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IMPROPER REGULAR CONDITIONAL DISTRIBUTIONS1

By Teddy Seidenfeld, Mark J. Schervish and Joseph B. Kadane

Carnegie Mellon University

Improper regular conditional distributions (rcd’s) given a σ-field �
have the following anomalous property. For sets A ∈ � , Pr�A �� � is not
always equal to the indicator of A. Such a property makes the conditional
probability puzzling as a representation of uncertainty. When rcd’s exist
and the σ-field � is countably generated, then almost surely the rcd is
proper. We give sufficient conditions for an rcd to be improper in a maximal
sense, and show that these conditions apply to the tail σ-field and the σ-
field of symmetric events.

1. Introduction. The theory of regular conditional distributions (rcd’s)
is a standard part of the received view of mathematical probability. Nonethe-
less, there are some anomalous cases of conditional probability distributions
where, in the terminology of Blackwell, Dubins and Ryll-Nardzewski, the rcd
is not everywhere proper, given the conditioning sub-σ-field, � . That is, let
P�· �� ��ω� denote the rcd for the measure space �����P� given the con-
ditioning sub-σ-field, � . That the rcd is proper at ω means that whenever
ω ∈ A ∈ � , P�A �� ��ω� = 1. The rcd is improper if it is not everywhere
proper. Here, we explore the extent of such impropriety, focusing on atomic
sub-σ-fields, � , with atoms a�ω�, where the impropriety of the rcd is max-
imal in two senses, local and global, at once. The failure of propriety at the
point ω is locally maximal as P�a�ω� �� ��ω� = 0. The failure of propriety is
globally maximal as the rcd is improper at P-almost all points. Also, we con-
sider a connection between the impropriety of rcd’s for symmetric measures,
given the sub-σ-field of symmetric events, and Vitali-styled nonmeasurable
sets. This connection leads us to a conjecture about the possibility of using
certain finitely additive extensions of P as a way around the impropriety of
the countably additive rcd in these cases.

2. Regular conditional distributions. Let �����P� be a measure
space. Denote by ω points in �. In what follows all probability distributions
are countably additive unless otherwise stated.

It is well known how to define conditional distributions given an event
of positive probability. Kolmogorov’s seminal 1933 work (1950) provides the
common method to deal with more general conditioning.
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Definition 1. In the usual terminology, with� a sub-σ-field of��P�·�� �
is a regular conditional distribution [rcd] on �, given � provided that:

(i) For each ω ∈ �, P�· �� ��ω� is a probability on �.
(ii) For each B ∈ �� P�B �� ��·� is an � -measurable function.
(iii) For each A ∈ � � B ∈ �

∫
A P�B �� ��ω�dP�ω� = P�A ∩ B�. That is,

P�B �� � is a version of the Radon-Nikodym derivative of P�·∩B� with respect
to P.

Definition 2. An � -atom is the intersection of all the elements of � that
contain a given point ω of �.

Thus, condition (ii) for rcd’s requires that P�B �� ��·� is constant on the
� -atoms.

Two limitations in this approach are well documented in the literature.

2.1. The “Borel paradox”. One controversial aspect of this theory of con-
ditional probability was pointed out by Kolmogorov [(1950), pages 50–51]. He
calls it the “Borel paradox.” See, for example, Billingsley [(1995), page 441,
problem 33.1]. Put simply, the Borel paradox shows that P�· �� ��ω� is not a
probability distribution on � given events in � but, rather, it is a probability
distribution given a σ-field. Specifically, with � the Borel subsets of the real
line, let �X and �Y be the sub-σ-fields generated by the random variables
X and Y, respectively. Suppose that X = x∗ is the same event (in �) as
Y = y∗. Nonetheless, if X�ω� = x∗, P�· ��X��ω� and P�· ��Y��ω� may be dif-
ferent distributions, with sup norm distance arbitrarily close to 1. In rebuttal
to this objection, Kolmogorov points out that between any two conditioning
sub-σ-fields, this “paradox” can occur only on a P -null set of points. That is,
it is a measure-0 failure, at worst. However, if sufficiently many sub-σ-fields
are considered simultaneously, as might arise through a family of continuous
transformations of a bivariate conditioning sub-σ-field, the Borel paradox may
become a problem of full measure. [See the Appendix to Kadane, Schervish
and Seidenfield (1986).]

2.2. Rcd’s may not exist. The canonical example of a measure space and
conditioning sub-σ-field that admits no rcd is obtained by letting � be an
extension of the Borel sets on [0,1] under Lebesgue measure with the addi-
tion of one non-measurable set, and letting � be the sub-σ-field of Borel sets
themselves. [See, e.g., Halmos (1950), page 211.] The same example is dupli-
cated with only minor variations in Billingsley [(1995), Exercise 33.13, page
443]; Breiman [(1968), page 81]; Doob [(1953), page 624]; and Loeve [(1955),
page 370 #1]. Though, for eachB ∈ � , the extended measure space has Radon-
Nikodym derivatives P�B �� � satisfying condition (iii), above, the derivatives
resist assembly of these pointwise probabilities into a full probability distribu-
tion on �, measurable with respect to � , as required by conditions (i) and (ii).
In the counterexample, exceptional null sets pile up to create a failure. That
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these texts use a common couterexample involving a non-measurable set to
preclude existence of an rcd is not accidental, as Corollary 1 establishes. In
what follows, we use IA�·� to denote the indicator function for a set A.

Definition 3. Sub-σ-field � is atomic if it contains each of its � -atoms.

Theorem 1. Let � be a countably generated sub-σ-field of �. Let P�· �� �
be a regular conditional distribution on �, given � . Then, there exists a set
C∗ ∈ � , with P�C∗� = 1 such that for each A ∈ � and ω ∈ C∗, P�A �� ��ω� =
IA�ω�.

The proof of Theorem 1 is established with the aid of Lemma 1.

Lemma 1 [Billingsley (1995), page 431, Example 33.3]. Assume that
P�· �� � is a regular conditional distribution on �, given � . Let A ∈ � . Then
there exists a set C∈� with P�C�=1 such that for each ω∈C� P�A �� ��ω�=
IA�ω�.

Proof of Theorem 1. Apply Lemma 1 to each element 	An 
 n = 1� � � ��
of a countable set of generators for � . Let 	Cn 
 n = 1� � � �� be the resulting
sequence of almost sure events. Define set C∗ = ∩nCn. Then C∗ satisfies the
conclusion to the theorem, as it does so for each generator An�n = 1� � � ��. ✷

Corollary 1. Let � be an atomic, countably generated sub-σ-field of �,
where the � -atoms are the singletons. Let P�· �� � be a regular conditional
distribution on �, given � . Then � is a sub-σ-field of the measure completion
of P on � .

Proof. This results from Theorem 1 [see also Loeve (1955), page 356],
as follows: Let C∗ ∈ � be the P-measure 1 set guaranteed to exist by
Theorem 1. Then, as each singleton 	ω� is an element of � by assumption,
for each ω ∈ C∗� P�	ω� �� ��ω� = 1. Let E ∈ �. Then, for ω ∈ C∗ ∩ E,
P�E �� ��ω� = 1. For ω ∈ C∗ ∩Ec�P�Ec �� ��ω� = 1 and thus P�E �� ��ω� =
0. Hence, P�E �� ��ω� = IE�ω�, almost surely with respect to P. But since
	ω 
 P�E �� ��ω� = 1� is � -measurable and likewise for 	ω 
 P�E �� ��ω� =
0�, the set E differs from some set in � by a P-null event. That is, E must
be in the measure completion of � . ✷

There is a familiar and helpful sufficient condition for existence of an rcd
on � given each of its sub-σ-fields � . That is, that � is isomorphic (un-
der a 1-1 measurable mapping) to the σ-field of a random variable. See, for
example, Billingsley [(1995), Theorem 33.3, page 439]; or, Breiman [(1968),
Theorem 4.30, page 78]. If this condition holds, we shall call ����� a Borel
space. If ����� is a Borel space, then � is countably generated. When � is
countably generated, regardless whether ����� is a Borel space, if an rcd
exists given a sub-σ-field � , it is almost surely unique.
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Lemma 2. Let Pi�· �� ��ω��i = 1�2� be two rcd’s for P on � given � , and
assume that � is countably generated by a set that forms a π-system; that is, the
countably many generators are closed under finite intersections. (Alternatively,
let � be a separable σ-field; that is, one with a countable dense set.) Then,
P	ω 
 P1�· �� ��ω� = P2�· �� ��ω�� = 1.

Proof. Let Bi�1 = 1� � � �� be a π-system (or countable dense set) for �.
Let

W1i =
{
ω 
 P1�Bi �� ��ω� > P2�Bi �� ��ω�}�

W2i =
{
ω 
 P1�Bi �� ��ω� < P2�Bi �� ��ω�}�

W3i =
{
ω 
 P1�Bi �� ��ω� = P2�Bi �� ��ω�}�

Each of these is an � -measurable set as Pj�Bi �� ��·� is an � -measurable
function, for each i = 1�2� � � � and j = 1�2. It is sufficient to show that
P�W3i� = 1 for all i. If, to the contrary, for some i P�W3i� < 1, argue for
a contradiction as follows. Suppose then that P�W1i� > 0. Then,

P�Bi ∩W1i� =
∫
W1i

P1�Bi �� ��ω�dP�ω� >
∫
Wli

P2�Bi �� ��ω�dP�ω�

= P�Bi ∩W1i��

which is a contradiction. ✷

When the sufficient condition for existence of rcd’s fails because the measure
space is not countably generated, rcd’s may nonetheless exist though they
can form mutually singular families of distributions when evaluated at each
point ω.

Example 1. Let � = � be the σ-field of all countable and co-countable
sets in [0,1]. Let P be a probability that assigns 0 to each point (real number)
in [0,1]. Each of the following is readily seen to be an rcd for P on �, given � .

1. Let P1�· �� ��ω� be the “indicator” rcd that concentrates all its mass at
ω that is, for B ∈ ��P�B �� ��ω� = IB�ω�. It is a simple fact that there
always is such an obvious rcd on a space� given�, regardless the algebraic
structure of �.

2. Let P2�· �� ��ω� be defined so that P2�· �� ��ω� = P�·�, for each point ω. It
is straightforward to verify that this function is an rcd for � given � .

Note that, for each ω�P1�	ω� �� ��ω� = 1 and P2�	ω� �� ��ω� = 0, so these
are mutually singular distributions, as evaluated at each point, ω. The second
of the two rcd’s in Example 1 displays an anomaly that is the focus of the
balance of this paper.
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3. Proper rcd’s. For our investigation of the received theory of condi-
tional probability, the central concept comes from important works by Black-
well and Ryll-Nardzewski (1963) and Blackwell and Dubins (1975).

Definition 4. An rcd P�· �� � on � given � is proper at the point ω if
P�A �� ��ω� = 1 whenever ω ∈ A ∈ � . Say that P�· �� � on � given � , is
improper at ω otherwise. An rcd P�· �� � on� given� is proper if it is proper
at each point ω.

The extent of impropriety for rcd’s is the principal subject of this paper.
Where an rcd is improper at ω, its conditional probability function evaluated
at ω cannot be used as a coherent degree of belief, at least, in the sense of coher-
ence intended by deFinetti (1974) or Savage (1954). That is, we understand
coherence of degrees of belief to include the requirement that a conditional
probability function is supported by its conditioning event. Conditioning on a
σ-field does not entail conditioning on the events in the σ-field. However, if
conditioning on a σ-field is to represent coherent degrees of belief, then the
rcd should be proper.

We begin our discussion of the extent of impropriety of rcd’s with an impor-
tant and, we find, surprising result due to Blackwell and Dubins (1975).

Definition 5. A probability distribution is extreme if its range is the two
point set 	0�1�.

Theorem 2 [Blackwell and Dubins (1975)]. If � is a countably generated
σ-field and if there exists some extreme probability on � supported by no � -
atom belonging to � , then � is not countably generated, which entails that
no probability admits a proper rcd on � given � .

Thus, this result gives a sufficient condition for when an rcd cannot be
proper.

We index the extent of impropriety of an rcd at a point ω with Definition 6.

Definition 6. Fix ω and consider those A such that ω ∈ A ∈ � . If for
some ω ∈ A ∈ � � P�A �� ��ω� = 0, say that P�· �� � is maximally improper
at ω. Otherwise, if for each ω ∈ A ∈ � , 1 > P�A �� ��ω� > 0� say that the
rcd is modestly proper at ω.

In order to characterize the extent of impropriety of an rcd globally, across
different states, we consider the inner P-measure of the set of points where it
is improper. Let P denote the inner P-measure of a set.

Definition 7. Let B = 	ω 
 P�· �� ��ω� is improper at ω�. Call P�B� the
lower P-bound on the extent of impropriety of the rcd P�· �� �. If B is P-
measurable, call P�B� the extent of impropriety of the rcd P�· �� �. Finally, say
that P�· �� � is maximally improper if, with lower P-bound 1, it is maximally



IMPROPER CONDITIONAL DISTRIBUTIONS 1617

improper. That is, an rcd is maximally improper if, with respect to its measure
completion, it is almost surely maximally improper.

Example 2 (Example 1 continued). Evidently, rcd P1�· �� ��ω� is every-
where proper. However, rcd P2�· �� ��ω� is maximally improper!

In light of Theorem 1, if an rcd P�· �� � exists, then when � is countably
generated, almost surely the rcd is proper. That is, then the extent of its im-
propriety is 0 and impropriety is restricted to a P-null set, at most. Blackwell
[(1955), page 6] asked whether this null set can be reduced to the empty set
when � is a Lusin space. Blackwell and Ryll-Nardzewski (1963) establish
that the answer is negative when � is the σ-field generated by a real-valued
random variable whose range is not a Borel set. We discuss their result in the
next section, where we relate it to non-measurable sets when the conditioning
sub-σ-field is the tail field or field of symmetric events.

Now for our central theorem about the extent of impropriety of rcd’s. Gener-
ally, when the sufficient condition of Theorem 2 is satisfied, rcd’s are maximally
improper.

Theorem 3. Let � be an atomic sub-σ-field of �. Assume that P is an ex-
treme probability on � that is not supported by any � -atoms. An rcd P�· �� �
for P on � given � exists and is maximally improper.

Remark. By Lemma 2, this rcd is unique when � is countably generated.

Proof. By assumption, P is extreme on � . Therefore, as is evident,
P�· �� � = P�·� is an rcd for P on � given � . That is: (1) for each point
ω�P�· �� ��ω� is a probability on �. Equally evident, (2) for each B ∈ ��
P�B �� ��·� is an� -measurable function, with pre-image either � or �. More-
over, it is constant at every point ω, and thus it is constant on the atoms of
� . Finally (3), if P�A� = 1, then P�B ∩ A� = P�B� = ∫

� P�B�dP�ω� =∫
A P�B �� ��ω�dP�ω�; and if P�A� = 0, then P�B∩A� = 0 = ∫

A P�B�dP�ω� =∫
A P�B �� ��ω�dP. But, as P is extreme on � and is not supported by any
� -atoms, P�a� = 0 for each � -atom a. Hence (P-almost surely), this rcd
P�· �� ��ω� on � satisfies P�a �� ��ω� = 0 for each � -atom a. Denote by a�ω�
that � -atom containing the point ω. Thus, for almost all points
ω�P�a�ω� �� ��ω� = 0. which establishes that this rcd is maximally improper.

✷

Here are two additional illustrations of Theorem 3, counting the rcd
P2�· �� ��ω� of Example 1 as the first example. By contrast, we use a � that
is countably generated in each of the next two examples.

Example 3 [See Blackwell and Dubins (1975), page 742]. Let �=	0�1�ℵ0;
that is, the sample space of infinite binary sequences; let � be the product
σ-field; and let P be the product measure corresponding to independent flips
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of a “fair” coin; that is, P�0 × 	0�1�× � � �� = P�1 × 	0�1�× � � �� = 1/2 , etc.
Let � be the tail σ-field for this process. Then, by the Kolmogorov 0-1 law,
for each A ∈ � �P�A� = 0 or P�A� = 1. The � -atoms, a, are countable sets
of points, where ω′�ω ∈ a if and only if they differ in at most finitely many
places. These � -atoms belong to the tail field, a ∈ � . Since each � -atom is
a countable set, P�a� = 0; hence, P is not supported by any of its � -atoms.
With P�· �� � = P�·� the rcd on �, given � , we have that for each � -atom,
a, P	ω 
 P�a �� ��ω� = 0� = 1. In particular, P	ω 
 P�a�ω� �� ��ω� = 0� = 1,
and this rcd is maximally improper. The example has a natural generalization
to i.i.d. binomial “weighted” coin flipping. Pθ�1×	0�1�×� � �� = θ, for 0 < θ < 1,
which we pursue in Corollary 2 for symmetric measures.

Example 4 [see Billingsley (1995), Example 33.11]. Let � = �0�1�, let
� = the Borel subsets of �, and let P be Lebesgue measure. Let � be the
sub-σ-field of all countable and co-countable sets in �0�1�. Clearly, P�A� = 0
or P�A� = 1, for each A ∈ � . Equally obviously, P�A� = 0 for each countable
set A. Note also that the � -atoms, which in fact belong to � , are just the
singleton sets consisting of the points of �, 		x� 
 0 ≤ x ≤ 1�. Hence, according
to Theorem 3, the rcd on � given � , P�· �� �, satisfies

P
{
x 
 P�x′ �� ��ω� = 0� for 0 ≤ x� x′ ≤ 1

} = 1�

Thus, P�	x 
 P�	x� �� ��ω� = 0�� = 1.

Next, we discuss the σ-field of symmetric events, as covered by the 0-1
law of Hewitt and Savage (1955). We use the space of sequences of Cartesian
products of binary events, as in Example 3; however, Theorem 3 generalizes
directly to products of an arbitrary finite set. Thus, let� = 	0�1�ℵ0 ; let� = the
Borel subsets of �; and let P be a symmetric probability, in the sense of Hewitt
and Savage, defined as follows. Let T be an arbitrary (finite) permutation of
the positive integers, i.e., a permutation of the coordinates of � that leaves
all but finitely many places fixed. Thus, T 
 � → �, is 1-1, onto, and leaves
all but finitely many coordinates of a point ω unchanged. Given T, define the
set T−1B as 	ω 
 T�ω� ∈ B�. P is called a symmetric probability if P�T−1B� =
P�B�, for each B ∈ � and each T. If B = T−1B for all (finite) permutations
T� B is called a symmetric event. Hewitt and Savage [(1955), Theorem 6.3]
shows (duplicating deFinetti’s representation theorem) that each symmetric
probability P is an average (integral) of “extreme” symmetric probabilities of
the form

P�·� =
∫
�
Pθ�·�dµ�θ�

where 0 ≤ θ ≤ 1, where Pθ�·� is the i.i.d. (binomial) product probability on �,
with Pθ	1× 	0�1� × · · ·� = θ, and where µ�·� is a “prior” probability on Borel
subsets of the unit interval. The representation is unique in µ. Let � be the
sub-σ-field of � generated by the class T of all (finite) permutations of the
coordinates of �, i.e., � is the σ-field of the symmetric events. Denote by a
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the � -atoms. These are denumerable sets of points, which are elements of � .
That is, all but two � -atoms are countably infinite sets of points related by
the equivalence relation that elements differ by a finite permutation of their
sequences. The two distinguished � -atoms are the two constant sequences
�0�0� � � �� and �1�1� � � ��.

We establish our result for the class of symmetric probabilities as a corollary
to the following theorem, which itself generalizes Theorem 3.

Theorem 4. Let ���� � be a Borel space. For each θ ∈ �, let Pθ be a prob-
ability on �. Let P�·� be defined on � by P�·� = ∫

� Pθ�·�dµ�θ�. Let � be a
sub-σ-field of � for which there exists a marginal rcd on � given � , denoted
by P�·�� � and assume that Pθ�·�� � is maximally improper for P-almost all θ.
Then P�·�� � is maximally improper as well.

The proof of Theorem 4 is straightforward from the following lemma.

Lemma 3. Let ���� � be a Borel space, with a probability measure µ. For
each θ ∈ �, let Pθ be a probability on � such that for every B ∈ �, Pθ�B�
is a measurable function of θ. Define the probability P on � by P�B� =∫
� Pθ�B�dµ�θ�. Let P�· �� � be an rcd given a sub-σ-field � of �. Also, let
Pθ�· �� � denote an rcd for each Pθ. Then, for each ω there exists a probability
νω on � such that for all D ∈ �

P�D �� ��ω� =
∫
�
Pθ�D �� ��ω�dνω�θ��(1)

almost surely with respect to P.

Proof. Let � be the product σ-field � ⊗� . For each E ∈ � , define

Eθ = 	ω 
 �ω� θ� ∈ E��
the θ-section ofE. It is easy to see that, ifE is a product set, i.e.,E = B×D for
B ∈ � and D ∈ � , then Eθ ∈ � for all θ, and Pθ�Eθ� is a measurable function
of θ. The π−λ theorem of Dynkin [see Billingsley (1995), Theorem 3.2] implies
that for all E ∈ � , Eθ ∈ � for all θ and Pθ�Eθ� is a measurable function of θ.
Define

Q�E� =
∫
�
Pθ�Eθ�dµ�θ��

which is easily seen to be a probability on � . Let � ′ = 	B × � 
 B ∈ � �,
which is a sub-σ-field of � . Let Q�· �� ′� be an rcd. Clearly, Q�E �� ′��ω� θ� is
a function of ω only since it is � ′-measurable. It is easy to see that for all D,
P�D �� � is a version of Q�� ×D �� ′�. Next, let � ′′ = � ⊗ � so that � ′ is
a sub-σ-field of � ′′. It is easy to see that for all D Pθ�D �� � is a version of
Q��×D �� ′′�. For each D ∈ � and ω ∈ �, define νω�D� = Q��×D �� ′��ω�.
The law of total probability [see Schervish (1995), Theorem B.70, page 632]
now says that (1) holds. ✷



1620 T. SEIDENFELD, M. J. SCHERVISH AND J. B. KADANE

Corollary 2. Each rcd P�·�� � on � given � , for a symmetric probability
P, is maximally improper provided that the two distinguished � -atoms are
P-null events, P	�0�0�0� � � ��� = P	�1�1�1 � � ��� = 0.

Proof. We apply Theorem 4 to the Hewitt-Savage representation for a
symmetric probability P, using the sub-σ-field of symmetric events as � . By
the Hewitt-Savage 0-1 law, Pθ�A� = 0 or Pθ�A� = 1 for each A ∈ � and
each extreme measure Pθ�·�. Evidently, for each 0 < θ < 1, and for each � -
atom a, Pθ�a� = 0, so that Pθ is not supported by any of the � -atoms. Then,
by Theorem 3, Pθ-almost surely, Pθ�a �� ��ω� = 0 for each � -atom a and so
Pθ�·�A��ω� is maximally improper. In fact, for this case θ is an � -measurable
function. (Note that for a symmetric probability P, almost surely the infinite
sequence of binary events has a limiting frequency for 1’s, say, which is an
� -event of P-measure 1. Almost surely, θ of the Hewitt-Savage representa-
tion equals this limiting frequency; hence, θ is � -measurable.) Thus, in the
conclusion of Lemma 3 as applied to our situation, almost surely νω�·� is a
point-distribution concentrated at the value of θ consistent with ω. ✷

4. Impropriety of rcd’s and some non-measurable sets. Dubins
(1971) identifies a different argument from the one of Theorem 2, establishing
that there cannot be everywhere proper rcd’s for � given � in Example 3. He
uses the following indirect argument. In Example 3, suppose that it were the
case that the rcd P�· �� ��ω� for � given � were everywhere proper. Then
there would be an � -measurable selection function on the atoms of � whose
range is an analytic (hence Lebesgue measurable) set. As the � -atoms are
denumerable sets, a proper rcd P�· �� ��ω� is a discrete distribution that lives
on the atom a�ω� that contains ω. For instance, the mode of each distribu-
tion, P�· �� ��ω�, could serve to define a selection function—a function that
picks out exactly one element from each � -atom. However, the range of such
a selection function is a Vitali-style non-measurable set, which is a contra-
diction. That is, the “fair coin” product measure is invariant to changes in
a finite number of the coordinates in each binary sequence of a measurable
set—corresponding to the fact that Lebesgue measure is (translation) invari-
ant under the addition/subtraction of a fixed (binary rational) number to each
real number in a measurable set. However, in Example 3, � is covered by
countably many such changes to the range of any selection function on the
� -atoms. But as P cannot be uniform over a countably infinite set, this con-
tradicts the fact that the range of the selection function is analytic.

We adapt this line of reasoning involving non-measurable sets to establish
the following:

Theorem 5. Let � be the Borel subsets of �, let � be the sub-σ-field of
symmetric events, and letP be a symmetric probability that assigns 0 to the two
distinguished atoms. Then, with respect to elements of � , the P-lower bound
is 0 on the set of points where P�· �� � can be even modestly proper.
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The proof of Theorem 5 uses the following result:

Theorem 6 [Theorem 2 of Blackwell and Ryll-Nardzewski (1963)]. Let X�
Y be Borel subsets of complete separable metric spaces, let � be a countably
generated sub-σ-field of the σ-field of Borel subsets ofX and let � be the class
of Borel subsets of Y. For any function µ on � ×X such that (a) µ�·� x� is for
each x a probability measure on � and (b) for each B ∈ �, µ�B� ·� is a � -
measurable function on X, and any set S ∈ � ×X such that µ�Sx� x� > 0 for
all x ∈ X, where Sx denotes the x-section of S, that is, Sx = 	y 
 �y�x� ∈ S�,
then there is a � -measurable function g fromX into Y whose graph is a subset
of S, that is, �g�x�� x� ∈ S for all x ∈X�

Proof of Theorem 5. Let F be the set of points ω where the rcd
P�· �� ��ω� for � given � is modestly proper. Assume for an indirect proof
that, with respect to sets in � , P�F� > 0. Then let A ∈ � , F ⊇ A denote
a set of positive measure. We use Theorem 6 iteratively to find a countable
sequence of selection functions whose ranges, though measurable sets, each
behaves as a Vitali-styled non-measurable set. These sets lead to a countable
partition of A into sets of measure 0 events, which contradicts the fact that
P�A� > 0.

Reason as follows. Let � ∗ be the smallest sub-σ -field with respect to which
P�· �� � over � is measurable. Trivially, � ∗ ⊆ � . In the case considered, � ∗

is countably generated (hence atomic), because � is. Recall that each � -atom
is a countable set and that each � ∗-atom, a∗, consists of that union of � -
atoms a∗ = ⋃

aα such that each point ω ∈ a∗ yields the same distribution
P�· �� ��ω� over � as do the other points in a∗. As P�· �� ��ω� is modestly
proper over A, each atom a∗ contains a finite or at most denumerable union
of � -atoms from A. However, a∗ may contain uncountably many � -atoms
from Ac.

In our first application of Theorem 6, let X1 = Y1 = A. Let �1 = �/A
and �1 = � ∗/A, the quotient σ-fields, respectively of � and � ∗ given A.
Clearly, �1 is countably generated with (uncountably many) atoms c1. Let
µ1�·�ω� = P�·⋂A �� ∗�

P�A �� ∗� �ω� for ω ∈ A. Last, let

S1 =
{�ω′�ω� 
 ω′ ∈ c1�ω� and ω ∈ A}

�

Evidently, µ1�·�ω� satisfies the requisite conditions in Theorem 6. Then apply
Theorem 6 to argue that there is a �1-measurable selection function g1�c1�ω��
that picks out one element from each �1-atom c1�ω� for each ω ∈ A.

LetV1�1 be the range of this function. (We useV to remind the reader of the
Vitali-like properties of this range.) We argue that, as V1�1 is �1-measurable,
P�V1�1� = 0 using P’s symmetries under finite permutations of the binary
sequences that are the points of Y. Consider the countable set of finite per-
mutations of a binary sequence, which we write as PER = 	perj 
 j = 1� � � ��.
For simplicity we let per1 be the identity function. Then, as P is is a symmet-
ric probability, it is invariant under the application of each element of PER to
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a measurable set. Thus P assigns equal probability to each of the countably
many disjoint sets perj�V1�1� = V1� j. We can say more. Let V1 = ⋃

V1� j.
Then P�V1� = 0. Moreover, we see that V1 is an uncountable union of � -
atoms aα, V1 = ⋃

aα, where each such � -atom aα is a subset of a distinct
�1-atom c1� α and where each �1-atom has one such an � -atom as its witness.
Let A1 = A−V1.

We iterate the application of Theorem 6 by induction through a countable
set of countable ordinal as follows, until we arrive at a stage ε where Xε = �.

For a successor ordinals β + 1 set Xβ+1 = Yβ+1 = Aβ. Let �β+1 = �/Aβ

and �β+1 = � ∗/Aβ. Let µβ+1�·�ω� = P�·⋂Aβ �� ∗�
P�Aβ �� ∗� �ω� for ω ∈ Aβ. Last, let

Sβ+1 = 	�ω′�ω� 
 ω′ ∈ cβ+ 1�ω� and ω ∈ Aβ�.
For γ a countable limit ordinal, define the respective sets by intersections in

the usual fashion for such constructions, as follows. With β < γ, letXγ = Yγ =
Aγ =

⋂
Aβ. Set �γ = �/Aγ and �γ = � ∗/Aγ. Let µγ�·�ω� =

P�·Aγ� �� ∗�
P�Aγ� �� ∗� �ω� for

ω ∈ Aγ. Last, let Sγ = 	�ω′�ω� 
 ω′ ∈ cγ�ω� and ω ∈ Aγ�.
In the former case we obtain a �β+1-measurable selection function gβ+1

�cβ+1�ω�� that picks out one element from each �β+1-atom cβ+1�ω� for each
ω ∈ Aβ. Let Vβ+1�1 be the range of this function. Then, P�Vβ+1�1� = 0, and
with Vβ+1 = ⋃

j Vβ+1�j, we have also P�Vβ+1� = 0. In the latter case, the
same argument leads to the conclusion that P�Vγ� = 0. However, as each
atom a∗ contains a finite or at most denumerable union of � -atoms from A,
this process exhausts A after some countable number of iterations. That is,
there exists a countable ordinal ζ such that A = ⋃

β<ζ Vβ. This completes the
proof as 0 < P�A� = P�⋃β<ζ Vβ� =

∑
β<ζ P�Vβ� = 0, a contradiction. Hence,

P�F� = 0, and P’s rcd cannot be even modestly proper over a set of positive
P-measure, given the symmetric field � . ✷

Corollary 3. Under the same conditions as Theorem 5 there is no exten-
sion of the symmetric probability P to a larger σ-field �′ that has positive
lower bound on the set of points where its rcd given the symmetric events � is
modestly proper. ✷

Proof. Apply Corollary 1 to the preceding theorem to establish that no
extension of P to a σ-field �′ that includes a P-non-measurable set admits
an rcd, proper or not, given �. ✷

5. Conclusions. We have examined the received theory of regular con-
ditional distributions for certain anomalous behavior, impropriety, with re-
spect to conditioning on sub-σ-fields. Impropriety was studied in papers by
Blackwell (1955), Blackwell and Ryll-Nardzewski (1963), Dubins (1971) and
Blackwell and Dubins (1975), where their focus was on the impossibility of
everywhere proper rcds. Here, we provide an index for the extent of impro-
priety in an rcd based on the measure of the set of points where the rcd is
not proper, and by how much it is not proper. When rcd’s exist and the sub-σ-
field is countably generated, almost surely the rcd is proper. However, when
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the sub-σ-field is not countably generated, the door is opened to the possi-
bility that almost surely P�a�ω� �� ∗��ω� = 0, a situation we call maximally
improper. We offer sufficient conditions for an rcd to be maximally improper
and show that they obtain in some familiar cases, e.g., given the tail σ-field
of a mixture of i.i.d. processes and given the σ-field of symmetric events for
symmetric probabilites.

Insofar as the anomalous sub-σ-fields involve conditioning on (countable)
Borel sets, we believe that it is unlikely that a minor variation in the theory
of rcd’s can avoid impropriety in its conditional distributions. A rival the-
ory does exist, however, that assures not only that conditional probability is
everywhere proper, but also allows conditional probability to be coherently de-
fined given an event rather than given a sub-σ-field, hence solving the Borel
paradox. Also, this theory does not encounter the limitation of non-measurable
events; hence, coherent conditional probability always exists. We have in mind,
of course, the theory of finitely additive probability, as described by Dubins
[(1975), Section 3].

The price for all these benefits is not insignificant. The theory of finitely
additive conditional probability does not always satisfy the integral equation,
condition (iii), for rcd’s. With finitely additive probability, it generally does not
happen that, for B ∈ �,

∫
� P�B �� ��ω�dP�ω� = P�B�. When this equation

fails, then the finitely additive P is not disintegrable in the partition of the � -
atoms. In particular, Schervish, Seidenfeld and Kadane (1984) shows that each
finitely but not countably additive probability P will fail to be disintegrable
in some denumerable partition.

For an example of what might usefully be done with finitely additive prob-
abilities, Dubins (1977) shows there exists a coherent finitely additive prob-
ability P that extends the “fair coin” product measure of Example 3, µ, and
which is disintegrable in the partition π� formed by the atoms a� of the
anomalous tail-field, � . Since P extends µ and is disintegrable in the par-
titon π� where µ obeys the Kolmogorov 0-1 law, its conditional probability
distributions behave P-almost surely like the maximally improper rcd’s based
on µ with respect to sets of positive µ-measure. Thus, one can compute values
of P for sets of positive µ-measure by using the familiar, maximally improper
rcd for µ given � , which we here denote by µ�B �� ��ω�. However, since P
is coherent, its conditional probability distributions are everywhere proper.
That is, the conditional probability distribution P�·�a� � is supported by its
conditioning event, the countable set a� . Thus, P�·�a� � and µ�B �� ��ω� are
mutually singular at each element of π. To heighten the tension, P�·�a� � may
be a “uniform” purely finitely additive measure over its conditioning event,
that is, P�ω�a� � = 0 for each ω ∈ a� , as Dubins’ result establishes.

Every countably additive probability has many finitely additive extensions
to the power set. Given a partition, it is not generally known whether any of
these extensions is disintegrable in that partition. This leads to the following
open question. If P is a countably additive probability with an improper rcd
given the atomic sub σ-field � , does there exist a finitely additive extension
of P that is disintegrable in the partition of the � -atoms?
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