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For the system of d-dim stochastic differential equations,

dXε�t� = b�Xε�t��dt+ εdW�t�� t ∈ �0�1��
Xε�0� = x0 ∈ Rd�

where b is smooth except possibly along the hyperplane x1 = 0, we shall
consider the large deviation principle for the law of the solution diffusion
process and its occupation time as ε → 0. In other words, we consider
P�	Xε − ϕ	 < δ� 	uε − ψ	 < δ� where uε�t� and ψ�t� are the occupation
times ofXε and ϕ in the positive half space �x ∈ Rd: x1 > 0�, respectively.
As a consequence, an unified approach of the lower level large deviation
principle for the law of Xε�·� can be obtained.

1. Introduction In this paper, we are concerned with the large deviation
principle (abbreviated as l.d.p. in the sequel) of the d-dimensional stochastic
differential equations

�1�1�
dXε�t� = b�Xε�t��dt+ εdW�t�� t ∈ �0�1��
Xε�0� = x0 ∈ Rd�

where b is a bounded smooth vector field except possibly along the hyperplane
�x = �x1� x2� � � � � xd� = �x1� x̄� ∈ Rd�x1 = 0� with left and right-hand side
limits. Instead of the usual l.d.p. concerning only the law of trajectories of the
diffusion,

�1�2� P�	Xε − ϕ	 < δ� ∼ exp
(
−I�φ�
ε2

)
�

we shall consider the l.d.p. for the law of the diffusion and its occupation time
in the positive halfspace,

�1�3� P�	Xε − ϕ	 < δ� 	uε − ψ	 < δ� ∼ exp
(
−I�φ�ψ�

ε2

)
for some suitable rate function I�·� ·� where

�1�4� uε�t� =
∫ t
0
χ�0�∞��Xε

1�s��ds�
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Obviously, uε is an occupation time of Xε in the positive half space H+ �=
��x1� x̄� ∈ Rd� x1 > 0�. Here in general, for a continuous function f: �0�1� →
Rd, an occupation time of f in H+ is defined to be an absolutely continuous
function g satisfying

�1�5� ġ�t� ∈ �0�1� if f1�t� = 0 and ġ�t� =
{
1� if f1�t� > 0�
0� if f1�t� < 0�

(f1 is the first component of f). Such a g is unique if and only ifm�t: f1�t�=0�
= 0 where m�·� is the Lebesque measure. In particular, uε defined above is
unique for Xε because the time Xε�·� spends in �x ∈ Rd� x1 = 0� has 0
Lebesque measure with probability 1. In any case, we write g ∈H+�f� if (1.5)
is satisfied.
Throughout the paper 	 · 	 shall mean the supnorm. For any vector x ∈ Rd

or any Rd-valued function ϕ, we shall write x = �x1� x̄� or φ = �φ1� φ̄� to
emphasize their first components.
If ϕ1 is never 0, then H+�ϕ� is a singleton and it is easy to see that for

any γ > 0, there exists an δ such that 	Xε − ϕ	 < δ implies 	uε − ψ	 < γ
for ψ ∈H+�ϕ� (see Lemma 6.5); hence the occupation times uε and ψ in (1.3)
are redundant. This is also true for ϕ with m�t: ϕ1�t� = 0� = 0 because the
(bounded) derivatives of uε and ψ then differ on a set whose Lebesgue measure
is small if 	Xε − ϕ	 is small (see Lemma 6.5). However, when ϕ ≡ 0 or ϕ = 0
in a subinterval of �0�1�, H+�ϕ� contains more than one element and various
choices of ψ ∈ H+�ϕ� in (1.3) sometimes can yield more detailed information
than (1.2).
The large deviation principle for the small perturbed diffusion processes is

well understood if the drift and the diffusion coefficient are smooth (see [3],
[13]). However, Markov processes with discontinuous transition arise natu-
rally in a broad range of applications. The dynamics of a physical system in
a discontinuous media and the queueing networks are some interesting ex-
amples. There are also many interesting results concerning the l.d.p. for the
discrete time Markov processes of this type which were obtained in [1, 2, 5, 9,
10, 12, 17]. See [1] for a nice review.
The problem considered here has been previously studied in [15] and [16].

In those works, b�·� is assumed stable, that is, inf x2�b�0−� x2�−b�0+� x2�� > 0,
and the l.d.p. of (1.2) was obtained. The stable case is simpler because, as in the
case that b�·� is smooth, the solution process can be expressed as a continuous
mapping of εW�·� and therefore the contraction principle is in force to yield the
l.d.p. from that of Wiener measures. In [7], the l.d.p. in the one-dimensional
case without assuming the stability of the drift was obtained. The basic tool
used there was the Cameron–Martin–Girsanov change of measure formula. A
totally different approach for (1.2) using a weak convergence argument was
adopted in [6] and the rate function I�ϕ� was represented in a variational
form [see (2.6) in the next section]. Their arguments also work for the cases of
nonconstant diffusion coefficient, but the existence of strong solution for the
dynamics was required.
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One advantage of considering (1.3) by adding one more component is that
the complicated-looking variational form in [6] becomes transparent through
the contraction of ψ in I�ϕ�ψ�. [See (2.5) in the next section as well as some
explanation in Remark 2.3.] Especially, the proof of our main result for the
case of tangential drifts given in Section 3 illustrates the usefulness of this
consideration. It is shown that the coupled process (diffusion, occupation time
of the diffusion) is a continuous mapping of the coupled process (Wiener pro-
cess, occupation time of the Wiener process). Then the contraction principle
can be applied to obtain the l.d.p.
Our approach is motivated by [7] and [12] and is based on the Cameron–

Martin–Girsanov theorem with techniques such as the local time, the Skoro-
hod equation and ergodic properties of diffusion processes. In a forthcoming
paper, we shall study the l.d.p. for the stochastic differential equations with
nonsmooth diffusion coefficients by extending our present techniques. How-
ever, it seems necessary to include a third component, the local time, in (1.3)
for such processes.
The organization of the paper is as follows. In Section 2, we shall give the

necessary definitions and exact statement of the main theorem. Section 3 will
be devoted to the l.d.p. in the case of (1.1) with tangential drift. In Section 4,
we prove some estimates for the local time of the 1-dim Wiener process which
is essential to the proof of our main theorem. The proof of our main theorem
for the general cases will be given in Section 5. In Section 6, we collect lemmas
and proofs concerning functions on [0,1] used in this paper and, in particular,
we prove the lower semicontinuity of the rate function for l.d.p.

2. Definitions and statement of the main theorem. Let b+ and b− be
bounded vector fields in Rd with bounded derivatives up to the second order.
For the system of stochastic differential equations in Rd,

�2�1�
dXε�t� = b�Xε�t��dt+ εdW�t�� t ∈ �0�1��
Xε�0� = x0 ∈ Rd�

where

�2�2� b�x� =
{
b+�x�� if x1 > 0�

b−�x�� if x1 ≤ 0�
x = �x1� x̄�. Let uε�t� =

∫ t
0 χ�0�∞��Xε

1�s��ds be the occupation time of the
solution Xε�·� in the positive half space H+, where

H+ = �x = �x1� x̄�� x1 > 0��
Such a process is unique because the time Xε

1�·� spends at 0 has Lebesgue
measure 0 with probability 1. The coupled process �Xε�·�� uε�·�� has sample
paths in Cx0��0�1�: Rd�×AC+0 �0�1�. [Here Cx0��0�1�: Rd� is the set of all con-
tinuous functions from �0�1� to Rd starting from x0, and AC+0 �0�1� is the set
of all absolutely continuous functions on �0�1� starting from 0 with deriva-
tives between 0 and 1.] Obviously, Cx0��0�1�: Rd� and AC+0 �0�1� are complete
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metric spaces when equipped with the supnorm. In the sequel, we shall use
the notation

� = Cx0��0�1�: Rd� ×AC+0 �0�1��
For any pair �ϕ�ψ� ∈ � with ψ ∈H+�ϕ� and a function f on Rd such that

f�x� =
{
f+�x�� if x1 > 0�

f−�x�� if x1 ≤ 0�
x = �x1� x̄�, we define
�2�3� fϕ�ψ �t� = f+�ϕ�t��ψ̇�t� + f−�ϕ�t���1− ψ̇�t���
The main theorem of the paper can be stated as follows.

Theorem 2.1. Let Xε�t� be the solution of (2.1) and Xε = �Xε�t��0 ≤
t ≤ 1�. Define uε = �uε�t��0 ≤ t ≤ 1� with uε�t� = ∫ t

0 χ�0�∞��Xε
1�s��ds. Then

the family of probability distributions on � induced by the processes �Xε�uε��
ε > 0, satisfy the large deviation principle with the following rate function
I�·� ·�: for �ϕ�ψ� ∈ �, ϕ absolutely continuous and ψ ∈H+�ϕ�,

�2�4�

I�ϕ�ψ� = 1
2

∫
ϕ1�t��=0

�ϕ̇�t� − b�ϕ�t���2 dt

+ 1
2

∫
ϕ1�t�=0�b−1 �ϕ�t��≥b+1 �ϕ�t��

�ϕ̇�t� − bϕ�ψ�t��2 dt

+ 1
2

∫
ϕ1�t�=0� b+1 �ϕ�t��>b−1 �ϕ�t��

�� ˙̄ϕ�t� − b̄ϕ�ψ�t��2 + �b21�ϕ�ψ�t��dt�

For all other pairs �ϕ�ψ� ∈ �, we set I�ϕ�ψ� = ∞.

Note that from (2.3), we have

�b21�ϕ�ψ = b+21 �ϕ�t��ψ̇�t� + b−21 �ϕ�t���1− ψ̇�t��
= �bϕ�ψ�t��21 + �b+1 �ϕ�t�� − b−1 �ϕ�t���2ψ̇�t��1− ψ̇�t���

Therefore,

I�ϕ�ψ� = 1
2

∫ 1
0
�ϕ̇�t� − bϕ�ψ�t��2 dt

+ 1
2

∫
ϕ1�t�=0�b−1 �ϕ�t��<b+1 �ϕ�t��

�b+1 �ϕ�t�� − b−1 �ϕ�t���2ψ̇�t��1− ψ̇�t��dt�

The second term is the main difference between stable and unstable regions
and it reflects the difficulty for Xε

1�·� to stay close to 0 in the unstable case.
Readers are referred to [8], [13], [21] for the definition and motivation of

l.d.p. We shall, however, adopt the following slightly different formulation in
the present set-up because it is more intuitive and fits our methodology.
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In general, a family of probability measure �Pε�ε>0 on a metric space �X�ρ�
is said to satisfy the l.d.p. with the rate function I�·� if the following conditions
are satisfied:

(i) I: X→ �0�∞� is lower semicontinuous.
(ii) For each r > 0, �x ∈X�I�x� ≤ r� is precompact.
(iii) For any R > 0, there exists a compact set K such that for any δ > 0,

Pε�Bδ�K�c� ≤ exp�−R/ε2� if ε is small,
(iv) limδ→0 lim inf ε→0 ε2 logPε�Bδ�x��= limδ→0 lim supε→0 ε2 logPε�Bδ�x��

= −I�x��
Here, Bδ�x� and Bδ�K� denote the δ-neighborhoods of x and K, respectively,
and Bδ�x�c and Bδ�K�c are their complements. In terms of [8], (i)–(iv) imply
that �Pε� satisfy the l.d.p. with a good rate function (see [7]). Here (i), (ii) and
(iii) are easy to verify and most of the effort will be devoted to (iv).
Since the projection �ϕ�ψ� → ϕ from � = Cx0��0�1��Rd� × AC+0 �0�1� into

Cx0��0�1��Rd� is continuous, by the contraction principle [21], we have the
following corollary.

Corollary 2.2. Let Xε be the solution process of (2.1) as defined in Theo-
rem 2.1. Then the laws of Xε on Cx0��0�1��Rd�� ε > 0, satisfy the large devia-
tion principle with the rate function I�·� as follows: for an absolutely continuous
function ϕ ∈ Cx0��0�1��Rd�,

I�ϕ� =
∫ 1
0
L�ϕ�t�� ϕ̇�t��dt�

where

�2�5� L�x�p� =



1
2 �p− b�x��2� ifx1 �= 0�
inf
0<β<1

{ 1
2 �p− �b+�x�β+ b−�x��1− β���2}�

ifx1 = 0 and b−1 �x� ≥ b+1 �x��
inf
0<β<1

{ 1
2��p̄− �b̄+�x�β+ b̄−�x��1− β���2

+b+1 �x�2β+ b−1 �x�2�1− β��
}
�

ifx1 = 0 and b−1 �x� < b+1 �x��

For all other ϕ ∈ Cx0��0�1��Rd�, I�ϕ� = ∞.

Remark 2.3. Corollary 2.2 was also obtained in [6] where the rate func-
tion was expressed as follows. For absolutely continuous functions ϕ ∈ Cx0
��0�1��Rd�,

I�ϕ� =
∫ 1
0
L̄�ϕ�t�� ϕ̇�t��dt�



LARGE DEVIATIONS FOR DIFFUSIONS 145

where

�2�6� L̄�x�p� =


L+�x�p� = 1

2 �p− b+�x��2� if x1 > 0�

L−�x�p� = 1
2 �p− b−�x��2� if x1 < 0�

L0�x�p�� if x1 = 0
and

L0�x�p� = inf�βL+�x�p+� + �1− β�L−�x�p−��
with inf taken over all possible β�p+ and p− satisfying βp+ + �1 − β�p− =
p� p+1 < 0 and p

−
1 > 0. For all other ϕ ∈ Cx0��0�1��Rd�� I�ϕ� = ∞. It is not

difficult to see that (2.5) and (2.6) coincide.
Similarly, by (2.4),

I�ϕ�ψ� =
∫ T
0
L�ϕ�t�� ϕ̇�t�� ψ̇�t��dt�

where

L�x�p�β�=


1
2 �p− b�x��2� if x1>0� β=1�x1<0� β=0��
1
2 �p− �b+�x�β+ b−�x��1− β���2� if x1=0 and b−1 �x�≥ b+1 �x��
1
2��p̄−�b̄+�x�β+ b̄−�x��1−β���2�+b+1 �x�2β+ b−1 �x�2�1−β���

if x1=0 and b−1 �x�<b+1 �x�
and is defined to be ∞ for all other �x�p�β�. We can also show that

L�x�p�β� =


L+�x�p� = 1

2 �p− b+�x��2� if x1 > 0� β = 1�
L−�x�p� = 1

2 �p− b−�x��2� if x1 < 0� β = 0�
L0�x�p�β�� if x1 = 0

and is equal to ∞ for all other �p�β�, where
L0�x�p�β� = inf�βL+�x�p+� + �1− β�L−�x�p−��

with inf taken over all possible p+ and p− satisfying βp+ + �1 − β�p− =p�
p+1 < 0 and p

−
1 > 0.

3. The l.d.p. for the case with tangential drift. In this section we shall
discuss the l.d.p. of �Xε�uε� defined in Section 2 for the case with tangential
drift, that is,

b�x� = �0� b̄�x��� x ∈ Rd�
with b̄�x� ∈ Rd−1 and

�3�1� b̄�x� =
{
b̄+�x�� if x1 > 0�

b̄−�x�� if x1 ≤ 0�
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x = �x1� x̄�, where b̄+�·�� b̄−�·� are smooth functions defined on Rd. We shall
first establish the l.d.p. for the Wiener process and then for the general cases
of tangential drift by the contraction principle.

Lemma 3.1. Let w�t� be the standard one-dimensional Wiener process.
Define

uε0�t� =
∫ T
0
χ�0�∞��εw�s��ds

be the occupation time of εw in �0�∞�. Then the laws of �εw�uε0� �= ��εw�t��
uε0�t��� t ∈ �0�1���� ε > 0, on �(with d = 1) satisfy the large deviation principle
with the rate function I0�·� ·� as follows. For an absolutely continuous function
ϕ and ψ ∈H+�ϕ�,

I0�ϕ�ψ� = 1
2

∫ 1
0
�ϕ̇�t��2 dt

For all other pairs �ϕ�ψ�� I0�ϕ�ψ� = ∞.

Proof. Let ϕ be an absolutely continuous function in [0, 1] with finite∫ 1
0 �ϕ̇�t��2 dt and ψ ∈H+�ϕ�. We shall show that

�3�2�

lim
δ→0

lim sup
ε→0

ε2 logP�	εw− ϕ	 ≤ δ� 	uε0 − ψ	 ≤ δ�

= lim
δ→0

lim inf
ε→0

ε2 logP�	εw− ϕ	 ≤ δ� 	uε0 − ψ	 ≤ δ�

= − 1
2

∫ 1
0
�ϕ̇�t��2 dt�

If ϕ is never 0 or ϕ equals 0 with Lebesgue measure 0, then the result
follows from Schilder’s l.d.p. [19].
By Lemma 6.4 we may consider without loss of generality the case where

x0 = 0� ϕ ≡ 0 and ψ̇ ≡ β ∈ �0�1�. Since
P�	εw− ϕ	 ≤ δ� 	uε0 − ψ	 ≤ δ� ≤ P�	εw− ϕ	 ≤ δ�

for any ψ, hence

lim
δ→0

lim sup
ε→0

ε2 logP�	εw	 ≤ δ� 	uε0 − ψ	 ≤ δ�

≤ lim
δ→0

lim sup
ε→0

ε2 logP�	εw	 ≤ δ� = 0�

On the other hand, if β = 1, let the function f be linear between �0� δ/2�
with slope 1 and constant in �δ/2�1�. Then

P�	εw	 ≤ δ� 	uε0 − ψ	 ≤ δ� ≥ P
{
	εw− f	 ≤ δ

2

}
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and

lim
δ→0

lim inf
ε→0

ε2 logP�	εw	 ≤ δ� 	uε0 − ψ	 ≤ δ�

≥ lim
δ→0

lim sup
ε→0

ε2 logP
{
	εw− f	 ≤ δ

2

}
= lim
δ→0

(
−1
2

∫ 1
0
ḟ2�t�dt

)
= lim
δ→0

(
−δ
4

)
= 0�

Therefore, we have proved (3.2) for this case. Similarly for β = 0.
For β ∈ �0�1� and any δ, we shall construct a continuous piecewise lin-

ear function f such that 	f	 < δ/2�m�t: f�t� = 0� = 0�
∫ 1
0 ḟ

2�t�dt < δ and
	g − ψ	 < δ/2 for the occupation time g of f in �0�∞� [occupation time for
f is unique since m�t: f�t� = 0� = 0]. It then follows from Lemma 6.5 that
there exists an γ < δ/2 such that 	v − g	 < δ/2 if 	h − f	 < γ and v is an
occupation time of h in �0�∞�. Thus

P�	εw	 ≤ δ� 	uε0 − ψ	 ≤ δ� ≥ P�	εw− f	 ≤ γ�
and

lim
δ→0

lim inf
ε→0

ε2 logP�	εw	 ≤ δ� 	uε0 − ψ	 ≤ δ�

≥ lim
δ→0

lim inf
ε→0

ε2 logP
{
	εw− f	 ≤ δ

2

}

= lim
δ→0

(
−1
2

∫ 1
0
ḟ2�t�dt

)
= lim
δ→0

(
−δ
2

)
= 0�

Therefore, we have (3.2) in this case. We shall construct f as follows. Here g
denotes an occupation time of f in �0�∞�.
Let a0 = 0� a1� a2� � � � � be the increasing sequence in �0�1� such that a1 =

δ/2�1− β�� a2 = a1 + δ/β� a3 = a2 + δ/�1− β�� a4 = a3 + δ/β and so on. In
�0� a1�� f is defined to be linear in �0� γ� and �a1 − γ� a1� with slope +1 and
−1, respectively. In �γ� a1 − γ�� f is defined to be the constant γ. Hence in
�0� a1��0 ≤ f�t� ≤ γ and 0 ≤ g�t� − ψ�t� ≤ δ/2. In �a1� a2�� f is defined to be
linear in �a1� a1 + γ� and �a2 − γ� a2� with slope −1 and +1, respectively. In
�a1+γ� a2−γ�� f is defined to be the constant −γ. Obviously in �a1� a2��−γ ≤
f ≤ 0 and �g�t� − ψ�t�� ≤ δ/2. The construction now repeats and it is easy to
see that 	f	 < γ and 	g − ψ	 ≤ δ/2 for any g. Since ∫ a2k+2a2k

ḟ2�t�dt = 4γ in
each �a2k� a2k+2�, thus∫ 1

0
ḟ2�t�dt ≤ 4γ 1

δ/2�1− β� + δ/2β = 8γβ�β− 1�
δ

�

If we take γ < δ2/8β�β− 1�� then ∫ 10 ḟ2�t�dt < δ. Such an f thus satisfies all
the conditions necessary. ✷

It is then trivial to have the following corollary.
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Corollary 3.2. Let W�t� be the standard d-dimensional Wiener process.
Then the laws of εW and the occupation time of εW in H+� ε > 0, satisfy
the large deviation principle with the rate function I0�·� ·�. For an absolutely
continuous Rd-valued function ϕ and ψ ∈H+�ϕ�,

I0�ϕ�ψ� = 1
2

∫ 1
0
�ϕ̇�t��2 dt�

For all other �ϕ�ψ�� I0�ϕ�ψ� = ∞.

Let b+ and b− be bounded smooth vector fields with b+1 = b−1 = 0 and let
b�·� be defined as in (3.1). We next consider an integral equation which is
similar to that in [13] page 103. Let F be a function from � to � defined as
the following:

�3�3�
F�z�u�= �x�u�
if x�t�=

∫ t
0
�b+�x�s��u̇�s� + b−�x�s���1− u̇�s���ds+ z�t��

Lemma 3.3. F is well defined and continuous.

Proof. The proof is exactly the same as that of a similar equation in [13]
page 104.

Let Xε�t� be the diffusion process satisfying

�3�4�
dXε�t� = b�Xε�t��dt+ εdW�t��
Xε�0� = x0�

where b�x� is as in (3.1). We denote uε�t� the occupation time of Xε�t� in H+;
�Xε�uε� = ��Xε�t�� uε�t���0 ≤ t ≤ 1�. The next is our main result in this
section which asserts that the l.d.p. holds for the laws of �Xε�uε�� ε > 0. Its
proof follows from Corollary 3.2, Lemma 3.3 and the contraction principle. We
recall (2.3) for the definition of bϕ�ψ�t�. ✷

Theorem 3.4. Let �Xε�uε� be the process defined above. Then the laws of
�Xε�uε� on �� ε > 0, satisfy the large deviation principle with the rate function
I�·� ·�. For the absolutely continuous Rd-valued function ϕ and ψ ∈H+�ϕ�,

I�ϕ�ψ� = 1
2

∫ 1
0
�ϕ̇�t� − bϕ�ψ�t��2 dt

= 1
2

∫ 1
0
ϕ̇21�t�dt+ 1

2

∫ 1
0
� ˙̄ϕ�t� − b̄ϕ�ψ�t��2 dt�

For all other �ϕ�ψ�� I�ϕ�ψ� = ∞.

Proof. Let F be the function (3.3). LetW�t� be the d-dimensional Wiener
process and uε0 be the occupation time of εW in H+. Then we have

�Xε�t�� uε�t�� = F�εW�uε0��t��
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By the contraction principle and Corollary 3.2, the laws of �Xε�uε� on � satisfy
the l.d.p. with the rate function defined by

I�ϕ�ψ� = I�F−1�ϕ�ψ�� = 1
2

∫ 1
0
�ϕ̇�t� − bϕ�ψ�t��2 dt�

This completes the proof. ✷

4. Some estimates for the local time of the one-dimensional Wiener
process. We shall give the proof of Theorem 2.1 for the general case in the
next section. To prepare for this purpose, we shall establish some estimates
for the local time of the 1-dim Wiener process in this section.
In the following, the local time .�t� for a continuous semimartingale m�t�

at 0 is defined as the increasing process such that

�m�t�� = �m�0�� +
∫ t
0
sgn�m�s��dm�s� + .�t��

See [22].
Let w be the standard one-dimensional Wiener process starting from 0 and

uε be the process of occupation time of εw in �0�∞�. Denote by .ε the local
time of εw�·� at 0 up to time t. Then

.ε�t� = ε2 lim
δ→0

1
δ

∫ t
0
χ��εw�s��≤δ� ds�

See [14]. See also [12] for some calculation concerning local time of a Markov
diffusion process. We have .ε�t� = ε.0�t�, .0�t� is the local time of w�·� at 0.

Lemma 4.1. Let w and .ε be defined as above. Then for any r > 0,

lim
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)}
= r

2

2
�

In particular,

lim
r→0

lim
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)}
= 0�

Proof. Since

�εw�t�� = ε
∫ t
0
sgn w�s�dw�s� + .ε�1� = εw̃�t� + .ε�1��
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where w̃�t� is a standard Brownian motion, we have .ε�1� = − inf t≤1 εw̃�t� by
Skorohod representation [14]. Thus

lim
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)}
= lim
ε→0

ε2 logE
{
exp

(
− r
ε2
· inf
t≤1
εw̃�t�

)}
(by Laplace–Varadhan’s method)

= sup
ϕ

(
− inf
t≤1
rϕ�t� − 1

2

∫ 1
0
ϕ̇2�t�dt

)
= sup

ϕ

(
r
∫ 1
0
ϕ̇�t�dt− 1

2

∫ 1
0
ϕ̇2�t�dt

)

= sup
ϕ

(
r

(∫ 1
0
ϕ̇2�t�dt

) 1
2

− 1
2

∫ 1
0
ϕ̇2�t�dt

)
= r

2

2
� ✷

Lemma 4.2. Let w�uε and .ε be deined as above, ψ be a nonegative, abso-
lutely continuous function such that ψ̇�t� ∈ �0�1�. Then for any r > 0,

lim
δ→0

lim inf
ε→0

ε2 logE
{
exp

(
−r.

ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 0�

Proof. By Lemma 6.4, we can without loss of generality assume that
ψ̇�t� = β throughout �0�1� and 0 < β < 1. Let c be a fixed positive constant
and let xε�t� be the solution of the following stochastic differential equation:

dxε0�t� = v�xε�t��dt+ εdw0�t��
xε�0� = 0�

where

v�x� =


− c
β
� x > 0�

c

1− β� x ≤ 0�

Let V�x� = ∫ x
0 v�y�dy. By Lemma 6.7 for any θ > 0 there is δ so small that

�V�x�1��� +
∣∣∣∣ ∫ 10 v2x�u�s�ds−

∫ 1
0
v20�ψ�s�ds

∣∣∣∣ < θ�
when x�·� ∈ Bδ�0� and u�·� ∈ H+�x�·�� satisfying u�·� ∈ Bδ�ψ�. Let ũε be the
occupation time of xε in �0�∞� and .̃ε�t� be the local time of xε at 0. By the
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Cameron–Martin–Girsanov theorem,

E

{
exp

(
−r.

ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= E

{
exp

(
−r .̃

ε�1�
ε2

)
× exp

(∫ 1
0

−v�xε�t�
ε2

dxε�t� + 1
2ε2

∫ 1
0
v2�xε�t��dt

)
�

	xε	 ≤ δ� 	ũε − ψ	 ≤ δ
}

by Tanaka’s formula

= E

{
exp

(
−r .̃

ε�1�
ε2

)
exp

(
− 1
ε2
V�xε�1�� − 1

2

(
c

β
+ c

1− β
)
.̃ε�1�
ε2

+ 1
2ε2

∫ 1
0
v2�xε�t��dt

)
� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

}
(4.1)

= E

{
exp

(
−
(
r+ c

2β�1− β�
)
.̃ε�1�
ε2

)
+ 1
2ε2

∫ 1
0
v2�xε�t��dt��

	xε	 ≤ δ� 	ũε − ψ	 ≤ δ
}
exp

(−θ
ε2

)
= E

{
exp

(
−
(
r+ c

2β�1− β�
)
.̃ε�1�
ε2

)
� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

}
× exp

(−θ
ε2

+ c2

2ε2β�1− β�
)

= E
{
exp

(
−r′ .̃

ε�1�
ε2

)
� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

}
× exp

(−θ
ε2

+ c2

2ε2β�1− β�
)
�

where r′ = r+ �c/2β�1− β��.
We now rescale xε�t� as follows: let y�t� = �1/ε2�xε�ε2t�. Then

y�t� = 1
ε2

∫ ε2t
0
v�xε�s��ds+ εw�ε

2t�
ε2

=
∫ t
0
v�xε�ε2s��ds+ w̃�t�

(
w̃�t� = 1

ε
w�ε2t� is a Brownian motion

)
=
∫ t
0
v�y�s��ds+ w̃�t��

Thus y�t� satisfies
dy�t� = v�y�t��dt+ dw̃�t��
y�0� = 0
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and is ergodic (see [18], page 219, Corollary 1.11) with the stationary distri-
bution µ�dx� = f�x�dx� where

f�x� =


2c exp

(−2c
β
x

)
� x > 0�

2c exp
(
2c
1− βx

)
� x ≤ 0�

Since

ũε�t� =
∫ t
0
χ�0�∞��xε�s��ds = ε2

∫ ε−2t
0

χ�0�∞��y�s��ds

and

lim
ε→0

ũε�t�
t

= lim
ε→0

ε2

t

∫ t/ε2
0

χ�0�∞��y�s��ds = µ��0�∞�� = β

uniformly over any compact subinterval of �0�1� by the ergodic theorem, we
conclude that 	ũε − ψ	 < δ when ε is small. Hence
�4�2� lim

ε→0
P�	xε	 ≤ δ� 	ũε − ψ	 ≤ δ� = 1�

Since

�xε�t�� =
∫ t
0
sgn xε�s�dxε�s� + .̃ε�t�

=
∫ t
0
sgn xε�s�v�xε�s��ds+

∫ t
0
ε sgn xε�s�dw̃�s� + .̃ε�t��

by the Skorohod representation,

.̃ε�1� = − inf
t≤1

(∫ t
0
sgnxε�s�v�xε�s��ds+ εŵ�t�

)
�

Here

ŵ�t� =
∫ t
0
sgn xε�s�dw̃�s�

is a one-dimensional Brownian motion. Since

−.̃ε�1� = inf
t≤1

(∫ t
0
sgnxε�s�v�xε�s��ds+ εŵ�t�

)
≥
∫ 1
0
sgn xε�s�v�xε�s��ds+ inf

t≤1
εŵ�t�

≥ −
(
2c+ cδ

β�1− β�
)
+ inf
t≤1
εŵ�t�
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if 	ũε − ψ	 ≤ δ, then

lim
ε→0

ε2 logE
{
exp

(
−r′ .̃

ε�1�
ε2

)
� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

}
≥ lim

ε→0
ε2 logE

{
exp

(
1
ε2

(
−r′

(
2c+ cδ

β�1− β�
)
+ r′ inf

t≤1
εŵ�t�

))
�

	xε	 ≤ δ� 	ũε − ψ	 ≤ δ
}

≥ −r′
(
2c+ cδ

β�1− β�
)
+ lim
ε→0

ε2 logE
{
exp

(
r′

ε2
inf
t≤1
εŵ�t�

)
� 	εŵ	 ≤ δ�

	xε	 ≤ δ� 	ũε − ψ	 ≤ δ
}

≥ −r′
(
2c+ cδ

β�1− β�
)

+ lim
ε→0

ε2 log
(
exp

(−r′δ
ε2

)
P

{
	εŵ	 ≤ δ� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

})
= −r′

(
2c+ cδ

β�1− β�
)
− r′δ�

The proof is now complete by letting c and δ [hence θ in (4.1)] approach 0. ✷

With similar techniques, we have the following refinement of Lemma 4.2.

Lemma 4.3. Let w�t� be the one-dimensional Wiener process, .ε be the local
time of εw at 0 and ψ�t� = βt�0 ≤ β ≤ 1. Then for any r > 0,

lim
δ→0

lim inf
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 2β�1− β�r2

and

lim
δ→0

lim sup
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 2β�1− β�r2�

Proof. We may assume that 0 < β < 1. Following the proof of Lemma
4.2, we have from (4.1) that for any θ > 0,

E

{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}

≥ E
{
exp

((
r− c

2β�1− β�
)
.̃ε�1�
ε2

)
� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

}
× exp

(−θ
ε2

+ c2

2ε2β�1− β�
)
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and

E

{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}

≤ E
{
exp

((
r− c

2β�1− β�
)
.̃ε�1�
ε2

)
� 	xε	 ≤ δ� 	ũε − ψ	 ≤ δ

}
× exp

(
θ

ε2
+ c2

2ε2β�1− β�
)

when δ is small. If we choose c > 0 so that r− �c/2β�1− β�� = 0, then

exp
(
θ

ε2
+ 2β�1− β�r

2

ε2

)
P�	xε	 ≤ δ� 	ũε − ψ	 ≤ δ�

≥ E
{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
≥ exp

(
− θ
ε2
+ 2β�1− β�r

2

ε2

)
P�	xε	 ≤ δ� 	ũε − ψ	 ≤ δ��

Using (4.2), the lemma follows by letting δ→ 0 (hence θ→ 0). ✷

Remark 4.4. If ψ is an absolutely continuous function satisfying ψ̇�t� ∈
�0�1� and ψ�0� = 0, we can prove, using Lemma 4.3, approximating ψ by a
piecewise linear function and using an argument involving conditioning, that

lim
δ→0

lim sup
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 2r2

∫ 1
0
ψ̇�t��1− ψ̇�t��dt

and

lim
δ→0

lim inf
ε→0

ε2 logE
{
exp

(
r
.ε�1�
ε2

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 2r2

∫ 1
0
ψ̇�t��1− ψ̇�t��dt�

More generally, we have the following result. The detail of its proof is omitted.

Lemma 4.5. Let c�t�� t ∈ �0�1� be a continuous real-valued function. Then

lim
δ→0

lim sup
ε→0

ε2 logE
{
exp

(
1
ε2

∫ 1
0
c�t�d.ε�t�

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 2

∫ 1
0
c+�t�2ψ̇�t��1− ψ̇�t��dt
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and

lim
δ→0

lim inf
ε→0

ε2 logE
{
exp

(
1
ε2

∫ 1
0
c�t�d.ε�t�

)
� 	εw	 ≤ δ� 	uε − ψ	 ≤ δ

}
= 2

∫ 1
0
c+�t�ψ̇�t��1− ψ̇�t��dt�

where c+�t� = c�t� if c�t� ≥ 0 and c+�t� = 0 otherwise.

5. The l.d.p. for the general case. In this section, we shall prove the
l.d.p. for the system (2.1) for the general case. Throughout, �ϕ�ψ� will be a
pair in � with ψ ∈ H+�ϕ�(see Section 1 for the definition). Let Xε�·� be the
solution of (2.1) and uε�·� be the occupation time of Xε inH+ defined in (1.4).
We shall consider

P�	Xε − ϕ	 < δ� 	uε − ψ	 < δ��

By the Cameron–Martin–Girsanov theorem,

P�	Xε − ϕ	 < δ� 	uε − ψ	 < δ�

= E
{
exp

(∫ 1
0
c�X̃ε�t��dX̃ε�t� −

∫ 1
0
b̃�X̃ε�t��c�X̃ε�t��dt

− 1
2

∫ 1
0
ε2�c�X̃ε�t���2 dt

)
� �X̃ε� ũε� ∈Bδ�ϕ�ψ�

}
�

where

�5�1�
dX̃ε�t� = b̃�X̃ε�t��dt+ εdW̃�t��
X̃ε�0� = x0

and ũε is the occupation time of X̃ε. Here W̃ is a d-dimensional Wiener pro-
cess, b̃ is any bounded vector field and c�x� satisfies b�x� = b̃�x� + ε2c�x�. To
make Ito’s formula applicable, we choose

�5�2� b̃�x� =
(
0� b2�x� −

∂

∂x2
F�x�� � � � � bd�x� −

∂

∂xd
F�x�

)
�

where F�x� = ∫ x1
0 b1�t� x̄�dt for x = �x1� x̄�, that is,

F�x� =
∫ x1
0
b+1 �t� x̄�dt if x1 > 0 and F�x� =

∫ x1
0
b−1 �t� x̄�dt if x1 ≤ 0�

Then

c�x� = 1
ε2
�b�x� − b̃�x�� = 1

ε2

(
b1�x��

∂

∂x2
F�x�� � � � � ∂

∂xd
F�x�

)
= 1
ε2
∇F�x�
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and

P��Xε�uε� ∈ Bδ�ϕ�ψ��

= E
{
exp

(∫ 1
0

1
ε2
∇F�X̃ε�t��dX̃ε�t� − 1

ε2

∫ 1
0
�̃b∇F��X̃ε�t��dt

− 1
2ε2

∫ 1
0
�∇F�X̃ε�t���2 dt

)
�

�X̃ε� ũε� ∈Bδ�ϕ�ψ�
}

Since by Tanaka’s formula,

F�X̃ε�t�� = F�X̃ε�0�� +
∫ t
0
�∇F��X̃ε�s��dX̃ε�s�

+ ε
2

2

∫ t
0

∑
i� j

∂2F

∂xi∂xj
�X̃ε�s��ds

+ 1
2

∫ t
0
�b+1 �X̃ε�s�� − b−1 �X̃ε�s���d.̃ε�s��

where .̃ε�t� is the local time of X̃ε
1�·� at 0 up to time t, we have

�5�3�

P
{�Xε�uε� ∈ Bδ�ϕ�ψ�

}
= E

{
exp

(
F�X̃ε�1�� −F�X̃ε�0��

ε2

− 1
2ε2

∫ 1
0
�b+1 �X̃ε�t�� − b−1 �X̃ε�t��d.̃ε�t�

− 1
2

∫ 1
0

∑
i� j

∂2F

∂xi∂xj
�X̃ε�t��dt− 1

ε2

∫ 1
0
�̃b∇F��X̃ε�t��dt

+ 1
2ε2

∫ 1
0
�∇F�2�X̃ε�t��dt

)
�

�X̃ε� ũε� ∈ Bδ�ϕ�ψ�
}

In Bδ�ϕ�ψ�, we have the following estimates (5.4)–(5.6): since F is continuous,
for any γ > 0 there exists a δ > 0 such that

�5�4� ��F�X�1�� −F�X�0��� − �F�ϕ�1�� −F�ϕ�0���� < γ if X�·� ∈ Bδ�ϕ��
There is anM such that

�5�5�
∣∣∣∣∑
i� j

∂2F

∂xi∂xj
�x�

∣∣∣∣ ≤M
by the boundedness of ∂2b+1 /�∂xi∂xj�� ∂2b−1 /�∂xi∂xj�.
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Since∫ 1
0
�̃b∇F��X�t��dt =

∫ 1
0

((
b2 −

∂F

∂x2

)
∂F

∂x2
+ · · · +

(
bd −

∂F

∂xd

)
∂F

∂xd

)
�X�t��dt�

thus∫ 1
0
�̃b∇F��X�t��dt+ 1

2

∫ 1
0
�∇F�2�X�t��dt

=
∫ 1
0

d∑
i=2

(
bi
∂F

∂xi

)
�X�t��dt− 1

2

∫ 1
0

d∑
i=2

∣∣∣∣ ∂F∂xi �X�t��
∣∣∣∣2 dt+ 12 ∫ 10 b21�X�t��dt

=
∫ 1
0
�b∇F��X�t��dt− 1

2

∫ 1
0
��∇F��2�X�t��dt

and by Lemma 6.7, for any γ > 0, there exists a δ > 0 such that if �X�u� ∈
Bδ�ϕ�ψ� with

u�t� =
∫ t
0
χ�0�∞��X1�s��ds�

we have

�5�6�

∣∣∣∣(∫ 10 �̃b∇F��X�t��dt+ 1
2

∫ 1
0
�∇F�2�X�t��dt

)
−
(∫ 1

0
�b∇F�ϕ�ψ�t�dt− 1

2

∫ 1
0
�∇F�2ϕ�ψ�t�dt

)∣∣∣∣ < γ�
From these estimates, the only term in (5.3) that remains to be estimated

now is

�5�7�
I = E

{
exp

(−1
2ε2

∫ 1
0
�b+1 �X̃ε�t�� − b−1 �X̃ε�t���d.̃ε�t�

)
�

�X̃ε� ũε� ∈ Bδ�ϕ�ψ�
}
�

where X̃ε�t� satisfies (5.1).
For any γ > 0, let δ be so small that

�5�8� �b+1 �X�t�� − b+1 �ϕ�t��� + �b−1 �X�t�� − b−1 �ϕ�t��� < γ� t ∈ �0�1�
if 	X− ϕ	 < δ. In (5.7), using (5.8) and

b+1 �X̃ε�t�� − b−1 �X̃ε�t��
= ��b+1 �X̃ε�t�� − b−1 �X̃ε�t���
−�b+1 �ϕ�t�� − b−1 �ϕ�t���� + �b+1 �ϕ�t�� − b−1 �ϕ�t����
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we have

�5�9�

I ≤ E
{
exp

(
− 1
2ε2

∫ 1
0

(
b+1 �ϕ�t�� − b−1 �ϕ�t�� − γ

)
d.̃ε�t�

)
�

�X̃ε� ũε� ∈ Bδ�ϕ�ψ�
}
�

I ≥ E
{
exp

(
− 1
2ε2

∫ 1
0
�b+1 �ϕ�t�� − b−1 �ϕ�t�� + γ�d.̃ε�t�

)
�

�X̃ε� ũε� ∈ Bδ�ϕ�ψ�
}
�

Therefore, it remains to estimate the following expectation:

�5�10� II = E
{
exp

(
1
ε2

∫ 1
0
c�t�d.̃ε�t�

)
� �X̃ε� ũε� ∈ Bδ�ϕ�ψ�

}
�

Here c�t� is a continuous function. In our case,
�5�11� c�t� = − 1

2�b+1 �ϕ�t�� − b−1 �ϕ�t�� ± γ��
where γ→ 0 as δ→ 0.
To treat (5.10), since b̃1 = 0, by Lemma 6.7, the function

�ϕ�ψ� → �G�ϕ�ψ�� ψ� from � to �

is continuous, where

G�ϕ�ψ��t� = ϕ�t� − ϕ�0� −
∫ t
0
b̃ϕ�ψ�s�ds�

Thus for any γ > 0 and �X�u� ∈ Bδ�ϕ�ψ� with u�t� =
∫ t
0 χ�0�∞��X1�s��ds,∣∣∣∣(X�t� − ∫ t0 b̃�X�s��ds

)
−
(
ϕ�t� −

∫ t
0
b̃ϕ�ψ�s�ds

)∣∣∣∣ < γ� t ∈ �0�1�

for δ small. By (5.1), εW�t� = G�X̃ε� ũε��t�. Therefore, for any γ > 0 and δ
small,

II ≤ E
{
exp

(
1
ε2

∫ 1
0
c�t�d.̃ε�t�

)
� 	εW− h	 ≤ γ� 	ũε − ψ	 ≤ δ

}
�

where

h�t� = ϕ�t� − ϕ�0� −
∫ t
0
b̃ϕ�ψ�s�ds�

Since X̃ε
1 = εW1 and h1�t� = G�ϕ�ψ�1�t� = ϕ1�t� from (5.1), we have

II ≤ E
{
exp

(
1
ε2

∫ 1
0
c�t�d.̃ε�t�

)
� 	εW1−ϕ1	 ≤ γ� 	ũε−ψ	 ≤ δ

}
P�	εW̄−h̄	 ≤ γ��
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Then

�5�12�

lim
δ→0

lim sup
ε→0

ε2 log II

≤ lim
δ→0

lim inf
ε→0

ε2 logE
{
exp

(
1
ε2

∫ 1
0
c�t�d.̃ε�t�

)
�

	εW1 − ϕ1	 ≤ δ� 	ũε − ψ	 ≤ δ
}

+ lim
δ→0

lim sup
ε→0

ε2 logP�	εW̄− h̄	 ≤ δ�

= lim
δ→0

lim sup
ε→0

ε2 logE
{
exp

(
1
ε2

∫ 1
0
c�t�d.̃ε�t�

)
�

	εW1 − ϕ1	 ≤ δ� 	ũε − ψ	 ≤ δ
}

−1
2

∫ 1
0
� ˙̄ϕ�t� − ¯̃

bϕ�ψ�t��2 dt

= −1
2

∫ 1
0
�ϕ̇1�t��2dt+ 2

∫ 1
0
c+�t�2ψ̇�t��1− ψ̇�t��dt

−1
2

∫ 1
0
� ˙̄ϕ�t� − ¯̃

bϕ�ψ�t��2 dt�

Here in the last step we use Lemma 4.5, and c+�t� = c�t� if c�t� > 0 , c+�t� = 0
otherwise.
Similarly,

�5�13�
lim
δ→0

lim sup
ε→0

ε2 log II ≥ − 1
2

∫ 1
0
�ϕ̇1�t��2 dt+ 2

∫ 1
0
c+�t�2ψ̇�t��1− ψ̇�t��dt

− 1
2

∫ 1
0
� ˙̄ϕ�t� − ¯̃

bϕ�ψ�t��2 dt�

We now combine (5.3)–(5.7), (5.9)–(5.12) to conclude that

�5�14�

lim
δ→0

lim sup
ε→0

ε2 logP��Xε�uε� ∈ Bδ�ϕ�ψ��

= F�ϕ�1�� −F�ϕ�0�� −
∫ 1
0
�b∇F�ϕ�ψ�t�dt

+ 1
2

∫ 1
0
�∇F�2ϕ�ψ�t�dt− 1

2

∫ 1
0
�ϕ̇�t� − b̃ϕ�ψ�t��2 dt

+ 1
2

∫ 1
0
��b−1 �ϕ�t�� − b+1 �ϕ�t���+�2ψ̇�t��1− ψ̇�t��dt�



160 T.-S. CHIANG AND S.-J. SHEU

However,

�5�15�

1
2

∫ 1
0

∣∣∣∣ϕ̇�t� − b̃ϕ�ψ�t��2 dt
= 1

2

∫ 1
0
�ϕ̇�t� − bϕ�ψ�t� + �∇F�ϕ�ψ�t��2 dt

= 1
2

∫ 1
0

(�ϕ̇�t� − bϕ�ψ�t��2
+ ��∇F�ϕ�ψ�2�t� + 2�ϕ̇�t� − bϕ�ψ�t���∇F�ϕ�ψ�t�

)
dt

= 1
2

∫ 1
0
�ϕ̇�t� − bϕ�ψ�t��2 dt+ 1

2

∫ 1
0
��∇F�ϕ�ψ�2�t�dt

−
∫ 1
0
bϕ�ψ�t�∇Fϕ�ψ�t�dt+

∫ 1
0
ϕ̇�t��∇F�ϕ�ψ�t�dt�

We know

�5�16�
∫ 1
0
ϕ̇�t��∇F�ϕ�ψ�t�dt =

∫ 1
0
ϕ̇�t�∇F�ϕ�t��dt

= F�ϕ�1�� −F�ϕ�0���
The first relation in (5.16) can be proved by considering the integration on the
sets

A = �t ∈ �0�1��ϕ1�t� = 0�� B = �t ∈ �0�1��ϕ1�t� �= 0�
separately. For almost all t ∈ A� ϕ̇1�t� = 0 and ∇F�ϕ�t�� = 0; therefore,

ϕ̇�t��∇F�ϕ�ψ�t� = ϕ̇�t�∇F�ϕ�t�� = 0�
On the other hand, for almost all t ∈ B,

ϕ̇�t��∇F�ϕ�ψ�t� = ϕ̇�t�∇F�ϕ�t���
This proves (5.16).
Similarly, we have

�5�17�

1
2

∫ 1
0
�∇F�2ϕ�ψ�t�dt− 1

2

∫ 1
0
��∇F�ϕ�ψ�2�t�dt

= 1
2

∫ 1
0
�b1�2ϕ�ψ�t�dt− 1

2

∫ 1
0
��b1�ϕ�ψ�2 dt

= 1
2

∫ 1
0
�b+1 �ϕ�t�� − b−1 �ϕ�t���2ψ̇�t��1− ψ̇�t��dt

and

�5�18�

∫ 1
0
bϕ�ψ�t� · ∇Fϕ�ψ�t�dt−

∫ 1
0
�b · ∇F�ϕ�ψ�t�dt

= −
∫ 1
0
�b+1 �ϕ�t�� − b−1 �ϕ�t���2ψ̇�t��1− ψ̇�t��dt�
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Combining (5.14)–(5.18), we have

lim
δ→0

lim sup
ε→0

ε2 logP��Xε�uε� ∈ Bδ�ϕ�ψ�� ≤ −I�ϕ�ψ��

The proof that limδ→0 lim inf ε→0 ε2 logP��Xε�uε� ∈ Bδ�ϕ�ψ�� ≥ −I�ϕ�ψ� is
similar. The proof of Theorem 2.1. is now complete. ✷

6. Some properties of I(·, ·). In this section we shall establish the lower
semicontinuity of I�·� ·� defined in (2.4). We also collect some lemmas concern-
ing functions on [0,1] which were used in the previous sections.

Lemma 6.1. If ψn ∈ H+�ϕn� and �ϕn�ψn� → �ϕ�ψ� in �, then ψ ∈ H+�ϕ�.
Moreover, if I�ϕ�ψ� = ∞, then limn→∞ I�ϕn�ψn� = I�ϕ�ψ� = ∞.

Proof. Obviously, ψ ∈ AC+0 �0�1� because 	ψn − ψ	 → 0 as n → ∞. To
show ψ ∈ H+�ϕ�, suppose ϕ�t� > 0 at a point t ∈ �0�1�. Then there exists
an interval �t − γ� t + γ� such that ϕn�s� > 0 and thus ψ̇n�s� = 1 for all
s ∈ �t− γ� t+ γ�. Since ψn is a linear function with slope one in �t− γ� t+ γ��
ψ is also a linear function with slope one. Hence ψ̇�t� = 1. Similarly, for t
where ϕ�t� < 0� ψ̇�t� = 0. It is also obvious that 0 ≤ ψ̇�t� ≤ 1 throughout
�0�1� because 0 ≤ ψ̇n�t� ≤ 1. Hence ψ ∈H+�ϕ�.
To show that limn→∞ I�ϕn�ψn� = ∞ if I�ϕ�ψ� = ∞, first consider the case

that ψ /∈H+�ϕ�. Then by what we just proved, ψn �∈H+�ϕn� from some n on,
thus I�ϕn�ψn� = ∞ when n is large. If ψ ∈ H+�ϕ� and I�ϕ�ψ� = ∞, then∫ 1
0 �ϕ̇�t��2 dt = ∞ and limn→∞

∫ 1
0 �ϕ̇n�t��2 dt = ∞ because 	ϕn − ϕ	 → 0 and

ϕ→ ∫ 1
0 �ϕ̇�t��2 dt is lower semicontinuous. This completes the proof. ✷

Lemma 6.2. If ψn ∈ AC+0 �0�1� and 	ψn − ψ	 → 0 as n→∞, then

lim
n→∞

∫ 1
0
f�t�ψ̇n�t�dt =

∫ 1
0
f�t�ψ̇�t�dt

for any bounded measurable function f.

Proof. We only need to take f to be indicator functions χA where A is a
measurable set. It obviously holds if A is an interval.
Let A be an open set in �0�1�. Then A = ⋃∞

i=1Ai where Ai’s are disjoint
open intervals. Then, since

∫
Ai

ψ̇�t�dt ≤m�Ai� and
∑
i

m�Ai� ≤ 1�
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for each n,

lim
n→∞

∫
A
ψ̇n�t�dt = lim

n→∞

∞∑
i=1

∫
Ai

ψ̇n�t�dt

=
∞∑
i=1

lim
n→∞

∫
Ai

ψ̇n�t�dt

=
∞∑
i=1

∫
Ai

ψ̇�t�dt =
∫
A
ψ̇�t�dt

by the Lebesgue dominated convergence theorem.
For a measurable set A and ε > 0, let G be an open set containing A with

m�G\A� ≤ ε. Then

lim sup
n→∞

∫
A
ψ̇n�t�dt ≤ lim

n→∞

∫
G
ψ̇n�t�dt =

∫
G
ψ̇�t�dt ≤

∫
A
ψ̇�t�dt+ ε

and

lim inf
n→∞

∫
A
ψ̇n�t�dt ≥ lim

n→∞

∫
G
ψ̇n�t�dt− ε =

∫
G
ψ̇�t�dt− ε ≥

∫
A
ψ̇�t�dt− ε�

This completes the proof. ✷

Theorem 6.3. I�ϕ�ψ� is a lower semicontinuous function on �.

Proof. Let 	ϕn − ϕ	 → 0 and 	ψn − ψ	 → 0 in �. If I�ϕ�ψ� = ∞, then
limn→∞ I�ϕn�ψn� = ∞ by Lemma 6.1. We therefore can assume that I�ϕ�ψ� <
∞� ψ ∈H+�ϕ� and ψn ∈H+�ϕn�. Trivially,(
ϕn�t�−

∫ t
0
bϕn�ψn�s�ds

)
−
(
ϕ�t�−

∫ t
0
bϕ�ψ�s�ds

)
→ 0 uniformly in t ∈ �0�1��

Since

I�ϕ�ψ� = 1
2

∫ 1
0
� ˙̄ϕ�t� − b̄ϕ�ψ�t��2 dt

+ 1
2

∫
b−1 �ϕ�t��>b+1 �ϕ�t�� or ϕ1�t��=0

�ϕ̇1�t� − b1ϕ�ψ�t��2 dt

+ 1
2

∫
ϕ1�t�=0�b+1 �ϕ�t��≥b−1 �ϕ�t��

�b+21 �ϕ�t��ψ̇�t� + b−21 �ϕ�t���1− ψ̇�t���dt�

it follows because f→ ∫ 1
0 �ḟ�t��2 dt is lower semicontinuous that the first two

terms on the right-hand side are lower semicontinuous. The third term is
continuous because of Lemma 6.2. Hence I�·� ·� is lower semicontinuous. ✷

The following two lemmas are easy and we omit their proofs.
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Lemma 6.4. For any �ϕ�ψ� ∈ � with ψ ∈ H+�ϕ�, there exists a sequence
�ϕn�ψn�� ψn ∈ H+�ϕn�, such that ϕn and ψn are piecewise linear, �ϕn�ψn� →
�ϕ�ψ� and I�ϕn�ψn� → I�ϕ�ψ� as n→∞.

Lemma 6.5. Let ϕ be a continuous piecewise linear function with m�t: ϕ�t�
= 0�=0. If ϕn is a sequence of continuous functions such that limn→∞ 	ϕn−ϕ	
= 0, then limn→∞ 	ψn − ψ	 = 0 for any ψn ∈H+�ϕn� and ψ ∈H+�ϕ��

Remark 6.6. The assumption m�t: ϕ�t� = 0� = 0 in Lemma 6.5 is neces-
sary. Counter examples can be easily constructed by letting ϕn = ϕ = 0. Also,
the piecewise linearity of ϕ is not necessary. But this is all we need.

Lemma 6.7. Let f be a real-valued function on Rd with f�x� = f+�x� if
x1 > 0 and f�x� = f−�x� if x1 ≤ 0 where f+�x� and f−�x� are bounded and
continuous. Then the function

�ϕ�ψ� →
∫ 1
0
fϕ�ψ�t�dt

is continuous on the set ��ϕ�ψ�� ϕ ∈ Cx0��0�1��Rd�� ψ ∈H+�ϕ��.

Proof. Let �ϕn�ψn� → �ϕ�ψ� in � with ψn ∈ H+�ϕn�� ψ ∈ H+�ϕ�. Let
E = �t: ϕ1�t� �= 0�. Then∣∣∣∣ ∫

E
fϕn�ψn�t�dt−

∫
E
fϕ�ψ�t�dt

∣∣∣∣
=
∣∣∣∣ ∫
E∩��ϕ�≥δ�

�fϕn�ψn�t� − fϕ�ψ�t��dt+
∫
E∩��ϕ�<δ�

�fϕn�ψn�t� − fϕ�ψ�t��dt
∣∣∣∣

≤
∫
E∩��ϕ�≥δ�

�f�ϕn�t�� − f�ϕ�t���dt+m�0 < �ϕ� < δ�	f	 → 0 as δ→ 0�

On the other hand,

lim
n→∞

∣∣∣∣ ∫
Ec
�f+�ϕn�t��ψ̇n�t� − f+�ϕ�t��ψ̇�t��dt

∣∣∣∣
= lim
n→∞

∣∣∣∣ ∫
Ec
�f+�ϕn�t�� − f+�ϕ�t���ψ̇n�t�dt

+
∫
Ec
f+�ϕ�t���ψ̇n�t� − ψ̇�t��dt

∣∣∣∣
≤ lim
n→∞

∫
Ec
�f+�ϕn�t�� − f+�ϕ�t���ψ̇n�t�dt

+
∣∣∣∣ ∫
Ec
f+�ϕ�t���ψ̇n�t� − ψ̇�t��dt

∣∣∣∣
= 0

because of the uniform continuity of f+ on a compact set and Lemma 6.2.
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Similarly,

lim
n→∞

∫
Ec
f−�ϕn�t���1− ψ̇n�t��dt =

∫
Ec
f−�ϕ�t���1− ψ̇�t��dt�

The proof is now complete. ✷
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