonlinear weakly dependent “pertur-
bations” of a Gaussian or linear model. In particular, Theorem 2 implies
the following central limit theorem for the empirical distribution function
FN�x� =N−1∑N

t=1 1�Xt ≤ x�:
ND−1

N�1�FN�x� −F�x�� ⇒ F�1��x�W�(1.20)

where F�x� = P�X0 ≤ x� and W ∼ � �0�1�. In (1.20), the dependence of the
right-hand side in x ∈ R has exactly the same degenerate form as if Xt� t ∈ Z
were Gaussian.
Theorems 1–3 are proved in Sections 3 and 4. The proof of Theorem 1 uses

the formalism of (multivariate) Appell polynomials and their diagrams, which
is explained in Section 2. In the case of Gaussian Yt� t ∈ Z, this formalism
becomes the well-known diagram calculus of Itô–Wiener integrals; see, for ex-
ample, Dobrushin (1979) or Major (1981). However, we do not want to restrict
the discussion to the Gaussian case, because this case seems rather special,
and the linearity of the LRD-part in (1.10) seems more important than Gaus-
sianity.

2. Multivariate Appell polynomials and diagrams. In this section we
discuss the formalism of multivariate Appell polynomials and diagrams. Most
of the facts below can be found in Surgailis (1983) and Giraitis and Surgailis
(1986). [See also Avram and Taqqu (1987), Giraitis and Taqqu (1997).] For the
reader’s convenience, we present the proofs of Lemmas 2.1–2.3 in an Appendix.

2.1. Multivariate Appell polynomials. From a notational point of view, it
is more convenient to consider polynomials in random variables rather than
in real variables. Let Yj� j = 1�2� � � � � n be a finite system of random vari-
ables. We shall assume that all moments of Y1� � � � �Yn are finite but no other
conditions on their joint distribution is assumed. The multilinear form

�Y1Y2 · · ·Yn� = �−i�n ∂n

∂z1 · · · ∂zn
( exp�i∑n

j=1 zjYj�
E exp�i∑n

j=1 zjYj�
)∣∣∣

z1=···=zn=0
(2.1)

is called the Appell product of random variables Y1� � � � �Yn. In particular,
�Y1� = Y1−EY1� �Y1Y2� = Y1Y2−Y1EY2−Y2EY1+2EY1EY2−E�Y1Y2�.
Let us note some easy properties of the Appell product. From the definition
(2.1) it follows that the expectation of the Appell product is zero,

E��Y1 · · ·Yn�� = 0�(2.2)

Furthermore, �Y1 · · ·Yn� is symmetric under permutations of Y1� � � � �Yn. If
(Y1� � � � �Yk) and (Yk+1� � � � �Yn) are independent, then

�Y1 · · ·Yn� = �Y1 · · ·Yk� �Yk+1 · · ·Yn��(2.3)
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If Y1 = · · · = Yn, then �Y · · ·Y� ≡ �Y�n� = An�Y� is the Appell polynomial
relative to the distribution of Y,

An�Y� = �−i�n ∂n

∂zn

( eizY

EeizY

)∣∣∣
z=0

�(2.4)

The multilinearity property of the Appell product means that, if Yi=∑m
j=1 aijZj� i=1 � � � � n are linear combinations of random variables Z1� � � � �

Zm, then

�Y1 · · ·Yn� =
m∑

j1=1
· · ·

m∑
jn=1

a1� j1 · · ·an�jn �Zj1
· · ·Zjn

��(2.5)

We use the compact notation �∏i∈WYi� = �Y�W� for the Appell product of
random variables Yi� i ∈ W indexed by the elements of a finite set W.
Write YW = ∏i∈WYi for the usual product and E�YW� = E�∏i∈WYi� and
χ�Y�W� = χ�Yi� i ∈ W� for the expectation and the joint cumulant, respec-
tively, of random variables Yi� i ∈ W. We shall distinguish between the no-
tation U ⊂ W and U ⊆ W in the sense that the former will denote proper
inclusion, that is, such that U 	= W. Put also �Y�� = Y� = 1. Write �W� for
the number of elements ofW, and �W for the set of all partitions (V1� � � � �Vr)
of W by nonempty subsets V1� � � � �Vr� r = 1�2� � � � � �W�.

Lemma 2.1.

YW = ∑
U⊆W

�Y�U� ∑
�W\U

χ�Y�V1� · · ·χ�Y�Vr�(2.6a)

= ∑
U⊆W

�Y�U�E�YW\U��(2.6b)

where the sum
∑

U⊆W is taken over all subsets U ⊆ W including U = � and
U =W.

2.2. Diagrams. Let us present a (diagram) formula which enables us to
write the product

∏k
i=1 �Y�Wi � of Appell products as a sum of Appell products.

Let W1� � � � �Wk be mutually disjoint finite sets and W = ⋃k
i=1Wi. It is con-

venient to imagine W as a table whose rows are W1� � � � �Wk. A diagram is a
pair γ = �U� �V�r�, where U ⊆W is a subset, and �V�r ≡ �V1� � � � �Vr� ∈ �W\U
is a partition of W\U. The set U will be called the free edge of γ and the sets
V1� � � � �Vr will be called the connected edges of γ. A connected edge Vi ⊆ W
is said to be flat if it belongs to some (row)Wi� i = 1� � � � � k; in particular, any
Vi ⊆W with �Vi� = 1 is flat. A diagram γ = �U� �V�r� is said to be complete if
U = �. Let /W and /†

W denote the classes of all diagrams without flat edges
and all complete diagrams without flat edges, respectively.
Let, as above, Yj� j∈W= ⋃k

i=1Wi be arbitrary collection of random vari-
ables with finite moments of any order.
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Lemma 2.2.

k∏
i=1

�Y�Wi � = ∑
γ=�U��V�r�∈/W

�Y�U�χ�Y�V1� · · ·χ�Y�Vr�(2.7a)

= ∑
U⊆W

�Y�U�E
{ k∏
i=1

�Y�Wi\U�
}
�(2.7b)

Furthermore,

E
{ k∏
i=1

�Y�Wi �
}
= ∑

γ∈/†
W

χ�Y�V1� � � � χ�Y�Vr��(2.8)

2.3. Appell forms. Let ζt� t ∈ Z be a sequence of i.i.d. random variables
with zero mean, variance 1 and finite moments of arbitrary order. For any
collection �s1� � � � � sn� ∈ Zn, the Appell product

�ζs1 · · · ζsn � = ��ζs′1�� k1 � · · · ��ζs′kr �
� kr �(2.9)

provided ��si: si = s′j�� = kj� j = 1� � � � � r� s′i 	= s′j�i 	= j�� ∑r
j=1 kj = n

hold; see (2.4). The product (2.9) has the following orthogonality property: for
any collections �s1� � � � � sn� ∈ Zn� �t1� � � � � tn′ � ∈ Zn′ such that �s1� � � � � sn� 	=
�t1� � � � � tn′ � as subsets of Z,

E��ζs1 · · · ζsn � �ζt1 · · · ζtn′ �� = 0�(2.10)

Let Lp�Zn� be the space of all real sequences q = q�s1� � � � � sn�� �s1� � � � � sn� ∈
Zn such that �q�Lp�Zn� =

(∑
s1�����sn∈Z �q�s1� � � � � sn��p

)1/p
< ∞�1 ≤ p ≤ ∞. For

any q ∈ L2�Zn� consider the polynomial form
�n�q� =

∑
s1�����sn∈Z

q�s1� � � � � sn��ζs1 · · · ζsn ��(2.11)

By (2.10), the last sum converges inL2�1�; furthermore, for any q� q′ ∈ L2�Zn�,∣∣E��n�q��n�q′��
∣∣ ≤ C

∑
s1�����sn∈Z

∣∣symq�s1� � � � � sn�q′�s1� � � � � sn�
∣∣�(2.12)

where symq�s1� � � � � sn� = �n!�−1∑�p�n∈�n
q�sp�1�� � � � � sp�n�� is the symmetriza-

tion. We call �n�q� (2.11) Appell form of order n. In particular,

�1�q�=
∑
s∈Z

q�s�ζs�

�2�q�=
∑

s1� s2∈Z�s1 	=s2
q�s1� s2�ζs1ζs2 +

∑
s∈Z

q�s� s��ζ2s −Eζ2s ��

By (2.2), E��n�q�� = 0� n ≥ 1. Let �0�q� = q ∈ R be a scalar. As linear
combinations of Appell polynomials �ζ�ns �� n = 0�1� � � � are dense in the space
of all square integrable random variables measurable with respect to ζs, by
standard argument one can show that linear combinations of Appell forms
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�n�q�� q ∈ L2�Zn�� n ≥ 0 are dense in the spaceL2�1� of all square integrable
variables measurable with respect to the σ-algebra σ�ζs: s ∈ Z�.
Let us present a diagram formula for Appell forms similar to the diagram

formula of Lemma 2.2.
Let qi ∈ L2�Zni�� ni ≥ 1� i = 1� � � � � k be given. Consider a function q̃ ∈

L2�Zn� of n = n1 + · · · + nk variables si� j ∈ Z� i = 1� � � � � k� j = 1� � � � � ni,
defined by

q̃�s1�1� � � � � sk�nk
� = q1�s1�1� � � � � s1� n1� · · ·qk�sk�1� � � � � sk�nk

��(2.13)

It is convenient to write down the indices of the variables in (2.13) in the form
of the table:

W =



�1�1�� � � � � �1� n1�
�2�1�� � � � � �2� n2�

· · ·
�k�1�� � � � � �k�nk��


(2.14)

whose rows are denoted by Wi� i = 1� � � � � k. It is clear that there is a 1–
1 correspondence between table W �2�14� and collection �n�k = �n1� � � � � nk�.
Write /W = /�n�k� /†

W = /†
�n�k . Given a diagram γ = �U� �V�r� ∈ /�n�k , the

variables si� j � �i� j� ∈ U will be said to be free, while si� j � �i� j� ∈ Vl will be
said to be connected, l = 1� � � � � r.
With each diagram γ = �U� �V1� � � � �Vr�� ∈ /�n�k [and a given collection

qi ∈ L2�Zni�� i = 1� � � � � k] we associate a new function qγ ∈ L2�Znγ�, where
nγ = �U� is the number of free variables, as follows. Replace in q̃ (2.13) all
(connected) variables si� j � �i� j� ∈ Vl by a single new variable s̃l� l = 1� � � � � r
and denote the resulting function by q̃γ = q̃γ�si� j� s̃l: �i� j� ∈ U� l = 1� � � � � r�.
Then

qγ = qγ�si� j � �i� j� ∈ U� =
r∏

l=1
χ�Vl�

∑
s̃1�����s̃r∈Z

q̃γ�si� j� s̃l��(2.15)

where χk = χk�ζ0� is the kth cumulant of ζ0. If nγ = 0 then γ is complete and
qγ ∈ R is a scalar.

Lemma 2.3.

k∏
i=1

�ni
�qi� =

∑
γ∈/�n�k

�nγ
�qγ��(2.16)

E

{
k∏

i=1
�ni

�qi�
}
= ∑

γ∈/†
�n�k

qγ�(2.17)

Consider now a particular case n1 = · · · = nm = 1� 1 ≤ m ≤ k� q1 =
· · · = qm ≡ q ∈ L2�Z�� �1�q� ≡ Y. Let Ak�x�� k ≥ 0 be Appell polynomials
corresponding to r.v. Y. From Lemma 2.3 the corollary follows.
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Corollary 2.1.

Ym
k∏

i=m+1
�ni

�qi�

=
m∑
j=0

(
m
j

)
Aj�Y�E

{
Ym−j

k∏
i=m+1

�ni
�qi�
}
+ ∑

γ∈/�n�m
k

�nγ
�qγ��

(2.18)

where /�n�mk consists of all diagrams γ = �U� �V�r� ∈ /�n�k such that
⋃k

i=m+1
Wi ∩ U 	= �. [In other words, such that there is at least one free variable
among the variables belonging to the functions qm+1� � � � � qk in (2.13).]

2.4. Gaussian case. Let ζt� t ∈ Z be i.i.d. Gaussian � �0�1�-distributed
random variables. Then ζt=�2π�−1/2

∫
5 e

ituW�du�, where 5=�−π�π
�
W�du� =W�−du� is a complex-valued random spectral measure on the
real line with zero mean and variance E��W�du��2� = du (“Gaussian white
noise”). The Appell product (2.9) can be written as

�ζs1 · · · ζsn � =Hk1
�ζs′1� · · ·Hkr

�ζs′kr ��
Hk�x�� k ≥ 0 being the standard Hermite polynomials, and the Appell form
(2.11) as the n-tuple Itô–Wiener integral,

�n�q� =
∫
5n

q̂�u1� � � � � un�W�du1� · · ·W�dun��

where q̂�u1� � � � � un�= �2π�−n/2
∑

s1�����sn
exp�i∑j ujsj�q�s1� � � � � sn� is the

Fourier transform. The following orthogonality property E��n�q��n′ �q′�� =
δn−n′n!�q�2L2�Zn�� n� n′ ≥ 0 of multiple Itô–Wiener integrals is well known. The
diagram formula of Lemma 2.3 in the “frequency representation” can be found,
for example, in Dobrushin (1979), Proposition 4.1, with the important simpli-
fication that all edges Vl connect only pairs, that is, �Vl� = 2� l = 1� � � � � r.

2.5. Hermite processes. Let θ ∈ �0�1� be a parameter. We define a Hermite
process of order 1 ≤ k < 1/θ as the k-tuple Itô–Wiener integral,

�k�t�=dk�θ�
∫
Rk

exp�it�u1 + · · · + un�� − 1
i�u1 + · · · + un�

×
k∏

i=1
�ui��θ−1�/2W�du1� · · ·W�duk�� t ≥ 0�

(2.19)

where the normalization factor dk�θ� is chosen so that E�� 2
k �1�� = 1. See

Taqqu (1978, 1979) for properties of Hermite processes.

3. Proof of Theorem 1. Observe first that Zt (1.14) can be rewritten as
a sum of Appell forms,

Zt =
n∑

k=1

∑
s1�����sk∈Z

q
�k�
t−s1�����t−sk �ζs1 · · · ζsk � ≡

n∑
k=1

Z
�k�
t(3.1)



LONG-RANGE DEPENDENCE AND APPELL RANK 487

with some (new) coefficients q�k� ∈ L1�Zk�� that is, such that∑
s1�����sk∈Z

�q�k�s1�����sk � <∞� k = 1� � � � � n�(3.2)

From (2.12) and (3.2) it follows that Z�k�
t � k = 1� � � � � n are weakly dependent

in the sense that ∑
t∈Z

∣∣E�Z�k�
0 �Z

�l�
t �
∣∣ <∞� k� l = 1� � � � � n�(3.3)

Let Ak�x�� k ≥ 0 and Bk�x�� k ≥ 0 be Appell polynomials relative to the
distributions of X0 and Y0, respectively. Theorem 1 follows from Surgailis
(1982) and the following lemma.

Lemma 3.1. Let G�x� be a polynomial of order 9 ≥ 1. Then
N∑
t=1

G�Xt� =
9∑

k=k∗

ak
k!

N∑
t=1

Bk�Yt� +OP�
√
N��

Proof. Consider first the case G�x� = xk. By Corollary 2.1,

Xk
t =

k∑
m=0

(
k
m

)
Ym

t Z
k−m
t

=
k∑

m=0

(
k
m

) m∑
j=0

(
m
j

)
Bj�Yt�E�Ym−j

t Zk−m
t � +Rk�t�

(3.4)

where the “remainder term” Rk� t is given in (3.5) below. In order to identify
this term, write

Ym
0 Z

k−m
0 = ∑

�n�mk
� m
1 �b��nm+1�q�nm+1�� · · ·�nk

�q�nk���

where b = bi� i ≥ 0 are given by (1.6) and the sum is taken over all collections
�n�mk = �n1� � � � � nm�nm+1� � � � � nk�� 1 ≤ ni ≤ n� 1 ≤ i ≤ k such that n1 = · · · =
nm = 1. For each such collection �n�mk , put qi = b if 1 ≤ i ≤ m� = q�ni� if
m+ 1 ≤ i ≤ k. Then Ym

0 Z
k−m
0 =∑�n�mk

∏k
i=1�ni

�qi�. By applying Corollary 2.1
to the last product and taking the sum over all collections �n�mn , one obtains
(3.4), with

Rk� t =
k∑

m=0

(
k
m

) ∑
�n�mk

∑
γ∈/�n�m

k

�nγ
�qγt ��(3.5)

In (3.5), the last sum is the same as in (2.18) and q
γ
t are defined as in (2.15),

with the difference that q̃ of (2.13) must be replaced by the shifted function

q̃t�s1�1� � � � � sk�nk
� = q̃�t+ s1�1� � � � � t+ sk�nk

��(3.6)
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By changing the summation, (3.4) becomes

Xk
t =

k∑
j=0

1
j!
Bj�Yt�

k−j∑
m=0

k!
m!�k− j−m�!E�Y

m
t Z

k−j−m
t � +Rk� t

=
k∑

j=0

1
j!
Bj�Yt�

k!
�k− j�!E�X

k−j
0 � +Rk� t�

Consequently, for any polynomial G�x� =∑9
k=0 dkx

k,

G�Xt� =
9∑

j=0

1
j!
E�G�j��Xt��Bj�Yt� +Rt =

9∑
j=k∗

aj

j!
Bj�Yt� +Rt�(3.7)

where

Rt =
9∑

k=0
dk Rk� t =

9∑
k=0

dk

k∑
m=0

(
k
m

) ∑
�n�mk

∑
γ∈/�n�m

k

�nγ
�qγt ��(3.8)

Now, Lemma 3.1 follows from (3.7) and Lemma 3.2.

Lemma 3.2. Under the conditions of Theorem 1,

Var
( N∑
t=1

Rt

)
= O�N��

Proof. As all sums on the right-hand side of (3.8) are finite, it suffices to
show the lemma with Rt replaced by �nγ

�qγt �, for any diagram γ as in (3.8).
This follows from ∑

t∈Z

∣∣E��nγ
�qγ0���nγ

�qγt ��
∣∣ <∞

or ∑
t∈Z

∑
s1�����snγ∈Z

∣∣symq
γ
0�s1� � � � � snγ

�qγt �s1� � � � � snγ
�∣∣ <∞�(3.9)

see (2.12). We claim that, for each diagram γ ∈ /�n�mk as in (3.8), the function
qγ ≡ q

γ
0 has the following representation

qγ
(
si� j: �i� j� ∈ U

)
= hγ

(
si� j � �i� j� ∈

k⋃
l=m+1

Wl ∩U

) ∏
�i� j�∈⋃m

l=1Wl∩U
b�si� j��

(3.10)

where b�t� ≡ bt are given in (1.6), hγ ∈ L1�Zñγ�, and where ñγ = ���i� j� ∈⋃k
l=m+1Wl ∩U�� is the number of free variables among the rowsWm+1� � � � �Wk

of the table W.
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Let us check that (3.10) implies (3.9). Indeed, with n ≡ nγ� ñ ≡ ñγ� m̃ =
n− ñ� h ≡ hγ, for any permutation �p�n ≡ �p1� � � � � pn� ∈ �n� one obtains

I�p�n ≡
∑
t

∑
s1�����sn

∣∣b�sp1� · · · b�spm̃
�h�spm̃+1� � � � � spn

�

× b�t+ s1� · · · b�t+ sm̃�h�t+ sm̃+1� � � � � t+ sn�
∣∣

=∑
t

∑
s1�����sn

∣∣b�s1� · · · b�sr�h′�sr+1� � � � � sr+ñ�b�sr+ñ+1� · · · b�sn�
× b�t+ s1� · · · b�t+ sm̃�h�t+ sm̃+1� � � � � t+ sn�

∣∣�
for some 0 ≤ r ≤ m̃ and h′ ∈ L1�Zñ�, which depend on �p�n. Clearly, it suffices
to consider r = 0 only. If m̃ < ñ, then I�p�n ≤ �b�2m̃L∞�Z��h�L1�Zñ��h′�L1�Zñ� <∞. If
ñ < m̃, then I�p�n ≤ �b�2�m̃−ñ�L2�Z� �b�2ñL∞�Z��h�L1�Zñ��h′�L1�Zñ� <∞. Finally, if ñ = m̃,
then

I�p�n =
∑

s1�����sn

∣∣h′�s1� � � � � sñ�h�sñ+1� � � � � sn�∣∣
×∑

t

�b�t+ s1� · · · b�t+ sñ�b�sñ+1 − t� · · · b�sn − t���

where the last sum does not exceed �b�2L2�Z��b�
2�ñ−1�
L∞�Z� . This proves (3.9).

It remains to show the representation (3.10). Without loss of generality, let
γ = �U� �V�r� be such that U ∩⋃m

p=1Wp = ��1�1�� � � � � �m̃�1�� �m̃ ≤m�. Then

hγ

(
si� j: �i� j� ∈

k⋃
p=m+1

Wp ∩U

)

= ∑
s̃1�����s̃r

k∏
p=m̃+1

qp�si� j: �i� j� ∈Wp�1
(
si� j = s̃l � �i� j� ∈ Vl� l = 1� � � � � r

)
�

Hence and from qp ∈ L1�Znp��m+1 ≤ p ≤ k, the relation hγ ∈ L1�Zñγ� follows
easily. This ends the proof of Lemma 3.2 and of Theorem 1, too. ✷

4. Proofs of Theorems 2 and 3.

4.1. Proof of Theorem 2� Without loss of generality, one can assume bi =
0� i = 0�1� � � � �m. Note for each t ∈ Z� Yt =

∑
i≤t−m−1 bt−iζi is independent of

Zt = V�ζt� � � � � ζt−m�. To simplify the notation, we shall also assume E�Y2
0� =

1. Observe that the p.d.f. F�x� = P�X0 ≤ x� is infinitely differentiable, being
the convolution of the p.d.f. FZ�x� = P�Z0 ≤ x� with the standard Gaussian
p.d.f. FY�x� = P�Y0 ≤ x�. As

E�G�X0 + c�� =
∫
R

∫
R
G�y+ z+ c�dFY�y�dFZ�z�

= 1√
2π

∫
R

{∫
R
G�y+ z�dFZ�z�

}
e−�y−c�

2/2 dy�

(4.1)
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so the right-hand side of (4.1) is also infinitely differentiable in c, under the
sign of the integral. Consequently, Appell coefficients ak (1.12) are well defined
for any k ≥ 0 and we obtain

ak =
∫
R
ck�z�dFZ�z� = E�ck�Z0���(4.2)

where

ck�z� =
∫
R
G�y+ z�Hk�y�dFY�y��(4.3)

Furthermore,

G�Yt + z� =
∞∑
k=0

ck�z�
k!

Hk�Yt��(4.4)

where the series converges in L2�1�, for each z ∈ R fixed. We claim that

G�Xt� = G�Yt +Zt� =
∞∑
k=0

ck�Zt�
k!

Hk�Yt� ≡
∞∑
k=0

ck�Zt�
k!

�Y�k
t ��(4.5)

where the series converges in L2�1�. Indeed,

E

(
G�Yt +Zt� −

K∑
k=0

ck�Zt�
k!

Hk�Yt�
)2

=
∫
R

∫
R

(
G�y+ z�−

K∑
k=0

ck�z�
k!

Hk�y�
)2

dFY�y�dFZ�z�

=
∫
R
ψK�z�dFZ�z��

where ψK�z� =
∑∞

k=K+1 c
2
k�z�/k!. According to (4.4), for each z ∈ R� ψK�z� → 0

�K → ∞�, and ψK�z� ≤ ψ̄�z� = E�G2�Yt + z��, where ψ̄�z� is integrable:∫
R ψ̄�z�dFZ�z� = E�G2�Xt�� < ∞. Therefore, limK→∞

∫
RψK�z�dFZ�z� = 0

according to the Lebesgue dominated convergence theorem, thereby proving
the claim.
Let us show that

RN ≡ E

(
N∑
t=1

G�Xt� −
1
k∗!

ck∗�Zt��Y�k∗
t �
)2

= o�D2
N�k∗��(4.6)

By (4.5),

RN =
N∑

t� t′=1

∑
k� k′ 	=k∗

ρt� k� t′� k′/k!k
′!�(4.7)

where

ρt� k� t′� k′ = E
{
ck�Zt�ck′ �Zt′ ��Y�k

t � �Y�k′
t′ �
}
�
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Let t < t′� �t′ − t� > m. Put ��s� t
 = σ�ζi: s ≤ i ≤ t�. Then
ρt� k� t′� k′ = E

{
ck�Zt�ck′ �Zt′ �E��Y�k

t � �Y�k′
t′ ���t� t′ �

}
�(4.8)

where �t� t′ = ��t−m� t
 ∪ ��t′−m� t′ 
. Write Yt′ = Ỹ1 + Ỹ2, where

Ỹ1 =
t∑

i=t−m
bt′−iζi� Ỹ2 =

t−m−1∑
i=−∞

bt′−iζi +
t′−m−1∑
i=t+1

bt′−iζi�

Note that Ỹ1 is measurable with respect to �t� t′ , while Yt =
∑t−m−1

i=−∞ bt−iζi and
Ỹ2 are independent of �t t′ . Therefore the conditional expectation in (4.8) can
be rewritten as

E
{�Y�k

t � �Y�k′
t′ ���t� t′

} = E��Y�k
t � ��Ỹ1 + Ỹ2�� k

′ ���t� t′
}

=
k′∑
l=0

(
k′

l

)
�Ỹ� l

1 �E��Y�k
t � �Ỹ� k′−l

2 ���

Here,

E
{�Y�k

t � �Ỹ� k′−l
2 �} = {0� if k 	= k′ − l,

k!rkt′−t� if k = k′ − l,

where

rt′−t = E�YtYt′ � = E�YtỸ2� =
∞∑

i=m+1
bibt′−t+i� t′ > t+m�

Consequently,

E
{�Y�k

t � �Y�k′
t′ ���t� t′

} = ( k′

k′ − k

)
k!rkt′−t�Ỹ� k′−k

1 �1�k ≤ k′��

Substituting the last expression into (4.8) and using (4.2), the independence
of Zt′ from Zt� Ỹ1, for t′ > t+m, one obtains

ρt� k� t′� k′ =
(

k′

k′ − k

)
k!rkt′−tak′E

{
ck�Zt��Ỹ� k′−k

1 �}1�k ≤ k′��(4.9)

Denote

�ck�2 =
∫
R
c2k�z�dFZ�z� = E�c2k�Z0��� β2t′−t = E�Ỹ2

1� =
t∑

i=t−m
b2t′−i�

As �ak� ≤ �ck�, from (4.8) by the Cauchy–Schwarz inequality we obtain the
bound

�ρt� k� t′� k′ � ≤
k′!

��k′ − k�!�1/2 �rt′−t�
k�ck� �ck′ ��βt′−t�k

′−k1�k ≤ k′��(4.10)

Let M > m be a fixed integer which will be specified below. Write
∑N�M

t� t′ for
the sum over t� t′ = 1� � � � �N� t ≤ t′ −M. Then∑N�M

t� t′
∑

k� k′ 	=k∗

ρt� k� t′� k′

k!k′!
= D1 + D2�
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where

D1=
∑N�M

t� t′
∑

k∗<k≤k′
ρt� k� t′� k′/k!k

′!�

D2=
∑N�M

t� t′
∑

0≤k<k∗<k′
ρt� k� t′� k′/k!k

′!�

and where we used the fact that ρt� k� t′� k′ = 0 for k′ < k∗, which follows from
(4.9) and ak′ = 0� k′ < k∗. Let us show

Di = o�D2
N�k∗�� i = 1�2�(4.11)

Consider D1. By (4.10),

�D1� ≤
∑N�M

t� t′

∞∑
k=k∗+1

�rt′−t�k�ck�
�k!�1/2

∑
k′≥k

�ck′ �
�k!�k′ − k�!�1/2 �βt′−t�k

′−k�(4.12)

Note that k!�k′ − k�! ≥ 2−k′k′! for any k′ ≥ k ≥ 0. Without loss of generality,
one can assume M so large that �21/2βt′−t� < 2−1/2 for all �t′ − t� > M. Then
the last sum in (4.12) does not exceed

2k/2
∑
k′≥k

�ck′ �
�k′!�1/2 �2

1/2βt′−t�k
′−k ≤ 21+k/2�G��

where

�G�2 = E�G2�X0�� =
∞∑
j=0

�cj�2/j! <∞�

Consequently,

�D1� ≤ 2�G�
∑N�M

t� t′

∞∑
k=k∗+1

�rt′−t�k�ck�2k/2
�k!�1/2 �(4.13)

According to (1.1), for any θ′<θ one can find M<∞ such that �rt′−t� ≤
�t′ − t�−θ′� �t′ − t� > M. Let θ′′ < θ′� δ = θ′ − θ′′ > 0. Then

�rt′−t�k ≤ �t′ − t�−�k∗+1�θ′′ �t′ − t�−kδ�
k ≥ k∗+1. Choose now θ′′ < θ′ so that �k∗+1�θ′′ > k∗θ and further, assumeM
so large that 21/2�t′ − t�−δ < 2−1/2 for �t′ − t� > M. Then from (4.13) one obtains

�D1� ≤ 4�G�2
∑N�M

t� t′
�t′ − t�−�k∗+1�θ′′ = o�D2

N�k∗��
Next, consider D2. We have

�D2� ≤ C
∑N�M

t� t′
�βt′−t�

∑
k′>k∗

�ck′ �
�k′!�1/2 �βt′−t�k

′−k∗�

where C < ∞ is a constant. Choose M so that �βt′−t� < 2−1/2� �t′ − t� > M
and use the fact that �βt′−t� = O�b2t′−t�, where

∑
t≥0 b2t < ∞, to conclude that

�D2� ≤ C�G�N = O�N� = o�D2
N�k∗�.
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To complete the proof of (4.5), it suffices to note that for eachM <∞ fixed,
and with G̃t = G�Xt� − �k∗!�−1ck∗�Zt��Y�k∗

t �, one has∑
t� t′=1�����N� �t′−t�≤M

∣∣Cov�G̃t� G̃t′ �
∣∣ = O�N�

provided E�G̃2
0� <∞. The last inequality holds by E�G2�X0�� <∞ and, Y0�

Z0 being independent, by E�c2k�Z0���Y�k
0 ��2� = E�c2k�Z0��E��Y�k

0 ��2 =
k!�ck�2 <∞.
With (4.5) in mind, Theorem 2 follows from Taqqu (1979) and

E

( N∑
t=1

c̄k∗�Zt�Hk∗�Yt�
)2

= O�N��(4.14)

where c̄k�Zt� = ck�Zt� −E�ck�Zt�� = ck�Zt� − ak. Clearly, (4.14) is a conse-
quence of the orthogonality Cov�c̄k�Zt�Hk�Yt�� c̄k�Zt′ �Hk�Yt′ �� = 0� �t′ − t� >
m. For t′ −m > t, the last property follows from E�c̄k�Zt′ �� = 0 and the fact
that Zt′ is independent of Zt�Yt�Yt′ . This ends the proof of Theorem 2. ✷

4.2. Proof of Theorem 3� The proof is very similar to and actually simpler
than the proof of Theorem 2, so we just give a brief outline.
Let FY�x��FZ�x� be the same p.d.f. as above. Exactly as in the proof of

Theorem 2, one can show that Appell coefficients ak� k ≥ 0 are well defined and
given by (4.2)–(4.3). In a similar way, one can show the relation (4.5). The only
place where we need condition (1.18) is to prove (4.14). By the independence
of Yt� t ∈ Z and Zt� t ∈ Z, one obtains∑

t∈Z

∣∣E�c̄k�Z0�c̄k�Zt�Hk�Y0�Hk�Yt��
∣∣

≤ E�H2
k�Y0��

∑
t∈Z

∣∣E�c̄k�Z0�c̄k�Zt��
∣∣ <∞

[see (1.18)], as E�c̄2k�Z0�� <∞. This proves (4.14) and Theorem 3. ✷

Below, αN ∼ βN means limN→∞ αN/βN = 1. Put S�G�
N = S

�G�
N �1�.

Corollary 4.1. Let G�x��Xt = Yt +Zt�Yt�Zt satisfy the assumptions of
either Theorems 1, 2 or 3. Then

Var�S�G�
N � ∼ a2k∗D

2
N�k∗ �

Proof. Write G�Xt� = G1� t + G2� t, where G1� t = �k∗�−1ak∗ �Y�k∗
t �. It is

well known that Var�∑N
t=1G1� t� ∼ a2k∗D

2
N�k∗ ; see, for example, Taqqu (1979)

or Surgailis (1982) in the case when �Yt� is Gaussian or linear, respectively.
Then the corollary follows from

Var
( N∑
t=1

G2� t

)
= o�D2

N�k∗��(4.15)
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For G�x��Xt�Yt�Zt as in Theorem 1 (respectively, as in Theorem 2 or 3),
(4.15) follows from (3.7) and Lemma 3.2 [respectively, from (4.5) and (4.14)].

APPENDIX

We present below the proofs of Lemmas 2.1–2.3.

Proof of Lemma 2.1. We prove the lemma by induction in the number
�W� of elements of W. To that end, we need the recursive formula

�Y�W� = Yj1
�Y�W1 � − ∑

U⊆W1

�Y�U�χ�Y�W\U��(A.1)

where j1 ∈W is arbitrary, and W1 =W\�j1�. (A.1) can be proved as follows.
Note, by definition (2.1),

�Y�W� = Yj1
�Y�W1 � − �−i��W�∂�W1��f1�z1�f2�z1��/∂zW1 �z1=0�(A.2)

where ∂�U�/∂zU = ∏j∈U ∂/∂zj� z1 = �zj � j ∈W1� ∈ R�W1�, and where

f1�z1� = exp
{
i
∑

j∈W1

zjYj

}/
E exp

{
i
∑

j∈W1

zjYj

}
�

f2�z1� = ∂ logE exp
{
i
∑
j∈W

zjYj

}/
∂zj1

∣∣∣∣
zj1=0

�

Next, observe, that for any U ⊆W1,

∂�U�f1�z1�/∂zU
∣∣
z1=0 = i�U��Y�U��(A.3)

∂�U�f2�z1�/∂zU
∣∣
z1=0 = i�U�+1χ�Y�U∪�j1���(A.4)

Now, (A.1) follows from (A.2)–(A.4) and the differentiation rule ∂�W1��f1f2�/
∂zW1 =∑U⊆W1

�∂�U�f1/∂zU��∂�W1\U�f2/∂zW1\U�.
Let us turn to the proof of (2.6a) and (2.6b). Observe, the lemma holds for

�W� = 1. Assume that (2.6a) is true for any subset W1 =W\�j1� ⊂W. Then,
using (A.1),

YW = Yj1
YW1 = ∑

U⊆W1

Yj1
�Y�U� ∑

�W1\U

χ�Y�V1� · · ·χ�Y�Vr�

= ∑
U⊆W1

�Y�U∪�j1�� ∑
�W1\U

χ�Y�V1� · · ·χ�Y�Vr�

+ ∑
U⊆W1

∑
Ũ⊆U

�Y�Ũ� ∑
�W1\U

χ�Y�V1� · · ·χ�Y�Vr�χ�Y��j1�∪U\Ũ��

Hence, by changing the order of summation overU and Ũ, (2.6a) follows, while
(2.6b) follows from the well-known relation between moments and cumulants,

E�YW� = ∑
�V�r∈�W

χ�Y�V1� · · ·χ�Y�Vr��(A.5)

This proves Lemma 2.1. ✷
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Proof of Lemma 2.2. We prove the lemma by induction in �W�. Applying
Lemma 2.1, (2.6a) to the product YW = ∏k

i=1Y
Wi and to each YWi� i = 1� � � � � k

separately, one obtains

∑
U⊆W

�Y�U�E�YW\U� = ∑
�Ũ�k

k∏
i=1

�Y�Ũi �E�YWi\Ũi� +
k∏

i=1
�Y�Wi ��

where the sum
∑

�Ũ�k is taken over all Ũ1 ⊆W1� � � � � Ũk ⊆Wk such that
Ũ ≡ ⋃k

i=1 Ũi 	=W. As �Ũ� < �W�, by the inductive assumption one obtains∑
U⊆W

�Y�U�E�YW\U�

= ∑
�Ũ�k

∑
U⊆Ũ

�Y�U� ∑
�V�r∈� ∗

Ũ\U

χ�Y�V1� · · ·χ�Y�Vr�
k∏

i=1
E�YW1\Ũi�

+
k∏

i=1
�Y�Wi ��

(A.6)

where, for U′ ⊆W� � ∗
U′ is the set of all partitions �V�r ∈ �U′ without flat edges.

We claim that for each U ⊆W,

αU ≡ E�YW\U� − ∑
Ũ�U⊆Ũ⊂W

∑
�V�r∈� ∗

Ũ\U

χ�Y�V1� · · ·χ�Y�Vr�
k∏

i=1
E�YWi\Ũ�

= ∑
�V�r∈� ∗

W\U

χ�Y�V1� · · ·χ�Y�Vr��
(A.7)

This proves the induction step, as
∏k

i=1 �Y�Wi � = ∑U⊆W αU�Y�U� accord-
ing to (A.6). It remains to show the claim (A.7). To do this, split the sum∑

�V�r∈�W\U

∏r
s=1 χ�Y�Vs� = E�YW\U� into two parts ∑�V�r∈� ∗

W\U

∏r
s=1 χ�Y�Vs�+∑

�V�r 	∈� ∗
W\U

∏r
s=1 χ�Y�Vs� ≡∑1+∑2. Then, rewrite

∑
2
= ∑

Ũ�U⊆Ũ⊂W

∑
�V�r∈� ∗

Ũ\U

r∏
s=1

χ�Y�Vs�
k∏

i=1

∑
�V′�r′ ∈�Wi\Ũ

r′∏
s′=1

χ�Y�V′
s′ ��

Here, the last sum on the right-hand side equals E�YWi\Ũ�, for each i =
1� � � � � k, according to (A.5).
This proves (2.7a). (2.8) follows by taking expectations of both sides of (2.7a)

and using (2.2). Finally, (2.7b) follows from (2.7a) and (2.8). Lemma 2.2 is
proved. ✷

Proof of Lemma 2.3. Note, by repeated use of the Cauchy–Schwarz
inequality, that qγ ∈ L2�Znγ�. Indeed, it suffices to check this property in
the case when �Vi ∩Wj� = 1 for every i = 1� � � � � r� j = 1� � � � � k. Assume first
r = 1, that is, that γ = �U�V1� has a single connected edge, say,
V1=��i�1�: 1≤ i≤k′�, where 2≤k′ ≤k. Then �qγ� ≤ �χk′ �f1f2f3, where
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f1 =
(∑

s̃ q
2
1�s̃� s1�2� � � � � s1� n1�

)1/2
� f2 =

(∑
s̃

∏k′
i=2 q

2
i �s̃� si�1� � � � � si� ni

�)1/2 and
f3 =

∏k
i=k′+1 �qi�si�1� � � � � si� ni

��, whence this property clearly follows. In the
case r≥2, the above inequality can be used to reduce the number of connected
edges by 1, and the property follows by induction in r.
It suffices to show (2.16) and (2.17) for qi�s1� � � � � sni

� vanishing outside a
finite set of integer points, i = 1� � � � � k. In this case, �ni

�qi�� i = 1� � � � � k are
finite sums, and

k∏
i=1

�ni
�qi� =

∑
si� j∈Z��i� j�∈W

q̃�si� j��i� j� ∈W�
k∏

i=1
�ζ�Wi ��

where q̃ is given by (2.13). By Lemma 2.2,

k∏
i=1

�ζ�Wi � = ∑
γ=�U� �V�p�∈/�n�k

�ζ�U�
r∏

l=1
χ�ζ�Vl��

Hence (2.16) follows, because χ�ζ�V� = 0 unless all si� j� �i� j� ∈ V ⊆ W
are equal. Equation (2.17) follows from (2.16) and E��n�q�� = 0� n ≥ 1.
Lemma 2.3 is proved. ✷
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