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ASYMPTOTICS OF THE DISTRIBUTION OF THE
INTEGRAL OF THE ABSOLUTE VALUE OF THE
BROWNIAN BRIDGE FOR LARGE ARGUMENTS

BY LEONID TOLMATZ

Southern Illinois University at Carbondale

The distribution of the integral of the absolute value of the Brownian
bridge was expressed by Cifarelli and independently by Johnson and
Killeen in the form of a series. Rice obtained the corresponding probability
density by numerical integration. Here we determine the exact tail asymp-
totics of this distribution, as well as the exact asymptotics of its density
function for the large values of the argument.

Ž .1. Introduction. Let B s , 0 � s � t, be the Brownian motion,

t
� � �1 � �, t , x � Prob B s ds � � B t � x ,Ž . Ž . Ž . Ž .H½ 5

0

Ž . Ž .and F p, q, x denote the Laplace�Stieltjes transform of � �, t, x �1
2' Ž . Ž .1� 2� t exp �x �2 t � �, t, x with respect to �, t correspondingly. A direct

Ž . � Ž .�application of the classical result of Kac 1949 see also Rosenblatt 1951 ,
yields

�� ��

F p , q , x � exp �p� � qt d � �, t , x dtŽ . Ž . Ž .H H � 1
0 0

Ai 21�3p�2�3 q � pxŽ .Ž .�1�3� � 2 p ,Ž . 1�3 �2�3Ai� 2 p qŽ .

2Ž .

Ž .where Ai z is the first Airy function, p and q are in the right half-plane,
and the fractional powers are taken as their principal values.

Ž .In the following we will consider analytical continuations of 2 into the left
p-half-plane with a cut along a certain ray.

˜Ž .Let B s , 0 � s � t, be the Brownian bridge and

t ˜� �3 � �, t � Prob B s ds � � .Ž . Ž . Ž .˜ Hž /0
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Ž .The following proposition is a consequence of Shepp’s 1982 result and the
scaling property. For the convenience of the reader we outline here a direct
proof.

˜ ' Ž .PROPOSITION 1.1. The Laplace�Stieltjes transform F of 1� 2� t � �, t, 0
is given by

Ai 21�3p�2�3qŽ .�1�3˜4 F p , q � � 2 p .Ž . Ž . Ž . 1�3 �2�3Ai� 2 p qŽ .

Ž .For the proof, apply 2 with x � 0.
˜ ˜ 'Ž . Ž .Notice that F p, q is in fact the Laplace transform of f �, t � 2� t ; see

Ž .6 .

Ž . Ž .PROPOSITION 1.2. The distribution function � �, t � � �, t, 0 and its˜
Ž̃ .density function f �, t are given by the following double Laplace inversions:

'2� t 1a�i� b�i�qt p�˜5 � �, t � dqe F p , q e dp,Ž . Ž . Ž .˜ H H2 pa�i� b�i�2� iŽ .
'2� t a�i� b�i�qt p�˜ ˜6 f �, t � dqe F p , q e dpŽ . Ž . Ž .H H2

a�i� b�i�2� iŽ .

with any a � 0, b � 0.

PROOF. The proof follows via standard manipulations with Laplace’s inte-
grals.

Ž .The factor 1�p in 5 stems from a well-known property of the Laplace
1xŽ . Ž . Ž . Ž .transform: if f x � f p , then H f t dt � f p . �0 p

Ž . Ž .Cifarelli 1975 expressed � �, 1 in one form of a series. Johnson and˜
Ž . Ž .Killeen 1983 , independently, obtained for � �, 1 a different expansion. In˜

Ž . Ž .their work they used the results of Shepp 1982 . Rice 1982 numerically
Ž .inverted the integral in 6 in the case t � 1 and by numerical observations

Ž̃ .suggested approximate asymptotic formulas for f �, 1 for small and large
values of �. In the present paper we use the saddlepoint method for integrals

˜Ž . Ž .to obtain exact asymptotic expressions for � �, t and f �, t for large �’s.˜
The results are given in Theorems 4 and 5. The proposed method readily
leads to asymptotic expansions of any order.

2. Transformation of the contours.

REMARK. All fractional powers of complex numbers are taken as their
principal values.
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The main results of this section are Theorems 1 and 2.

LEMMA 2.1.

exp � i�3 Ai exp 2� i�3 � exp �� i�3 Ai exp �2� i�3 �Ž . Ž . Ž . Ž .Ž . Ž .
�

Ai� exp 2� i�3 � Ai� exp �2� i�3 �Ž . Ž .Ž . Ž .
7Ž .

�2 i��
� ,�22Ai� � � Bi �Ž . Ž .
Ž .where Bi z is the second Airy function.

PROOF. The proof follows from direct computation, making use of the
� Ž . �following identities see Olver 1974 , Chapter 11 :

1Ai z exp �2� i�3 � exp �� i�3 Ai z � iBi z ,Ž . Ž . Ž . Ž .Ž . 2

differentiation of which yields
1Ai� z exp �2� i�3 � exp �� i�3 Ai� z � iBi� z ,Ž . Ž . Ž . Ž .Ž . 2

and use the expression for the Wronskian of the Airy’s equation,

W Ai z , Bi z � 1�� .	 4Ž . Ž .

LEMMA 2.2. Let Re q � 0. Then

˜ '8 lim F i� , q � 1� 2 q .Ž . Ž .
��0�

Ž . Ž . �PROOF. Apply the following asymptotics for Ai z and Ai� z see Olver
Ž . �1974 , Chapter 11 :

1 �1�2 �1�4 �	 � �Ai z � � z e 1 � O 1�	 , in arg z � � � 
 ,Ž . Ž .2

1 �1�2 1�4 �	 � �Ai� z � � � z e 1 � O 1�	 , in arg z � � � 
 .Ž . Ž .2

Ž . 1�3 �2�3 Ž .THEOREM 1. Let � �, � � 2 � exp �2 i��3 q, where � � arg q and
Re q � 0. Then

1 1b�i� p�F̃ p , q e dpŽ .H2� i pb�i�

�1�3 ��
�4�3 i�1 2 � exp �i��3 exp ��e � d�Ž . Ž .

� � .H2 2 2� Ai� � � Bi� �' Ž . Ž .2 q 0

9Ž .

PROOF. One can see that for any b � 0,

1 1b�i� b�i�p� p�˜ ˜10 F p , q e dp � lim F p , q e dp.Ž . Ž . Ž .H Hp p � i���0b�i� b�i�
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Ž .For any fixed � 	 ���2, ��2 , and 
 
 0, 0 � r � � � b � R, we define a
closed contour C in the complex p-plane as follows:


C � C � C
 � C� � C
 � C� where
 b R 
 r 


� �	 4C � p � Re p � b and p � R ,b


 � � � �	 4C � p � Re p � b , p � R and arg p � � � � � 
 ,R


 � � � �	 4C � p � Re p � b , p � r and arg p � � � � � 
 ,r

� � �	 4C � p � arg p � � � � � 
 and r � p � R .


Let D denote the domain bounded by C and D its closure. By making
 
 


use of the basic properties of Airy functions, including the fact that all zeroes
Ž . � Ž . �of Ai� z are real and negative see Olver 1974 , Chapter 11 , one can show

Ž .that the integrand at the right of 10 is analytical in D and continuous in


D , except the pole at p � i� .


By the residue theorem,

1
p� i��˜ ˜11 F p , q e dp � 2� ie F i� , q .Ž . Ž . Ž .H p � i�C


Ž .For the contour integral in 11 we have

12 � � � � �Ž . H H H H H H

 
 � �C C C C C C
 b R r 
 


Ž . Ž .By taking 
 � 0 in 11 and 12 we get

˜ i��13 � � � � � 2� iF i� , q eŽ . Ž .H H H H H
0 0 � �C C C C Cb R r 0 0

Ž . Ž . 1�3 � 2�3 Ž .By 7 with � � , � � 2 � exp �2 i��3 q and an obvious
reparametrization,

�1�3 i�exp �i��3 exp 2 � �2 i�� exp ��e �Ž . Ž . Ž .R i�14 � � e d� .Ž . H H H i� 2 2� � �e � i� Ai� � � Bi� �Ž . Ž .C C r0 0

Ž . Ž . 0By using the asymptotic estimate 9 for Ai z , we can show that H � 0CR

when R � � and H 0 � 0 when r � 0 and H � H b� i� when R � �; that is,C C b�i�r b

�1�3i� i��� exp �i��3 e 2 � 2 i�� exp ��e �Ž . Ž . Ž .b�i�
� � d�H H i� 2 2�e � i� Ai� � � Bi� �15 Ž . Ž .Ž . b�i� 0

˜ i��� 2� iF i� , q e .Ž .

Taking here � � 0 completes the proof. �
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Ž . 1�3 �2�3 Ž .ŽTHEOREM 2. For any a � 0, let z �, � � 2 a� exp �2 i��3 1 �
.i tan � . Then

'a t ��2 2� �, t � 1 � d� exp at 1 � i tan � sec �Ž . Ž .Ž .˜ H5�6 5�22 � ���2
16Ž .

��
�4�3 i�� exp �i��3 exp ��e � d�Ž . Ž .

� .H 2 2Ai� z � , � � Bi� z � , �Ž . Ž .0

Ž .PROOF. Apply to 9 the inverse Laplace transform with respect to q with
i� Ž . Ž .the reparametrization q � a sec � e � a 1 � i tan � and refer to 5 .

3. Asymptotic expansions. In this section we apply the saddlepoint
� Ž .�method see de Bruijn 1961 .

LEMMA 3.1. The double integral, which corresponds to the repeated inte-
gral in Theorem 2, converges absolutely. Therefore

' ��a t ���2 2� �, t � 1 � exp at 1 � i tan � sec �Ž . Ž .Ž .˜ H H5�6 5�22 � ���2 0
17Ž . �4�3 i�� exp �i��3 exp ��e � d� d�Ž . Ž .

� .2 2Ai� z � , � � Bi� z � , �Ž . Ž .

�The proof follows from straightforward estimates for the integrand see
Ž . �Olver 1974 , Chapter 11 and Fubini’s theorem. �

Ž .The representation 17 holds for any a � 0. We will show that the choice

18 a � 18�2�t 4Ž .
provides a suitable saddlepoint at

19 � , � � 12��t3, 0 ,Ž . Ž . Ž .
and thus Laplace’s method for integrals is applicable.

2 3�2NOTATION. For an independent variable z, 	 � z ; if z is a function of3
2 3�2 1�3 �2�3Ž . Ž . Ž .� and � , then 	 � , � � z � , � , where z � , � � 2 a�3

Ž .Ž . �Ž .exp �2 i��3 1 � i tan � as defined in Theorem 2. In Olver 1974 , Chapter
�11 , the following facts are proved:

1 �1�2 1�4 �	 � �Ai� z � � � z e 1 � O 1�	 in arg z � � � 
 ,Ž . Ž .2

�1�2 1�4 	 � �Bi� z � � z e 1 � O 1�	 in arg z � ��3 � 
 .Ž . Ž .
From these asymptotics the lemma follows.

� 2Ž . 2Ž .��1 �1�2 �2	 � Ž .� � �LEMMA 3.2. Ai� z � Bi� z � � z e 1 � O 1�	 , in arg z
� ��3 � 
 .
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THEOREM 3. For a fixed t � 0 and � � �� we have
'3 2 �

� �, t � 1 �Ž .˜ 3�22 � tŽ .
3�2�� � exp �i��2 cos �Ž .���2

� 1 � O 1Ž .H H 2����2 0

20Ž .

�1�22 2 3� 1�� sec � 1 � i tan � exp �
 � , � � �t d� d� ,Ž . Ž .Ž .
Ž . Ž . i� �i� Ž .3�2where 
 �, � � �18 1 � i tan � � 12 �e � 12��e 1 � i tan � .

PROOF. By Lemmas 3.1 and 3.2 we get
' ��a t ���2

� �, t � 1 � 1 � O 1�	 � , �	 4Ž . Ž .˜ H H5�6 5�22 � ���2 0

� exp at 1 � i tan � sec2 � exp �i��3Ž . Ž .Ž .
21Ž .

� ��4�3exp ��ei�� � z�1�2 � , � exp �2	 � , � d� d� .Ž . Ž .Ž .Ž .
Apply in this integral the change of the variable � � 12��t3�� and the
substitution a � 18�2�t 4, and return to the original variable �. �

The following elementary lemma we give without proof.

Ž .LEMMA 3.3. The function Re 
 �, � attains its absolute minimum 
 �min
Ž . Ž .6 at �, � � 1, 0 .

Lemma 3.3 sets the stage for a routine application of Laplace’s method for
Ž .integrals; see, for example, de Bruijn 1961 .

The following elementary inequality will be used in the next theorem:
' '1 cos ��2 1 1 2 �2 2 �2Ž .

22 � cos � � � � cos � � � ,Ž . 3�2 3�2 1�2ž /� 2 �cos � cos � cos �

where � � 0 and ���2 � � � ��2.

THEOREM 4. For any fixed t � 0 and � � ��,
't t

2 323 � �, t � 1 � exp �6� �t 1 � o 1 .Ž . Ž . Ž .Ž .˜ '6� � �

Ž . Ž . Ž .PROOF. Let � � 0, S � 1 � � , 1 � � � �� , � and D � 0, �� ��

Ž .���2, ��2 .
Ž .We consider the double integral in 20 in the form of the sum

24 � � .Ž . H H H
D S D
S� �

From this, by substituting the Taylor expansion of 
 at the saddlepoint,
2


 � , � � 6 � 12 � � 1 � 6 i� � � 1Ž . Ž . Ž .
25Ž . 3�223 2 2� � � � � 1 � � O 1 ,Ž . Ž .2
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and other obvious Taylor expansions in the integrand, we obtain
3�2exp �i��2 cos �Ž .

� 1 � O 1Ž .H H 2�S S� �

� 1 � � � 1 O 1 1 � � O 1Ž . Ž . Ž .

2
� exp � 6 � 12 � � 1 � 6 i� � � 1Ž . Ž .½ž26Ž .

3 3�222 2 2 3� � � O 1 � � 1 � � � �t d� d� .Ž . Ž . 5 /2

Ž 3�2 3�2 . Ž 3�2 3�2 .Let S � ����t , ���t � ����t , ���t .��
2 3 2 3Ž .' 'The change of variables r � � �t � � 1 , s � � �t � and standard

estimates yield

t 3 �6�2 3
2 2� exp 1 � o 1 exp �12r � 6 isr � s dr dsŽ .H H2 3 ž /ž / 2� tS S �� �

27Ž .
3 2t �6� �

� exp 1 � o 1 .Ž .2 3ž / '� t 3 3

It remains to estimate the integral H .D 
 S�

12 cos ��2Ž .
Ž .Routine estimates with Re 
 �, � � �18 � 12 � cos � � 3�2� cos �

show

2 328 � exp � 6 � 
 � �t O 1 ,Ž . Ž . Ž .Ž .H
D
S�

with some 
 � 0.
Ž . Ž .To obtain the term O 1 in the last formula, we used 22 .

Ž . Ž . Ž . Ž . Ž .The substitution of 27 and 28 in 24 and 20 yields 23 .

THEOREM 5. For any fixed t � 0 and � � ��,
2'2 6 �6�

˜29 f �, t � exp 1 � o 1 .Ž . Ž . Ž .33�2 ž /' t� t

Ž .PROOF. By the differentiation of 17 on � we get

' ��a t ���2
f̃ �, t � � exp at 1 � i tan �Ž . Ž .Ž .H H5�6 5�22 � ���2 0

30Ž .
��1�3exp 2 i��3 exp ��ei�� d� d�Ž . Ž .

2�sec � 2 2Ai� z � Bi� zŽ . Ž .
Ž .and proceed similarly to the proof of 23 . �
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Ž̃ .COROLLARY 1. The logarithmic asymptotics of f �, t as � � �, is as
follows:

˜ 2 331 � ln f �, t � 6� �t .Ž . Ž .
In particular, for t � 1,

˜ 232 � ln f �, 1 � 6� .Ž . Ž .

Ž .4. Remarks on related work. From numerical observations Rice 1982
˜ 2Ž . Ž .suggested that for large �’s approximately f �, 1 � 4.1exp �6.3� . Accord-

˜Ž . Ž .ing to 29 , the corresponding rigorous statement should be f �, 1 �
Ž 2 .2.76 . . . exp �6� . Indeed, in the interval 1 � � � 1.5, on which Rice based

his observations, the ratio of the logarithms of these two expressions is pretty
close to 1.

In connection with the subject of the present paper, one should mention
t � Ž . �results concerning the closely related functional H B s ds.0

Ž .Kac 1946 determined the Laplace�Stieltjes transform of the distribution
Ž .function of this functional. Takacs 1993 determined the distribution func-´

Ž .tion itself. In Borell 1975 , in a context of some other results, the logarithmic
tail asymptotics was obtained.

Acknowledgment. I am indebted to L. Takacs for bringing to my atten-´
tion the cited paper by D. M. Cifarelli and for stimulating conversations.
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