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BRANCHING EXIT MARKOV SYSTEMS
AND SUPERPROCESSES1

By E. B. Dynkin

Cornell University

Superprocesses (under the name continuous state branching processes)
appeared, first, in a pioneering work of S. Watanabe [J. Math. Kyoto Univ.
8 (1968) 141–167]. Deep results on paths of the super-Brownian motion
were obtained by Dawson, Perkins, Le Gall and others.

In earlier papers, a superprocess was interpreted as a Markov pro-
cess Xt in the space of measures. This is not sufficient for a probabilis-
tic approach to boundary value problems. A reacher model based on the
concept of exit measures was introduced by E. B. Dynkin [Probab. Theory
Related Fields 89 (1991) 89–115]. A model of a superprocess as a system
of exit measures from time-space open sets was systematically developed
in 1993 [E. B. Dynkin, Ann. Probab. 21 (1993) 1185–1262]. In particular,
branching and Markov properties of such a system were established and
used to investigate partial differential equations. In the present paper, we
show that the entire theory of superprocesses can be deduced from these
properties.

1. Introduction.

1.1. Exit points of Markov processes. Suppose that ξ = �ξt��r�x� is a right
continuous strong Markov process in a topological space E. To every open set
Q in time–space S = � ×E there corresponds a random point �τ� ξτ�, where
τ = inf�t� �t� ξt� /∈ Q� is the first exit time from Q. If a particle starts at time
r from a point x, then the probability distribution of the exit point, given by
the formula

k�r� x	B� = �r�x��τ� ξτ� ∈ B��
is concentrated on the complement Qc of Q. [If �r� x� /∈ Q, then k�r� x	 ·� is
concentrated at �r� x�.] The family of random points ��τ� ξτ���r�x� has the
following property: for every pre-τ X ≥ 0 and every post-τ Y ≥ 0,

�r�x�X1τ<∞Y� = �r�x�X1τ<∞�τ�ξτY��(1.1)

Pre-τ means depending only on the part of the path before τ. Similarly, post-
τ means depending on the path after τ. To every measurable ρ ≥ 0, there
correspond a pre-τ random variable

X =
∫ τ
−∞
ρ�s� ξs�ds
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and a post-τ random variable

Y =
∫ ∞

τ
ρ�s� ξs�ds�

Let τ and τ′ be the first exit times from Q and Q′. Then f�τ′� ξτ′ � is a pre-τ
random variable if Q′ ⊂ Q and it is a post-τ random variable if Q′ ⊃ Q.

1.2. Exit systems associated with branching particle systems. Consider a
system of particles moving in E according to the following rules:

1. The motion of each particle is described by a Markov process ξ.
2. A particle dies during time interval �t� t + h� with probability kh + o�h�,

independently on its age.
3. If a particle dies at time t at point x, then it produces n new particles with

probability pn�t� x�.
4. The only interaction between the particles is that the birth time and place

of offspring coincide with the death time and place of their parent.

(Assumption 2 implies that the lifetime of every particle has an exponential
probability distribution with mean value 1/k.)

We denote by Pr�x the probability law corresponding to a process started
at time r by a single particle located at point x. Suppose that particles stop
to move and to procreate outside an open subset Q of S. In other words, we
observe each particle at the first, in the family history, exit time from Q. By
the family history we mean the path of a particle and all its ancestors. If the
family history starts at �r� x�, then the probability law of this path is �r�x.
The exit measure from Q is defined by the formula

XQ = δ�t1� y1� + · · · + δ�tn� yn��
where �t1� y1�� � � � � �tn� yn� are the states of frozen particles and δ�t� y� means
the unit measure concentrated at �t� y�. We also consider a process started
by a finite or infinite sequence of particles that “immigrate” at times ri at
points xi. There is no interaction between their descendants and therefore
the corresponding probability law is the convolution of Pri� xi . We denote it by
Pµ, where

µ = ∑
δ�ri� xi�

is a measure on S describing the immigration. We arrive at a family X of
random measures �XQ�Pµ��Q ∈ Ɔ� µ ∈ �, where Ɔ is a class of open subsets
of S and � is the class of all integer-valued measures on S. Family X is a
special case of a branching exit Markov system. A general definition of such
systems is given in the next section.

1.3. Branching exit Markov systems. A random measure on a measurable
space �S��S� is a pair �X�P�, where X�ω�B� is a kernel from an auxiliary
measurable space �!�� � to �S��S� and P is a probability measure on � . A
kernel from a measurable space �E1��1� to a measurable space �E2��2� is a
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function K�x�B� such that K�x� ·� is a measure on �2 for every x ∈ E1 and
K�·�B� is a �1-measurable function for every B ∈ �2. We assume that S is a
Borel subset of a compact metric space and �S is the class of all Borel subsets
of S.

Suppose that the following hold:

(i) Ɔ is a subset of σ-algebra �S;
(ii) � is a class of measures on �S��S� which contains all measures δy,

y ∈ S;
(iii) to every Q ∈ Ɔ and every µ ∈ �, there corresponds a random measure

�XQ�Pµ� on �S��S�.
Condition (ii) is satisfied, for instance, for the class � �S� of all finite mea-

sures and for the class � �S� of all integer-valued measures.
We use the notation �f�µ� for the integral of f with respect to a measure

µ. Denote by � the class of functions

Z = exp
{ n∑

1

�fi�XQi
�
}
�(1.2)

where Qi ∈ Ɔ and fi are positive measurable functions on S. We say that
X = �XQ�Pµ��Q ∈ Ɔ� µ ∈ �, is a branching system if the following condition
holds.

1.3.A. For every Z ∈ � and every µ ∈ �,

PµZ = e−�u�µ��(1.3)

where

u�y� = − logPyZ(1.4)

and Py = Pδy .

Condition 1.3.A (we call it the continuous branching property) implies that

PµZ = ∏
PµnZ

for all Z ∈ � if µn�n = 1�2� � � �, and µ = ∑
µn belong to �.

A family X is called an exit system if the following conditions hold.

1.3.B. For all µ ∈ � and Q ∈ Ɔ,

Pµ�XQ�Q� = 0� = 1�

1.3.C. If µ ∈ � and µ�Q� = 0, then

Pµ�XQ = µ� = 1�

Finally, we say thatX is a branching exit Markov (BEM) system, ifXQ ∈ �
for allQ ∈ Ɔ and if, in addition to 1.3.A–1.3.C, we have the following property.
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1.3.D (Markov property). Suppose that X ≥ 0 is measurable with respect
to the σ-algebra �⊂Q generated by XQ′�Q′ ⊂ Q, and Y ≥ 0 is measurable
with respect to the σ-algebra �⊃Q generated by XQ′′�Q′′ ⊃ Q. Then

Pµ�YZ� = Pµ�YPXQ
Z��(1.5)

It follows from the principles (1–4) stated at the beginning of Section 1.2
that conditions 1.3.A–1.3.D hold for the systems of random measures associ-
ated with branching particle systems. For them S = �×E�� = � �S� and Ɔ
is a class of open subsets of S.

1.4. Transition operators. LetX = �XQ�Pµ��Q ∈ Ɔ� µ ∈ �, be a family of
random measures. Denote by 	 the set of all bounded positive �S-measurable
functions. Operators VQ�Q ∈ Ɔ, acting on 	 are called the transition opera-
tors of X if, for every µ ∈ � and every Q ∈ Ɔ,

Pµe
−�f�XQ� = e−�VQ�f�� µ��(1.6)

If X is a branching system, then (1.6) follows from the formula

VQ�f��y� = − logPye
−�f�XQ� for f ∈ 	�(1.7)

Theorem 1.1. Transition operators of an arbitrary system of random mea-
sures X satisfy the following condition:

1.4.A. for all Q ∈ Ɔ,

VQ�fn� → 0 as fn ↓ 0�(1.8)

A branching systemX is a branching exit system if and only if the following
conditions hold:

1.4.B.

VQ�f� = VQ�f̃� if f = f̃ on Qc	

1.4.C. for every Q ∈ Ɔ and every f ∈ 	,

VQ�f� = f on Qc�

It is a BEM system if and only if, in addition, the following condition holds:

1.4.D. for all Q ⊂ Q̃ ∈ Ɔ,

VQVQ̃ = VQ̃�
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1.5. From transition operators to BEM systems. A real-valued function u
on an Abelian semigroup G is called negative semidefinite if

k∑
i� j=1

titju�fi + fj� ≤ 0

for every n ≥ 2, all f1� � � � � fn ∈ G and all t1� � � � � tn ∈ � such that
∑
λi = 0.

We consider negative semidefinite functions on the semigroup 	. We say that
a function U from 	 to 	 is negative semidefinite if the real-valued function
U�f��y� is negative semidefinite for all y ∈ S.

Theorem 1.2. The transition operators of every BEM system are negative
semidefinite. Suppose that operators VQ acting in 	 satisfy conditions 1.4.A–
1.4.D. They are the transition operators of a BEM system if, in addition, the
following condition holds:

1.5.A. VQ�U�f�� is negative semidefinite for every negative semidefiniteU�f�.

Condition 1.5.A implies that VQ are negative semidefinite but the converse
statement is not true. Transition operators not satisfying 1.5.A can be obtained
by a passage to the limit. We denote by 	c the set of all �S-measurable func-
tions f such that 0 ≤ f ≤ c and we put �f� = supS �f�y�� for every f. Writing
Vk u→V means that Vk converges to V uniformly on each set 	c.

Theorem 1.3. Suppose that Xk is a sequence of BEM systems and that

Vk
Q are the transition operators of X

k. If Vk
Q

u→VQ for every Q ∈ Ɔ and if VQ

satisfies the Lipschitz condition on every 	c, then VQ is the transition operator
of a BEM system.

1.6. BEM systems corresponding to branching particle systems. We return
to the branching particle system and the corresponding BEM system X =
�XQ�Pµ� described in Section 1.2. We introduce an offspring generating
function

ϕ�t� x	 z� =
∞∑
0

pn�t� x�zn� 0 ≤ z ≤ 1�

and we put

/�t� x	 z� = ϕ�t� x	 z� − z�
The four principles stated at the beginning of Section 1.2 lead to the following
result.

Theorem 1.4. Let VQ be the transition operators of X. Then, for every
f ∈ 	, the function v = VQ�f� satisfies the equation

e−v�r� x� = �r�x
[
k
∫ τ
r
/�s� ξs	 e−v�s� ξs��ds+ e−f�τ� ξτ�

]
�(1.9)
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Assuming that all particles have mass β, we get a transformed system of
random measures Xβ = �Xβ

Q�P
β
µ�� µ ∈ �β, where

�β = β�� X
β
Q = βXQ� Pβµ = Pµ/β�

Equation (1.9) implies a similar equation for vβ = V
β
Q�f�, where Vβ

Q are the
transition operators of Xβ. By passing formally to the limit as β→ 0, we get
an equation

u�r� x� +�r�x
∫ τ
r
ψ�s� ξs	u�s� ξs�� = �r�xf�τ� ξτ��(1.10)

where

u= lim�1− e−βvβ�/β� f = lim�1− e−βf�/β�
ψ�r� x	 z�= lim�ϕβ�r� x	1− βu� − 1+ βu�kβ/β for βu ≤ 1�

(1.11)

[We assume that k and ϕ depend on β.]
Motivated by this heuristic passage to the limit, we introduce the following

definition. We say that a BEM system X = �XQ�Pµ��Q ∈ Ɔ� µ ∈ � �S�, is a
�ξ�ψ�-superprocess if Ɔ is a class of open subsets of S = �×E, if ξ = �ξt��r�x�
is a right continuous strong Markov process and if the transition operatorsVQ

of X satisfy the following condition: for every f ∈ 	� u = VQ�f� is a solution
of (1.10).

The uniqueness and existence problems for such systems are treated in
Theorems 1.5 and 1.6. PutQ ∈ Ɔ0 ifQ is an open subset of S and ifQ ⊂ 3×E
for some finite interval 3.

Theorem 1.5. IfQ ∈ Ɔ0 and if ψ ≥ 0 is locally Lipschitz in u uniformly in
�r� x�, then (1.10) has at most one solution. All finite-dimensional distributions
of a �ξ�ψ�-superprocess are defined uniquely.

Theorem 1.6. A �ξ�ψ�-superprocess exists for every function

ψ�r� x	u� = b�r� x�u2 +
∫ ∞

0
�e−λu − 1+ λu�n�r� x	dλ��(1.12)

where a positive Borel function b�r� x� and a kernel n from �S��S� to �+
satisfy the condition

b�r� x� and
∫ ∞

0
λ ∧ λ2n�r� x	dλ� are bounded�(1.13)

The family (1.12) contains the functions

ψ�u� = const. uα� 1 < α < 2�(1.14)

that correspond to b = 0 and n�dλ� = const. λ−�1+α� dλ.

Remark 1. Theorem 1.6 can be proved for a wider class of ψ (see [3]). We
restrict ourselves to the most important functions.
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1.7. Organization of the paper. A link between operators VQ and a BEM
system X is provided by a family of transition operators of higher order
VQ1�����Qn

. We call it a 
-family. Properties of 
-families are studied in Section
2. Section 3 is devoted to constructing a BEM system starting from a 
-family.
BEM systems corresponding to branching particle systems are investigated in
Section 4. In Section 5 we prove Theorems 1.5 and 1.6. Theorem 1.6 is proved
by a passage to the limit from branching particle systems. The second proof
of this theorem, based on Theorem 1.2, is given in Section 6. (This is an adap-
tation of Fitzsimmons’ work [4].)

Theory of superprocesses is supplemented in Sections 7 and 8. In Section
7, we consider superprocesses with parameter sets Ɔ1 and �1 wider than
Ɔ0 and �0 = � �S�. This extension is used in Section 8 to treat the time-
homogeneous case. In the same section we show how a traditional subject of
investigtion—branching measure-valued Markov processes—can be derived
from our general model.

2. Transition operators and 
-families.

2.1. Transition operators of higher order. Suppose that

Pµ exp�−�f1�XQ1
� − · · · − �fn�XQn

��
= exp�−�VQ1�����Qn

�f1� � � � � fn�� µ��
(2.1)

for all µ ∈ � and all f1� � � � � fn ∈ 	. Then we say that operators VQ1�����Qn
are

the transition operators of order n for X. Condition (2.1) is equivalent to the
assumption that X is a branching system and that

VQ1�����Qn
�f1� � � � � fn��y�=− logPy exp�−�f1�XQ1

� − · · · − �fn�XQn
���

f1� � � � � fn ∈ 	� y ∈ S�
(2.2)

[For n = 1, formulae (2.1)–(2.2) coincide with (1.6)–(1.7).]
We use the following abbreviations. For every finite subset I = �Q1� � � � �Qn�

of Ɔ, we put

XI = �XQ1
� � � � �XQn

�� fI = �f1� � � � � fn��

�fI�XI� =
k∑
i=1

�fi�XQi
��

(2.3)

In this notation, formulae (2.2) and (2.1) can be written as

VI�fI��y� = − logPye
−�fI�XI�(2.4)

and

Pµe
−�fI�XI� = e−�VI�fI�� µ��(2.5)
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If X satisfies condition 1.3.C, then:

2.1.A. For every Qi ∈ I, VI�fI� = fi +VIi
�fIi� on Qc

i , where Ii is the set
obtained from I by dropping Qi.

Indeed,

�fI�XI� = �fi�Xi� + �fIi�XIi
�

and �fi�Xi� = fi�y� Py-a.s. if y ∈ Qc
i .

For a branching exit systemX, the Markov property 1.3.D is equivalent to:

2.1.B. If Q ⊂ Qi for all Qi ∈ I, then
VQVI = VI�(2.6)

Proof. It follows from (2.5) that

e−�VQVI�fI�� µ� = Pµe−�VI�fI��XQ� = PµPXQ
e−�fI�XI��(2.7)

If Q ⊂ Qi for all Qi ∈ I, then �fI�XI� ∈ �⊃Q and 1.3.D implies that the
right-hand side of (2.7) is equal to

Pµe
−�fI�XI� = e−�VI�fI�� µ��

Hence 2.1.B follows from 1.3.D.
To deduce 1.3.D from 2.1.B, it is sufficient to prove (1.5) for

Y = e−�fI�XI�� Z = e−�f̃I�XĨ
��

where I = �Q1� � � � �Qn�� Ĩ = �Q̃1� � � � � Q̃m� with Qi ⊂ Q ⊂ Q̃j. Note that
YZ ∈ �. By 1.3.A, the same is true for YPXQ

Z. Therefore (1.5) will follow
from 1.3.A if we check that it holds for all µ = δy. We use the induction on n.
By (2.7), condition 2.1.B implies

PµZ = PµPXQ
Z�(2.8)

Hence, (1.5) holds for n = 0. Suppose it holds for n − 1. If y ∈ Qc
i , then, by

1.3.C, Py�Y = e−fi�y�e−Yi� = 1, where Yi = e−�fIi �XIi
�, and we have

PyYZ = e−fi�y�PyYiZ = e−fi�y�Py�YiPXQ
Z� = Py�YPXQ

Z�
by the induction hypothesis. Hence (1.5) holds for δy with y not in the inter-
section QI of Qi ∈ I. For an arbitrary y, by (2.8), PyYZ = PyPXQI

YZ. By
1.3.B, XQI

is concentrated, Py-a.s., on Q
c
I and therefore

PQI
YZ = PXQI

�YPXQ
Z��

We conclude that

PyYZ = PyPXQI
�YPXQ

Z� = Py�YPXQ
Z�� ✷
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Transition operators of order n can be expressed through transition opera-
tors of order n− 1 by the formulae

VI�fI� = fi +VIi
�fIi� on Qc

i for every Qi ∈ I�(2.9)

VI = VQI
VI� where QI is the intersection of all Qi ∈ I�(2.10)

Formula (2.9) (equivalent to 2.1.A) defines the values ofVI�fI� onQc
I. Formula

(2.10) follows from 2.1.B. By 1.3.B, it provides an expression for all values of
VI�fI� through its values on Qc

I.
Conditions (2.9) and (2.10) can be rewritten in the form

VI = VQI
ṼI�(2.11)

where

ṼI�fI� =
{
fi +VIi

�fIi�� on Qc
i ,

0� on QI.
(2.12)

2.2. Properties of VQ. We need the following simple lemma.

Lemma 2.1. Let Y be a positive random variable and let 0 ≤ c ≤ ∞. If
Pe−λY ≤ e−λc for all λ > 0, then P�Y ≥ c� = 1. If, in addition, Pe−Y = e−c,
then P�Y = c� = 1.

Proof. If c = ∞, then, P-a.s., e−λY = 0 and therefore Y = ∞. If c < ∞,
then Pe−λ�Y−c� ≤ 1 and, by Fatou’s lemma, P�limλ→∞ e−λ�Y−c�� ≤ 1. Hence,
P�Y ≥ c� = 1. The second part of the lemma follows from the first one. ✷

Proof of Theorem 1.1. (i) Property 1.4.A is obvious. It is clear that 1.3.B
implies 1.4.B, 1.3.C implies 1.4.C and 1.3.D implies 1.4.D because 1.4.D is a
particular case of 2.1.B.

(ii) If 1.4.B holds, then VQ�1Q� = VQ�0� = 0 and therefore Pye
−XQ�Q� = 1,

which implies 1.3.B.
(iii) It follows from 1.4.C and (1.6) that, if µ�Q� = 0, then, for all f ∈ 	 and

all λ > 0,

Pµe
−λ�f�XQ� = e−λ�f�µ�

and, by Lemma 2.1,

�f�XQ� = �f�µ�� Pµ-a.s.(2.13)

Since there exists a countable family of f ∈ 	 which separate measures, 1.3.C
follows from (2.13).

(iv) Suppose that 1.4.D is satisfied and let Q ⊂ Qi for all Qi ∈ I. Then
Q ⊂ QI and (2.11) and 2.1.B imply

VQVI = VQVQI
ṼI = VQI

ṼI = VI�

We proved 2.1.B, which implies 1.3.D. ✷



1842 E. B. DYNKIN

2.3. 
-families. We call a collection of operatorsVI a 
-family if it satisfies
conditions (2.9)–(2.10) [equivalent to (2.11)–(2.12)] and 1.4.A. We say that a

-family and a system of random measures correspond to each other if they
are connected by formula (2.1).

Theorem 2.1. If VQ�Q ∈ Ɔ, satisfy conditions 1.4.A–1.4.D, then there
exists a 
-family �VI� such that VI = VQ for I = �Q�.

Proof. Denote by �I� the cardinality of I. For �I� = 1, operators VI are
defined. Suppose thatVI, subject to conditions (2.9)–(2.10), are already defined
for �I� < n. For �I� = n, we define VI by (2.9)–(2.10). This is not contradictory
because

fi +VIi
�fIi� = fj +VIj

�fIj� = fi + fj +VIij
�fIij� on Qc

i ∩Qc
j�

By 1.4.B it is legitimate to define VI�fI� on QI by (2.10). ✷

3. From a 
-family to a BEM system.

3.1. Positive definite and negative semidefinite functions. First, we prepare
some tools. A real-valued function u on an Abelian semigroup G is called
positive definite if

k∑
i� j=1

titju�gi + gj� ≥ 0

for every n ≥ 1, all g1� � � � � gn ∈ G and all t1� � � � � tn ∈ �. A definition of
negative definite functions was given in Section 1.5. We will write u ∈ PD for
positive definite functions and u ∈ NSD for negative semidefinite functions.

We need the following two results on these classes:

Proposition 3.1. The classes PD and NSD are closed under pointwise
convergence. Moreover, they are convex cones in the following sense: if �A�� � η�
is a measure space, if ua ∈ PD �NSD� for all a ∈ A and if ua�g� is η-integrable
for all g, then

u�g� =
∫
ua�g�η�da�

is also in the class PD (respectively, NSD).

Proposition 3.2. A real-valued function v ∈ NSD if and only if u = e−λv ∈
PD for all λ > 0.

The first of these propositions is obvious. The second is proved, for example,
in [1], page 74.

We consider positive definite and negative semidefinite real-valued func-
tions on semigroups G = 	k. We also consider such functions with values
in 	. We say that a function U from G to 	 is negative semidefinite if the
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real-valued function U�g��y� is negative semidefinite for all y ∈ S. By Propo-
sition 3.1, �U�g�� µ� is negative semidefinite for all µ ∈ � �S�. Positive definite
	-valued functions are defined in a similar way.

3.2. Laplace functionals of random measures. Let �X�P� be a random
measure on �S��S�. Its probability distribution is a measure � on the space
� �S� defined on the σ-algebra generated by functionsFB�µ� = µ�B�� B ∈ �S.
The corresponding Laplace functional is defined on f ∈ 	 by the formula

L� �f� = Pe�f�X� =
∫
� �S�

e−�f� ν� � �dν��

Theorem 3.1. A functional L on 	 is the Laplace functional of a random
measure if and only if it is positive definite and the following holds:

3.2.A.

L�fn� → 1 as fn ↓ 0�

A proof of this theorem can be found in [4], A6.

Corollary 3.1. Let �k be probability measures on � �S� and let Lk be
the Laplace functional of �k. If Lk�f� → L�f� for all f ∈ 	 and if L satisfies
3.2.A, then L is the Laplace functional of a probability measure � on � �S�.

Indeed, L satisfies all conditions of Theorem 3.1.
The Laplace functional of a probability measure � on � �S�n is defined by

the formula

L� �f1� � � � � fn� =
∫
e−�f1� ν1�−···−�fn� νn�� �dν1� � � � � dνn��(3.1)

By identifying � �S�n with the space of finite measures on the union of n
copies of S, we get a multivariant version of Theorem 3.1 and its corollary:

Theorem 3.2. A functional L�f1� � � � � fn� on 	n is the Laplace functional
of a probability measure on � �S�n if and only if it is positive definite and
3.2.1.

L�fk1� � � � � fkn� → 1 as fk1 ↓ 0� � � � � fkn ↓ 0�

Corollary 3.2. Let Lk be the Laplace functional of a probability measure
�k on � �S�n. If Lk�f1� � � � � fn� → L�f1� � � � � fn� for all f1� � � � � fn ∈ 	 and if
3.2.1 holds for L, then L is the Laplace functional of a probability measure �
on � �S�n.
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3.3. Constructing a BEM system starting from a 
-family.

Theorem 3.3. A 
-family 
 = �VI� corresponds to a BEM system if and
only if VQ satisfy conditions 1.4.A–1.4.D and if, for every I, VI�fkI� → 0 as
fkI ↓ 0 and the following holds:

3.3.A. VI is negative semidefinite.

Proof. (i) By Theorem 1.1, the transition operator of a BEM system sat-
isfies conditions 1.4.A–1.4.D. It follows from (2.2) [or (2.4)] that LI = e−VI is
a Laplace functional of a probability measure and therefore the properties of
VI stated in the theorem follow from Theorem 3.2 and Proposition 3.2.

(ii) If VI satisfy 3.3.A and if �I� = n, then, by Proposition 3.1, for every
µ ∈ � �S�n, �VI�fI�� µ� is negative semidefinite and, by Proposition 3.2,
Lµ�I�fI� = e�VI�fI�� µ� is positive definite. By Theorem 3.2, Lµ�I is the Laplace
functional of a probability measure on � �S�n. These measures satisfy consis-
tency conditions and, by Kolmogorov’s theorem, they are probability distribu-
tions of XI relative to Pµ for a system X of random measures �XQ�Pµ�. By
Theorem 1.1, X is a BEM system. ✷

Proof of Theorem 1.2. By Theorem 3.3, it is sufficient to demonstrate
that, if operators VQ satisfy 1.4.A–1.4.D, then condition 3.3.A follows from
1.5.A.

By taking an identity map from 	 to 	 for U in 1.5.A, we conclude that
VQ ∈ NSD. Hence condition 3.3.A holds for �I� = 1. Let ṼI be given by (2.12).

Clearly, if VIi
satisfy 3.3.A, then so does ṼI. By (2.10) and 1.5.A, the same is

true for VI. By induction, 3.3.A holds for all I. ✷

3.4. Proof of Theorem 1.3. First, we establish that, for every I, operators
Vk
I satisfy conditions similar to the conditions imposed in Theorem 1.3 on Vk

Q.
Put �f� = max��f1�� � � � � �fn�� for f = �f1� � � � � fn� ∈ 	n.

Lemma 3.1. Suppose Vk is a sequence of 
-families and let Vk
Q satisfy the

conditions of Theorem 1.3. Then the following hold:

(a) a limit VI�f� of Vk
I�f� exists for every I = �Q1� � � � �Qn� ⊂ Ɔ and every

f = �f1� � � � � fn� ∈ 	n;
(b) the convergence is uniform on every set 	nc ;
(c) VI�f� satisfies the Lipschitz condition on every 	nc .

Proof. By (2.11)–(2.12),

Vk
I = Vk

QI
Ṽk
I�(3.2)

where

Ṽk
I =

{
fi + Ṽk

Ii
�fIi�� on Q̃c

i ,
0� on QI,

(3.3)
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and therefore, for all k�m,∣∣Ṽk
I�fI� − Ṽm

I �fI�
∣∣ = { ∣∣Ṽk

Ii
�fIi� − Ṽm

Ii
�fIi�

∣∣� on Qc
i ,

0� on QI.
(3.4)

If conditions (a)–(c) hold for Ṽk
Ii
, then, by (3.4), they hold for Ṽk

I .
Because of (3.2), to finish the proof it is sufficient to show that, if conditions

(a)–(c) hold for operators Vk from 	 to 	 and for operators Ṽk from 	n to 	,
then they hold for the products VkṼk. Let

V = limVk� Ṽ = lim Ṽk�

By (b),

�Vk�f� −V�f��≤ εk�c� for f ∈ 	c�

�Ṽk�f̃� − Ṽ�f̃��≤ ε̃k�c� for f̃ ∈ 	nc
(3.5)

with εk�c� + ε̃k�c� → 0 as k→ ∞. By (c), there exist constants a�c� and ã�c�
such that

�V�f� −V�g��≤a�c��f− g� for all f�g ∈ 	c�

�Ṽ�f̃� − Ṽ�g̃��≤ ã�c��f̃− g̃� for all f̃� g̃ ∈ 	kc �
(3.6)

By taking g = g̃ = 0, we get

�V�f�� ≤ ca�c� for f ∈ 	c	 �Ṽ�f̃�� ≤ cã�c� forf̃ ∈ 	kc �(3.7)

Note that ∣∣Vk�Ṽk�f̃�� −V�Ṽ�f̃��∣∣ ≤ q�k� + h�k��
where

q�k� = ∥∥Vk
[
Ṽk�f̃�]−V[

Ṽk�f̃�]∥∥
and

h�k� = ∣∣V[
Ṽk�f̃�]−V[

Ṽ�f̃�]∣∣�
By (3.7) and (b), for all f̃ ∈ 	nc and for all sufficiently large k, �Ṽk�f̃�� ≤ c̃1 =
cã�c� + 1 and, by (3.5), q�k� ≤ εk�c̃1�. By (3.6) and (3.5),

h�k� ≤ a�c̃1��Ṽk�f̃� − Ṽ�f̃�� ≤ a�c̃1�ε̃k�c��
Therefore VkṼk satisfies conditions (a) and (b). It satisfies (c) because

�V�Ṽ�f̃�� −V�Ṽ�g̃��� ≤ a�c̃1��Ṽ�f̃� − Ṽ�g̃�� ≤ a�c̃1�ã�c��f̃− g̃�� ✷

Proof of Theorem 1.3. Clearly, operators VI constructed in Lemma 3.1
form a 
-family. By Theorem 3.3, families Vk

I have properties 1.4.A–1.4.D and
3.3.A, which implies analogous properties for VI. Hence, VI correspond to a
BEM system X. Clearly, VQ are the transition operators for X. ✷
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4. BEM systems corresponding to branching particle systems.

4.1. Evaluation of the transition operators. Recall that, according to Sec-
tion 1.2, a branching particle system is determined by a right continuous
strong Markov process ξ = �ξt��r�x�, an offspring generating function ϕ and
a parameter k defining the lifetime probability distribution. If X is an asso-
ciated BEM system, then

VQ�f� = − logw�

where

w�r� x� = Pr�xe−�f�XQ��(4.1)

The principles formulated in Section 1.2 imply

w�r� x� = �r�x
[
e−k�τ−r�e−f�τ� ξτ� + k

∫ τ
r
e−k�s−r� dsϕ�s� ξs	w�s� ξs��

]
�(4.2)

where τ is the first exit time of �t� ξt� from Q. The first term in the brackets
corresponds to the case when the particle started the process is still alive
at time τ, and the second term corresponds to the case when it dies at time
s ∈ �r� τ�.

We simplify (4.2) by using the following:

Lemma 4.1. If

w�r� x� = �r�x
[
e−k�τ−r�u�τ� ξτ� +

∫ τ
r
e−k�s−r�v�s� ξs�ds

]
�(4.3)

then

w�r� x� +�r�x
∫ τ
r
kw�s� ξs�ds = �r�x

[
u�τ� ξτ� +

∫ τ
r
v�s� ξs�ds

]
�(4.4)

Proof. Note that

H�r� t� = e−k�t−r�

satisfies the relation

k
∫ t
r
H�s� t�ds = 1−H�r� t�(4.5)

and that

w�r� x� = �r�x�Yr +Zr��(4.6)

where

Ys =H�s� τ�u�τ� ξτ��

Zs =
∫ τ
s
H�s� t�v�t� ξt�dt�
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By (4.6) and Fubini’s theorem,

�r�x

∫ τ
r
kw�s� ξs�ds =

∫ ∞

r
k�r�x1s<τ�s� ξs�Ys +Zs�ds�

By the Markov property,

�r�x1s<τ�s� ξs�Ys +Zs� = �r�x1s<τ�Ys +Zs�
and therefore

w�r� x� +�r�x
∫ τ
r
kw�s� ξs�ds = �r�x�I1 + I2��(4.7)

where

I1 =H�r� τ�u�τ� ξτ� + k
∫ τ
r
Ys ds and I2 =

∫ τ
r
�H�r� s�v�s� ξs� + kZs�ds�

By (4.5) and Fubini’s theorem

I1 = u�τ� ξτ�� I2 =
∫ τ
r
v�t� ξt�dt�

and (4.4) follows from (4.7). ✷

To prove Theorem 1.4, it is sufficient to apply Lemma 4.1 to u�s� x� = e−f�s� x�
and v�s� x� = kϕ�s� x	w�s� x��.

4.2. Heuristic passage to the limit. We considered a transformed system of
random measuresXβ described in Section 1.6. Its transition operators related
to the transition operators of X by the formula Vβ

Q�f� = VQ�βf�/β. The
equation (1.9) implies that, for every f ∈ 	, function vβ = Vβ

Q�f� is a solution
of

e−βv
β�r�x� = �r�x

[ ∫ τ
r
k/

(
s� ξs	 e−βv

β�s�ξs�) ds+ e−βf�τ�ξτ�]�(4.8)

Note that (4.8) is equivalent to

uβ�r� x� +�r�x
∫ τ
r
ψβ

(
s� ξs	uβ�s� ξs�

)
ds = �r�xfβ�τ� ξτ��(4.9)

where

uβ=�1− e−βvβ�/β� fβ = �1− e−βf�/β�
ψβ�r� x	u�= �ϕβ�r� x	1− βu� − 1+ βu�kβ/β for βu ≤ 1�

(4.10)

[We assume that ϕ and k depend on β. Since βuβ = 1 − e−βvβ ≤ 1, the value
ϕβ�r� x	1− βuβ� is defined.]

Note that Fβ → f as β → 0. If ψβ → ψ, then we expect that uβ → u,
where u is a solution of (1.10). Equations (4.9) and (1.10) can be rewritten in
the form

uβ +GQψβ�uβ� =KQf
β(4.11)



1848 E. B. DYNKIN

and

u+GQψ�u� =KQf�(4.12)

where ψ�u� = ψ�r� x	u�r� x��� ψβ�uβ� = ψβ�r� x	uβ�r� x�� and where opera-
tors KQ and GQ are defined by the formulae

KQf�r� x� = �r�xf�τ� ξτ��(4.13)

GQρ�r� x� = �r�x
∫ τ
r
ρ�t� ξt�dt�(4.14)

5. Superprocesses.

5.1. Two lemmas. To prove Theorems 1.5 and 1.6, we need some prepara-
tions.

Note that the condition Q ∈ Ɔ0 is equivalent to the following condition:

5.1.A. There exists a constant N such that τ − r ≤ N for all paths of ξ
starting from �r� x� ∈ Q.

The local Lipschitz condition in u uniformly in �r� x� means:

5.1.B. For every c > 0, there exists a constant q�c� such that

ψ�r� x	u1� − ψ�r� x	u2�� ≤ q�c��u1 − u2�
for all �r� x� ∈ S� u1� u2 ∈ �0� c��

(5.1)

The following lemma is a modification of Gronwall’s inequality.

Lemma 5.1. Let τ be the first exit time from Q ∈ Ɔ0. If a positive bounded
function h�r� x� satisfies the condition

h�r� x� ≤ a+ q�r�x
∫ τ
r
h�s� ξs�ds in Q�(5.2)

then

h�r� x� ≤ a�r�xeq�τ−r� in Q�(5.3)

Proof. Suppose that h ≤ A. We prove, by induction, that

h�r� x� ≤ �r�xYn�r��(5.4)

where

Yn�r� = a
n−1∑
k=0

qk
�τ − r�k
k!

+Aqn �τ − r�
n

n!
�

Clearly, (5.4) holds for n = 1. If it is true for n, then, by (5.2),

h�r� x� ≤ a+ q�r�x
∫ τ
r
�s� ξsYn�s�ds in Q�(5.5)
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By the Markov property (1.1),

�r�x1τ>s�s� ξsYn�s� = �r�x1τ>sYn�s� for all �r� x� ∈ Q

because �τ > s� ⊂ �τ = τs�, where τs is the first after-s exit time from Q and
τs is �≥s-measurable. Hence, the right-hand side of (5.5) is equal to

a+ q�r�x
∫ τ
r
Yn�s� ds = Yn+1�r�

and (5.4) holds for n+ 1. Bound (5.3) follows from (5.4) and 5.1.A. ✷

Lemma 5.2. Suppose that Q ∈ Ɔ0 and ψ satisfies condition 5.1.B. If (4.12)
holds for u and if ũ+GQψ�ũ� =KQf̃, then

�u− ũ� ≤ eq�c�N�f− f̃� for all f� f̃ ∈ 	c�(5.6)

where N is the constant in 5.1.A.
Suppose ψ�z�0� is bounded and uβ + GQψ�uβ� = KQfβ. If f ∈ 	c and

�fβ − f� → 0 as β ↓ 0, then there exists a solution u of (4.12) such that

�uβ − u� ≤ eq�2c�N�fβ − f� for all sufficiently small β�(5.7)

Proof. By (4.12), �u� ≤ �f�� �ũ� ≤ �f̃� and

u− ũ =KQ�f− f̃��

Put h = �u− ũ�. By (5.1), �ψ̃�ũ� − ψ�u�� ≤ α�c� + q�c�h and therefore

h ≤ �f− f̃� + q�c�GQh

and (5.6) follows from Gronwall’s inequality (5.2).
If f ∈ 	c, then, for all sufficiently small β, fβ ∈ 	2c and, by (4.2),

�uβ − uβ̃� ≤ eq�2c�N�fβ − fβ̃��

which implies the existence of the limit u = limuβ and the bound (5.7). By
(5.1), ψ�uβ� ≤ ψ�0� + 2q�c�c and, by the dominated convergence theorem, u
satisfies (4.12). ✷

Proof of Theorem 1.5. If u and ũ are solutions of (1.10), then u = ũ by
(5.6).

If VQ and ṼQ are the transition operators of two �ξ�ψ�-superdiffusions,
then VQ�f� = ṼQ�f� for all f ∈ 	. By the recursive formulae (2.11) and
(2.12), the transition operators of higher order also coincide, which implies
the second part of the theorem. ✷
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5.2. Superprocesses as limits of branching particle systems. Put

e�λ� = e−λ − 1+ λ�(5.8)

Since, for u > 0�0 < e′�λ� = 1− e−λ < 1 ∧ λ, we have

0 ≤ e�λ� ≤ λ ∧ λ2(5.9)

and

�e�λu2� − e�λu1�� ≤ 1 ∨ c�λ ∧ λ2��u2 − u1� for all u1� u2 ∈ �0� c��(5.10)

The bounds (5.9) imply

0 ≤ 1− λ+ λ2/2− e−λ ≤ λ3 for all λ > 0�(5.11)

Proof of Theorem 1.6. (i) We choose parameters ϕβ� kβ of a branching
particle system to make ψβ given by (4.10) independent of β. To this end we
put

kβ=
γ

β
�

ϕβ�z	u�=u+ β2

γ
ψ

(
z	 1− u

β

)
for 0 ≤ u ≤ 1�

(5.12)

where γ is a strictly positive constant. We need to show that ϕβ is a generating
function. To simplify formulae, we drop arguments z. Clearly, ϕβ�1� = 1. We
have

ϕβ�u� =
∞∑
0

p
β
ku

k�

where

p
β
0 = β2

γ
ψ

(
1
β

)
�

p
β
1 = 1

γ

[
γ − 2b− β

∫ ∞

0
λ�1− e−λ/β�n�dλ�

]
�

p
β
2 = b

γ
+ 1
γ

∫ ∞

0
e−λ/βλ2n�dλ��

p
β
k = β2

k!γ

∫ ∞

0
e−λ/β

(
λ

β

)k
n�dλ� for k > 2	

p
β
0 and pβk are positive for all β > 0. Function pβ1 is positive for 0 < β ≤ 1 if
γ is an upper bound of

2b+
∫ ∞

0
λ ∧ λ2n�dλ��

(ii) We claim that there exists a solution u of (4.12) and a function a�c� such
that

�u− vβ� ≤ βa�c� for all f ∈ 	c and all sufficiently small β�(5.13)



BRANCHING SYSTEMS AND SUPERPROCESSES 1851

If A is an upper bound for the functions (1.13), then, by (5.10), ψ satisfies
the condition (5.1) with q�c� = 3A�1 ∨ c�.

Suppose f ∈ 	c. Then, by (4.10) and (5.9), f − fβ = e�βf�/β ≤ βf2 ≤ βc2

and, by 5.2, there exists u such that, for sufficiently small β,

�uβ − u� ≤ eq�2c�Nβc2�(5.14)

By (4.10), vβ = −β−1 log�1− βuβ� and
vβ − uβ = Fβ�uβ��

where Fβ�t� = −β−1 log�1−βt�−t. Note that Fβ�0� = 0 and, for 0 < βt < 1/2,

0 < F′
β�t� = βt�1− βt�−1 ≤ 2βt�

which implies 0 < Fβ�t� < βt2. We have 0 ≤ fβ ≤ f and uβ ≤KQf. Therefore
uβ ∈ 	c and

�vβ − uβ� ≤ βc2 for 0 < β < 1/�2c��(5.15)

It follows from (5.14) and (5.15) that (5.13) holds with a�c� = c2�eq�c�N + 1�.
(iii) We conclude from (ii) that the limit VQ of operators Vβ

Q satisfies the

Lipschitz condition on each set 	c and that Vβ
Q

u→VQ. By Theorem 1.3, there
exists a BEM system X with transition operators VQ. Since u = VQ�f� sat-
isfies (4.12), this is a �ξ�ψ�-superprocess. ✷

6. Direct construction of superprocesses.

6.1. Analytic definition of operators VQ.

Theorem 6.1. Suppose that Q ∈ Ɔ0 and that ψ satisfies the condition
5.1.B and the following conditions:

6.1.A. ψ�z�0� = 0 for all z;
6.1.B. ψ is monotone increasing in t, that is, ψ�z� t1� ≤ ψ�z� t2� for all

z ∈ S and all t1 < t2 ∈ �+.

Then (4.12) has a unique solution for every f ∈ 	. We denote it by VQ�f�.

Proof. (We use the so-called monotone iteration scheme (cf., e.g., [5].) By
Theorem 1.5, equation (4.12) can have no more than one solution.

Suppose that f ∈ 	c. Fix a constant k ≥ q�c�, where q�c� is defined in 5.1.B,
and put, for every u ≥ 0,

T�u� = �r�x
[
e−k�τ−r�f�τ� ξτ� +

∫ τ
r
e−k�s−r�/

(
s� ξs	u�s� ξs�

)
ds

]
�(6.1)

where /�u� = ku− ψ�u�. (We do not indicate explicitly the dependence on T
of k and f.) The key step is to prove that the sequence

u0=0�

un=T�un−1� for n = 1�2� � � �
(6.2)
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is monotone increasing and bounded. Clearly, its limit u is a bounded solution
of

u�r� x� = �r�x
[
e−k�τ−r�f�τ� ξτ� +

∫ τ
r
e−k�s−r�/

(
s� ξs	u�s� ξs�

)
ds

]
�(6.3)

By Lemma 4.1, (6.3) implies

u�r� x� + k�r�x
∫ τ
r
u�s� ξs�ds = �r�x

[
f�τ� ξτ� +

∫ τ
r
/
(
s� ξs	u�s� ξs�

)
ds

]
�

which is equivalent to (4.12).
We prove that the following hold:

(a) T�v1� ≤ T�v2� if 0 ≤ v1 ≤ v2 ≤ c in Q;
(b) T�c� ≤ c.

To get (a), we note that

/�t2� −/�t1� = k�t2 − t1� − �ψ�t2� − ψ�t1�� ≥ �t2 − t1��k− q�c�� ≥ 0�

Since ψ ≥ 0, /�u� ≤ ku and therefore

T�c� ≤ �r�x
[
ce−k�τ−r� + ck

∫ τ
r
e−k�s−r� ds

]
�

Since e−k�τ−r� + k ∫ τr e−k�s−r�kds = 1, this implies (b).
By 6.1.A, u1 = T�0� ≥ 0. By (a) and (b), u1 = T�0� ≤ T�c� ≤ c. We use (a)

and (b) to prove, by induction on n, that 0 = u0 ≤ · · · ≤ un ≤ c. ✷

6.2. Properties of VQ. We claim that the following hold:

6.2.A. If f ≤ f̃, then VQ�f� ≤ VQ�f̃�.

6.2.B. If Q ⊂ Q̃ and if f = 0 on Q̃, then VQ�f� ≤ VQ̃�f�.

6.2.C. If fn ↑ f, then VQ�fn� ↑ VQ�f�.

To prove 6.2.A and 6.2.B, we indicate explicitly the dependence of operator
(6.1) on k� Q and f and we note that 0 ≤ f ≤ f̃ ≤ c and, if k > q�c�, then
T�k�Q�f	u� ≤ T�k�Q� f̃	u� for every function 0 ≤ u ≤ c. This implies 6.2.A.
If Q ⊂ Q̃, then the first exit time τ̃ from Q̃ is greater than or equal to τ. If
ητ = �τ� ξτ� ∈ Q̃, then f�ητ̃� = 0, and if ητ /∈ Q̃, then τ̃ = τ. In both cases,
e−k�τ−r�f�ητ� = e−k�τ̃−r�f�ητ̃�. If k > q�c� and 0 ≤ u ≤ c, then T�k� Q̃� f	u� ≥
T�k�Q�f	u�, which implies 6.2.B.

Suppose that fn ↑ f and let un = VQ�fn�. By 6.2.A, un ↑ u. By passing to
the limit in the equation un +GQψ�un� =KQfn, we get u+GQψ�u� =KQf.
Hence u = VQ�f�, which proves 6.2.C.
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6.3. An alternative construction of superprocesses. We deduce a slightly
weaker version of Theorem 1.6 by a method suggested by Fitzsimmons (see
[4]).

Theorem 6.2. A �ξ�ψ�-superprocess exists for function ψ given by (1.12) if
b and n satisfy condition (1.13) and an additional assumption,

sup
z

∫ β
0
λ2n�z	dλ� → 0 as β ↓ 0�(6.4)

Remark. Condition (1.13) implies pointwise but not uniform convergence
of

∫ β
0 λ

2n�z	dλ� to 0 as β ↓ 0.

We need the following lemma.

Lemma 6.1. If u is a solution of (4.12) and if Q′ is an open subset of Q,
then

u+GQ′ψ�u� =KQ′u�(6.5)

Proof. By the strong Markov property (1.1), KQ′KQ = KQ and GQ =
GQ′ +KQ′GQ and therefore

u+GQ′ψ�u� = u+GQψ�u�−KQ′GQψ�u� =KQ′ �KQf−GQψ�u�� =KQ′u� ✷

Proof of Theorem 6.2. (i) Operators VQ defined in Theorem 6.1 satisfy
conditions of Theorem (1.1). Indeed, by (4.12), VQ�f� ≤ KQf, which implies
1.4.A. Properties 1.4.B and 1.4.C also follow easily from (4.12). Let us prove
1.4.D. Suppose Q ⊂ Q̃ ∈ Ɔ0. By Lemma 6.1, v = VQ̃�f� satisfies the equation
v+GQψ�v� =KQv. On the other hand, u = VQ�v� is a solution of the equation
u+GQψ�u� =KQv. The equality u = v follows from Lemma 5.2.

We claim that operators VQ satisfy condition 1.5.A if the following holds:

6.3.A. There exists k > 0 such that ku�f� − ψ�·	u�f�� is an N-function
from 	 to 	 for every real-valued N-function u�f� on 	.

Indeed, let T be the operator defined by (6.1). It follows from 6.3.A that, for
all sufficiently large k�/�u�f�� belongs to the classN if u�f� is anN-function
and, by Proposition 3.1, operator T preserves the class N. Therefore VQ�f�,
which is the limit of Tn�f�, has the same property.

By Theorem 1.2, VQ are the transition operators of a BEM system X and,
since VQ�f� is a solution of (4.12), X is a �ξ�ψ�-superprocess.

(ii) Condition 6.3.A holds for ψ given by (1.12) under an extra assumption,

b = 0� m�z� =
∫ ∞

0
λn�z�dλ� is bounded�(6.6)
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Indeed,

ku− ψ�u� =
∫ ∞

0
�1− e−λu�n�dλ� + �k−m�u�

If u ∈N, then 1− e−λu belongs to N by Proposition 3.2, and ku− ψ�u� is an
N-function if k > m�z� for all z.

(iii) To eliminate the side condition 6.3.A, we approximate ψ given by (1.12)
by functions

ψβ�u� =
∫ ∞

0
�e−λu − 1+ λu� nβ�dλ��

where 0 < β < 1 and

nβ�dλ� = 1λ>βn�dλ� + 2bβ−2δβ�

Note that ψβ satisfies (1.13). It satisfies (6.6) because∫ ∞

0
λnβ�dλ� ≤ β−1

∫ ∞

0
λ ∧ λ2n�dλ� + 2b/β�

Let Vβ
Q be the transition operators of the �ξ�ψβ�-superprocess. We demon-

strated in the proof of Theorem 1.6 that VQ satisfies the Lipschitz condition
on each set 	c. By Theorem 1.3, to prove the existence of a �ξ�ψ�-superprocess,
it is sufficient to show that Vβ

Q

u→VQ. We have

ψ�u� − ψβ�u� = 2bRβ�u��
where

Rβ�u� =
∫ β
0
�e−λu − 1− λu�n�dλ� + 2bβ−2�1− βu+ �βu�2/2− e−βu��

By using the bounds (2.1) and (5.11), we get

�Rβ�u�� ≤ u2
∫ β
0
λ ∧ λ2n�dλ� + 2bβu3�

By conditions (1.13) and (6.4), ψβ converges to ψ uniformly on each set S ×
�0� c�. It follows from Lemma 5.2 that Vβ

Q

u→VQ. ✷

7. Superprocesses with extended parameter sets.

7.1. Some properties of BEM systems. Properties stated in Theorem 7.1
will be used in subsequent sections and they are also of independent interest.

Theorem 7.1. Suppose that X = �XQ�Pµ��Q ∈ Ɔ� µ ∈ �, is a BEM
system and let Q1 ⊂ Q2 be elements of Ɔ. Then the following hold:

7.1.A.

�XQ1
= 0� ⊂ �XQ2

= 0� a.s.

(Writing “a.s.” means “almost sure with respect to all Pµ�µ ∈ �.)
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7.1.B. For every µ ∈ � and every bounded measurable function f on�×�,

Pµf�XQ1
�XQ2

� = PµF�XQ1
��

where

F�ν� = Pνf�ν�XQ2
��

7.1.C. If 0 ≤ ϕ1 ≤ ϕ2 and ϕ2 = 0 on Q2, then

�ϕ1�XQ1
� ≤ �ϕ2�XQ2

� a.s.

In particular, if G ⊂ Qc
2, then XQ1

�G� ≤XQ2
�G� a.s.

Proof. By 1.3.D,

Pµ�XQ1
= 0�XQ2

 = 0� = Pµ1XQ1
=0PXQ1

�XQ2
= 0��

which implies 7.1.A.
Property 7.1.B follows from 1.3.D for f�ν1� ν2� = f1�ν1�f2�ν2�. By applying

the multiplicative system theorem, we cover the general case. To prove 7.1.C,
we apply 7.1.B to

f�ν1� ν2� = 1�ϕ1� ν1�≤�ϕ2� ν2��

and we get

Pµ��ϕ1�XQ1
� ≤ �ϕ2�XQ2

�� = PµF�XQ1
��

where

F�ν� = Pν�Y ≥ 0�
and Y = �ϕ2�XQ2

� − �ϕ1� ν�. Let ν′ be the restriction of ν to Qc
2. For all λ > 0,

by 1.3.A and 1.3.C,

Pνe
−λ�ϕ2�XQ2

� ≤ Pν′e−λ�ϕ2�XQ2
� = e−λ�ϕ2� ν

′� = e−λ�ϕ2� ν� ≤ e−λ�ϕ1� ν�

and 7.1.C follows from Lemma 2.1. ✷

7.2. Extension of class �. Suppose that X = �XQ�Pµ��Q ∈ Ɔ� µ ∈ �, is
a branching exit system. We get a new branching exit system by extending
class � to the class σ��� of all measures µ = ∑∞

1 µn, where µn ∈ �, and by
defining Pµ as the convolution of measures Pµn . For every Z ∈ �,

PµZ = ∏
PµnZ�(7.1)

By using this formula, it is easy to check that 1.3.A holds for the extended
system. Condition 1.3.B holds because, if Y =XQ�Q� and µ ∈ σ���, then

Pµ�Y = 0� = lim
λ→∞

Pµe
−λY = lim

∏
Pµne

−λY = 1�

If µ�Q� = 0, then, by 1.3.A,

Pµe
−λ�f�XQ� = e−�f�µ�

and property 1.3.C follows from Lemma 2.1.
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7.3. Extension of parameter sets for superprocesses. Put S3 = 3×E�Q3 =
Q ∩ S3 and let Q>t = Q3 for 3 = �t�∞� and Q<t = Q3 for 3 = �∞� t�. We
constructed a superprocess as a BEM system with parameter sets �0 = � �S�
and Ɔ0. Now we consider wider classes: Ɔ1, which consists of all open sets Q
such that Q ⊂ S>t for some t ∈ �, and �1, which consists of all measures µ
on S such that µ�S3� < ∞ for every finite interval 3. Note that �0 ⊂ �1 ⊂
σ��0�. Measure Pµ is defined for µ ∈ �1 by formula (7.1). For every Q and
k = 1�2� � � �, we denote by Qk the intersection of Q with �−k� k�×E. By 7.1.C,

XQk+1�G� ≥XQk�G� a.s. for every G ⊂ Qc�(7.2)

Therefore there exists a measure X̂Q such that

X̂Q�G� =
{
limXQk�G�� for G ⊂ Qc,
0� for G ⊂ Q.

[EveryXQ is defined only up to equivalence. We choose versions ofXQk for all
positive integers k in such a way that (7.2) holds for all ω and all k.] Clearly,
X̂Q is a measure of class �1 and

X̂Q =XQ� Pµ-a.s. for all Q ∈ Ɔ0� µ ∈ �1�

If V̂Q is the transition operator of X̂ = �X̂Q�Pµ��Q ∈ Ɔ1� µ ∈ �1, then

V̂Qk =VQk for all k�

V̂Qk�f� ↑VQ̂�f� for every f ∈ 	�
(7.3)

By a monotone passage to the limit, we establish that 1.3.A holds for X̂
and that 1.4.B, 1.4.C and 1.4.D hold for V̂Q. Hence, X̂ is a branching system
and, by Theorem 1.1, it is a BEM system.

Assuming that ψ�r� x	u� is continuous in u and satisfies conditions 5.1.B,
6.1.A and 6.1.B, we prove that, for every Q ∈ Ɔ1� u = V̂Q�f� is a solution of

(1.10). Indeed, by 1.4.B, u = V̂Q�f′�, where f′ = 1Qcf. Since Qk ∈ Ɔ0, function
uk = VQk�f′� satisfies

uk�r� x� +�r�x
∫ τk
r
ψ�s� ξs	uk�s� ξs��ds = �r�xf′�τk� ξτk��

where τk is the first exit time from Qk. For sufficiently large k, it is equal
to τ ∧ k, where τ is the first exit time from Q. If τ > k, then �τk� ξτk� ∈ Q.
Therefore

uk�r� x� +�r�x
∫ τk
r
ψ�s� ξs�uk�s� ξs��ds = �r�x1τ≤kf�τ� ξτ� for r < k�

By passing to the limit as k→ ∞, we get that u is a solution of (1.10).
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8. Supplement to the concept of a superprocess.

8.1. Time-homogeneous superprocesses. Suppose that ξ=�ξt��x� is a time-
homogeneous right continuous strong Markov process in a topological space
E and let ψ�x�u� be a positive function on E × �+. Denote 	�E� the class
of all positive bounded Borel functions on E. We say that a BEM system
X = �XD�Pµ��D ∈ Ɔ� µ ∈ �, is a time-homogeneous �ξ�ψ�-superprocess if Ɔ
is the class of all open subsets of E�� is the class of all finite measures on E
and if, for every f ∈ 	�E� and all D ∈ Ɔ, µ ∈ �,

Pµe
−�f�XD� = e−�VD�f�� µ��(8.1)

where u = VD�f� is a solution of the equation

u+GDψ�u� =KDf�(8.2)

Here

KDf�x� = �xf�ξτ��(8.3)

GDρ�x� = �x
∫ τ
0
ρ�ξt�dt(8.4)

(τ is the first exit time of ξt from D).
To construct such a process, we start from the superprocess X̂ described in

Section 7.3. We imbed E into 
 ×E by identifying x ∈ E with �0� x� ∈ �×E.
We define XD as the projection of X̂�×D on E and we put Pµ = P̂δ0×µ for
every finite measure µ on E (δ0 is the unit mass on � concentrated at 0).

It follows from Theorem 1.6 that a homogeneous �ξ�ψ�-superprocess exists
for every time-homogeneous right continuous strong Markov process ξ and
every function

ψ�x�u� = b�x�u2 +
∫ ∞

0
�e−λu − 1+ λu�n�x�dλ�(8.5)

such that

b�x� and
∫ ∞

0
λ ∧ λ2n�x�dλ� are bounded�(8.6)

8.2. Branching measure-valued Markov processes. To every superprocess
X = �XQ�Pµ��Q ∈ Ɔ1� µ ∈ � �S�, there corresponds a measure-valued

Markov process X̃ = �X̃t� P̃r� ν�. Here X̃t is the restriction of XS<t
to St =

�t� × E and P̃r� ν = Pδr×ν. Let �̃3 stand for the σ-algebra generated by

X̃t� t ∈ 3. Clearly, � �r� t� ⊂ �⊂S<t and �≥t ⊂ �⊃S<t and the Markov prop-

erty of X̃ follows from 1.3.D. If ϕ ∈ 	�E� and if f�s� x� = ϕ�x� for all s, then,
for all r < t,

P̃r� νe
−�f� X̃t� = e−�u� ν��
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where ut = VQ<t
�f� satisfies the equation

ut�r� x� +�r�x
∫ t
r
ψ�s� ξs	ut�s� ξs��ds = �r�xϕ�ξt� for r ≤ t�(8.7)

If ξ is time-homogeneous and ψ is of the form (8.5), then there exists a time-
homogeneous �ξ�ψ�-superprocess �Xt�Pµ� such that, for every µ ∈ � �E� and
every f ∈ 	�E�,

Pµe
−�f�Xt� = e−�ut� µ��(8.8)

where

ut�x� +�x
∫ t
0
ψ�ξs� ut−s�ξs�ds = �xf�ξt��(8.9)
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