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THE CONTROLLER-AND-STOPPER GAME FOR
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Consider a process X(-) = {X(¢),0 < ¢t < oo} with values in the
interval I = (0, 1), absorption at the boundary points of I, and dynamics

dX(t) = B(t)dt + o(t)dW(t),  X(0) = x.

The values (B(t), o(¢)) are selected by a controller from a subset of % x
(0, 00) that depends on the current position X(¢), for every ¢ > 0. At any
stopping rule 7 of his choice, a second player, called a stopper, can halt the
evolution of the process X (-), upon which he receives from the controller the
amount e~ *"u(X(7)); here a € [0, 00) is a discount factor, and u: [0, 1] - R
is a continuous “reward function.” Under appropriate conditions on this
function and on the controller’s set of choices, it is shown that the two
players have a saddlepoint of “optimal strategies.” These can be described
fairly explicitly by reduction to a suitable problem of optimal stopping,
whose maximal expected reward V coincides with the value of the game,

V = sup inf Ble*"u(X ()] = ipf supEle™"u(X(n)].

1. Introduction. We describe in this section a zero-sum stochastic game
that involves a linear diffusion process. The game takes place between two
players, one called controller and the other called stopper. This game will be
the object of study in the paper.

The diffusion process X (-) evolves in the state-space I = (¢, r), a nonempty,
bounded, open interval of the real line. Its evolution is governed by the
equation

(1.1) dX(t) = B(t)dt + o(t)dW(t), X(O0)=xel

on a filtered probability space (1, 7,P),F = {7 (t),0 < t < co}. The process
W(.) is a standard Brownian motion with respect to F, and (B(-), o(-)) is a
pair of real-valued, F-progressively measurable processes which satisfy almost
surely

(1.2) [ 1B + oX(s)lds <00, (B(D), o(t)) € #(X(2))

for all ¢ € [0, 00). Whenever the process X(-) is in a given state X(¢) = ¢ €
[£, r], the controller can choose a local drift-local volatility pair (B(t), o(t))
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from a given subset % () of ® x (0, c0). The family {#({)/{ € [£,r]} is
specified in advance, and we set %' (¢) = % (r) = {(0, 0)}; this choice forces
the process X (-) of (1.1) to become absorbed, whenever it reaches either one of
the boundary points of the interval I = (¢, r). Given an initial condition x € I,
we shall denote by .o7(x) the class of all processes X(-) with X(0) = x that
can be constructed this way and are thus “available” to the controller with
this starting position.

A second player, called stopper, can halt the evolution of the process X(-)
by selecting a stop-rule v: C[0, c0) — [0, oc]. This is a mapping from the space
C[0, o) of continuous functions ¢&: [0, co) — N into the extended real half-line,
with the property

(1.3) {£€C[0,00)/7(¢) <ty e B,:=¢;(#) VYO<t<oo.

Here % := #(C|0, 00)) is the Borel o-algebra generated by the open sets in
C[0, ), and ¢,: C[0, 00) — C[0, 00) is the mapping

(@:6)(s) == €(t N s), 0<s<oo

[cf. Karatzas and Shreve (1988), page 60, Problem 2.4.2]. The significance of
(1.3) should be clear: “whether the stop-rule 7 has acted by any given time ¢
to halt the trajectory ¢, or not, can be decided by observing the trajectory up
to time ¢, and not beyond.” We shall denote by .7 the class of all stop-rules
7: C[0, 0c0) — CJ[0, o) as above.

Consider now a continuous “reward function” u: [¢,r] — 9, and a real
“discount factor” @ > 0. If the controller selects a diffusion X(-) from the class
o/ (x) of processes available at the initial position x € I, and if the stopper
employs the stop-rule 7 € .7, then the controller pays the stopper the amount
e "Xy (X (7(X))) at the time 7(X). The objective of the controller (resp., the
stopper) is to try and minimize (resp., maximize) this random quantity, at
least in expectation (“on the average”). In this spirit, we denote by

(1.4) V(x):= X(%g{f;(x) suﬁ E[e_aT(X)u(X(T(X)))]

the upper value, and by

- : —at(X)
(1.5) V(x):= sup X(;gf/(x) E[e u(X(7(X)))]

the lower value, of the game between the controller and the stopper. Clearly,
V(x) < V(x).

In (1.4), (1.5) and throughout the paper, we are employing the convention
x(00) :=limsup,_, ., x(¢) for any F-progressively measurable process x(-).

DEFINITION 1.1. We say that the game has a value if V(x) = V(x).
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DEFINITION 1.2. A pair (Z(-), p) € (Z(x) x ) is called a saddlepoint of
the game, if we have

(1.6) E[e "D w(Z(7(2)))] = E[e™"® u(Z(p(2)))]
| < E[e @ (X (p(X)))]

for every X(-) € &/ (x), 7 € /.

As is straightforward to verify, (1.6) implies that the game has a value,
namely,

(1.7 V() = V(x) = E[e ) w(Z(p(2)))].

After some preliminary results from optimal stopping theory, we shall iden-
tify a saddlepoint for the undiscounted game (@« = 0) in some generality in
Section 4, and for the discounted game (a > 0) under a special assumption in
Section 6.

The controller-and-stopper game has been studied in discrete time by
Maitra and Sudderth (1996), who showed that the game has a value when the
reward function is Borel-measurable and the state-space is Polish. Perhaps
the same is true in continuous time, but here we consider only real-valued
processes and a continuous reward function. In this much more concrete con-
text we obtain not just the existence of a value but also that of a saddle-point
for the game, which we are able to describe fairly exactly.

2. Reduction to optimal stopping. Let us consider now two Borel-
measurable functions b: I — %, s: I — N that satisfy

s%(x) >0, (b(x), s(x)) € #(x),

(21) xX+e
f sT2(y)[1+ |b(y)|]dy < o0 for some ¢ > 0

at every x € I. We always assume that there exist functions b, s with these
properties. It is then well known [cf. Karatzas and Shreve (1988), Theorem
5.5.15, page 341] that the stochastic differential equation

(2.2) dZ(t) = b(Z(t))dt + s(Z(t))dW(t), ZO0)==xel

has a weak solution, which is unique in the sense of the probability law.
The resulting process Z(-) is a one-dimensional, time-homogeneous diffusion
on the interval I, with local drift function b, local volatility function s, and
absorption at the boundary points of the interval [cf. Karatzas and Shreve,
pages 348-350, for conditions about the attainability or nonattainability of the
boundary points]. Furthermore, the processes B(:) = b(Z(")), o(-) = s(Z(+))
satisfy the requirements of (1.2), and thus the diffusion Z(-) of (2.2) belongs
to the class &7(x) of processes available to the controller at the initial position
xel.
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If the controller has selected the diffusion process Z(-) € .&/(x), then the
best that the stopper can do is to select a stop-rule which attains the supremum

(2.3)  G(x):=supE[e " Pu(Z(1(2)))] <= sup E[e““u(Z(,u))]).
T€S WEA

In this last expression we have denoted by .# the class of F-stopping times,
namely those random variables u: ) — [0, oo] that satisfy {u < t} € Z(¢), for
every t € [0, o0). It is well known that this optimal reward function G: I — R
is a-excessive; that is,

G(x)>E[e™G(Z(t))] VYO0<t<oo and

(2.4) G(x)zlgng[efatG(Z(t))]

hold for every x € I. The function G(-) clearly also majorizes u(-); that is,
(2.5) G(x) > u(x), Vxel

and is in fact the smallest a-excessive majorant of u(-). Furthermore, the stop-
rule p: C[0, c0) — C[0, c0) given by

(2.6) p(¢) ==1inf{t > 0/G(£(¢)) = u(&(?))} = inf{z > 0/£(¢) € X}
attains the supremum in (2.3), namely,

2.7 G(x) = E[e D u(Z(p(2)))].

We are denoting by

(2.8) S:={xcI/G(x)=u(x)}, ¢:={xecl/G(x)> u(x)}

the “optimal stopping” and “optimal continuation” regions, respectively. For
these classical results, the reader may wish to consult Shiryaev (1978) or
Salminen (1985).

In terms of the optimal reward function G(-) of (2.3), (2.7) and of the stop-
rule p in (2.6), the saddlepoint property (1.6) amounts to

E[e*PDu(Z(p(2)))] = G(x) < E[e™*Pu(X(p(X)))]
vV X(-) € ().

(2.9)

If (2.9) holds, then the pair (Z(-), p) is a saddlepoint of the stochastic game,
whose value is thus given by

(2.10) V(x) = V(x) = G(x).

The whole problem, then, becomes to identify a diffusion process Z(-) €
&/ (x) as in (2.2), with the properties (2.1) and (2.9). We shall carry out this
program in Section 4 for the undiscounted case (¢ = 0) and in Section 6 for
the discounted case (« > 0), under appropriate conditions.
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3. The undiscounted optimal stopping problem. In the undiscounted
case of @ = 0, a prominent role is played by the scale function,

3.1) p(x) = / exp[—2 /j(b/sZ)(u)du} dz,  xel

of the diffusion process Z(-) in (2.2), for some arbitrary but fixed x, € I. This
function is strictly increasing, with absolutely continuous first derivative,

3.2 pl(x)= exp{—Z /x(b/SQ)(u)du} =1+ / p'(w)du>0, xel,

where
_2b(x)

(3.3) p'(x) = 2(x) p'(x).
Under the assumptions
(3.4) {:= p({+) > —oo, r = p(r—) < oo,

the strictly increasing function p(-) maps the bounded interval I = (¢, r) onto
the bounded interval I = (¢, 7), and has the inverse function q: I — I that
satisfies p(q(y)) = ¥,V y € I. Furthermore, the transformation

(3.5) Y(t) := p(Z(t)), 0<t<oo

of the process Z(-) in (2.2), is a diffusion in natural scale, namely,
(3.6) dY (t) =35(Y (¢))dW(¢), Y(0)=y:=p(x) e I,
with 3(-) := ((p’s) o ¢)(-). Similarly, with a new reward function
(3.7) i():==(zoq)(-) onl,

we have

(3.8) G(x) = G(p(x)),

where

G(y) := suBE[ﬁ(Y(T(Y)))] for y e 1.

The auxiliary optimal reward function G(-) of (3.8) is defined on I. It is
concave on this interval, and in fact is the smallest concave majorant of i(-),
namely,

(3.9) G(y) = inf{f(y)/f() affine, f(-) = &(-)}.
This leads to the representation
(310)  G(x)=inf{B+yp(x)/B € N,y €N, B+yp() = u(-)}

of the optimal reward function G(-) in (2.3), as the lower envelope of all
affine transformations of the scale function p(-), that dominate the reward
function u(-).
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By analogy with (2.8), the optimal stopping region and the optimal contin-
uation region for the problem of (3.8), are given by

311D  S:={ye/G(y)=a(y)}, £:={yel/G(y)>a(y)}

respectively. As a concave function on I, é(«) has a decreasing left-derivative
D~G(-), which induces a positive measure v on #(I) through the recipe

(3.12) 7(a,b)) =D G(a)— D"G(b) fori<a<b<F.

The measure 7 does not charge the optimal continuation region £ in (3.11);
that is,

(3.13) (€)= 0;

this reflects the fact that 5() is affine on each of the (at most countably many)
open disjoint intervals, whose union constitutes .

For proofs of these statements, the reader is referred to Section 3 in
Karatzas and Sudderth (1999), and to the references cited there.

4, The undiscounted game. Let us discuss now the stochastic game of
Section 1 in the undiscounted case (a = 0), under the assumptions

(4.1) inf{o?/(B, o) € #(x) for some Be R, xecl}>D0,
(4.2) u*:= sup u(x)=u(m) for exactly one m € I.
xele, r]

We will also assume that we can select pairs (b,, s,), (b,, s,) of measurable
functions with the properties (2.1) and (3.4), as well as

(4.3) bu(®) _ 0 {%/(3, o) € .}i/(x)},

S0
b(x) _
s2(x)

for every x € I. One can then construct diffusion processes Z,(-), Z,(-) as in
(2.2), namely,

4.5)  dZ,(t) =b(Z,(t))dt +s,(Z,(t))dW(t), Z,(0)=xel,

(4.4)

sup { £, /(6.0 € ()]

4.6)  dZ,(t)=b.(Z, () dt +5,(Z,(£))dW (), Z,(0)=xel

as well as the corresponding optimal reward functions of (2.3) with « = 0,
namely,

4.7) G j(x) :=supE[u(Z ;(7(Z )))], xel for j=¢,r.
Te/

With these ingredients in place, we can formulate the solution of the stochastic
game in the undiscounted case (a = 0).
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THEOREM 4.1. With the above assumptions and notation (4.1)-(4.7), we
have the following:

(i) For each x € [¢, m], a saddle point for the stochastic game is given by
(Z,("), py), in the notation of (4.5) and of

(48)  py(§) = inf{t = 0/G,(£(1)) = u(&(t)}, & e C[0, o0).

(ii) For each x € [m,r], a saddlepoint for the stochastic game is given by
(Z,.(+), p,), in the notation of (4.6) and of

(4.9) pr(§) =inf{t > 0/G,.(£(¢)) =u(é(t))}, &€ C[0,00).
(iii) The stochastic game has a value, given by

G,/(x), xel[t,m),
(4.10) V(x)=V(x)=3 G.(x), xe(m,r],

u*, x=m.

In words: the controller (minimizer) tries to “get away as effectively as he
can from the point m,” the position of the global maximum of «(-) on [, r], by
minimizing (resp., maximizing) the mean-variance, or “signal-to-noise” ratio
B/o?, when to the left (resp., to the right) of m. This same policy maxi-
mizes the probability of reaching the left boundary point ¢ (resp., the right
boundary point r), as Pestien and Sudderth (1985) have demonstrated. It
is not a priori clear that the controller should follow such a strategy (i.e.,
that his notion of “effectiveness” should be the same as trying to reach a
goal with maximal probability), even in the vicinity of local minima for the
function u(-).

On the other hand, the stopper (maximizer) finds it best, when to the left of
the point m, to halt the controlled process X(-) at the time p,(X) of its first
entrance into the optimal stopping region 2, = {x € I/G,(x) = u(x)}, that
corresponds to the problem (4.7) for the diffusion process Z,(-) in (4.5). And
when to the right of m, the stopper finds it best to halt the controlled process
X (-) at the time p,(X) of its first entrance into the optimal stopping region
3, ={x€I/G,(x)=u(x)} of the problem (4.7) for the diffusion process Z,(-)
in (4.6). Clearly, the point m belongs to both stopping regions ¥, and 3,; so,
under optimal play on the part of his opponent, the controller will find himself
using only one of the two regimes (4.5), (4.6)—he will never have to switch
from one regime to the other.

ProoF. It suffices to deal with the case x € [¢, m] (the other case is then
treated similarly). In order to simplify notation, we shall set

m=r, s(-)=s,), b()=by(),
Z()=Z,(-), G()=G()

(4.11)
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and try to establish the saddlepoint property
(4.12) G(x) =E[u(X(p(X))] VvV X()e A(x)

of (2.9), for the stop-rule p(¢) = inf{t > 0/G(&(¢)) = u(&(t))} of (4.8).
For any given X(-) € &/(x), we claim that

(4.13) 9() := p(X(-)) is a submartingale

with values in the bounded interval I = (£, 7). Indeed, we have
/ , b
av() = pX) - (B0 de + oW (o] - (5 ) (X(©) - a*e)de

= pxn| £ - SEO 0 e+ p(xX(0) - ot aw o

from It6’s rule and (1.1), (3.3). Thanks to p/(:) > 0 and the definition (4.3), the
drift term is nonnegative. In other words, () is a local submartingale, thus
also a (true) submartingale, because it is bounded.

Now let us recall (3.8), (4.13) and look at the process
(4.15) n(t) = G(X(t)) = é(f}(t)), 0<t<oo.

From the generalized It6 rule for concave functions [e.g., Karatzas and Shreve
(1988), Section 3.7] we obtain

T ~
A7) = G+ [ DG p(X(e)|

(4.14)

B()  b(X(1)
o2(t) (X (1)

T ~
+fo D™G(9(2)) - p/(X(t))tf(t)dW(t)—fTL‘%(é)ﬁ(dé“),

0<T <.

]az(t) dt
(4.16)

Here t > LY({) is the local time of the semimartingale 9(-) at the point
{ € I: a continuous, increasing and F-adapted process, flat off the set {¢t >
0/9(t) = ¢}

As we are assuming that the continuous function u(-) attains its maximum
over [¢, r] at x = r, so in turn the continuous function i(-) attains its maximum

over [£, 7] at y = 7; this implies D~ G( ) > 0 and the increase of G( ) on I
From the positivity of p/(-) and the definition (4.3), we deduce that the first
integral on the right-hand side of (4.16) defines an increasing process. The
second (stochastic) integral defines a continuous, local martingale. The third
integral defines a continuous, increasing process that starts at zero, and for
which we have

[ Lio (D) = [[ Ll (D)(d2) = 0.

almost surely. This is because the measure v does not charge the continuation
region ¢ [recall (3.12) and (3.13)] and because

L)x(H)=0 as.
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for { € E, since p(X) = inf{t > 0/9(¢) € i} and t — LY () is flat off the set
{t = 0/9(1) = ¢}
We deduce from all this, that the process n(-Ap(X)) is a local submartingale;

because it takes values in the bounded interval I = [/, 7], the process
(4.17) 1n(- A p(X)) is actually a (bounded) submartingale.
Now from (4.17) and the optional sampling theorem, we obtain
G(x) =En(0) < E[n(p(X))] = E[G(X(p(X)))]
—E[u(X(p(X))] ¥ X()eS(x),
and (4.12) is proved. Note that we have used the assumption (4.1) to guarantee
(4.19) p(X) < o0 a.s. vV X(-) € o (x).
The proof of Theorem 4.1 is complete. O

(4.18)

REMARK 4.1. We cannot expect (4.10) to hold, in the absence of condi-
tion (4.1).

To see this, consider a reward function u(-) which is continuous on [£, r],
strictly decreasing on (¢, x,) and strictly increasing on (x,, r), for some x, € I.
Furthermore, in accordance with the simplifying assumption (4.11), we take
u(r) > u(?), which amounts to m = r. Suppose also that % (x) = {(-1, 1)} U
{(0, €)/e > 0} for every x € I = (£, r). Then

b(x) _ by(x) _

s*(x)  sj(x)
in the notation of (4.3), so that the process Z(-) = Z,(-) of (4.5), (4.11) is
Brownian motion with negative drift

(4.20) Z(t) = x — t + W(2).

The point x,, and a small open interval .#, containing it, belong to the
continuation region for the stopper’s (maximizer’s) problem G(x) =
sup,. , E[u(Z(7(Z)))] for the process Z(-) of (4.20). On the other hand, the
controller (minimizer) can effectively halt the process X(-) near any point
x € I, by choosing controls of the type

(4.21) (B(2), a(2)) = (0, (2))

for some deterministic function &: (0, 0c0) — (0, oo) with [;° £%(¢) d¢ very small.

Therefore, if X(0) = x, and the controller uses controls as in (4.21) so as to
keep the process X (-) in a sufficiently small neighborhood .#; containing x,,
then the controller can secure a payoff very near u(x,), in particular, smaller
than G(x,), so that (4.10) fails. On the other hand, we have in this case p(X) =
00 a.s., so (4.19) fails, and the argument in (4.18) fails too, as it should.

It would be interesting to study the stochastic game of Section 2, and try
to find a saddlepoint of optimal strategies for the two players, in the absence
of condition (4.1).
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5. The discounted optimal stopping problem. Our objective in this
section will be to study in some detail the optimal reward function of (2.3) in
the discounted case a > 0 after the manner of Salminen (1985), culminating
with the following result.

THEOREM 5.1. The function G(-) of (2.3) with a« > 0 can be written as the
difference of two convex functions, and the measure

(5.1) v(dx) ;= [aG(x) — b(x) - D~ G(x)]dx — (s%(x)/2) - D*G(dx)
is positive and does not charge the optimal continuation region € of (2.8):

(5.2) »(€) = 0.

Here and in the sequel, we are denoting by D~G(-), DTG(-) the left- and
right-derivatives of the function G(-), and by D?G(dx) the second-derivative
signed measure defined on the o-algebra #(I) of Borel sets of I, through

(5.3) D?G([a, b)) :== D G(b) — D G(a), t<a<b<r.

These derivatives exists because, as asserted in Theorem 5.1, we have G =
G, — G4 for two convex functions G, Gg; from well known theory [see, e.g.,
Karatzas and Shreve (1988), page 213], these have right- and left-derivatives
D*G,; which exist, are nondecreasing, and satisfy D-G; < D*G,; on I (with
strict inequality on a set which is at most countable) for i = 1, 2.

The proof of Theorem 5.1 occupies the remainder of this section and follows
very closely the work of Salminen (1985). It is rather technical, so readers
may wish to skip it on first reading and proceed directly to Section 6. There
we treat, with the help of Theorem 5.1, the stochastic game of (1.2)—(1.6) in
the discounted case a > 0.

In order to make headway with the proof, let us recall from Dynkin (1969),
Theorem 10.1 or Salminen (1985), Sections 3 and 4, that the optimal reward
function G(-) of (2.3) admits an integral representation of the type

(5.4) G(x) = /[l (E@aoNdy),  wel.

Here, the point x, € I is arbitrary but fixed, and A is some positive, finite
measure on (1) that does not charge the optimal continuation region ¢ of
(2.8), namely,

(5.5) A(€) = 0.

[cf. Salminen (1985), 4.2 and 4.5]. We have set K ,(x;x¢) = k,(x)/k,(xo),
where

®T(x)/P(y);
(5.6) ky(x) = (x)/P'(y); x<y _ E[e_“Ty]

D (x)/DH(y); x =y
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and T, :=inf{t > 0/Z(t) = y} is the first hitting time of the point y € [¢, r]
by the diffusion process Z(-) of (2.2). We are using here the notation ®'(-)
(resp., ®¥(-)) for a positive, strictly increasing (resp., decreasing) function that
is a-harmonic [meaning that it solves the equation (s2/2)®” + bd' = a® in
the generalized sense of (5.10) below]. The functions ®'(-), ®!(-) are linearly
independent, and the Wronskian

1
p'(x)

is a positive constant.

Let us concentrate on the interval [¢, x,] (a similar analysis can be carried
out for [x, r]). On this interval, Salminen (1985) computes the left-derivative
of the optimal reward function in (2.3), (5.4), as

-t -t
D G(x) = w -M[L, x)) + %

)
D CI)T(x)/ Pt (y) Ady), ‘<
[2, 0] =0

Do) P(y)

(5.7) B= [D*®(x) - D' (x) — DFD¥(x) - DT (x)]

- (%o, )
(5.8)

A similar expression can also be computed for the right-derivative, leading to
the property

p'(x)

-AM{x}) =0, x < x.

From (5.4), written for x < x, in the more suggestive form

(x) ®'(x) ®'(x) PH(y)
G = Gy ME RN+ iy Ao D+ gros [ Gt Ady)
and (5.8), we obtain
aG(x) —b(x) - D" G(x) = Rty _(Iffzcdzo.)D_¢¢(x) -A([¢, %))
a®’(x) — b(x) - D-®"(x)

(5.9) @1 (x) Ao 7D

' a®t(x) — b(x) - D~ (x)

D+ (o)

D (y)
X - A(dy), x < xg.
/[x,xo] (I)T(y) ( y) 0

Now each of the functions ®'(-), ®*(-) is a-harmonic, which means in partic-
ular that its second derivative measure

D*0([a, b)) := D~®(b) — D~d(a), L<a<b<r



1122 I. KARATZAS AND W. D. SUDDERTH

exists and is given by

(5.10) D2d(dx) = a®(x) — b(x) - D~ P(x)] da

2z )[
see Salminen [(1985), equation (2.4), page 88] and Revuz and Yor [(1991),
Theorem 3.12 and Exercise 3.20, pages 285-289]. This way, we may rewrite
(5.9) in the more compact form

0 )[aG(x) b(x) - D~G(x)]dx
D2d(dx) D2d' (dx)
BRECIEN R A I
D2<I>T(dx) ot (y)
() e D)

On the other hand, we may differentiate the expression of (5.8) to see that
the second derivative of G(-) exists as a signed measure, namely,

(5.11) A((x9, 7))

A(dy), x < x.

2h+ 2p1 -d!
D2G(dx)= %(d)x) ML, x)) + %if)x) (%o, 7]) + %xi’;) - Mdx)
D2CD¢(dx) DH(y) . _ D ®'(x) . ®(x) .
P e ) M)~ Gy @) MO
— [aG(x) — b(x)D~ G(x)] 22~ 5 ( )
_®H(x)D" P (x) — PT(x) D~ P (x)

B ()P (xo) Mdz)

in conjunction with (5.11), so that

— D?>G(dx) = L(x) -AMdx) on (¢, xg)

[«G(x) ~ b(x) - D" G(x)] 2 @ (20) @ (x)

( )

or equivalently,

Bp'(x)s*(x)
204 (x)PT(x)
in the notation of (5.1), where B > 0 is the Wronskian of (5.7).

The right-hand side of (5.12) is a positive, finite measure that does not
charge the optimal continuation region € [recall (5.5)]. Thus v is also a positive

measure, and (5.2) holds. On the other hand, the representation (5.12) for the
measure v of (5.1) allows us to write the second-derivative measure of G(-) as

(5.13) DG = \{ — Ay,

(5.12) v(dx) = - A(dx) on (¢, x)

the difference of two positive, finite measures

M(dx) = fH(x)dx,  Ay(dx) = f(x)dx + ——— - v(dx),

2()
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with f(x) := 2[aG(x) — b(x) - D~ G(x)]/s*(x), f*(x) := max(+f(x),0). This

means that
D™G(x) = D™ G(x0) + Ag([x, 20]) — A1([2x, x0])

is the difference of two increasing functions on [¢, x,], or in other words that
G(-) is the difference of two convex functions. A similar argument establishes
this same property on [x,, 7], and completes the proof of Theorem 5.1. O

6. The discounted game. Let us take up again the stochastic game of
Section 1, now in the discounted case o > 0. We shall assume that the contin-
uous function

(6.1) u: [£,r] = [0,00) is increasing

(and nonnegative) and that there exists a pair of real-valued, measurable
functions (b, s) on I, with the properties (2.1), (3.4) as well as

b(x) . B
(6.2) 20 = 1nf{p/([3, o) e Ji/(x)},
(6.3) s%(x) = inf{o?/(B, o) € #(x) for some B € N}

at every x € I. For this pair (b, s) of local drift and volatility functions, let
us consider the diffusion process Z(-) of (2.2) and recall the optimal reward
function G(-) of (2.3). We have the following result.

THEOREM 6.1. With the above assumptions and notation (6.1)—(6.3), the
pair (Z(-), p) with

(6.4) p(§) :=inf{t > 0/G(£(2)) = u(é(?))}, &€ C[0,00)

is a saddlepoint for the stochastic game of Section 1, and the value of this game
is given by

(6.5) V(x)=V(x)=G(x), xel

In other words, since the reward function u(-) is increasing, the controller
(minimizer) always tries to “get as close to the left boundary point ¢ as pos-
sible,” by minimizing the mean-variance or signal-to-noise ratio 8/c2. At the
same time, because of the discount factor @« > 0, he also tries to minimize
the local variance (noise) o2, thus “slowing the process down and allowing
the positive discount to reduce his expected cost.” For his part, the stopper
(maximizer) halts the game at the stopping time

(6.6) p(X)=inf{t > 0/X(¢) €3} e .4

when the controlled process X (-) first enters into the optimal stopping region

Y ={x€I/G(x)=u(x)} of (2.8).
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Conditions like (6.2) and (6.3) are also imposed by Sudderth and
Weerasinghe (1989), who studied the problem of controlling a diffusion pro-
cess to a goal on a fixed, finite time horizon. We shall conclude this section
with a discussion of some examples, for which it is indeed possible to min-
imize simultaneously the variance ¢? and the mean-variance ratio 8/02, as
mandated by (6.2) and (6.3).

PrROOF. We need to show the saddlepoint property
6.7) G(x) < E[eDu(X(p(X))] v X()e (),

and all the claims of the theorem will follow. To this end, let us apply the
generalized It6 rule for convex functions of semimartingales [e.g., Karatzas
and Shreve (1988), Section 3.7] to the process

e “G(X (1)), 0<t<oo.

[This is possible because, as we showed in Theorem 5.1, the function G(-) can
be written as the difference of two convex functions.] The result is

T
e TG(X(T)) — G(x) = /0 e D~ G(X(t))[B(t) dt + o(t) dW(¢)]

T
(6.8) —a /0 e G(X (1)) dt

T
+ [O fle“”DzG(dy) d(LE(y)), 0=T <oo.

Here ¢ — LX(y) is the local time of the semimartingale X(-) at the point
y € I: a continuous, increasing and F-adapted process, flat off the set {¢ >
0/X(¢) = y}. We may rewrite (6.8) as

e TG(X(T)) — G(x) — /0 " et D-G(X () ()dW ()

_ /T/ e—wf[DZG(dy) + ffjg; D G(y)dy —

_/ [e “t[D2G(d)+2§((y)) D G(y)dy - ( )

[ B W],
2] | g wiy e dtE )

r2a [ [ (52 1) 9D a3 )

z(t)G(y) dy} d,(L¥(y))

G(y)dy} d,(L¥(y))
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or equivalently in the form
T
e *TG(X(T)) — G(x) —/ e "D G(X(t))o(t)dW(¢)
0

— a/OT e“t(% - 1>G(X(t))dt

(6.9) T [ B@)  b(X(®) -
+/O e |:02(t)_s2(X(t))]D G(X(2))- o2(¢)dt

T —at
+[o fl ij(y) [(s*(y)/2) - D*G(dy)
+{b(3)D~G(y) — aG(y)} dy] - d,(LE()).

[Recall Theorem 3.7.1 from Karatzas and Shreve (1988) and its proof, partic-
ularly the last equation on page 224 and the first equation of page 225; see
also Exercise 1.15, page 216 in Revuz and Yor (1991).]

Let us look at the three integrals on the right-hand side of (6.9). The first is
nonnegative, because of conditions (6.3) and (6.1), which implies G(-) > 0. The
second of these integrals is also nonnegative, this time because of conditions
(6.2) and (6.1), which also implies D~ G(-) > 0. The last integral of (6.9), on
the other hand, is equal to

_fz<[oT et dt(Lf@»)% -0

in the notation of Theorem 5.1; but this integral is identically equal to zero on
the event {T < p(X)}, where p(X) is the stopping time of (6.6), again thanks
to Theorem 5.1. It develops from this discussion that the continuous process

(6.10) e PENG(X((t A p(X))), O0<t<oo

is a local submartingale; it is also bounded, so it is, in fact, a (bounded) sub-
martingale. Applying the optional sampling theorem to the process of (6.10),
and recalling the definition of the stop-rule p from (6.4), we obtain

G(x) < E[e NG (X (p(X)))]
= E[eOG(X (p(X))) - Lip(x)<o0)]
=E[e"Mu(X(p(X))) - Lip(x)<o0)]
= E[e*®u(X(p(X)))] Vv X()e A (x).

(6.11)

This establishes (6.7) and completes the proof of Theorem 6.1. O

Notice that in this discounted case (o« > 0) there is no need to impose the
condition (4.1), because in turn there is no need to guarantee P[p(X) < co] =1
in (6.11).
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REMARK 6.1. Suppose that the function u(-) is continuous, nonnegative,
satisfies the condition (4.2) and is increasing on [¢, m], decreasing on [m, r].
Suppose also that we can select pairs (b, s;), (b,, s,) of measurable functions
with the properties (2.1), (3.4) and s,(-) = s,(-) = s(-) as in (6.3), which satisfy
(4.3), (4.4) for every x € I. Then, with the notation of (4.5), (4.6) and with

Gj(x) :=supE[e " “)u(Z j(1(Z))))]. xel
Te/

for j = ¢, r, we have all the conclusions (i)—(iii) of Theorem 4.1.

Let us conclude with a look at two special cases, which illustrate Theorem
6.1 and also reveal some open problems.

CASE I. Suppose that the control sets are equal to a fixed rectangle, say

Z(x) = [B1, B2] x [0, 03], xel,

where B; < By, 0 < 07 < 0y. Recall that the controller (minimizer) prefers
that the process move to the left, because we are assuming that the reward
function u(-) is increasing. Thus, we can regard the game as being “superfair”
from the controller’s viewpoint, if the local drift coefficient can be chosen to
be negative. This means B; < 0 and, if so, Theorem 6.1 applies with optimal
controls B(¢) = By, o(t) = oy.

In the “subfair” case 8; > 0, Theorem 6.1 does not apply because no pair
(B, o) can satisfy both (6.2) and (6.3). It still seems clear that the controller
should take B(¢) = B;, but the choice of s(-) is more delicate. [The process
is drifting in the “wrong direction”; large values of s(-) mollify the drift as
reflected in the scale function, whereas small values of s(-) slow the process
down and allow the discount factor to reduce the controller’s expected loss.]
We suggest this case as an interesting open problem.

CASE II. Assume I = (0, 1) and that the controlled process is of the form
dX(t)=7(t)[Bodt + oo dW(t)].

Here By # 0 and o > 0 are given real constants, and the controller chooses
the F-progressively measurable process 7 (-) subject to the constraint
eX(t) =m(t) = X(¢), 0=t<oo,
for some given 0 < ¢ < 1. Then the control sets are
H (x) = {(mBy, may)/ex < m < x}, xel.

Here “superfairness” to the controller means B, < 0, in which case Theorem
6.1 yields the optimal control 7(¢) = ¢ X (¢); that is, B(¢) = ¢B,X(¢) and o(t) =
eoyX(t). If By > 0, we do not know an optimal strategy for the controller.
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